最新一元二次方程单元综合测试题(含答案)123

合集下载

2022-2023学年人教版九年级数学上册《第21章一元二次方程》单元综合测试题(附答案)

2022-2023学年人教版九年级数学上册《第21章一元二次方程》单元综合测试题(附答案)

2022-2023学年人教版九年级数学上册《第21章一元二次方程》单元综合测试题(附答案)一.选择题(共8小题,满分40分)1.关于x的方程(a﹣1)x2﹣3x+2=0是一元二次方程,则()A.a>0B.a≠0C.a≠1D.a=12.若关于x的方程x2+2ax+4a=0有一个根为﹣3,则a的值是()A.9B.4.5C.3D.﹣33.方程(x﹣3)2=4的根为()A.x1=x2=5B.x1=5,x2=1C.x1=x2=1D.x1=7,x2=﹣1 4.若把方程x2﹣6x﹣4=0的左边配成完全平方的形式,则正确的变形是()A.(x﹣3)2=5B.(x﹣3)2=13C.(x﹣3)2=9D.(x+3)2=5 5.已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则代数式x2﹣x+1的值是()A.7B.﹣1C.7或﹣1D.﹣5或36.定义运算:m※n=mn2﹣2mn﹣1,例如:4※2=4×22﹣2×4×2﹣1=﹣1.若关于x的方程a※x=0有实数根,则a的取值范围为()A.﹣1≤a≤0B.﹣1≤a<0C.a≥0或a≤﹣1D.a>0或a≤﹣1 7.受益于电商普及和交通运输的快速发展,快递业务量持续增长.我市2019年的快递业务量为1.1亿件,2021年,我市快递业务量增加到1.4亿件,设快递业务量的年平均增长率为x,则下列方程正确的是()A.1.1(1+x)=1.4B.1.1(1+x)2=1.4C.1.1x2=1.4D.1.1(1+2x)=1.48.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm,动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为1cm/s,点Q的速度为2cm/s,点Q移动到点C后停止,点P也随之停止运动,若使△PBQ的面积为15cm2,则点P运动的时间是()A.2s B.3s C.4s D.5s二.填空题(共8小题,满分40分)9.已知关于x的方程(m﹣1)x+2x﹣3=0是一元二次方程,则m的值为.10.已知m,n为一元二次方程x2﹣4x﹣3=0的两个实数根,则(m﹣2)(n﹣2)的值为.11.用配方法解一元二次方程2x2﹣5x﹣3=0,可以写成(x+h)2=k的形式,则.12.已知关于x的方程ax2﹣bx﹣c=0(a≠0)的系数满足a﹣b﹣c=0,且4a+2b﹣c=0,则该方程的根是.13.如果关于x的方程2x2﹣3x+m=0有两个实数根,那么m满足.14.要利用一面很长的围墙和100米长的隔离栏建三个如图所示的矩形羊圈,若计划建成的三个羊圈总面积为400平方米,则羊圈的边长AB为多少米?设AB=x米,根据题意可列出方程的为.15.已知三角形两边的长分别是2和5,第三边的长是方程x2﹣7x+10=0的根,则这个三角形的周长是.16.请阅读下列材料:解方程:(x2﹣1)2﹣5(x2﹣1)+4=0.解法如下:将x2﹣1视为一个整体,然后设x2﹣1=y,则(x2﹣1)2=y2,原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.(1)当y=1时,x2﹣1=1,解得x=±;(2)当y=4时,x2﹣1=4,解得x=±.综合(1)(2),可得原方程的解为x1=,x2=﹣,x3=,x4=﹣.参照以上解法,方程x4﹣x2﹣6=0的解为.三.解答题(共6小题,满分40分)17.解方程:(1)x(2x﹣3)=4x﹣6;(2)2x2﹣4x﹣5=0.18.已知关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0.(1)求m的值;(2)求此时一元二次方程的解.19.我们知道:若一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1,x2,则x1+x2=﹣,x1•x2=,试利用上述知识解决下列问题:已知x2+2020x﹣1=0的两根分别为α和β,求代数式(α2+2021α+1)(β2+2021β+1)的值.20.已知关于x的一元二次方程x2+(2﹣m)x+1﹣m=0.(1)求证:该方程总有两个实数根;(2)若m<0,且该方程的两个实数根的差为3,求m的值.21.根据下列问题,列出关于x的方程,并将其化为一般形式.(1)某印刷厂3月份印刷了50万册书籍,5月份印刷了72万册书籍,如果每月印刷的增长率都相同,求每月印刷的增长率x;(2)一个微信群里共有x个好友,每个好友都分别给其他好友发了一条消息,这样一共产生132条消息.22.某服装厂生产一批服装,2019年该类服装的出厂价是200元/件,2020年,2021年连续两年改进技术,降低成本,2021年该类服装的出厂价调整为162元/件.(1)这两年此类服装的出厂价下降的百分比相同,求平均下降率.(2)2021年某商场从该服装厂以出厂价购进若干件此类服装,以200元/件销售时,平均每天可销售20件.为了减少库存,商场决定降价销售.经调查发现,单价每降低5元,每天可多售出10件,如果每天盈利1150元,单价应降低多少元?参考答案一.选择题(共8小题,满分40分)1.解:∵关于x的方程(a﹣1)x2﹣3x+2=0是一元二次方程,∴a﹣1≠0,a≠1,故选:C.2.解:把x=﹣3代入方程得9﹣6a+4a=0,解得a=4.5.故选:B.3.解:方程(x﹣3)2=4,开方得:x﹣3=2或x﹣3=﹣2,解得:x1=5,x2=1.故选:B.4.解:x2﹣6x﹣4=0x2﹣6x=4x2﹣6x+9=13(x﹣3)2=13,故选:B.5.解:∵(x2﹣x)2﹣4(x2﹣x)﹣12=0,∴(x2﹣x+2)(x2﹣x﹣6)=0,∴x2﹣x+2=0或x2﹣x﹣6=0,∴x2﹣x=﹣2或x2﹣x=6.当x2﹣x=﹣2时,x2﹣x+2=0,∵b2﹣4ac=1﹣4×1×2=﹣7<0,∴此方程无实数解.当x2﹣x=6时,x2﹣x+1=7故选:A.6.解:由题意可知:a※x=ax2﹣2ax﹣1=0,当a=0时,原来方程变形为﹣1=0,方程无解;当a≠0时,∵关于x的方程a※x=0有实数根,∴Δ=4a2+4a=4a(a+1)≥0,解得a≤﹣1或a>0.故选:D.7.解:依题意得:1.1(1+x)2=1.4.故选:B.8.解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm2,则BP为(8﹣t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,×(8﹣t)×2t=15,解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去).∴动点P,Q运动3秒时,能使△PBQ的面积为15cm2.故选:B.二.填空题(共8小题,满分40分)9.解:由一元二次方程的定义得:m2+1=2,且m﹣1≠0,解得:m=﹣1.故答案为:﹣1.10.解:根据题意得m+n=4,mn=﹣3,所以(m﹣2)(n﹣2)=mn﹣2(m+n)+4=﹣3﹣2×4+4=﹣7.故答案为﹣7.11.解:原方程可以化为:x2﹣x=,等式的两边同时加上一次项系数一半的平方,得x2﹣x+=+,配方,得(x﹣)2=.故答案为:(x﹣)2=.12.解:∵关于x的方程ax2﹣bx﹣c=0(a≠0)的系数满足a﹣b﹣c=0,且4a+2b﹣c=0,∴该方程的根是x1=1,x2=﹣2.故答案为:x1=1,x2=﹣2.13.解:∵关于x的方程2x2﹣3x+m=0有两个实数根,∴Δ=b2﹣4ac=(﹣3)2﹣4×2×m=9﹣8m≥0,解得:m≤.故答案为:m≤.14.解:设AB的长度为x,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,故答案为:(100﹣4x)x=400.15.解:x2﹣7x+10=0(x﹣2)(x﹣5)=0,解得:x1=2,x2=5,∵三角形两边的长分别是2和5,第三边的长是方程x2﹣7x+10=0的根,∴第三条边长的取值范围是:3<第三边的长<7,∴第三边长为:5,故这个三角形的周长是:2+5+5=12.故答案为:12.16.解:设x2=y,则原方程可化为:y2﹣y﹣6=0,解得:y1=3,y2=﹣2,(1)当y=3时,x2=3,解得x1=,x2=﹣,(2)当y=﹣2.时,x2=﹣2,此方程无实数根,综合(1)(2),可得原方程的解是:x1=,x2=﹣,故答案为:x1=,x2=﹣.三.解答题(共6小题,满分40分)17.解:(1)∵x(2x﹣3)=4x﹣6,∴x(2x﹣3)﹣2(2x﹣3)=0,∴(2x﹣3)(x﹣2)=0,则2x﹣3=0或x﹣2=0,解得x1=1.5,x2=2;(2)∵2x2﹣4x﹣5=0,∴2x2﹣4x=5,则x2﹣2x=,∴x2﹣2x+1=+1,即(x﹣1)2=,∴x﹣1=±,∴x1=1+,x2=1﹣.18.解:(1)由题意,得:m2﹣3m+2=0解之,得m=2或m=1①,由m﹣1≠0,得:m≠1②,由①,②得:m=2;(2)当m=2时,代入(m﹣1)x2+5x+m2﹣3m+2=0,得x2+5x=0,x(x+5)=0解得:x1=0,x2=﹣5.19.解:把x=α和x=β分别代入方程得:α2+2020α﹣1=0,β2+2020﹣1=0,∴α2+2020α=1,β2+2020=1,根据根与系数的关系得:α+β=﹣2020,αβ=﹣1,则原式=(α2+2020α+α+1)(β2+2020β+β+1)=(α+2)(β+2)=αβ+2(α+β)+4=﹣1﹣4040+4=﹣4037.20.(1)证明:∵Δ=(2﹣m)2﹣4×1×(1﹣m)=m2≥0,∴原方程有两个相等的实数根或两个不等的实数根,即该方程总有两个实数根;(2)设方程的较大的实数根为x1,较小的实数根为x2,依题意得:x1﹣x2=3,x1+x2=m﹣2,x1x2=1﹣m,∴(x1﹣x2)2=32,x12﹣2x1x2+x22=9,x12+x22=9+2x1x2=9+2(1﹣m)=11﹣2m,∵(x1+x2)2=(m﹣2)2,∴x12+2x1x2+x22=m2﹣4m+4,∴11﹣2m+2(1﹣m)=m2﹣4m+4,整理得:m2=9,解得:m=3或m=﹣3,∵m<0,∴m=﹣3.21.解:(1)设每月印刷的增长率都为x,根据题意得:50(1+x)2=72.化为一般形式为25x2+50x﹣11=0;(2)设有x个好友,依题意得x(x﹣1)=132,化为一般形式为x2﹣x﹣132=0.22.解:(1)设平均下降率为x,依题意得:200(1﹣x)2=162,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:平均下降率为10%.(2)设单价应降低m元,则每件的销售利润为(200﹣m﹣162)=(38﹣m)元,每天可售出20+×10=(20+2m)件,依题意得:(38﹣m)(20+2m)=1150,整理得:m2﹣28m+195=0,解得:m1=15,m2=13.∵要减少库存,∴m=15.答:单价应降低15元.。

