锐角三角函数教案设计
初中锐角三角函数教案
初中锐角三角函数教案教学目标:1. 了解锐角三角函数的定义和意义。
2. 掌握30°、45°、60°角的正弦、余弦和正切值。
3. 能够运用锐角三角函数解决实际问题。
教学重点:1. 锐角三角函数的定义和意义。
2. 30°、45°、60°角的正弦、余弦和正切值。
教学难点:1. 理解锐角三角函数的概念。
2. 运用锐角三角函数解决实际问题。
教学准备:1. 教师准备PPT课件。
2. 学生准备笔记本和文具。
教学过程:一、导入(5分钟)1. 教师通过引入直角三角形中的边角关系,引导学生思考锐角三角函数的定义和意义。
2. 学生分享对锐角三角函数的理解,教师总结并板书。
二、新课讲解(15分钟)1. 教师讲解锐角三角函数的定义,引导学生理解锐角三角函数的概念。
2. 教师讲解30°、45°、60°角的正弦、余弦和正切值,引导学生掌握锐角三角函数的数值。
3. 教师通过例题讲解,引导学生运用锐角三角函数解决实际问题。
三、课堂练习(10分钟)1. 学生独立完成课堂练习题,巩固所学知识。
2. 教师巡回指导,解答学生疑问。
四、总结与反思(5分钟)1. 教师引导学生总结本节课所学内容,巩固知识点。
2. 学生分享学习心得,教师给予鼓励和指导。
五、课后作业(课后自主完成)1. 学生根据课堂所学,完成课后作业,巩固知识点。
教学反思:本节课通过引入直角三角形中的边角关系,引导学生思考锐角三角函数的定义和意义。
在讲解过程中,注意引导学生理解锐角三角函数的概念,并通过例题讲解让学生掌握锐角三角函数的数值和运用方法。
在课堂练习环节,学生能够独立完成练习题,巩固所学知识。
总体来说,本节课达到了预期的教学目标。
在今后的教学中,要继续加强对学生的引导和鼓励,提高学生的参与度和积极性。
同时,注重课后作业的布置和批改,及时了解学生掌握情况,为下一步教学提供参考。
九年级数学锐角三角函数教案
一、教学目标:1.知识与技能目标:(1)了解什么是锐角三角函数;(2)掌握正弦、余弦和正切在锐角范围内的性质和计算方法;(3)能够运用锐角三角函数解决相关实际问题。
2.过程与方法目标:(1)运用课堂讲解、练习、小组合作和课堂展示相结合的方式,培养学生的学习兴趣;(2)通过解决实际问题的方式,培养学生的分析和解决问题的能力;(3)通过小组合作的方式,培养学生的合作和交流能力。
3.情感、态度与价值观目标:(1)通过展示数学的应用场景,培养学生对数学的兴趣和好奇心;(2)通过小组合作和课堂展示的方式,培养学生的合作和交流能力;(3)通过解决实际问题的方式,培养学生的分析和解决问题的能力。
二、教学重点和难点1.教学重点(1)正弦、余弦和正切的定义和性质;(2)正弦、余弦和正切的计算方法;(3)运用锐角三角函数解决相关实际问题。
2.教学难点(1)运用锐角三角函数解决实际问题的能力;(2)理解正弦、余弦和正切的定义和性质。
三、教学过程安排第一课时:1.导入(10分钟)让学生回顾之前学过的角度、弧度和三角比的相关知识,引出锐角三角函数的概念,并介绍本节课的学习内容和目标。
2.讲解(20分钟)(1)通过幻灯片和板书,讲解正弦、余弦和正切的定义和性质。
(2)讲解正弦、余弦和正切的计算方法,并解答学生提出的疑问。
3.练习(15分钟)(1)在黑板上出示锐角三角函数的计算练习题,让学生在纸上计算并互相讨论答案。
(2)随机抽选几位学生上台讲解解题过程,并进行讲解和点评。
4.小组合作(10分钟)(1)将学生分成小组,每个小组由3-4人组成,让他们一起解决一个实际问题。
(2)每个小组将解决过程和结果展示给全班,并进行评价和讨论。
5.总结(5分钟)(1)对本节课的内容进行总结概括。
(2)布置课后作业,让学生复习和巩固锐角三角函数的内容。
第二课时:1.复习(10分钟)让学生回顾之前学过的锐角三角函数的知识点,并进行简单的小测验。
《锐角三角函数》教学设计
28.1.3锐角三角函数(3)教学设计一、新课导入1.课题导入情景:出示一副三角尺,老师手中的两块三角尺中有几个不同的锐角?问题:分别求出这几个锐角的正弦值、余弦值和正切值.本节课我们学习30°,45°,60°角的三角函数值.(板书课题)2.学习目标(1)推导并熟记30°,45°,60°角的三角函数值.(2)能运用30°,45°,60°角的三角函数值进行简单的计算.(3)能由30°,45°,60°角的三角函数值求对应的锐角.3.学习重、难点重点:推导并熟记30°,45°,60°角的三角函数值.难点:相关运算.二、分层学习1.自学指导(1)自学内容:教材P65探究~P66例3上面的内容.①sin30°= ,cos30°= ,tan30°= ,sin45°= ,cos45°= ,tan45°= ,sin60°= ,cos60°= ,tan60°= .②sinα的值随着角α的增大而,cosα的值随着角α的增大而,tan α的值随着角α的增大而.这些常用的锐角三角函数值之间也是有规律的,互余的两个锐角的正弦值的平方和为1,互余的两个锐角的余弦值的平方和为1,它们的正切值的积为1.(2)自学时间:8分钟.(3)自学方法:完成探究提纲.②通过计算,得到30°,45°,60°角的正弦值、余弦值、正切值如下表:③观察上表,sin30°,sin45°,sin60°的值有什么规律?cos30°,cos45°,cos60°呢?tan30°,tan45°,tan60°呢?2.自学:学生可参考自学指导进行自学.3.助学(1)师助生:①明了学情:明了学生能否推导30°,45°,60°角的三角函数值.②差异指导:根据学情进行针对性指导.(2)生助生:小组内相互交流、研讨、纠正错误.4.强化:特殊角的三角函数值的推导和记忆以及30°,45°,60°角的正弦值、余弦值、正切值的变化规律.第二层次学习1.自学指导(1)自学内容:教材P66例3~P67练习上面的内容. (2)自学时间:10分钟.(3)自学方法:先自主学习,再同桌之间讨论交流,互相纠错. (4)自学参考提纲:①含30°,45°,60°角的三角函数值的计算题的解题要点是什么? 熟练掌握特殊锐角的三角函数值.②求直角三角形中某锐角的解题要点是什么?先求该锐角的正弦值或余弦值或正切值,然后根据特殊锐角的三角函数值求该锐角的度数.2.典例解析例1 求下列各式的值: ①cos 230°+sin 230°;②4545cos sin ︒︒-tan60°.解:①cos 230°+sin 230°=(32)2+(12)2=1.②4545cos sin ︒︒-tan45°=22÷22-1=1-1=0.sin 230°表示(sin30°)2,即sin30°·sin30°,这类计算只需将三角函数值代入即可.63A B B C ==求∠A 的度数.,2263sin ===AB BC A.45 ︒=∠∴AB BBC36A 解: 在图中,例2 (1)如图所示,在Rt △ABC 中,∠C =90°,,33tan ===OB OBOB AO a.60 ︒=∴a3.强化(1)求特殊锐角的三角函数值的关键是先把它转化为实数的运算,再根据实数的运算法则计算.(2)求锐角的度数的关键是先求其正弦值或余弦值或正切值,然后对应特殊锐角的三角函数值求角的度数.(3)当A 、B 为锐角时,若A ≠B ,则sin A ≠sin B ,cos A ≠cos B ,tan A ≠tanB. 三、评价1.学生自我评价:这节课你学到了什么?还有什么疑惑?2.教师对学生的评价:(1)表现性评价:根据学生的情感态度和学习效果等方面进行评价. (2)纸笔评价:课堂评价检测. 3.教师的自我评价(教学反思).本课时中的特殊角是指30°,45°,60°的角,课堂上采用“自主探究”的形式,给学生自主动手的时间并提供创新的空间与可能,再给不同层次的学生提供一个交流合作的机会,培养学生独立探究和合作的能力.本节课的最终教学目的是让学生理解并掌握30°,45°,60°角的三角函数值,并且能够熟记其函数值,然后利用它们进行计算.评价作业一、基础巩固(70分)(2)如图所示,AO是圆锥的高, OB 是底面半径,AO = ,求α的度数.ABOα解: 在图中,3.