2024-2025学年人教版九年级数学上册第二十一章 一元二次方程单元测试卷(含答案)

2024-2025学年人教版九年级数学上册第二十一章 一元二次方程单元测试卷(含答案)

第二十一章一元二次方程一、选择题1.下列方程中,是一元二次方程的是( )A.x−1=0B.x2−x−1=0C.x2−y=0D.1x+x−1=02.一元二次方程x2−4x+1=0配方后,可化为( )A.(x−2)2=3B.(x+2)2=3C.(x−2)2=4D.(x+2)2=43.若x=1是方程x2+mx+1=0的一个解,则m的值为( )A.1B.2C.−1D.−24.方程x(x−2)=0的解是( )A.0B.2C.−2D.0或25.如果关于x的一元二次方程k x2−4x+2=0有实数根,则k的取值范围是( )A.k≤2B.k≤2且k≠0C.k<2且k≠0D.k≥2且k≠06.若x1+x2=3,x1x2=2,则以x1,x2为根的一元二次方程是( )A.x2−3x+2=0B.x2+3x−2=0C.x2+3x+2=0D.x2−3x−2=07.学校要组织一场篮球联赛,赛制为单循环形式,即每两队之间比赛一场,计划安排15场比赛,应邀请多少个队参加比赛?设应邀请x个球队参加比赛,下列算式正确的是( )A.x(x+1)=15B.x(x−1)=15C.12x(x+1)=15D.12x(x−1)=158.若m,n是关于x的一元二次方程x2+2x−5=0的两个根,则m2+mn−2n的值为( )A.−6B.6C.−4D.4二、填空题9.若关于x的方程(m+1)x2﹣3x+2=0是一元二次方程,则m的取值范围是 .10.将关于x的一元二次方程x2−6x−5=0化成(x+a)2=b的形式,则b= .11.方程3x2−6x=0的解是 12.已知关于x的方程(a−2)x2−2x+1=0有实数根,则a的取值范围是 13.若x1,x2是一元二次方程x2−x−6=0的两个实数根,则1x1+1x2的值为 .三、计算题14.解方程:(1)3x2−10x+6=0;(2)5(x+3)2=2(x+3).15.已知关于x的一元二次方程x2−(2k+1)x+k2+k=0 .(1)求证:方程有两个不相等的实数根.(2)若 Rt△ABC的两边AB,AC的长分别是这个方程的两个实数根,第三边BC的长为5,求 k 的值.16.已知关于x的一元二次方程x2+(2m+1)x+m2−1=0有两个不相等的实数根.(1)求m的取值范围.(2)设x1,x2分别是方程的两个根,且x21+x22+x1x2−17=0,求m的值.17.交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定,某头盔经销商统计了某品牌头盔4月份到6月份的销量,该品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率.(2)若此种头盔的进价为30元/个,经测算,此种头盔在市场中,当售价为40元/个时,月销售量为600个,在此基础上售价每上涨1元/个,则月销售量将减少10个.现希望该头盔每月销售利润为10 000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少?18.某超市销售一种衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该超市准备适当降价,经过一段时间测算,发现每件衬衫每降价1元,平均每天可多售出2件.(1)若每件衬衫降价4元,平均每天可售出多少件衬衫? 此时每天销售获利多少元?(2)在每件盈利不少于 25元的前提下,要使该衬衫每天销售获利为1 200元,问每件衬衫应降价多少元?(3)该衬衫每天的销售获利能达到 1 300 元吗?如果能,请写出降价方案;如果不能,请说明理由.1.B 2.A 3.D 4.D 5.B 6.A 7.D 8.D 9.m≠-1 10.1411.x1=0,x2=212.a≤313.−1614.(1)解:3x2−10x+6=0,∵a=3,b=−10,c=6,∴b2−4ac=(−10)2−4×3×6=28>0,∴x=−b±b2−4ac2a =10±286=5±73,∴x1=5+73,x2=5−73;(2)解:5(x+3)2=2(x+3),5(x+3)2−2(x+3)=0,(x+3)(5x+13)=0,x+3=0或5x+13=0,解得x1=−3,x2=−135.15.(1)证明:∵关于x的一元二次方程为x2−(2k+1)x+k2+k=0,∴Δ=[−(2k+1)]2−4(k2+k)=4k2+4k+1−4k2−4k=1>0,∴关于x的一元二次方程x2−(2k+1)x+k2+k=0有两个不相等的实数根;(2)解:∵关于x的一元二次方程为x2−(2k+1)x+k2+k=0,∴(x−k)[x−(k+1)]=0,解得:x1=k,x2=k+1.∵ Rt△ABC的两边AB,AC的长分别是这个方程的两个实数根,分两种情况讨论如下:当BC=5为直角边时,k2+52=(k+1)2,解得:k=12;当BC=5为斜边时,k2+(k+1)2=52,解得:k1=3,k2=−4(根据边长为正判断不合题意,舍去),∴k=12或k=3.16.(1)解:∵一元二次方程有两个不相等的实根∴(2m+1)2−4×1×(m2−1)=4m2+4m+1−4m2+4=4m+5>0,解得m>−54;(2)解:∵ x1,x2分别是方程的两个根∴x1+x2=−(2m+1)=−2m−1,x1·x2=m2−1;∵x12+x22+x1x2−17=0,配方后可得(x1+x2)2−x1x2−17=0;将x1+x2=−(2m+1)=−2m−1和x1·x2=m2−1代入,可得:(−2m−1)2−(m2−1)−17=0,化简可得3m2+4m−15=0;解得m=53或-3(舍去);∴m的值为53.17.(1)设该品牌头盔销售量的月增长率为x,依题意,得:150(1+x)2=216,解得:x1=0.2=20%,x2=−2.2(不合题意,舍去).答:该品牌头盔销售量的月增长率为20%;(2)设该品牌头盔的实际售价为y元,依题意,得:(y−30)(600−y−400.5×5)=10000,整理,得:y2−130y+4000=0,解得:y1=80(不合题意,舍去),y2=50,∵尽可能让顾客得到实惠,∴该品牌头盔的实际售价应定为50元,答:该品牌头盔的实际售价应定为50元.18.(1)解:由题意可得,每件衬衫降价4元,平均每天可售出衬衫的数量为:20+4×2=28(件);此时每天获取的利润为(40-4)×28=1008(元);(2)解:设每件衬衫降价x元(0≤x≤15),由题意可得(20+2x)×(40-x)=1200,整理得x2-30x+200=0,解得x1=10,x2=20(舍),答:在每件盈利不少于25元的前提下,要使该衬衫每天销售获利为1200元,每件衬衫应降价10元;(3)解:该衬衫每天的销售获利不能达到1300元,理由如下:设每件衬衫降价y元,由题意可得(20+2y)×(40-y)=1300,整理得y2-30y+250=0,∵b2-4ac=302-4×1×250=-100<0,∴此方程没有实数根,即该衬衫每天的销售获利不能达到1300元.。

一元二次方程单元综合测试题(含答案)

一元二次方程单元综合测试题(含答案)

一元二次方程单元综合测试题(含答案)精心整理,用心做精品2第二章 一元二次方程单元综合测试题 一、填空题(每题2分,共20分)1.方程12x (x -3)=5(x -3)的根是_______.2.下列方程中,是关于x 的一元二次方程的有________.(1)2y 2+y -1=0;(2)x (2x -1)=2x 2;(3)21x -2x=1;(4)ax 2+bx+c=0;(5)12x 2=0.3.把方程(1-2x )(1+2x )=2x 2-1化为一元二次方程的一般形式为________.4.如果21x -2x -8=0,则1x 的值是________.5.关于x 的方程(m 2-1)x 2+(m -1)x+2m -1=0是一元二次方程的条件是________.6.关于x 的一元二次方程x 2-x -3m=0•有两个不相等的实数根,则m•的取值范围是定______________.7.x 2-5│x │+4=0的所有实数根的和是________. 8.方程x 4-5x 2+6=0,设y=x2,则原方程变形_________ 原方程的根为________.9.以-1为一根的一元二次方程可为_____________(写一个即可).10.代数式12x2+8x+5的最小值是_________.二、选择题(每题3分,共18分)11.若方程(a-b)x2+(b-c)x+(c-a)=0是关于x的一元二次方程,则必有().A.a=b=c B.一根为1 C.一根为-1 D.以上都不对12.若分式22632x xx x---+的值为0,则x的值为().A.3或-2 B.3 C.-2 D.-3或213.已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为().A.-5或1 B.1 C.5 D.5或-114.已知方程x2+px+q=0的两个根分别是2和-3,则x2-px+q可分解为().A.(x+2)(x+3) B.(x-2)(x-3)C.(x-2)(x+3) D.(x+2)(x-3)15已知α,β是方程x2+2006x+1=0的两个根,则(1+2008α+α2)(1+2008β+β2)的值为().A.1 B.2 C.3 D.416.三角形两边长分别为2和4,第三边是方程x2-6x+8=0的解,•则这个三角形的周长是().精心整理,用心做精品3A.8 B.8或10 C.10 D.8和10三、用适当的方法解方程(每小题4分,共16分)17.(1)2(x+2)2-8=0;(2)x(x-3)=x;(3)2=6x(4)(x+3)2+3(x+3)-4=0.四、解答题(18,19,20,21题每题7分,22,23题各9分,共46分)18.如果x2-10x+y2-16y+89=0,求xy的值.19.阅读下面的材料,回答问题:解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0 ①,解得y1=1,y2=4.精心整理,用心做精品4当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.(1)在由原方程得到方程①的过程中,利用___________法达到________的目的,•体现了数学的转化思想.(2)解方程(x2+x)2-4(x2+x)-12=0.20.如图,是丽水市统计局公布的2000~2003年全社会用电量的折线统计图.填写统计表:2000~2003年丽水市全社会用电量统计表:(2)根据丽水市2001年至2003年全社会用电量统计数据,求这两年年平均增长的百分率(保留两个有效数字).精心整理,用心做精品5精心整理,用心做精品621.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元? (2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.22.设a ,b ,c 是△ABC 的三条边,关于x 的方程12x 2b x+c -12a=0有两个相等的实数根,•方程3cx+2b=2a 的根为x=0. (1)试判断△ABC 的形状.(2)若a ,b 为方程x 2+mx -3m=0的两个根,求m 的值.精心整理,用心做精品723.已知关于x 的方程a2x2+(2a -1)x+1=0有两个不相等的实数根x1,x2.(1)求a 的取值范围;(2)是否存在实数a ,使方程的两个实数根互为相反数?如果存在,求出a 的值;如果不存在,说明理由.解:(1)根据题意,得△=(2a -1)2-4a2>0,解得a<14.∴当a<0时,方程有两个不相等的实数根.(2)存在,如果方程的两个实数根x1,x2互为相反数,则x1+x2=-21a a =0 ①,解得a=12,经检验,a=12是方程①的根.∴当a=12时,方程的两个实数根x1与x2互为相反数.上述解答过程是否有错误?如果有,请指出错误之处,并解答.24、如图,A 、B 、C 、D 为矩形的4个顶点,AB =16cm ,BC =6cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3cm/s 的速度向点B 移动,一直到达点B 为止;点Q 以2cm/s 的速度向点B 移动,经过多长时间P 、Q 两点之间的距离是10cm?QPBDAC精心整理,用心做精品825、如图,在△ABC 中,∠B =90°,BC =12cm ,AB =6cm ,点P 从点A 开始沿AB 边向点B 以2cm/s 的速度移动(不与B 点重合),动直线QD 从AB 开始以2cm/s 速度向上平行移动,并且分别与BC 、AC 交于Q 、D 点,连结DP ,设动点P 与动直线QD 同时出发,运动时间为t 秒,(1)试判断四边形BPDQ 是什么特殊的四边形?如果P 点的速度是以1cm/s ,则四边形BPDQ 还会是梯形吗?那又是什么特殊的四边形呢?(2)求t 为何值时,四边形BPDQ 的面积最大,最大面积是多少?1、如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点的时间为t 秒,(1)当t 为何值时,△APQ 与△AOB 相似?(2)当t 为何值时,△APQ 的面积为524个平方单位?CA BP QD←↑精心整理,用心做精品92、有一边为5cm 的正方形ABCD 和等腰三角形PQR ,PQ =PR =5cm ,QR =8cm ,点B 、C 、Q 、R 在同一直线l 上,当C 、Q 两点重合时,等腰三角形PQR 以1cm/s 的速度沿直线l 按箭头方向匀速运动,(1)t 秒后正方形ABCD 与等腰三角形PQR 重合部分的面积为5,求时间t ; (2)当正方形ABCD 与等腰三角形PQR 重合部分的面积为7,求时间t ;3、如图所示,在平面直角坐标中,四边形OABC 是等腰梯形,CB ∥OA ,OA=7,AB=4,∠COA=60°,点P 为x 轴上的—个动点,点P 不与点0、点A 重合.连结CP ,过点P 作PD 交AB 于点D ,(1)动什么位置时,△OCP 为等腰三角形,求这时点P 么位置时,使得∠CPD=∠OAB ,且58BD BA ,求这时点P 的坐标;C BQ RADlP答案:1.x1=3,x2=102.(5)点拨:准确掌握一元二次方程的定义:即含一个未知数,未知数的最高次数是2,整式方程.3.6x2-2=04.4 -2 点拨:把看做一个整体.5.m≠±16.m>-112点拨:理解定义是关键.7.0 点拨:绝对值方程的解法要掌握分类讨论的思想.8.y2-x2=,x4=9.x2-x=0(答案不唯一)10.-2711.D 点拨:满足一元二次方程的条件是二次项系数不为0.12.A 点拨:准确掌握分式值为0的条件,同时灵活解方程是关键.13.B 点拨:理解运用整体思想或换元法是解决问题的关键,同时要注意x2+y2式子本身的属性.14.C 点拨:灵活掌握因式分解法解方程的思想特点是关键.精心整理,用心做精品1015.D 点拨:本题的关键是整体思想的运用.16.C 点拨:•本题的关键是对方程解的概念的理解和三角形三边关系定理的运用.17.(1)整理得(x+2)2=4,即(x+2)=±2,∴x1=0,x2=-4(2)x(x-3)-x=0,x(x-3-1)=0,x(x-4)=0,∴x1=0,x2=4.(36x=0,x2-,由求根公式得,.(4)设x+3=y,原式可变为y2+3y-4=0,解得y1=-4,y2=1,即x+3=-4,x=-7.由x+3=1,得x=-2.∴原方程的解为x1=-7,x2=-2.18.由已知x2-10x+y2-16y+89=0,得(x-5)2+(y-8)2=0,∴x=5,y=8,∴xy=58.19.(1)换元降次(2)设x2+x=y,原方程可化为y2-4y-12=0,解得y1=6,y2=-2.由x2+x=6,得x1=-3,x2=2.由x2+x=-2,得方程x2+x+2=0,b2-4ac=1-4×2=-7<0,此时方程无解.所以原方程的解为x1=-3,x2=2.20.(1)(2)设2001年至2003年平均每年增长率为x,则2001年用电量为14.73亿kW·h,2002年为14.73(1+x)亿kW·h,2003年为14.73(1+x)2亿kW·h.则可列方程:14.73(1+x)2=21.92,1+x=±1.22,∴x1=0.22=22%,x2=-2.22(舍去).则2001~2003年年平均增长率的百分率为22%.21.(1)设每件应降价x元,由题意可列方程为(40-x)·(30+2x)=1200,解得x1=0,x2=25,当x=0时,能卖出30件;当x=25时,能卖出80件.根据题意,x=25时能卖出80件,符合题意.故每件衬衫应降价25元.(2)设商场每天盈利为W元.W=(40-x)(30+2x)=-2x2+50x+1200=-2(x2-25x)+1200=-2(x-12.5)2+1512.5当每件衬衫降价为12.5元时,商场服装部每天盈利最多,为1512.5元.22.∵12x+c-12a=0有两个相等的实数根,∴判别式=)2-4×12(c-12a)=0,整理得a+b-2c=0 ①,又∵3cx+2b=2a的根为x=0,∴a=b ②.把②代入①得a=c,∴a=b=c,∴△ABC为等边三角形.(2)a,b是方程x2+mx-3m=0的两个根,所以m2-4×(-3m)=0,即m2+12m=0,∴m1=0,m2=-12.当m=0时,原方程的解为x=0(不符合题意,舍去),∴m=12.23.上述解答有错误.(1)若方程有两个不相等实数根,则方程首先满足是一元二次方程,∴a2≠0且满足(2a-1)2-4a2>0,∴a<14且a≠0.(2)a不可能等于1 2.∵(1)中求得方程有两个不相等实数根,同时a的取值范围是a<14且a≠0,而a=12>14(不符合题意)所以不存在这样的a值,使方程的两个实数根互为相反数.。

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案一、选择题1. 一元二次方程的一般形式是:A. ax^2 + bx + c = 0B. ax^2 + bx = 0C. ax^2 + c = 0D. ax + b = 0答案:A2. 下列哪个方程不是一元二次方程?A. x^2 - 3x + 2 = 0B. x^2 - 5 = 0C. 2x + 5 = 0D. 3x^2 - 7x = 0答案:C3. 一元二次方程 ax^2 + bx + c = 0 的判别式是:A. b^2 - 4acB. b^2 + 4acC. a^2 - 4bcD. a^2 + 4bc答案:A二、填空题4. 解一元二次方程 x^2 - 5x + 6 = 0,其判别式为 _______ 。

答案:15. 如果一元二次方程的根是 x1 = 2 和 x2 = 3,那么这个方程可以写成 _______ 。

答案:x^2 - 5x + 6 = 0三、解答题6. 解一元二次方程 2x^2 - 7x + 3 = 0。

解:首先计算判别式Δ = b^2 - 4ac = (-7)^2 - 4 * 2 * 3 = 49 - 24 = 25。

由于Δ > 0,方程有两个不相等的实数根。

根据求根公式 x = (-b ± √Δ) / (2a),我们得到:x1 = (7 + √25) / 4 = (7 + 5) / 4 = 12 / 4 = 3,x2 = (7 - √25) / 4 = (7 - 5) / 4 = 2 / 4 = 0.5。

7. 已知方程 x^2 + 4x + k = 0 的一个根是 x = -2,求 k 的值。

解:将 x = -2 代入方程,得到 (-2)^2 + 4 * (-2) + k = 0。

简化得 4 - 8 + k = 0,解得 k = 4。

四、应用题8. 一个长方形的长是宽的两倍,面积是 24 平方米,求这个长方形的长和宽。

解:设宽为 x 米,长为 2x 米。

一元二次方程单元测验题及答案

一元二次方程单元测验题及答案

一元二次方程单元测验题及答案
1.求解方程:x²+4x+4=0
解答:该方程可以写成(x+2)²=0,由此可以得到x=-2
2.求解方程:2x²+5x-3=0
解答:使用因式分解,可以写成(2x-1)(x+3)=0,解得x=1/2或x=-3
3.求解方程:3x²-12x+9=0
解答:使用因式分解,可以写成(3x-3)²=0,解得x=1
4.求解方程:x²-7x+12=0
解答:使用因式分解,可以写成(x-3)(x-4)=0,解得x=3或x=4
5.求解方程:4x²-12x+9=0
解答:使用二次方程公式,可以得到x=(-(-12)±√((-12)²-
4*4*9))/(2*4),解得x=(3±√3)/2
6.求解方程:x²+3x+2=0
解答:使用二次方程公式,可以得到x=(-3±√(3²-4*1*2))/(2*1),解得x=-1或x=-2
7.求解方程:2x²+7x+3=0
解答:使用二次方程公式,可以得到x=(-7±√(7²-4*2*3))/(2*2),解得x=-1/2或x=-3
8.求解方程:x²+5x+6=0
解答:使用因式分解,可以写成(x+2)(x+3)=0,解得x=-2或x=-3
9.求解方程:x²-9=0
解答:使用因式分解,可以写成(x+3)(x-3)=0,解得x=3或x=-3
10.求解方程:3x²+4x+1=0
解答:使用二次方程公式,可以得到x=(-4±√(4²-4*3*1))/(2*3),解得x=-1或x=-1/3。

人教版2024-2025学年九年级数学上册一元二次方程和二次函数综合测试题[含答案]

人教版2024-2025学年九年级数学上册一元二次方程和二次函数综合测试题[含答案]