(40分)求下列各式的值. (1)sin45°+cos45°;=2.(2)sin45°cos60°-cos45°;(3)cos 245°+tan60°cos30°;=2.(4)1-cos30°sin60°+tan30°.的度数.∵∠B是锐角且tan B=1,∴∠B=45°.∴∠C=180°-∠A-∠B=75°.二、综合应用(20分)5.(10分)在△ABC中,锐角A,B满足(sin A-32)2+|cos B-32|=0,则△ABC是(D)A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形6.(10分)如图,△ABC内接于⊙O,AB,CD为⊙O的直径,D E⊥AB于点E,BC=1,AC=3,则∠D的度数为30° .三、拓展延伸(10分)7.(10分)对于钝角α,定义它的三角函数值如下:sinα=sin(180°-α),cosα=-cos(180°-α).(1)求sin 120°,cos 120°,sin 150°的值;解:sin120°=sin(180°-120°)=sin60°=3 2.Cos120°=-cos(180°-120°)=-cos60°=-1 2 .sin150°=sin(180°-150°)=sin30°=1 2 .(2)若一个三角形的三个内角的比是1∶1∶4,A,B是这个三角形的两个顶点,sin A,cos B是方程4x2-mx-1=0的两个不相等的实数根,求m的值及∠A和∠B的大小.解:∵三角形的三个内角的比是1∶1∶4,∴三角形三个内角度数分别为30°,30°,120°.∴∠A=30°或120°,∠B=30°或120°.∴sin A=sin30°=12或sin A=sin120°=32,cos B=cos30°=32或cos B=cos120°=-1 2 .又∵sin A,cos B是方程4x2-mx-1=0的两个不相等的实数根,。
《锐角三角函数》教学设计
《锐角三角函数》教学设计一、引言三角函数是高中数学的重要内容之一。
而锐角三角函数则是三角函数中的一个重要分支,涉及到正弦函数、余弦函数和正切函数。
本教学设计旨在帮助学生全面理解锐角三角函数的基本概念、性质和应用,并通过多种教学方法来提高学生的学习兴趣和掌握程度。
二、教学目标1. 理解锐角三角函数的定义及其基本性质;2. 掌握锐角三角函数的计算方法,并能在实际问题中应用;3. 培养学生的空间观念和逻辑思维能力。
三、教学重点1. 锐角三角函数的定义及基本性质;2. 锐角三角函数的计算方法;3. 锐角三角函数在实际问题中的应用。
四、教学内容及方法1. 锐角三角函数的定义及基本性质1.1 正弦函数的定义及性质1.2 余弦函数的定义及性质1.3 正切函数的定义及性质1.4 锐角三角函数的周期性质教学方法:通过课堂讲述、示意图和实例演示来介绍每个函数的定义及其性质,引导学生从几何角度理解函数的含义。
2. 锐角三角函数的计算方法2.1 正弦函数的计算2.2 余弦函数的计算2.3 正切函数的计算教学方法:以求解简单的三角函数值为例,引导学生利用单位圆、特殊角和三角函数定义来计算锐角三角函数的值,并通过练习巩固掌握。
3. 锐角三角函数在实际问题中的应用3.1 三角函数的应用于三角恒等变换3.2 三角函数在直角三角形中的应用3.3 三角函数在航空航天中的应用教学方法:通过实际例子和应用场景,引导学生将锐角三角函数应用于实际问题中,培养学生的问题解决能力和数学思维。
五、教学过程安排1. 引入锐角三角函数的概念和意义,解释本节课的教学目标。
2. 讲解锐角三角函数的定义及性质,通过示意图和实例演示来帮助学生理解。
3. 引导学生进行锐角三角函数的计算练习,提供不同难度的题目进行巩固。
4. 探究三角函数的恒等变换及其应用,让学生发现三角函数之间的关系。
5. 教学直角三角形中的三角函数应用,以实例演示和问题解决为主,培养学生的问题分析与解决能力。
锐角三角函数教案设计
锐角三角函数教案设计锐角三角函数教案设计锐角三角函数教案设计篇1知识目的:1.理解锐角的正弦函数、余弦函数、正切函数、余切函数的意义。
2.会由直角三角形的边长求锐角的正、余弦,正、余切函数值。
才能、情感目的:1.经历由情境引出问题,探究掌握数学知识,再运用于理论过程,培养学生学数学、用数学的意识与才能。
2.体会数形结合的数学思想方法。
3.培养学生自主探究的精神,进步合作交流才能。
重点、难点:1.直角三角形锐角三角函数的意义。
2.由直角三角形的边长求锐角三角函数值。
教学过程:一、创设情境前面我们利用相似和勾股定理解决一些实际问题中求一些线段的长度问题。
但有些问题单靠相似与勾股定理是无法解决的。
同学们放过风筝吗?你能测出风筝离地面的高度吗?学生讨论、答复各种方法。
老师加以评论。
总结:前面我们学习了勾股定理,对于以上的问题中,我们求的是BC的长,而的AB的长是可知的,只要知道AC的长就可要求BC了,但实际上要测量AC是很难的。
因此,我们换个角度,假如可测量出风筝的线与地面的夹角,能不能解决这个问题呢?学了今天这节课的内容,我们就可以很好地解决这个问题了。
〔由一个学生比拟熟悉的事例入手,引起学生的学习兴趣,调动起学生的学习热情。
由此导入新课〕二、新课讲述在Rt△ABC中与Rt△A1B1C1中∠C=90°,C1=90°∠A=∠A1,∠A的对边、斜边分别是BC、AB,∠A1的对边、斜边分别是B1C1、A1B2 〔学生探究,引导学生积极考虑,利用相似发现比值相等〕〔〕假设在Rt△A2B2C2中,∠A2=∠A,那么问题1:从以上的探究问题的过程,你发现了什么?〔学生讨论〕结论:这说明在直角三角形中,只要一个锐角的大小不变,那么无论这个直角三角形的大小如何,该锐角的对边与斜边的比值是一个固定值。
在一个直角三角形中,只要角的大小一定,它的对边与斜边的比值也就确定了,与这个角所在的三角形的大小无关,我们把这个比值叫做这个角的正弦,即∠A的正弦= ,记作sin A,也就是:sin A=几个注意点:①sin A是整体符号,不能所把看成sinA;②在一个直角三角形中,∠A正弦值是固定的,与∠A的两边长短无关,当∠A发生变化时,正弦值也发生变化;③sin A 表示用一个大写字母表示的一个角的正弦,对于用三个大写字母表示的角的正弦时,不能省略角的符号“∠”;例如表示“∠ABC”的正弦时,应该写成“sin∠ABC”;④ Sin A= 可看成一个等式。
《锐角三角函数》教学设计
《锐角三角函数》教学设计一、教学目标:1.了解什么是锐角三角函数;2.掌握正弦、余弦、正切的定义和计算方法;3.掌握锐角三角函数的性质和图像特点;4.能够应用锐角三角函数求解实际问题。
二、教学重点:1.正弦、余弦、正切的定义和计算方法;2.锐角三角函数的性质和图像特点。
三、教学难点:1.锐角三角函数的性质和图像特点。
四、教学过程:1.导入新知识向学生提问:“你们知道什么是三角函数吗?”接着引导学生回忆正弦、余弦、正切的定义和计算方法。
2.学习正弦、余弦、正切的定义和计算方法首先,给出锐角的定义:“锐角是指小于90°的角”。
然后,给出三角函数的定义:正弦(sin):在锐角∠A中,它的对边与斜边的比值叫做∠A的正弦,记作sinA。
余弦(cos):在锐角∠A中,它的邻边与斜边的比值叫做∠A的余弦,记作cosA。
正切(tan):在锐角∠A中,它的对边与邻边的比值叫做∠A的正切,记作tanA。
接着,通过例题进行讲解,让学生掌握如何计算正弦、余弦、正切。
3.学习锐角三角函数的性质和图像特点介绍锐角三角函数的性质:正弦函数的性质:定义域是全体实数,值域在[-1,1]之间,单调递增。
余弦函数的性质:定义域是全体实数,值域在[-1,1]之间,单调递减。
正切函数的性质:定义域是全体非零实数,值域是全体实数,在每个周期内都是振荡的。
然后,通过绘制锐角的基本函数图像,让学生观察锐角三角函数的图像特点。
4.练习运用锐角三角函数设计练习题,让学生运用锐角三角函数求解实际问题,如航空导弹的打击角度、建筑物的高度等。
五、教学总结对本节课的内容进行总结,强调重点。