人教版九年级秋期一元二次方程和二次函数综合测试题(9月份月考备用)考试范围:一元二次方程和二次函数;考试时间:100分钟;总分:120分一.选择题(共10小题,满分30分,每小题3分)1.下列方程中是关于x 的一元二次方程的是( )A .()22545x x -=B .20ax bx c ++=C .2310y x +-=D .2221x x =+2.关于x 的一元二次方程20ax bx c ++=()0a ¹的两根为11x =,21x =-那么下列结论一定成立的是( )A .240b ac ->B .240b ac -=C .240b ac -<D .240b ac -£3.用配方法解一元二次方程28100x x -+=配方后得到的方程是( )A .()2854x +=B .()2854x -=C .()246x +=D .()246x -=4.将代数式x 2+6x +2化成(x +p )2+q 的形式为( )A .(x -3)2+11B .(x +3)2-7C .(x +3)2-11D .(x +2)2+45.关于x 的一元二次方程2310kx x +-=有实数根,则k 的取值范围是( )A .94k £-B .94k ³-C .94k £-且0k ¹D .94k ³-且0k ¹6.方程 (x ﹣5)(x ﹣6)=x ﹣5 的解是( )A .x=5B .x=5 或x=6C .x=7D .x=5或 x=77.已知3是关于x 的方程()2120x m x m -++=的一个实数根,并且这个方程的两个实数根恰好是等腰ABC V 的两条边的边长,则ABC V 的周长为( )A .7B .10C .11D .10或118.我们知道方程2230x x +-=的解是1213x x ==-,,现给出另一个方程()()22322330x x +++-=,它的解是( )A .1213x x ,==B .1213x x ==-,C .1213x x =-=,D .1213x x =-=-,9.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有100被感染.设每轮感染中平均每一台电脑会感染x 台其他电脑,由题意列方程应为( )A .1+2x =100B .x (1+x )=100C .(1+x )2=100D .1+x +x 2=10010.当﹣1<k <3时,则直线y =k 与函数y =22(1)1(3)(5)1(3)x x x x ì--£í-->î交点个数有( )A .1个B .2个C .3个D .4个二.填空题(共5小题,满分15分,每小题3分)11.把方程(21)(2)53x x x +-=-整理成一般形式是 .12.若关于x 的方程2(1)250k x kx k +-+-=有两个实数根,则k 的取值范围.13.已知2x =-是方程220x kx -+=的一个根,则实数k 的值为 .14.如图,在一块矩形的荒地上修建两条互相垂直且宽度相同的小路,使剩余面积是原矩形面积的一半,具体尺寸如图所示.求小路的宽是多少?设小路的宽是m x ,根据题意可列方程为 .15.下列关于二次函数22()1y x m m =--++(m 为常数)的结论,①该函数的图象与函数2y x =-的图象形状相同;②该函数的图象一定经过点(0,1);③当0x >时,y 随x 的增大而减小;④该函数的图象的顶点在函数21y x =+的图像上,其中所有正确的结论序号是.三.解答题(共8小题,满分75分)16.用适当的方法解下列方程:(1)249211x x x ++=+;(2)()()313x x --=;(3)()()2225431y y -=-;(4)22410x x --=.17.已知关于x 的一元二次方程(x ﹣1)(x ﹣4)=p 2,p 为实数.(1)求证:方程有两个不相等的实数根;(2)p 为何值时,方程有整数解.(直接写出三个,不需说明理由)18.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?19.如图,抛物线()21y a x =+的顶点为A ,与y 轴的负半轴交于点B ,且OA OB =.(1)求抛物线的解析式;(2)若点()3,C b -在该抛物线上,求b 的值;(3)若点()12,D y ,()23,E y 在此抛物线上,比较1y 与2y 大小.202+=有一位同学解答如下:这里,a b =c =,∴(224432b ac -=-=.∴2x ==.请你分析以上解答有无错误,如有错误,请作出正确解答.21.如图所示,在ABC V 中,90B Ð=°,6cm AB =,12cm BC =,点P 从点A 开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动.如果P ,Q 分别从点A ,B 同时出发,几秒钟后PBQ V 的面积等于28cm ?22.如图,一次函数y kx b =+的图象与二次函数2y ax =的图象交于点()1A m ,和()24B -,,与y 轴交于点C .(1)求k b a ,,的值;(2)求AOB V 的面积.23.如图,在▱ABCD 中,AB =4,点D 的坐标是(0,8),以点C 为顶点的抛物线y =a (x ﹣h )2+k 经过x 轴上的点A ,B .(1)求点A ,B ,C 的坐标;(2)若抛物线向上平移后恰好经过点D ,求平移后抛物线的解析式.1.D【分析】根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2进行分析即可.【详解】A 、()22545x x -=,化简之后不是一元二次方程,故此选项不合题意;B 、ax 2+bx +c =0中,如果a =0不是一元二次方程,故此选项不合题意;C 、2310y x +-=含有2个未知数,因此不是一元二次方程,故此选项不合题意;D 、2221x x =+是一元二次方程,故此选项符合题意;故选:D .【点睛】此题主要考查了一元二次方程定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2.A【分析】由一元二次方程有两个不相等的实数根,确定出根的判别式的符号即可.【详解】解:∵关于x 的一元二次方程ax 2+bx+c=0(a≠0)的两根为x 1=1,x 2=-1,∴方程有两个不相等的实数根∴b 2-4ac >0,故选A .【点睛】此题考查了根与系数的关系,以及根的判别式,熟练掌握根的判别式的意义是解本题的关键.3.D【分析】本题主要考查了一元二次方程的配方法.把常数项移到等式右边后,利用完全平方公式配方得到结果,即可做出判断.【详解】解:28100x x -+=,移项得:2810x x -=-,配方得:28161016x x +=-+-,整理得:()246x -=,故选:D .4.B【分析】此题考查了配方法,若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算.【详解】x 2+6x +2=x 2+6x +32-32+2=(x +3)2-7.故选B .5.D【分析】本题考查的是一元二次方程根的判别式,一元二次方程的定义,掌握“一元二次方程有实数根,则0D ³”是解题的关键.根据一元二次方程有实数根,则0D ³列出不等式,解不等式即可,需要注意0k ¹.【详解】解:由题意得()2Δ34100k k ì=-´´-³í¹î,解得:94k ³-且0k ¹,故选:D .6.D【详解】(x-5)(x-6)=x-5(x-5)(x-6)-(x-5)=0(x-5)(x-7)=0解得:x 1=5,x 2=7;故选D .7.D【分析】本题主要考查了解一元二次方程,一元二次方程解的定义,构成三角形的条件,等腰三角形的定义,先把3x =代入原方程求出m 的值,进而解方程求出3x =或4x =,再分当腰长为3时,则底边长为4,当腰长为4时,则底边长为3,两种情况利用构成三角形的条件进行求解即可.【详解】解:∵3是关于x 的方程()2120x m x m -++=的一个实数根,∴()231320m m ++=-,解得6m =,∴原方程为27120x x -+=,解方程27120x x -+=得3x =或4x =,当腰长为3时,则底边长为4,∵334+>,∴此时能构成三角形,∴此时ABC V 的周长为33410++=;当腰长为4时,则底边长为3,∵344+>,∴此时能构成三角形,∴此时ABC V 的周长为34411++=,综上所述,ABC V 的周长为10或11,故选D .8.D【分析】把方程()()22322330x x +++-=看作关于23x +的一元二次方程,用换元法解题即可得到结果.【详解】把方程()()22322330x x +++-=看作关于23x +的一元二次方程,∴231x +=或233x +=-,∴1213x x =-=-,.故选D .【点睛】本题考查了一元二次方程求解方法中的换元法,熟悉换元法的解题步骤是解题关键.9.C【分析】此题可设每轮感染中平均一台电脑会感染x 台电脑,则第一轮共感染x +1台,第二轮共感染x (x +1)+x +1=(x +1)(x +1)台,根据题意列方程即可.【详解】设每轮感染中平均一台电脑会感染x 台电脑,根据题意列方程得(x +1)2=100,故选C .【点睛】考查了由实际问题抽象出一元二次方程的解,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.判断所求的解是否符合题意,舍去不合题意的解.10.D【分析】画出函数y =22(1)1(3)(5)1(3)x x x x ì--£í-->î的图象,根据图象即可求得结论.【详解】解:画出函数y =22(1)1(3)(5)1(3)x x x x ì--£í-->î的图象如图:由图象可知,直线y =k 与函数y =22(1)1(3)(5)1(3)x x x x ì--£í-->î交点个数有4个,故选:D .【点睛】本题考查了二次函数的性质,数形结合是解题的关键.11.2270x -=【分析】通过移项合并同类项即可得到答案 .【详解】解:方程(21)(2)53x x x +-=-整理成一般形式后,得224253x x x x -+-=-,即2270x -=.故答案为:2270x -=.【点睛】本题主要考查一元二次方程的一般形式,掌握移项、合并同类项是关键.12.54k -≥且1k ¹-【分析】本题考查了一元二次方程的定义,一元二次方程根的判别式,根据题意可得Δ0³,且10k +¹,求解即可.【详解】解:根据题意,可得2Δ(2)4(1)(5)0k k k =--´+´-³,且10k +¹,即16200k +³且1k ¹-,解得:54k -≥且1k ¹-,故答案为:54k -≥且1k ¹-.13.3-【分析】将2x =-代入220x kx -+=,即可求解.【详解】将2x =-代入220x kx -+=,得:()()22220k --´-+=,解得:3k =-,故答案为:3-.【点睛】本题考查了一元二次方程的解定义,细心计算是关键,属于基础题型.14.()()1302030202x x --=´´【分析】本题主要考查了一元二次方程的应用,设道路的宽应为x 米,由题意有()()1302030202x x --=´´,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.【详解】解:设道路的宽应为x 米,由题意有()()1302030202x x --=´´.故答案为:()()1302030202x x --=´´.15.①②④【分析】①两个二次函数可以通过平移得到,由此即可得两个函数的图象形状相同;②求出当0x =时,y 的值即可得;③根据二次函数的增减性即可得;④先求出二次函数22()1y x m m =--++的顶点坐标,再代入函数21y x =+进行验证即可得.【详解】Q 当0m >时,将二次函数2y x =-的图象先向右平移m 个单位长度,再向上平移21m +个单位长度即可得到二次函数22()1y x m m =--++的图象;当0m <时,将二次函数2y x =-的图象先向左平移m -个单位长度,再向上平移21m +个单位长度即可得到二次函数22()1y x m m =--++的图象\该函数的图象与函数2y x =-的图象形状相同,结论①正确对于22()1y x m m =--++当0x =时,22(0)11y m m =--++=即该函数的图象一定经过点(0,1),结论②正确由二次函数的性质可知,当x m £时,y 随x 的增大而增大;当x m >时,y 随x 的增大而减小则结论③错误22()1y x m m =--++的顶点坐标为2(),1m m +对于二次函数21y x =+当x m =时,21y m =+即该函数的图象的顶点2(),1m m +在函数21y x =+的图象上,结论④正确综上,所有正确的结论序号是①②④故答案为:①②④.【点睛】本题考查了二次函数的图象与性质等知识点,熟练掌握二次函数的图象与性质是解题关键.16.(1)121,1x x ==(2)120,4x x ==(3)134y -(4)12x x ==【分析】(1)利用配方法即可求解;(2)整理方程后,利用因式分解法即可求解;(3)利用因式分解法即可求解;(4)利用公式法即可求解.【详解】(1)解:整理方程得:222x x += ∴2213x x ++=()213x +=1x +=∴121,1x x ==(2)解:整理方程得:240x x -=∴()40x x -=∴120,4x x ==(3)解:()()22025231y y ---ùëû=é()()87430y y ---=∴1273,84y y ==-(4)解:由方程可知:2,4,1a b c ==-=-∴2D =∴12x x ====【点睛】本题考查求解一元二次方程.掌握各类求解方法是解题关键.17.(1)见解析;(2)p =0、2、-2.【详解】解:(1)原方程可化为x 2﹣5x +4﹣p 2=0,∵△=(﹣5)2﹣4×(4﹣p 2)=4p 2+9>0,∴不论p 为任何实数,方程总有两个不相等的实数根;(2)原方程可化为x 2﹣5x +4﹣p 2=0,∴x ∵方程有整数解,∴p 可取0,2,﹣2时,方程有整数解.【点睛】本题考查了一元二次方程的根的情况,判别式△的符号,把求未知系数的范围的问题转化为解不等式的问题是解题的关键.18.(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.【分析】(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价3元,则平均每天可多售出2×3=6件,即平均每天销售数量为20+6=26件;(2)利用商品平均每天售出的件数×每件盈利=每天销售这种商品利润列出方程解答即可.【详解】(1)若降价3元,则平均每天销售数量为20+2×3=26件.(2)设每件商品应降价x 元时,该商店每天销售利润为1200元.根据题意,得(40-x )(20+2x )=1200,整理,得x 2-30x +200=0,解得:x 1=10,x 2=20.∵要求每件盈利不少于25元,∴x 2=20应舍去,∴x =10.答:每件商品应降价10元时,该商店每天销售利润为1200元.【点睛】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.19.(1)()21y x =-+(2)4b =-(3)12y y >【分析】(1)由点A 坐标求出1OA =,进一步得到点B 坐标,再利用待定系数法求解;(2)将()3,C b -代入()21y x =-+,即可求出b 值;(3)根据对称轴和开口方向判断增减性,再结合D ,E 两点的横坐标判断即可.【详解】(1)解:∵抛物线()21y a x =+的顶点为A ,∴()1,0A -,则1OA =,∵OA OB =,∴()0,1B -,代入()21y a x =+中,得:()2101a -=+,解得:1a =-,∴()21y x =-+;(2)将()3,C b -代入()21y x =-+中,得:()231b =--+,解得:4b =-;(3)∵抛物线()21y x =-+的对称轴为直线1x =-,且开口向下,∴当1x >-时,y 随x 的增大而减小,∵23<,∴12y y >.【点睛】本题考查了求二次函数解析式,二次函数的图象和性质,解题的关键是熟练掌握二次函数的性质,利用增减性判断函数值的大小.20.有错误,正确解答见解析【分析】将方程化为一般式,利用求根公式求解即可.【详解】解:有错误,错误的原因是没有将方程化为一般形式.2+=20+-=,故方程中的a b =c =-,224464b ac -=--=.所以x ==即1x =,2x =-.【点睛】本题考查一元二次方程的解-公式法,解题的关键是记住求根公式,属于中考常考题型.21.2秒或4秒【分析】设t 秒后, PBQ V 的面积等于28cm , 分别表示出线段PB 和线段BQ 的长,然后根据面积为8列出方程求得时间即可.【详解】设t 秒后, PBQ V 的面积等于28cm , 根据题意得:()12682t t ´-=,解得:12t =或24t =,答: 2秒或4秒后,PBQ V 的面积等于28cm .【点睛】本题考查了一元二次方程的应用,三角形的面积,能够表示出线段PB 和线段BQ 的长是解答本题的关键.22.(1)112k a b =-==,,(2)AOB V 的面积为3【分析】(1)用待定系数法,先将()24B -,代入2y ax =,求出a 的值为1,再将()1A m ,代入2y x =,求出点()11A ,,然后将()11A ,,()24B -,代入y kx b =+分别求出k b ,的值.(2)利用y 轴将AOB V 分割为AOC △和BOC V ,分别算出它们的面积后,即可求出AOB V 的面积.【详解】(1)∵点()2,4B -在二次函数2y ax =的图象上,∴44a =解得:1a =∴二次函数关系式为:2y x =将()1A m ,代入2y x =得:1m =∴()11A ,∵点()11A ,,()24B -,在一次函数y =kx +b 的图象上∴124k b k b +=ìí-+=î,解得:12k b =-ìí=î,∴112k a b =-==,,;(2)由(1)可知一次函数关系式2y x =-+当0x =时,2y =则一次函数2y x =-+与y 轴交点坐标为()02C ,∵2OC =,点A 横坐标为1A x =,点B 的横坐标为2-∴AOC S =V 12A OC x ×=1212´´1==BOC S V 12B OC x ×=1222´´2=∴123AOB AOC BOC S S S =+=+=V V V ∴AOB V 的面积为3.【点睛】本题考查了待定系数求二次函数解析式,求一次函数解析式,面积问题,求得解析式是解题的关键.23.(1)()()()2,0,6,0,4,8A B C ;(2)22168y x x =-++【分析】(1)根据平行四边形的性质可得4CD AB ==,根据D 的坐标,即可求得C 的坐标,根据C 为顶点,根据二次函数与x 轴交于点,A B ,则,A B 关于对称轴4x =对称, 且4AB =,即可求得,A B 的坐标;(2)根据(1)的结论求得抛物线解析式,设平移后的解析式为:代入D 的坐标即可求得b 的值,进而求得平移后的抛物线的解析式.【详解】(1)Q ▱ABCD 中,AB =4,点D 的坐标是(0,8),//CD AB \,(4,8)C \,Q C 为抛物线的顶点,\抛物线的对称轴为4x =,Q 二次函数与x 轴交于点,A B ,则,A B 关于对称轴4x =对称, 且4AB =,(2,0),(6,0)A B \,(2)Q ()()()2,0,6,0,4,8A B C ,设抛物线解析式为(2)(6)y a x x =--将(4,8)C 代入8(42)(46)a =--解得2a =-,\抛物线解析式为22(2)(6)2(4)8y x x x =---=--+,设向上平移b 个单位后新抛物线的解析式为22(4)8y x b =--++,依题意,新抛物线过点(0,8)D ,则82168b =-´++,解得32b =,\平移后的抛物线解析式为:22(4)40y x =--+即22168y x x =-++.【点睛】本题考查了平行四边形的性质,二次函数的性质,顶点式,二次函数图像的平移,掌握二次函数的性质是解题的关键.。

一元二次方程综合测试题+答案

一元二次方程综合测试题+答案

一.选择题(每小题3分,共39分)1.下列方程是关于x 的一元二次方程的是(D );A .02=++c bx axB .2112=+x xC .1222-=+x x xD .)1(2)1(32+=+x x 2.方程()()24330x x x -+-=的根为( D );A .3x =B .125x =C .12123,5x x =-=D .12123,5x x == 3.解下面方程:(1)()225x -=(2)2320x x --=(3)260x x +-=,较适当的方法分别为( D )A .(1)直接开平法方(2)因式分解法(3)配方法B .(1)因式分解法(2)公式法(3)直接开平方法C .(1)公式法(2)直接开平方法(3)因式分解法D .(1)直接开平方法(2)公式法(3)因式分解法4.方程5)3)(1(=-+x x 的解是 ( B );A .3,121-==x xB .2,421-==x xC .3,121=-=x xD .2,421=-=x x5.方程x 2+4x =2的正根为( D )A .2-6B .2+6C .-2-6D .-2+6 6.方程x 2+2x -3=0的解是( B )A .x 1=1,x 2=3B .x 1=1,x 2=-3C .x 1=-1,x 2=3D .x 1=-1,x 2=-37.某厂一月份的总产量为500吨,三月份的总产量达到为720吨。

若平均每月增率是x ,则可以列方程( B );A .720)21(500=+xB .720)1(5002=+xC .720)1(5002=+xD .500)1(7202=+x 8.某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( B )A .200(1+a%)2=148B .200(1-a%)2=148C .200(1-2a%)=148D .200(1-a 2%)=1489.关于x 的一元二次方程02=+k x 有实数根,则( D )A .k <0B .k >0C .k ≥0D .k ≤010.方程02=x 的解的个数为( C )A .0B .1C .2D .1或211.已知关于x 的一元二次方程22x m x -= 有两个不相等的实数根,则m 的取值范围是( A )A .m >-1B .m <-2C .m ≥0D .m <012.已知x =1是一元二次方程x 2-2mx +1=0的一个解,则m 的值是( A)A .1B .0C .0或1D .0或-1 13.一元二次方程0624)2(2=-+--m mx x m 有两个相等的实数根,则m 等于( C )A .6-B .1C .6-或1D .2二.填空题(每小题3分,共45分)1.把一元二次方程12)3)(31(2+=+-x x x 化成一般形式是: 5x 2 +8x-2=0 _____________ ;它的二次项系数是 5 ;一次项系数是 8 ;常数项是 -2 。

九年级上册数学《一元二次方程》单元综合检测题(含答案)

九年级上册数学《一元二次方程》单元综合检测题(含答案)