六、板书设计锐角三角函数正弦:sinA = 对边/斜边余弦:cosA = 邻边/斜边正切:tanA = 对边/邻边锐角三角函数的性质:正弦函数:定义域是全体实数,值域在[-1,1]之间,单调递增。
余弦函数:定义域是全体实数,值域在[-1,1]之间,单调递减。
正切函数:定义域是全体非零实数,值域是全体实数,振荡。
锐角三角函数教学设计
锐角三角函数教学设计一、教学目标:1.理解锐角三角函数的概念和定义。
2.掌握锐角三角函数的计算方法和相互之间的关系。
3.能够应用锐角三角函数解决相关的实际问题。
4.培养学生的逻辑思维和数学推理能力。
二、教学重点:1.锐角三角函数的定义和性质。
2.锐角三角函数之间的关系。
3.锐角三角函数的计算方法。
三、教学难点:1.锐角三角函数的定义和计算方法。
2.锐角三角函数的相互关系和应用。
四、教学内容和教学过程:1.导入(5分钟)引入锐角三角函数的概念,提出锐角三角函数与直角三角函数之间的关系,并通过几个生活中常见的三角形图片引起学生的兴趣。
板书:锐角三角函数的概念。
2.锐角的定义(10分钟)介绍锐角的定义和性质,引导学生理解什么是锐角,并进行举例说明。
板书:锐角定义及性质。
3.锐角三角函数的定义(10分钟)介绍正弦、余弦、正切的定义,并与三角形的边长、角度的关系进行对照说明。
板书:正弦、余弦、正切的定义。
4.锐角三角函数的计算方法(20分钟)a.通过具体的锐角三角函数的计算问题,进行步骤的详细讲解。
b.引导学生理解计算中的基本思路和注意事项。
c.讲解计算中的常用技巧和方法,如利用三角函数的周期性、对称性等进行计算简化。
板书:锐角三角函数的计算方法。
5.锐角三角函数的相互关系(25分钟)a.对正弦、余弦、正切三个函数的性质进行详细说明,引导学生理解它们之间的相互关系。
b.针对特殊角的计算进行实例讲解,引导学生理解锐角三角函数之间的关系。
板书:正弦、余弦、正切的相互关系。
6.锐角三角函数的应用(20分钟)a.通过实际问题的解决,让学生理解锐角三角函数的应用。
b.引导学生利用锐角三角函数去解决各类实际问题,如测量高楼的高度、距离等。
板书:锐角三角函数的应用。
7.拓展与归纳(10分钟)归纳总结锐角三角函数的概念、定义、性质、计算方法和应用,培养学生的逻辑思维能力,并鼓励学生发散性思维进行扩展,如讨论其他角度三角函数的概念和性质。
浙教版数学九年级下册1.1《锐角三角函数》教学设计
浙教版数学九年级下册1.1《锐角三角函数》教学设计一. 教材分析《锐角三角函数》是浙教版数学九年级下册第一章第一节的内容。
本节课主要介绍了锐角三角函数的定义及性质,包括正弦、余弦、正切函数。
通过本节课的学习,学生能够理解锐角三角函数的概念,掌握各函数的定义及性质,并能运用其解决实际问题。
二. 学情分析九年级的学生已经具备了一定的函数知识,对函数的概念和性质有一定的了解。
但锐角三角函数的概念和性质较为抽象,学生可能难以理解和接受。
因此,在教学过程中,教师需要注重引导学生通过实例来理解抽象的锐角三角函数概念,并通过大量的练习来巩固所学知识。
三. 教学目标1.知识与技能:理解锐角三角函数的概念,掌握正弦、余弦、正切函数的定义及性质。
2.过程与方法:通过实例分析,引导学生运用锐角三角函数解决实际问题。
3.情感态度与价值观:培养学生对数学的兴趣,提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.重点:锐角三角函数的概念及其性质。
2.难点:正弦、余弦、正切函数的定义及性质。
五. 教学方法1.情境教学法:通过生活实例引入锐角三角函数的概念,引导学生理解其应用。
2.讲授法:讲解锐角三角函数的定义及性质,引导学生进行思考。
3.实践操作法:让学生通过实际操作,巩固所学知识。
4.小组讨论法:分组讨论,培养学生的合作意识。
六. 教学准备1.教学课件:制作课件,展示锐角三角函数的定义及性质。
2.实例材料:准备相关的生活实例,用于引入锐角三角函数的概念。
3.练习题:准备适量的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如建筑工人测量高度、航海员测定方向等,引导学生思考如何利用三角函数解决问题。
通过实例引入锐角三角函数的概念。
2.呈现(15分钟)讲解锐角三角函数的定义及性质,包括正弦、余弦、正切函数。
利用课件展示各函数的图像,帮助学生理解其性质。
3.操练(15分钟)让学生分组进行实践操作,运用锐角三角函数解决实际问题。
人教版九年级锐角三角函数全章教案
人教版九年级锐角三角函数全章教案【人教版九年级锐角三角函数全章教案】一、教学目标:1. 理解锐角三角函数的概念和性质;2. 掌握正弦、余弦、正切函数的定义和计算方法;3. 能够应用三角函数解决实际问题;4. 培养学生的逻辑思维和解决问题的能力。
二、教学重点:1. 掌握锐角三角函数的定义和性质;2. 理解三角函数在坐标系中的几何意义;3. 能够应用三角函数解决实际问题。
三、教学难点:1. 理解三角函数的周期性和图像特点;2. 运用三角函数解决实际问题。
四、教学准备:1. 教材:人教版九年级数学教材;2. 教具:黑板、白板、书写工具、计算器等。
五、教学过程:1. 引入(10分钟)通过提问和讨论的方式引导学生回顾和复习之前学过的角的概念和性质,引出锐角的概念,并与直角、钝角进行对比。
2. 基本概念的引入(20分钟)a. 讲解锐角三角函数的定义:正弦、余弦、正切。
b. 讲解三角函数的计算方法和性质。
c. 通过例题演示如何计算三角函数的值。
3. 几何意义的理解(30分钟)a. 介绍三角函数在坐标系中的几何意义。
b. 讲解三角函数的周期性和图像特点。
c. 通过绘制图像和实例分析,让学生理解三角函数的变化规律。
4. 实际问题的应用(40分钟)a. 引导学生通过实例,学习如何应用三角函数解决实际问题,如测量高度、距离等。
b. 给学生一些练习题,让他们独立解决实际问题。
5. 总结与拓展(10分钟)a. 总结本节课所学的内容和方法。
b. 引导学生思考,如何进一步拓展和应用锐角三角函数的知识。
六、教学反思:本节课通过引导学生回顾和复习角的概念和性质,引入锐角的概念,并讲解了锐角三角函数的定义、计算方法和性质。
通过绘制图像和实例分析,让学生理解三角函数的几何意义和变化规律,并应用三角函数解决实际问题。
通过这样的教学过程,学生能够更好地掌握锐角三角函数的知识,提高他们的逻辑思维和解决问题的能力。
同时,教师需要根据学生的实际情况,灵活调整教学方法和教学内容,确保教学效果的最大化。
新人教版九年级数学锐角三角函数教案
新人教版九年级数学锐角三角函数教案新人教版九年级数学锐角三角函数教案1一、复习巩固:1、在△ABC中,∠C=90°,∠A=45°,则BC:AC:AB = 。
2、在△ABC中,∠C=90°。
(1)已知∠A=30°,BC=8cm, (2)已知∠A=60°,AC= cm,求:AB与AC的长; 求:AB与BC的长。
二、例题学习:问题1:“五一”节,小明和同学一起到游乐场游玩,游乐场的大型摩天轮的半径为20m,旋转1周需要12min。
小明乘坐最底部的车厢(离地面约0.5m)开始1周的观光,2min后小明离地面的高度是多少(精确到0.1m)?拓展延伸:1、摩天轮启动多长时间后,小明离地面的高度将首次到达10m?2、小明将有多长时间连续保持在离地面20m以上的空中?思考与探索1:如图,东西两炮台A、B相距2000米,同时发现敌舰C,炮台A测得敌舰C在它的南偏东60°的方向,炮台B测得敌舰C在它的正南方,试求敌舰与两炮台的距离。
概念:仰角、俯角的定义如右图,从下往上看,视线与水平线的夹角叫仰角,从上往下看,视线与水平线的夹角叫做俯角。
右图中的∠1就是仰角,∠2就是俯角。
问题2:为了测量停留在空中的气球的高度,小明先站在地面上某点观测气球,测得仰角为30°,然后他向气球方向前进了50m,此时观测气球,测得仰角为45°。
若小明的眼睛离地面1.6m ,小明如何计算气球的高度呢?思考与探索(2):大海中某小岛的周围10km范围内有暗礁。
一艘海轮在该岛的南偏西55°方向的某处,由西向东行驶了20km后到达该岛的南偏西25°方向的另一处。
如果该海轮继续向东行驶,会有触礁的危险吗?三、板演练习1、如图,单摆的摆长AB为90cm,当它摆动到∠BAB'的位置时,∠BAB'=30°。
问这时摆球B'较最低点B升高了多少?2、飞机在一定高度上飞行,先测得正前方某小岛的俯角为30°,飞行10km后,测得该小岛的俯角为60°,求飞机的高度。
锐角三角函数教案导入
锐角三角函数教案导入这是锐角三角函数教案导入,是优秀的数学教案文章,供老师家长们参考学习。
锐角三角函数教案导入第1篇一、情境导入如图是两个自动扶梯,甲、乙两人分别从1、2号自动扶梯上楼,谁先到达楼顶?如果AB和A′B′相等而∠α和∠ β大小不同,那么它们的高度AC 和A′C′相等吗?AB、 AC、BC与∠α,A′B′、A′C′、B′C′与∠β之间有什么关系呢? --- ---导出新课二、新课教学1、合作探究见课本2、三角函数的定义在Rt△ABC中,如果锐角A确定,那么∠A的对边与斜边的比、邻边与斜边的比也随之确定.∠A 的对边与邻边的比叫做∠A的正弦(sine),记作s inA,即s in A=∠A的邻边与斜边的比叫做∠A的余弦(cosine),记作cosA,即cosA=∠A的对边与∠A的邻边的比叫做∠A的正切(tangent) ,记作tanA,即锐角A的正弦、余弦和正切统称∠A的三角函数.注意:sinA,cosA, tanA都是一个完整的符号,单独的“sin”没有意义,其中A前面的“∠”一般省略不写。
师:根据上面的三角函数定义,你知道正弦与余弦三角函数值的取值范围吗?师:(点拨)直角三角形中,斜边大于直角边.生:独立思考,尝试回答,交流结果.明确:0<sina<1,0 <cosa<1.巩固练习:课内练习T1、作业题T1、23、如图,在Rt△ABC中,∠C=90°,AB=5,BC=3, 求∠A, ∠B的正弦,余弦和正切.分析:由勾股定理求出AC的长度,再根据直角三角形中锐角三角函数值与三边之间的关系求出各函数值。
师:观察以上计算结果,你发现了什么?明确:sinA=cosB,cosA=sinB,tanA•ta nB=14 、课堂练习:课本课内练习T2、3,作业题T3、4、5、6三、课堂小结:谈谈今天的收获1、内容总结(1)在RtΔA BC中,设∠C= 900,∠α为RtΔABC的一个锐角,则∠α的正弦,∠α的余弦,∠α的正切(2)一般地,在Rt△ ABC中, 当∠C=90°时,sinA=cosB,cosA=sinB,tanA•tanB=12、方法归纳在涉及直角三角形边角关系时,常借助三角函数定义来解锐角三角函数教案导入第2篇教学目标1.经历探索直角三角形中边角关系的过程,理解正切的意义。
锐角三角函数数学教案
锐角三角函数数学教案标题:锐角三角函数数学教案一、教学目标:1. 理解并掌握正弦、余弦、正切等基本概念。
2. 学会利用直角三角形的边长关系求解三角函数值。
3. 能够运用锐角三角函数解决实际问题。
二、教学内容:1. 锐角三角函数的基本概念- 正弦、余弦、正切的定义- 特殊角的三角函数值2. 锐角三角函数的应用- 利用直角三角形的边长关系求解三角函数值- 利用三角函数解决实际问题三、教学过程:1. 引入新课:- 通过展示一些生活中常见的角度和比例问题,引入锐角三角函数的概念。
2. 讲授新知:- 介绍正弦、余弦、正切的定义,并举例说明。
- 介绍特殊角的三角函数值,并让学生记住这些基本的三角函数值。
3. 巩固练习:- 给出一些简单的直角三角形,让学生计算对应的三角函数值。
4. 拓展应用:- 给出一些实际的问题,让学生尝试使用锐角三角函数来解决。
5. 总结归纳:- 回顾本节课的主要知识点,强调锐角三角函数在实际生活中的应用。
四、教学方法:1. 直观演示法:通过实物或模型直观展示锐角三角函数的概念。
2. 启发引导法:通过提出问题,引导学生思考,激发他们的学习兴趣。
3. 实践操作法:让学生亲自参与实践活动,提高他们解决问题的能力。
五、教学评估:1. 过程评价:观察学生在课堂上的表现,包括他们的参与度、理解程度等。
2. 结果评价:通过作业和测试,检查学生对知识的掌握情况。
六、教学反思:1. 对于学生的反馈进行分析,找出教学中的不足,以便改进。
2. 根据学生的接受程度,调整教学进度和难度。
九年级数学上册《锐角三角函数》教案、教学设计
4.作业完成后,请学生认真检查,确保答案的正确性。
4.利用信息技术手段,如动态课件、网络资源等,丰富教学手段,提高学生的学习兴趣和积极性。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生的学习热情,提高学生的自主学习能力。
2.通过解决实际问题,使学生认识到数学知识在实际生活中的重要作用,增强学生的应用意识。
3.培养学生勇于探索、克服困难的精神,提高学生的自信心和自尊心。
九年级数学上册《锐角三角函数》教案、教学设计
一、教学目标
(一)知识与技能
1.使学生掌握锐角三角函数的定义,理解正弦、余弦、正切函数的概念,并能够运用这些概念进行简单的计算。
2.培养学生运用三角函数解决实际问题的能力,如测量物体的高度、计算角度等。
3.使学生掌握特殊角的三角函数值,并能熟练运用到实际问题中。
(2)运用三角函数解决实际问题,尤其是将实际问题抽象为数学模型,并运用三角函数进行求解;
(3)掌握特殊角的三角函数值,并能灵活运用到实际问题中。
(二)教学设想
1.教学策略:
(1)采用情境教学法,创设实际问题情境,引导学生主动探究锐角三角函数的定义和性质;
(2)运用任务驱动法,设计具有挑战性的任务,让学生在实践中掌握三角函数的计算方法和应用;
(3)了解三角函数在其他学科领域的应用,如物理、工程等。
4.小组合作题:
(1)分组讨论:如何利用三角函数解决实际问题?举例说明;
(2)小组合作完成一份关于锐角三角函数在实际问题中应用的报告。
作业要求:
1.学生需独立完成基础题,提高题和拓展题可根据个人能力选择完成;
2.作业过程中,要求学生注重解题思路和方法的总结,养成良好的学习习惯;
沪科版数学九年级上册23.1《锐角的三角函数》教学设计4
沪科版数学九年级上册23.1《锐角的三角函数》教学设计4一. 教材分析《锐角的三角函数》是沪科版数学九年级上册第23.1节的内容。
本节主要介绍了锐角三角函数的定义及应用。
通过本节的学习,学生能够理解锐角三角函数的概念,掌握锐角三角函数的计算方法,并能够运用锐角三角函数解决实际问题。
二. 学情分析九年级的学生已经学习了三角函数的基础知识,对函数的概念和性质有一定的了解。
但是,对于锐角三角函数的具体定义和应用,学生可能还比较陌生。
因此,在教学过程中,需要引导学生从实际问题出发,逐步理解和掌握锐角三角函数的概念和计算方法。
三. 教学目标1.了解锐角三角函数的定义及计算方法。
2.能够运用锐角三角函数解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.锐角三角函数的定义及计算方法。
2.运用锐角三角函数解决实际问题。
五. 教学方法1.情境教学法:通过设置实际问题,引导学生从实际问题中抽象出锐角三角函数的概念。
2.案例教学法:通过具体的案例,讲解和演示锐角三角函数的计算方法。
3.小组合作学习:学生分组讨论和解决问题,培养学生的合作意识和团队精神。
六. 教学准备1.教学课件:制作课件,展示锐角三角函数的定义和计算方法。
2.案例材料:准备一些实际的案例,用于讲解和演示锐角三角函数的应用。
3.练习题:准备一些练习题,用于巩固学生的学习成果。
七. 教学过程1.导入(5分钟)利用课件展示一些实际的例子,如建筑物的角度测量、滑翔机的起飞角度等,引导学生思考这些例子与三角函数的关系,从而引出锐角三角函数的概念。
2.呈现(10分钟)讲解锐角三角函数的定义和计算方法,引导学生从实际问题中抽象出锐角三角函数的概念。
3.操练(10分钟)学生分组讨论和解决一些实际的案例,如滑翔机的起飞角度问题、房屋建筑的倾斜度问题等,巩固学生对锐角三角函数的理解和应用。