人教版数学九年级上学期《一元二次方程》单元测试(满分120分,考试用时120分钟)一、单选题(共10题;共30分)1.方程x2-2x=0的解为( )A. x1=0,x2=2B. x1=0,x2=-2C. x1=x2=1D. x=22.设x1、x2是方程2x2﹣4x﹣3=0的两根,则x1+x2的值是()A. 2B. ﹣2C.D. ﹣3.用因式分解法解一元二次方程时,原方程可化为()A. B. C. D.4.某商品原价为180元,连续两次提价x%后售价为300元,下列所列方程正确的是( )A. 180(1+x%)=300B. 180(1+x%)2=300C. 180(1-x%)=300D. 180(1-x%)2=3005.用配方法解方程x2﹣8x+3=0,下列变形正确的是()A. (x+4)2=13B. (x﹣4)2=19C. (x﹣4)2=13D. (x+4)2=196.一元二次方程(k﹣2)x2+kx+2=0(k≠2)的根的情况是()A. 该方程有两个不相等的实数根B. 该方程有两个相等的实数根C. 该方程有实数根D. 该方程没有实数根7.以方程x2+2x-3=0的两个根的和与积为两根的一元二次方程是()A. y2+5y-6=0B. y2+5y+6=0C. y2-5y+6=0D. y2-5y-6=08.若一个关于x的一元二次方程的两个根分别是数据2,4,5,4,3,5,5的众数和中位数,则这个方程是()A. x2﹣7x+12=0B. x2+7x+12=0C. x2﹣9x+20=0D. x2+9x+20=09.设a是方程x2+2x﹣2=0的一个实数根,则2a2+4a+2016的值为()A. 2016B. 2018C. 2020D. 202110.如图,△ABC是一块锐角三角形材料,高线AH长8 cm,底边BC长10 cm,要把它加工成一个矩形零件,使矩形DEFG的一边EF在BC上,其余两个顶点D,G分别在AB,AC上,则四边形DEFG的最大面积为( )A. 40 cm2B. 20 cm2C. 25 cm2D. 10 cm2二、填空题(共10题;共30分)11.已知两个数的差为3,它们的平方和等于65,设较小的数为x,则可列出方程________.12.一元二次方程x2﹣4x+4=0的解是________.13.若x=1是关于x的一元二次方程x2+3mx+n=0的解,则6m+2n=______.14.已知x1,x2是方程x2-4x+2=0的两根,求:(x1-x2)2=_____________.15.一元二次方程x2+5x﹣6=0的两根和是________.16.若关于x的一元二次方程的两个根x1,x2满足x1+x2=3,x1x2=2,则这个方程是_____.(写出一个符合要求的方程)17.关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为________.18.(3分)已知关于x的方程有两个实数根,则实数a的取值范围是.19.设m,n是一元二次方程x2+2x-7=0的两个根,则m2+3m+n=_______.20.已知a、b是一元二次方程的两个实数根,则代数式的值等于.三、解答题(共8题;共60分)21.解下列方程(1)2x2-x=0(2)x2-4x=422.已知关于x的方程x2-(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m-1)2+(3+m)(3-m)+7m-5的值(要求先化简再求值).23.在等腰△ABC中,三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6﹣b=0有两个相等的实数根,求△ABC的周长.24.给定关于的二次函数,学生甲:当时,抛物线与轴只有一个交点,因此当抛物线与轴只有一个交点时,的值为3;学生乙:如果抛物线在轴上方,那么该抛物线的最低点一定在第二象限;请判断学生甲、乙的观点是否正确,并说明你的理由.25.阅读探索:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组:,消去y化简得:2x2﹣7x+6=0,∵△=49﹣48>0,∴x1=_____,x2=_______,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?26.某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x米的人行通道.如果这两块绿地的面积之和为60平方米,人行通道的宽度应是多少米?27.“低碳生活,绿色出行”,2017年1月,某公司向深圳市场新投放共享单车640辆.(1)若1月份到4月份新投放单车数量的月平均增长率相同,3月份新投放共享单车1000辆.请问该公司4月份在深圳市新投放共享单车多少辆?(2)考虑到自行车市场需求不断增加,某商城准备用不超过70000元的资金再购进A,B两种规格的自行车100辆,已知A型的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.假设所进车辆全部售完,为了使利润最大,该商城应如何进货?28.如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB 方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动.设运动时间为x 秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.参考答案一、单选题(共10题;共30分)1.方程x2-2x=0的解为()A. x1=0,x2=2B. x1=0,x2=-2C. x1=x2=1D. x=2【答案】A【解析】分析:利用因式分解法解方程即可.详解:x(x-2)=0,x=0或x-2=0,所以x1=0,x2=2.故选A.点睛:本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.2.设x1、x2是方程2x2﹣4x﹣3=0的两根,则x1+x2的值是()A. 2B. ﹣2C.D. ﹣【答案】A【解析】试题解析:∵,是方程的两根,根据一元二次方程根与系数的关系得:+=2故选A.3.用因式分解法解一元二次方程时,原方程可化为()A. B. C. D.【答案】B【解析】由x(x−3)=x−3,x(x−3)−(x−3)=0,(x−3)(x−1)=0,故选B.4.某商品原价为180元,连续两次提价x%后售价为300元,下列所列方程正确的是( )A. 180(1+x%)=300B. 180(1+x%)2=300C. 180(1-x%)=300D. 180(1-x%)2=300【答案】B【解析】试题解析:当商品第一次提价x%时,其售价为180+180x%=180(1+x%),当商品第二次提价x%后,其售价为180(1+x%)+180(1+x%)x%=180(1+x%)2.∴180(1+x%)2=300.故选B.5.用配方法解方程x2﹣8x+3=0,下列变形正确的是()A. (x+4)2=13B. (x﹣4)2=19C. (x﹣4)2=13D. (x+4)2=19【答案】C【解析】解:x2﹣8x=﹣3,x2﹣8x+16=13,(x﹣4)2=13.故选C.6.一元二次方程(k﹣2)x2+kx+2=0(k≠2)的根的情况是()A. 该方程有两个不相等的实数根B. 该方程有两个相等的实数根C. 该方程有实数根D. 该方程没有实数根【答案】C【解析】【分析】根据方程的系数结合根的判别式,即可得出△=(k-4)≥0,由此即可得出该方程有实数根,此题得解.【详解】解:在方程(k﹣2)x2+kx+2=0(k≠2)中,A=k-42(k-2)=k-8k+16=(k-4)≥0,.该方程有实数根.所以C选项是正确的.【点睛】本题主要考查一元二次方程由根的判别式判别根的情况.7.以方程x2+2x-3=0的两个根的和与积为两根的一元二次方程是()A. y2+5y-6=0B. y2+5y+6=0C. y2-5y+6=0D. y2-5y-6=0【答案】B【解析】【分析】先设α、β是方程x2+2x-3=0的两个根,根据根与系数的关系可求α+β、αβ,再根据根与系数的关系易求与的值,进而可求二次项系数为1的方程.【详解】解:设α、β是方程x2+2x-3=0的两个根,那么α+β=-2,αβ=-3,=-2-3=-5, =-2x(-3)=6,若a=1,则b=5,c=6,所求方程是y2+5y+6=0.所以B选项是正确的.【点睛】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.8.若一个关于x的一元二次方程的两个根分别是数据2,4,5,4,3,5,5的众数和中位数,则这个方程是()A. x2﹣7x+12=0B. x2+7x+12=0C. x2﹣9x+20=0D. x2+9x+20=0【答案】C【解析】【分析】将已知数据从小到大顺序排列:2,3,4,4,5,5,5;根据众数和中位数的定义求出众数和中位数,再根据根与系数的关系造出方程即可.【详解】解:将已知数据从小到大顺序排列,得:2,3,4,4,5,5,5;共7个数据,处于中间的数据是第4个数据4,出现最多的数据是5,因此,这组数据的中位数是4,众数是5,以4,5为根的一元二次方程是x2-9x+20=0,所以C选项是正确的.【点睛】本题主要考查了众数,中位数的概念,根与系数的关系,掌握众数和中位数的求法是解题的关键.9.设a是方程x2+2x﹣2=0的一个实数根,则2a2+4a+2016的值为()A. 2016B. 2018C. 2020D. 2021【答案】C【解析】【分析】首先由已知可得a2+2a-2=0,即a2+2a=2.然后化简代数式,注意整体代入,从而求得代数式的值.【详解】解:把x=a代入得到a2+2a-2=0,则a2+2a=2.又2a2+4a=2(a2+2a),把a2+2a=2代入2a2+4a+2016=2(a2+2a)+2016=22+2016=2020所以C选项是正确的.【点睛】本题主要考查一元二次方程的解及整体代入计算整式的值.10.如图,△ABC是一块锐角三角形材料,高线AH长8 cm,底边BC长10 cm,要把它加工成一个矩形零件,使矩形DEFG的一边EF在BC上,其余两个顶点D,G分别在AB,AC上,则四边形DEFG的最大面积为( )A. 40 cm2B. 20 cm2C. 25 cm2D. 10 cm2【答案】B【解析】【分析】设矩形DEFG的宽DE=x,根据相似三角形对应高的比等于相似比列式求出DG,再根据矩形的面积列式整理,然后根据二次函数的最值问题解答即可.【详解】如图所示:设矩形DEFG的宽DE=x,则AM=AH-HM=8-x,∵矩形的对边DG∥EF,∴△ADG∽△ABC,∴,即,解得DG=(8-x),四边形DEFG的面积=(8-x)x=-(x2-8x+16)+20=-(x-4)2+20,所以,当x=4,即DE=4时,四边形DEFG最大面积为20cm2.故选:B.【点睛】考查了相似三角形的应用,二次函数的最值问题,根据相似三角形的对应高的比等于相似比用矩形DEFG的宽表示出长是解题的关键.二、填空题(共10题;共30分)11.已知两个数的差为3,它们的平方和等于65,设较小的数为x,则可列出方程________.【答案】【解析】由较小的数为x可知较大的数为x+3,故它们的平方和为x2+(x+3)2再根据它们的平方和是65可得x2+(x+3)2=65,故答案为:x2+(x+3)2=65.12.一元二次方程x2﹣4x+4=0的解是________.【答案】x1=x2=2【解析】【分析】根据配方法即可解方程.【详解】解:x2﹣4x+4=0(x-2)2=0∴x1=x2=2【点睛】本题考查了用配方法解一元二次方程,属于简单题,选择配方法是解题关键.13.若x=1是关于x的一元二次方程x2+3mx+n=0的解,则6m+2n=______.