4.巩固(10分钟)学生独立完成一些练习题,检测学生对锐角三角函数的掌握程度。
24.3 锐角三角函数 华师大版数学九年级上册教案
24.3 锐角三角函数1.锐角三角函数第1课时锐角三角函数的定义※教学目标※【知识与技能】了解锐角三角函数的概念,能够正确应用sinA、cosA、tanA表示直角三角形中两边的比.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,体会数学在解决实际问题中的作用.【情感态度】1.通过学习培养学生的合作意识.2.通过探究提高学生学习数学的兴趣.【教学重点】锐角三角函数的概念.【教学难点】锐角三角函数的概念的理解.※教学过程※一、情境导入如图(1),图(2)都可以用来测量物体的高度.这两个问题的解决,将涉及直角三角形中的边角关系.直角三角形中,它的边与角有什么关系?通过本节的学习,你就会明白其中的道理,并能应用所学知识解决相关的问题.二、探索新知1.某个角的对边、邻边的概念.在Rt△ABC中,直角∠C所对的边AB称为斜边,用c表示,另两边直角边为∠A的对边与邻边,分别用a、b表示(如图).2.做一做.(1)画一个Rt△ABC,使∠C=90°,∠A=30°,那么∠A的对边与斜边的比值是多少?量一量、算一算.(2)你画的三角形与你同伴画的三角形全等吗?不全等时,比值有什么关系?和你的同伴交流一下.(3)若∠A=45°、60°时,则∠A对边与斜边之比是多少?结论:在Rt△ABC中,只要一个锐角的大小不变(如∠A=30°),那么不管这个直角三角形大小如何,该锐角的对边与邻边的比值是一个固定的值.经过验证,在Rt△ABC中,当锐角A取其他固定值时,∠A的对边与邻边的比值还是一个固定值,与Rt△ABC的大小无关.说明:观察图中的Rt△AB 1C1、Rt△AB2C2和Rt△AB3C3,易知Rt△AB1C1Rt△AB2C2∽Rt△AB3C3.∴==可见,在Rt△ABC中,对于锐角A的每一个确定的值,其对边与邻边的比值是唯一确定的.同样,其对边与斜边,邻边与斜边的比值也是唯一确定的.3.锐角三角形函数的定义∠A的正弦:sinA=∠A的余弦:cosA=∠A的正切:tanA=∠A的正弦、余弦、正切统称为锐角∠A的三角函数.4.知识拓展(1)正弦与余弦三角函数值的取值范围.∵直角三角形中,斜边大于直角边.∴0<sinA<1,0<cosA<1.(2)同角三角函数关系sin2α+cos2α=1;tanα=.(3)互余两角的三角函数值若α、β都是锐角,且α+β=90°,那么:sinα=cosβ,cosα=sinβ.三、巩固练习【例1】如图,在Rt△ABC中,∠C=90°,AC=15,BC=8.试求出∠A的三个三角函数值.解:AB==17,sinA=,cosA=,tanA=.【练习】1.如图,在Rt△MNP中,∠N=90°,则:∠P的对边是,∠P的邻边是;∠M的对边是,∠M的邻边是.第1题图第2题图2.如图,在Rt△DEC中,∠E=90°,CD=10,DE=6.试求出∠D的三个三角函数值.3.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.根据下列所给条件,分别求出∠B的三个三角函数值:(1)a=3,b=4;(2)a=5,c=13.答案:1.MN PN PN MN2.由勾股定理,得CE=8,所以sinD=,cosD=,tanD=.3.(1)sinB=,cosB=,tanB=.(2)sinB=,cosB=,tanB=.四、应用拓展【例2】已知:Rt△ABC中,∠C=90°,sinA=,BC=3,求AB、AC的值.解:∵sinA=,∴AB=,∴AC=.【例3】如图,已知α为锐角,sinα=,求cosα、tanα的值.解:方法一:用定义法求解∵sinα=,∴设BC=3x,则AB=5x.由勾股定理,得AC=4x.∴cosα=,tanα=.方法二:用公式求解∵α为锐角,∴cosα==,tanα=.五、归纳小结1.正弦、余弦、正切的定义是在直角三角形中相对其锐角而定义的,其本质是两条线段长度之比,理解好这三个概念是学好本章的关键;2.正弦、余弦、正切实际上都是比值,没有单位,它们只与锐角α的大小有关,与三角形的边长无关;3.对于每一个锐角α的确定的值,它的正弦、余弦和正切都有唯一确定的值与之对应;反之,对于每一个确定的正弦、余弦和正切值,都有唯一的锐角与之对应.※课后作业※1.教材第111页习题24.3第1、2题.2.如图,在Rt△ABC中,∠CAB=90°,AD是∠CAB的平分线,tanB=,求的值.第2课时特殊角的三角函数值※教学目标※【知识与技能】1.熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应的锐角度数.2.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【过程与方法】培养学生观察、比较、分析、概括的思维能力.【情感态度】经历观察、操作、归纳等学习数学过程,感受数学思考过程的合理性,感受数学说理的必要性,说理过程的严谨性,养成科学的、严谨的学习态度.【教学重点】特殊角的三角函数值.【教学难点】与特殊角的三角函数值有关的计算.※教学过程※一、复习引入在Rt△ABC中,∠C=90°,AC=1,AB=2,求∠A、∠B的三个三角函数值.回顾锐角三角函数的定义;直角三角形的性质.二、探索新知在Rt△ABC中,∠A=30°,∠C=90°,如图,试求两个锐角的三个三角函数值.解:在直角三角形中,30°角所对的直角边是斜边的一半.所以,若设30°角所对的直角边为1,即BC=1,则AB=2,由勾股定理得:AC=.由三角函数定义,得sin30°=.cos30°=.tan30°=.同理可得sin60°=,cos60°=,tan60°=.2.在Rt△ABC中,∠C=90°,∠A=∠B=45°,如图,试求45°角的三角函数值.若设AC=BC=1.则AB=.易得sin45°=,cos45°=,tan45°=1.【例1】求值:sin30°·tan30°+cos60°·tan60°.解:原式=.【例2】在Rt△ABC中,若sinA=,则cos的值是多少?解:由sinA=知A=60°.∴cos=cos30°=.三、巩固练习1.在△ABC中,若cosA=,tanB=,则此三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.用特殊角的三角函数填空:= = ;= = ;1= ;= .3.化简= .4.点M(-sin60°,cos60°)关于x轴对称的点的坐标是.5.求下列各式的值:(1)sin260°+cos260°;(2)2cos60°+2sin30°+4tan45°;(3).6.如图,在Rt△ABC中,∠C=90°,AB=,BC=.求∠A的大小.答案:1.A 2.sin60° cos30° sin45° cos45°tan45° tan60° 3. 4.5.(1)1 (2)6 (3)6.∠A=45°四、应用拓展1.你能求出tan15°的值吗?如图,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至D,使BD=AB,则∠D=15°.设AC=k,则AB=2k,BC=k,所以CD=BC+BD=BC+AB=(2+)k,所以tan15°===2-.2.仿上面的解题方法,易求tan22.5°=-1.※课后作业※1.教材第111页习题24.3的第3题.2.若∠A、∠B是△ABC的两个内角且满足关系式=0,求∠C的度数.3.若α为锐角,且tan2α-(1+)tanα+1=0.求α的度数.2.用计算器求锐角三角函数值※教学目标※【知识与技能】1.会使用计算器求锐角三角函数的值.2.会使用计算器根据锐角三角函数的值求对应的锐角.【过程与方法】在做题、计算的过程中,逐步熟练计算器的使用.【情感态度】经历计算器的使用过程,熟悉其按键顺序.【教学重点】利用计算器求锐角三角函数的值.【教学难点】计算器的按键顺序. ※教学过程※一、复习引入填表:由上表我们可以直接写出30°,45°,60°角的三角函数值及由特殊值写出相应的锐角.对一些非特殊的角,怎样求它的三个三角函数值呢?二、探索新知1.求锐角三角函数值【例1】求sin63°52′41″的值(精确到0.0001).解:如下方法将角度单位状态设定为“度”:再按下列顺序依次按键:显示结果为0.897859012.∴sin63°52′41″≈0.8979.【例2】求tan19°15′的值(精确到0.0001).解:在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:显示结果为0.3492156334.∴tan19°15′≈0.3492.2.由锐角三角函数值求锐角.【例3】若tanx=0.7410,求锐角x.(精确到1′)解:在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:显示结果为36.53844577.再按键,显示结果为36°32′18.4″.所以x≈36°32′.三、巩固练习1.利用计算器求下列三角函数值:(精确到0.0001)(1)sin24°;(2)cos51°42′20″;(3)tan70°21′.2.已知下列锐角α的各三角函数值,利用计算器求锐角α:(精确到1′)(1)sinα=0.2476;(2)cosα=0.4174;(3)tanα=0.1890.答案:1.(1)0.4067 (2)0.6197 (3)2.8006 2.(1)14°20′(2)65°20′(3)10°42′※课后作业※1.教材第111页习题24.3的第4、5题.2.比较大小.cos25° cos32°,tan29° tan39°.3.在Rt△ABC中,∠C=90°,AB=29,AC=25,求∠A的度数.。
锐角三角函数全章教案
锐角三角函数全章教案【篇一:人教版九年级锐角三角函数全章教案】第二十八章锐角三角函数教材分析:本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。
锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。
研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。
本章内容与已学相似三角形勾股定理等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。
学情分析:锐角三角函数的概念既是本章的难点,也是学习本章的关键。
难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号 sina 、cosa 、 tana 表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。
至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。
28.1 锐角三角函数(1)第一课时教学目标:知识与技能:1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。
2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。
过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.重难点:1.重点:理解认识正弦(sina)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.2.难点与关键:难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实.教学过程:一、复习旧知、引入新课【引入】操场里有一个旗杆,老师让小明去测量旗杆高度。
锐角三角函数教案
锐角三角函数教案教学目标:1. 理解锐角三角函数的定义及其在三角恒等式中的应用。
2. 学会根据给定角度的数值计算其相对应的锐角三角函数值。
3. 掌握使用锐角三角函数求解三角方程和解三角形问题的方法。
教学重点:1. 锐角三角函数的定义及其性质。
2. 使用锐角三角函数求解三角方程和解三角形问题。
教学难点:1. 理解锐角三角函数与三角恒等式之间的关系,能够在解题中正确应用锐角三角函数的性质。
2. 学会使用锐角三角函数解决实际问题。
教学过程:Step 1: 导入新知识引入锐角三角函数的概念,并与直角三角函数进行对比,引出锐角三角函数的定义。
Step 2: 锐角三角函数的定义及其性质1. 引导学生理解正弦、余弦和正切函数的定义。
2. 解释锐角三角函数的定义域和值域。
3. 介绍锐角三角函数的基本性质,例如正弦函数的周期性和对称性等。
Step 3: 锐角三角函数的计算1. 给出一个角度的数值,让学生计算其相对应的锐角三角函数值。
2. 引导学生根据定义和性质解决一些简单的计算问题。
Step 4: 三角恒等式1. 介绍三角恒等式的概念。
2. 使用锐角三角函数的定义和性质推导一些常见的三角恒等式,例如正弦函数、余弦函数和正切函数的平方和差恒等式等。
3. 引导学生通过三角恒等式简化复杂的三角表达式。
Step 5: 解三角方程1. 介绍三角方程的概念。
2. 引导学生通过应用锐角三角函数的定义和性质解决一些简单的三角方程。
3. 给出一些较复杂的三角方程,让学生尝试解决。
Step 6: 解三角形问题1. 引导学生理解解三角形问题的思路和方法。
2. 通过实例引导学生解决一些简单的解三角形问题。
Step 7: 拓展应用1. 引导学生通过锐角三角函数解决一些实际问题,例如测量不可到达的高度和距离等。
2. 让学生自主寻找和锐角三角函数相关的应用实例,并进行讨论。
Step 8: 总结归纳总结锐角三角函数的定义、性质和使用方法,并强调锐角三角函数在解决实际问题中的重要性。
《锐角三角函数》教案
锐角三角函数【教学内容】锐角三角函数【教学目标】1、正确理解锐角三角函数的定义。
2、熟记0°、30°、45°、60°、90°角的四个三角函数值。
3、掌握互余两角的三角函数之间的关系:sin(90°-α)=cos α, cos(90°-α)=sin α tg(90°-α)=ctg α, ctg(90°-α)=tg α 4、理解同角三角函数之间的关系: (1)平方关系 sin 2α+cos 2α=1 (2)倒数关系 tg α·ctg α=1(3)弦切间的关系 tg α=ααcos sin ,ctg α=ααsin cos5、掌握三角函数值的大小变化规律: 若0°<α<β<90°,则0<sin α<sin β<1 0<cos β<cos α<1 0<tg α<tg β 0<ctg β<ctg α6、会用科学计算器(尚无条件的学校可使用算表)由已知锐角求它的三角函数值,会由一个特殊锐角的三角函数值,求出它对应的角度。
【知识讲解】1、锐角三角函数的定义如图,△ABC 中,∠C=90°,把锐角A 的对边与斜边的比叫做∠A 的正弦,记作 sinA ,即:sinA=caA =∠斜边的对边把锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即:cosA=c bA =∠斜边的邻边把锐角A 的对边与邻边的比叫做∠A 的正切,记作tgA ,即:tgA=b aA =∠邻边的对边把锐角A 的邻边与对边之比叫做∠A 的余切,记作ctgA ,即:ctgA=abA =∠对边的邻边2、特殊角的三角函数值可列表如下:对边邻边3 4 证明:(1)在 又∵ ∴sin 2α (2)∵tg α ∴tg α (3)∵sin α=c a ,cos α=c b ,tg α=ba∴bacb c a==ααcos sin =tg α 又∵tg α·ctg α=1∴ctg α=ααsin cos5、当角度在0°~90°间变化时,正弦(正切)值随角度的增大而增大,余弦(余 切)值随角度的增大而减小。
28.1《锐角三角函数》教案