【答案】-2【解析】试题分析:把x=1代入+3mx+n=0得:1+3m+n=0,3m+n=﹣1,∴6m+2n=2(3m+n)=2×(-1)=﹣2考点:整体思想求代数式的值.14.已知x1,x2是方程x2-4x+2=0的两根,求:(x1-x2)2=_____________.【答案】8【解析】【分析】易得到两根之和与两根之积的具体数值,利用(x1-x2)2=(x1+x2)2-4x1x2代入相应的数值进行计算即可得.【详解】∵x1,x2是方程x2-4x+2=0的两根,∴x1+x2=4,x1x2=2,∴(x1-x2)2=(x1+x2)2-4x1x2=42-4×2=8,故答案为:8.【点睛】本题考查了一元二次方程根与系数的关系,解决本题的关键是把所求的代数式整理成与根与系数有关的形式.15.一元二次方程x2+5x﹣6=0的两根和是________.【答案】-5【解析】试题分析:设x1、x2为一元二次方程x2+5x﹣6=0的两根,则由根与系数的关系得:x1+x2=-=﹣5.考点:根与系数的关系16.若关于x的一元二次方程的两个根x1,x2满足x1+x2=3,x1x2=2,则这个方程是_____.(写出一个符合要求的方程)【答案】答案不唯一,如【解析】分析:根据根与系数的关系得到满足条件的方程可为x2-3x+2=0.详解:∵x1+x2=3,x1x2=2,∴以x1,x2为根的一元二次方程x2-3x+2=0.故选答案不唯一,如.点睛:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−,x1x2=.17.关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为________.【答案】1【解析】试题解析:∵关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,∴k≠0且△>0,即(-2)2-4×k×(-1)>0,解得k>-1且k≠0.∴k的取值范围为k>-1且k≠0.故k的最小整数值为1.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.18.(3分)已知关于x的方程有两个实数根,则实数a的取值范围是.【答案】a≤1.【解析】试题分析:∵方程有两个实数根,∴△=4﹣4a≥0,解得:a≤1,故答案为:a≤1.考点:根的判别式.19.设m,n是一元二次方程x2+2x-7=0的两个根,则m2+3m+n=_______.【答案】5【解析】试题分析:根据根与系数的关系可知m+n=﹣2,又知m是方程的根,所以可得m2+2m﹣7=0,最后可将m2+3m+n变成m2+2m+m+n,最终可得答案.∵设m、n是一元二次方程x2+2x﹣7=0的两个根,∴m+n=﹣2,∵m是原方程的根,∴m2+2m﹣7=0,即m2+2m=7,∴m2+3m+n=m2+2m+m+n=7﹣2=5考点:根与系数的关系20.已知a、b是一元二次方程的两个实数根,则代数式的值等于.【答案】-1【解析】分析:欲求(a-b)(a+b-2)+ab的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.解答:解:∵a、b是一元二次方程x2-2x-1=0的两个实数根,∴ab=-1,a+b=2,∴(a-b)(a+b-2)+ab=(a-b)(2-2)+ab,=0+ab,=-1,故答案为:-1.三、解答题(共8题;共60分)21.解下列方程(1)2x2-x=0(2)x2-4x=4【答案】(1)x1=0,x2=;(2)x1=2+2,x2=2-2.【解析】【分析】(1)结合提取公因式法分解因式解方程;(2)利用配方法求出方程的根即可.【详解】(1)解:2x2-x=0,x(2x-1)=0,x=0或2x-1=0,则x1=0,x2=.(2)解:方程两边同时+4,得x2-4x+4=4+4,(x-2)2=8,x-2=±2 ,则x1=2+2,x2=2-2.【点睛】此题主要考查了配方法以及因式分解法解方程,正确分解因式是解题关键.22.已知关于x的方程x2-(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m-1)2+(3+m)(3-m)+7m-5的值(要求先化简再求值).【答案】(1)证明见解析;(2)5.【解析】试题分析:(1)找出a,b及c,表示出根的判别式,变形后得到其值大于0,即可得证.(2)把x=0代入方程即可求m的值,然后化简代数式再将m的值代入所求的代数式并求值即可.试题解析:(1)∵关于x的一元二次方程x2-(2m+1)x+m(m+1)=0.∴△=(2m+1)2-4m(m+1)=1>0,∴方程总有两个不相等的实数根;(2)∵x=0是此方程的一个根,∴把x=0代入方程中得到m(m+1)=0,∴m=0或m=-1,∵(2m-1)2+(3+m)(3-m)+7m-5=4m2-4m+1+9-m2+7m-5=3m2+3m+5,把m=0代入3m2+3m+5得:3m2+3m+5=5;把m=-1代入3m2+3m+5得:3m2+3m+5=3×1-3+5=5.考点:1.根的判别式;2.一元二次方程的解.23.在等腰△ABC中,三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6﹣b=0有两个相等的实数根,求△ABC的周长.【答案】△ABC的周长是12.【解析】试题分析:若一元二次方程有两个相等的实数根,则根的判别式△=0,据此可求出b的值;进而可由三角形三边关系定理确定等腰三角形的三边长,即可求得其周长.试题解析:∵关于x的方程有两个相等的实数根,∴△=,即;解得,(舍去);①当a为底,b为腰时,则2+2<5,构不成三角形,此种情况不成立;②当b为底,a为腰时,则5﹣2<5<5+2,能够构成三角形;此时△ABC的周长为:5+5+2=12;故△ABC的周长是12.考点:1.根与系数的关系;2.三角形三边关系;3.等腰三角形的性质.24.给定关于的二次函数,学生甲:当时,抛物线与轴只有一个交点,因此当抛物线与轴只有一个交点时,的值为3;学生乙:如果抛物线在轴上方,那么该抛物线的最低点一定在第二象限;请判断学生甲、乙的观点是否正确,并说明你的理由.【答案】甲错误,乙正确【解析】试题分析:甲的观点是错误的,乙的观点是正确的.分别求出抛物线y=2x2+(6-2m)x+3-m与x轴只有一个交点时m的值以及抛物线在x轴上方时该抛物线的最低点的位置即可.试题解析:甲的观点是错误的.理由如下:当抛物线与轴只有一个交点时即:解得或即或时抛物线与轴只有一个交点乙的观点是正确的理由如下:当抛物线在轴上方时,由上可得即:∴而对于开口向上的抛物线最低点为其顶点顶点的横坐标为,且抛物线在轴上方,即抛物线的最低点在第二象限【点睛】本题考查了抛物线和x轴交点问题以及和二次函数有关的性质,求二次函数y=ax2+bx+c(a,b,c 是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.25.阅读探索:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组:,消去y化简得:2x2﹣7x+6=0,∵△=49﹣48>0,∴x1=_____,x2=_______,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?【答案】(1)2,;(2)不存在,理由见解析;(3)(m+n)2-8mn≥0,理由见解析.【解析】试题分析:(1)直接利用求根公式计算即可;(2)参照(1)中的解法解题即可;(3)解法同上,利用根的判别式列不等关系可求m,n满足的条件.试题解析:(1)由上可知(x-2)(2x-3)=0,∴x1=2,x2=.(2)不存在,理由如下:设所求矩形的两边分别是x和y,由题意,得,消去y化简,得2x2-3x+2=0.∵△=9-16<0,∴不存在矩形B.(3)(m+n)2-8mn≥0,理由如下设所求矩形的两边分别是x和y,由题意,得,消去y化简,得2x2-(m+n)x+mn=0.△=(m+n)2-8mn≥0,即(m+n)2-8mn≥0时,满足要求的矩形B存在.考点:一元二次方程的应用.26.某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x米的人行通道.如果这两块绿地的面积之和为60平方米,人行通道的宽度应是多少米?【答案】人行道的宽度为2米【解析】设人行道的宽度为x米,则矩形绿地的长度为:,宽度为:8-2x,根据两块绿地的面积之和为60 平方米,列方程求解.解:根据题意,得.整理得.解得,.∵不符合题意,舍去,.答:人行通道的宽度是2米.“点睛”本题考查了一元二次方程法应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.27.“低碳生活,绿色出行”,2017年1月,某公司向深圳市场新投放共享单车640辆.(1)若1月份到4月份新投放单车数量的月平均增长率相同,3月份新投放共享单车1000辆.请问该公司4月份在深圳市新投放共享单车多少辆?(2)考虑到自行车市场需求不断增加,某商城准备用不超过70000元的资金再购进A,B两种规格的自行车100辆,已知A型的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.假设所进车辆全部售完,为了使利润最大,该商城应如何进货?【答案】(1)新投放的共享单车1250辆;(2)为使利润最大,该商城应购进60辆A型车和40辆B型车. 【解析】【分析】(1)设平均增长率为x,根据1月份到4月份新投放单车数量的月平均增长率相同,3月份新投放共享单车1000辆列出方程,再求解即可;(2)设购进A型车y辆,则购进B型车100-y辆,根据不超过70000元的资金再购进A,B两种规格的自行车100辆,列出不等式,求出y的取值范围,然后求出利润W的表达式,根据一次函数的性质求解即可.【详解】(1)解:设平均增长率为x,根据题意得:640=1000;解得:x=0.25=25%或x=-2.25(舍去);∴四月份的销量为:1000(1+25%)=1250(辆);答:新投放的共享单车1250辆.(2)解:设购进A型车y辆,则购进B型车100-y辆;根据题意可得:500y+1000(100-y)≤70000;解得:y≥60;∴利润W=(700-500)y+(1300-1000)(100-y)=200y+300(100-y)=-100y+30000∵-100<0,∴W随着x的增大而减小;∴当y=60时,利润最大=-100×60+30000=2400(元);答:为使利润最大,该商城应购进60辆A型车和40辆B型车.【点睛】本题考查了一元二次方程、一元一次不等式和一次函数的应用,解题关键是读懂题意,根据题意列出方程或不等式.28.如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB 方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动.设运动时间为x 秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.【答案】(1) y=-x2+9x(0<x≤4)(2)20【解析】解:(1)∵,PB=AB-AP=18-2x,BQ=x,∴y=(18-2x)x,即y=-x2+9x(0<x≤4).(2)由(1)知:y=-x2+9x=.∵当0<x≤时,y随x的增大而增大,而0<x≤4,∴当x=4时,.∴△PBQ的最大面积是20cm2.(1)分别表示出PB、BQ的长,然后根据三角形的面积公式列式整理即可得解. (2)把函数关系式整理成顶点式解析式,然后根据二次函数的最值问题解答.。