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“锐角三角函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
4.及时关注学生的学习反馈,针对他们的疑难点进行针对性的讲解和辅导。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了锐角三角函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对锐角三角函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
实践活动和小组讨论是今天课程的亮点。学生们在分组讨论中积极互动,通过实验操作加深了对三角函数的理解。在讨论环节,我尽量以引导者的身份出现,鼓励学生们提出自己的观点,这有助于培养他们的批判性思维和创新能力。不过,我也观察到,有些小组在分享成果时表达不够清晰,这可能是因为他们在整理思路和语言组织方面还需要进一步的指导。
在案例分析环节,我尝试通过解决实际问题的例子来展示锐角三角函数的应用,学生们对此表现出较大的兴趣。他们能够跟随我的思路,理解如何将三角函数知识应用于测量等实际问题中。然而,我也注意到,当学生们自己尝试解决问题时,他们在建立数学模型和选择合适的三角函数方面遇到了挑战。这表明,在未来的教学中,我需要更多关注学生的问题解决能力和数学建模能力的培养。
5.在小组合作与交流中,培养学生沟通协作、批判性思维和问题解决的核心素养。
锐角三角函数数学教案
锐角三角函数数学教案锐角三角函数数学教案1教学目的1,使学生了解本章所要解决的新问题是:直角三角形的一条边和另一个元素〔一边或一锐角〕,求这个直角三角形的其他元素。
2,使学生了解“在直角三角形中,当锐角A取固定值时,它的对边与斜边的比值也是一个固定值。
重点、难点、关键1,重点:正弦的概念。
2,难点:正弦的概念。
3,关键:相似三角形对应边成比例的性质。
教学过程一、复习提问1、什么叫直角三角形?2,如果直角三角形ABC中∠C为直角,它的直角边是什么?斜边是什么?这个直角三角形可用什么记号来表示?二、新授1,让学生阅读教科书第一页上的插图和引例,然后答复以下问题:〔1〕这个有关测量的实际问题有什么特点?〔有一个重要的测量点不可能到达〕〔2〕把这个实际问题转化为数学模型后,其图形是什么图形?〔直角三角形〕〔3〕显然本例不能用勾股定理求解,那么能不能根据条件,在地面上或纸上画出另一个与它全等的直角三角形,并在这个全等图形上进行测量?〔不一定能,因为斜边即水管的长度是一个较大的数值,这样做就需要较大面积的平地或纸张,再说画图也不方便。
〕〔4〕这个实际问题可归结为怎样的数学问题?〔在Rt△ABC中,锐角A和斜边求∠A的对边BC。
〕但由于∠A不一定是特殊角,难以运用学过的定理来证明BC的长度,因此考虑能否通过式子变形和计算来求得BC的值。
2,在RT△ABC中,∠C=900,∠A=300,不管三角尺大小如何,∠A的对边与斜边的比值都等于1/2,根据这个比值,斜边AB的长,就能算出∠A的对边BC的长。
类似地,在所有等腰的那块三角尺中,由勾股定理可得∠A的对边/斜边=BC/AB=BC/=1/=/2 这就是说,当∠A=450时,∠A的对边与斜边的比值等于/2,根据这个比值,斜边AB的长,就能算出∠A的对边BC的长。
那么,当锐角A取其他固定值时,∠A的对边与斜边的比值能否也是一个固定值呢?〔引导学生答复;在这些直角三角形中,∠A的对边与斜边的比值仍是一个固定值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锐角三角函数一.知识框架二、 知识概念1、正弦,余弦,正切的概念如图,在ABC Rt 中,(1)sinA =,(2)cosA =,(3)tanA =。
2、2. 坡度(坡比)的概念及表示形式如图所示,我们通常把坡面的铅直高度和水平宽度l 的比叫做坡度(或坡比),坡度常用字母i 表示.c a c bb aa sin a cosa tan a 30° 12 32 33 45° 22 22 1 60° 32 12 3斜坡的坡度i 阳坡角α的正切值有如下关系:lh i ==αtan ,即坡度是坡角的正切值. 1.正切与梯子的倾斜程度的关系:A tan 的值越大,梯子越陡.注意:梯子的倾斜程度与梯子和地面的夹角的大小有关,夹角越大说明梯子越倾斜.2.正弦、余弦与梯子的倾斜程度的关系:A sin 的值越大,梯子越陡;A cos 的值越小,梯子越陡.3. 解直角三角形:锐角A 的正弦,余弦和正切都是∠A 的三角函数,直角三角形中,除直角外,共5个元素:3条边和2个角.除直角外只要知道其中2个元素(至少有1个是边),就可利用以上关系求出另外3个元素.4. 仰角,俯角当从低处观测高处的目标时,视线与水平线所成的锐角,如图所示,α∠为仰角, 俯角:当从高处观测低处的目标时,仰角:视线与水平线所成的锐角,如图所示,β∠为俯角,例题:题型一:三角函数的定义例1、(2015•崇左)如图,在Rt △ABC 中,∠C=90°,AB=13,BC=12,则下列三角函数表示正确的是( A )A .sinA=B .cosA=C .tanA=D .tanB=例2、(2015•庆阳)在△ABC 中,若角A ,B 满足|cosA ﹣|+(1﹣tanB )2=0,则∠C 的大小是( D )A .45°B .60°C .75°D .105°例3、(2015•牡丹江)在△ABC 中,AB=12,AC=13,cos ∠B=,则BC 边长为( D )A.7 B.8 C.8或17 D.7或17【解答】解:∵cos∠B=,∴∠B=45°,当△ABC为钝角三角形时,如图1,∵AB=12,∠B=45°,∴AD=BD=12,∵AC=13,∴由勾股定理得CD=5,∴BC=BD﹣CD=12﹣5=7;当△ABC为锐角三角形时,如图2,BC=BD+CD=12+5=17,故选D.题型分析:(1)对于利用三角函数求线段长度的问题,一般要把这条线段放在一个直角三角形中来解决,因此必须先构造出以该条线段为边的直角三角形。
(2)在构造直角三角形时,要善于联系已知,使题目中已知的条件能尽量转化到同一直角三角形中。
并且尽量构造出含特殊角的直角三角形。
另外还需注意基本的几何模型,补全基本的几何模型,也是我们作辅助线的一个常用策略。
(3)对于一个直角三角形,如果知道除直角的另外两个元素(至少含一边),则可以求出其他三个元素。
题型二:坡度的实际应用例1、(2014•德州)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为( B )A.4米B.6米C.12米D.24米例2、(2015•巴彦淖尔)如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进40海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海里C到航线AB的距离CD是( C )A .20海里B .40海里C .20海里D .40海里【解答】解:根据题意可知∠CAD=30°,∠CBD=60°,∵∠CBD=∠CAD+∠ACB ,∴∠CAD=30°=∠ACB ,∴AB=BC=40海里,在Rt △CBD 中,∠BDC=90°,∠DBC=60°,sin ∠DBC=, ∴sin60°=,∴CD=40×sin60°=40×=20(海里). 故选:C .题型三:利用三角函数求高例1、如图,小山岗的斜坡AC 的坡度是43tan =α,在与山脚C 距离m 200的点D 处测得山顶A 的仰角为o 6.26,求小山岗的高AB (结果取整数;参考数据:=o 6.26sin 50.06.26tan ,89.06.26cos ,45.0== o ).分析:设小山岗的高AB 为)(m x .则==BCAB αtan 43,又在ABD Rt ∆中,,6.26tan BDAB o =而+=BC BD 200,所以可得关于x 的方程,解之即可求得.AB 解:设小山岗的高AB 为),(m x 在ABC Rt ∆中,.34,43tan x BC BC x BC AB =∴===α .34200x BC DC BD +=+=∴. 在ABD Rt ∆中,,6.26tan tan BD AB ADB ==∠ 而tan26.6°=0.5050.034200=+∴x x,解得.300=x答:小山岗的高AB 为.300m点拨:在直角三角形中根据已知的边、角求未知的边、角时,一般要借助锐角三角函数,本题中正确理解坡度,仰角的概念是关键.课堂小测1.(2015•余姚市模拟)如图,△ABC 的顶点都是正方形网格中的格点,则cos ∠ABC 等于( )A .B .C .D .2.(2015•大庆模拟)如图,延长RT △ABC 斜边AB 到点D ,使BD=AB ,连接CD ,若tan ∠BCD=,则tanA=( )A .B .1C .D .【解答】解:过B 作BE ∥AC 交CD 于E .∵AC ⊥BC ,∴BE ⊥BC ,∠CBE=90°.∴BE ∥AC .∵AB=BD ,∴AC=2BE .又∵tan∠BCD=,设BE=x,则AC=2x,∴tanA===,故选A.3、(2015•滨海县一模)如图,在平面直角坐标系中,P是∠1的边OA上一点,点P的坐标为(3,4),则sin∠1的值为( C )A.B.C.D.4.(2015•贵港一模)若一个三角形三个内角度数的比为1:2:3,那么这个三角形最小角的正切值为( C )A.B.C.D.5.(2015•荆门)如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC 于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.【考点】解直角三角形;等腰直角三角形.【分析】利用等腰直角三角形的判定与性质推知BC=AC,DE=EC=DC,然后通过解直角△DBE来求tan∠DBC的值.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.∴tan∠DBC===.故选:A.【点评】本题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.6.(2014•衡阳)如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度i=1:1.5,则坝底AD的长度为( D )A.26米B.28米C.30米D.46米7.(2015•衡阳)如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A 的仰角为60°,则这个电视塔的高度AB(单位:米)为()A.50B.51 C.50+1 D.101【考点】解直角三角形的应用-仰角俯角问题.【专题】压轴题.【分析】设AG=x,分别在Rt△AEG和Rt△ACG中,表示出CG和GE的长度,然后根据DF=100m,求出x的值,继而可求出电视塔的高度AH.【解答】解:设AG=x,在Rt△AEG中,∵tan∠AEG=,∴EG==x,在Rt△ACG中,∵tan∠ACG=,∴CG==x,∴x﹣x=100,解得:x=50.则AB=50+1(米).故选C.【点评】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解,注意利用两个直角三角形的公共边求解是解答此类题型的常用方法.8.(2016•宝山区一模)计算:﹣.【考点】特殊角的三角函数值.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=﹣=﹣=+﹣=+.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.9.(2016•重庆模拟)如图,在锐角三角形ABC中,AB=10,AC=2,sinB=.(1)求tanC;(2)求线段BC的长.【考点】解直角三角形;勾股定理.【分析】(1)过点A作AD⊥BC于D,根据已知条件可得出AD,再利用勾股定理得出CD,进而得出tanC;(2)在Rt△ABD中,利用勾股定理求出BD=8,结合CD的长度,即可得出BC的长.【解答】解:(1)如图,过点A作AD⊥BC于D,在Rt△ABD中,AB=10,sinB==,∴=,∴AD=6,在Rt△ACD中,由勾股定理得CD2=AC2﹣AD2,∴CD2=(2)2﹣62=16,∴CD=4,∴tanC===;(2)在Rt△ABD中,AB=10,AD=6,∴由勾股定理得BD=8,由(1)得CD=4,∴BC=BD+CD=12.【点评】本题考查了解直角三角形以及勾股定理,要熟练掌握好边角之间的关系.➢课后小测1.(2014•杭州模拟)如图,将宽为1cm的纸条沿BC折叠,使∠CAB=45°,则折叠后重叠部分的面积为()A.cm2B.cm2C.cm2D.cm2【解答】解:如图,由题可知△ABC是一个顶角为45°的等腰三角形,即∠A=45°,AC=AB.作CD⊥AB,垂足为D,则CD=1.∵sin∠A=,∴==AB,∴S△ABC=×AB×CD=,∴折叠后重叠部分的面积为cm2.故选D.2.(2016•徐汇区一模)计算:4sin45°﹣2tan30°cos30°+.【解答】解:原式=4×﹣2××+=2﹣1+2=2+1.3.(2016•奉贤区一模)计算:sin45°+cos230°﹣+2sin60°.【考点】特殊角的三角函数值.【分析】先把各特殊角的三角函数值代入,再根据二次根式混合运算的法则进行计算即可.【解答】解:原式=•+()2﹣+2×=+﹣+=1+.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.4.(2015•湖北)如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.【考点】解直角三角形.【分析】(1)过点A作AE⊥BC于点E,根据cosC=,求出∠C=45°,求出AE=CE=1,根据tanB=,求出BE的长即可;(2)根据AD是△ABC的中线,求出BD的长,得到DE的长,得到答案.【解答】解:过点A作AE⊥BC于点E,∵cosC=,∴∠C=45°,在Rt△ACE中,CE=AC•cosC=1,∴AE=CE=1,在Rt△ABE中,tanB=,即=,∴BE=3AE=3,∴BC=BE+CE=4;(2)∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD﹣CE=1,∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.【点评】本题考查的是解直角三角形的知识,正确作出辅助线构造直角三角形是解题的关键,注意锐角三角函数的概念的正确应用.5. (中考题)如图,在△ABC中,∠BAC=60°,∠ABC=90°,直线l1∥l2∥l3,l1与l2之间距离是1,l2与l3之间距离是2,且l1,l2,l3分别经过点A,B,C,则边AC的长为.【考点】相似三角形的判定与性质;平行线之间的距离;勾股定理.菁优网版权所有【专题】压轴题.【分析】过点B作EF⊥l2,交l1于E,交l3于F,在Rt△ABC中运用三角函数可得=,易证△AEB∽△BFC,运用相似三角形的性质可求出FC,然后在Rt△BFC中运用勾股定理可求出BC,再在Rt△ABC中运用三角函数就可求出AC的值.【解答】解:如图,过点B作EF⊥l2,交l1于E,交l3于F,如图.∵∠BAC=60°,∠ABC=90°,∴tan∠BAC==.∵直线l 1∥l 2∥l 3,∴EF ⊥l 1,EF ⊥l 3,∴∠AEB=∠BFC=90°.∵∠ABC=90°,∴∠EAB=90°﹣∠ABE=∠FBC ,∴△BFC ∽△AEB ,∴==.∵EB=1,∴FC=.在Rt △BFC 中,BC===. 在Rt △ABC 中,sin ∠BAC==, AC===. 故答案为.解题方法(1)求三角函数时先确定合适的直角三角形,然后再根据三角函数求对应边的比。