一元二次方程综合测试题+答案

一元二次方程综合测试题+答案

一元二次方程综合测试题+答案1.正确的选项为(D);正确的改写为:下列方程中是关于x的一元二次方程的是(D);2.正确的选项为(D);正确的改写为:方程4(x-3)+x(x-3)=0的根为(D);3.正确的选项为(D);正确的改写为:解下列方程:(1)(x-2)^2=5(2)x^2-3x-2=0(3)x^2+x-6=0,较适当的方法分别为(D);4.正确的选项为(B);正确的改写为:方程(x+1)(x-3)=5的解是(B);5.正确的选项为(D);正确的改写为:方程x^2+4x-2=0的正根为(D);6.正确的选项为(B);正确的改写为:方程x^2+2x-3=0的解是(B);7.正确的选项为(B);正确的改写为:某厂一月份的总产量为500吨,三月份的总产量达到为720吨。

若平均每月增率是x,则可以列方程(B);8.正确的选项为(B);正确的改写为:某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是(B);9.正确的选项为(D);正确的改写为:关于x的一元二次方程x^2+k=0有实数根,则(D);10.正确的选项为(C);正确的改写为:方程x^2=0的解的个数为(C);11.正确的选项为(A);正确的改写为:已知关于x的一元二次方程x^2-m=2x有两个不相等的实数根,则m的取值范围是(A);12.正确的选项为(A);正确的改写为:已知x=1是一元二次方程x^2-2mx+1=0的一个解,则m的值是(A)。

13.一元二次方程 $(m-2)x-4mx+2m-6$ 有两个相等的实数根,则 $m$ 等于 $\boxed{\text{C。

}-6\text{或}1}$。

1.把一元二次方程 $(1-3x)(x+3)=2x+1$ 化成一般形式是$5x^2+8x-2=0$;它的二次项系数是 $5$;一次项系数是 $8$;常数项是 $-2$。

2.已知关于 $x$ 的方程 $(m-1)x+(m+1)x+m-2$,当 $m\neq \pm 1$ 时,方程为一元二次方程;当 $m=1$ 时,方程是一元一次方程。

九年级上册数学《一元二次方程》单元综合测试题(含答案)

九年级上册数学《一元二次方程》单元综合测试题(含答案)
【点睛】本题可根据一元二次方程根与系数的关系(韦达定理)来解答.
韦达定理:若一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=﹣ ,x1x2= .
19.某水果批发市场要经销一批热带水果,如果每千克该水果盈利5元,每天可售出200千克;经市场调查发现,在进货价不变的情况下,如果每千克水果涨价1元,日销售量将减少10千克;现该市场要保证每天盈利1500元,同时又要使顾客得到实惠,那么每千克水果应涨价多少元?
【点睛】本题主要考查了一元二次方程根与系数的关系(韦达定理),解此题的关键在于利用韦达定理得到m,n的另一个方程,然后通过解m,n的方程组得到m,n的值.
18.已知关于x的方程x2+2(m-3)x+m2+9=0两根的平方和比两根的积小71,求m的值.
【答案】m=4或m=20
【解析】
【分析】
利用一元二次方程的根与系数的关系整理得到x1+x2=-2(m-3),x1x2=m2+9,再根据题意可得(x1+x2)2-3x1x2=-71,然后整体代入求解即可.
人教版数学九年级上学期
《一元二次方程》单元测试
(满分120分,考试用时120分钟)
一、选择题
1.一元二次方程 的解是()
A. B. C. D.
2.把方程 化成 的形式时, 的值为()
A. 19B. -1C. 11D. -21
3.如果有一台电脑被感染,经过两轮感染后就会有100台电脑被感染.若每一轮感染中平均一台电脑会感染 台电脑,则下列所列方程中正确的是()
【答案】每千克应涨价5元.
【解析】
【分析】
设每千克应涨价x元,由题意可列方程(5+x)(200-10x)=1500,然后求解方程取符合题意的答案即可.

《一元二次方程》单元测试题及答案

《一元二次方程》单元测试题及答案

《一元二次方程》单元测试题一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。

每题3分,共24分):1.下列方程中不一定是一元二次方程的是( )A.(a-3)x 2=8 (a ≠3)B.ax 2232057x +-= 2下列方程中,常数项为零的是( )A.x 2+x=1 B.2x 2-x-12=12;C.2(x 2-1)=3(x-1) D.2(x 2+1)=x+23.一元二次方程2x 2-3x+1=0化为(x+a)2=b 的形式,正确的是( ) A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C. 231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对 4.关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 值为()A 1 B 1- C 1或1-D1/25.已知三角形两边长分别为2和9,第三边的长为二次方程x 2-14x+48=0的一根, 则这个三角形的周长为( ) A.11 B.17 C.17或19 D.196.已知一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,则这个直角三角形的斜边长是( )A 、 B 、3 C 、6 D 、97.使分式2561x x x --+ 的值等于零的x 是( ) A.6 B.-1或6 C.-1 D.-6 8.若关于y 的一元二次方程ky 2-4y-3=3y+4有实根,则k 的取值范围是( )A.k>-7/4B.k ≥-7/4 且k ≠0C.k ≥-7/4D.k>7/4 且k ≠09.已知方程22=+x x ,则下列说中,正确的是( )A 方程两根和是1B 方程两根积是2C 方程两根和是1-D 方程两根积比两根和大210.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000二、填空题:(每小题4分,共20分)11.用______法解方程3(x-2)2=2x-4比较简便. 12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为____ ____. 13.22____)(_____3-=+-x x x14.若一元二次方程ax 2+bx+c=0(a ≠0)有一个根为-1,则a 、b 、c 的关系是______.15.已知方程3ax 2-bx-1=0和ax 2+2bx-5=0,有共同的根-1, 则a= ______, b=______.16.一元二次方程x 2-3x-1=0与x 2-x+3=0的所有实数根的和等于____.17.已知x 2+mx+7=0的一个根,则m=________,另一根为_______.18.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.19.已知x x 12,是方程x x 2210--=的两个根,则1112x x +等于__________.20.关于x 的二次方程20x mx n ++=有两个相等实根,则符合条件的一组,m n 的实数值可以是m = ,n = .三、用适当方法解方程:(每小题5分,共10分)21.22(3)5x x -+=22.230x ++=四、列方程解应用题:(每小题7分,共21分)23.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.24.如图所示,在宽为20m ,长为32m 的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570m 2,道路应为多宽?25.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

一元二次方程试卷及答案

一元二次方程试卷及答案

一元二次方程试卷及答案【篇一:最新一元二次方程单元综合测试题(含答案)123】s=txt>一、填空题(每题2分,共20分)11.方程x(x-3)=5(x-3)的根是_______.22.下列方程中,是关于x的一元二次方程的有________.1(1)2y2+y-1=0;(2)x(2x-1)=2x2;(3)2-2x=1;(4)ax2+bx+c=0;x1(5)x2=0.23.把方程(1-2x)(1+2x)=2x2-1化为一元二次方程的一般形式为________.1214.如果2--8=0,则的值是________.xxx5.关于x的方程(m2-1)x2+(m-1)x+2m-1=0是一元二次方程的条件是________.6.关于x的一元二次方程x2-x-3m=0?有两个不相等的实数根,则m?的取值范围是定______________.7.x2-5│x│+4=0的所有实数根的和是________. 8.方程x4-5x2+6=0,设y=x2,则原方程变形_________ 原方程的根为________.9.以-1为一根的一元二次方程可为_____________(写一个即可).110.代数式x2+8x+5的最小值是_________.2二、选择题(每题3分,共18分)11.若方程(a-b)x2+(b-c)x+(c-a)=0是关于x的一元二次方程,则必有().a.a=b=c b.一根为1 c.一根为-1d.以上都不对x2?x?612.若分式2的值为0,则x的值为().x?3x?2a.3或-2 b.3c.-2d.-3或2 13.已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为(). a.-5或1 b.1c.5 d.5或-1 14.已知方程x2+px+q=0的两个根分别是2和-3,则x2-px+q可分解为(). a.(x+2)(x+3) b.(x-2)(x-3) c.(x-2)(x+3)d.(x+2)(x-3)2a.1 b.2c.3d.416.三角形两边长分别为2和4,第三边是方程x2-6x+8=0的解,?则这个三角形的周长是().a.8 b.8或10c.10 d.8和10 三、用适当的方法解方程(每小题4分,共16分)17.(1)2(x+2)2-8=0;(2)x(x-3)=x;(32=6x(4)(x+3)2+3(x+3)-4=0.四、解答题(18,19,20,21题每题7分,22,23题各9分,共46分) 18.如果x2-10x+y2-16y+89=0,求x的值. y19.阅读下面的材料,回答问题:解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0 ①,解得y1=1,y2=4.2∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.(1)在由原方程得到方程①的过程中,利用___________法达到________的目的,?体现了数学的转化思想.(2)解方程(x2+x)2-4(x2+x)-12=0.20.如图,是丽水市统计局公布的2000~2003年全社会用电量的折线统计图.(1)填写统计表:(2)根据丽水市2001年至2003年全社会用电量统计数据,求这两年年平均增长的百分率(保留两个有效数字).21.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多. 1122.设a,b,c是△abc的三条边,关于x的方程x2-a=0有两22个相等的实数根,?方程3cx+2b=2a的根为x=0.(1)试判断△abc的形状.(2)若a,b为方程x2+mx-3m=0的两个根,求m的值.23.已知关于x的方程a2x2+(2a-1)x+1=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)是否存在实数a,使方程的两个实数根互为相反数?如果存在,求出a的值;如果不存在,说明理由.1解:(1)根据题意,得△=(2a-1)2-4a20,解得a.4∴当a0时,方程有两个不相等的实数根.2a?1相反数,则x1+x2=-=0a①,11解得a=,经检验,a=是方程①的根.221∴当a=时,方程的两个实数根x1与x2互为相反数.2上述解答过程是否有错误?如果有,请指出错误之处,并解答.24、如图,a、b、c、d为矩形的4个顶点,ab=16cm,bc=6cm,动点p、q分别从点a、c同时出发,点p以3cm/s的速度向点b移动,一直到达点b为止;点q以2cm/s的速度向点b移动,经过多长时间p、q两点之间的距离是10cm? dqb p(1)试判断四边形bpdq是什么特殊的四边形?如果p点的速度是以1cm/s,则四边形bpdq还会是梯形吗?那又是什么特殊的四边形呢?(2)求t为何值时,四边形bpdq的面积最大,最大面积是多少? q d1、如图,在平面直角坐标系内,已知点a(0,6)、点b(8,0),动点p从点a开始在线段ao上以每秒1个单位长度的速度向点o移动,同时动点q从点b开始在线段ba上以每秒2个单位长度的速度向点a移动,设点时间为t秒,(1)当t为何值时,△apq与△aob相似?24(2)当t为何值时,△apq的面积为个平方单位?52、有一边为5cm的正方形abcd和等腰三角形pqr,pq=pr=5cm,qr=8cm,点b、c、q、r在同一直线l上,当c、q两点重合时,等腰三角形pqr以1cm/s的速度沿直线l按箭头方向匀速运动,(1)t秒后正方形abcd与等腰三角形pqr重合部分的面积为5,求时间t;(2)当正方形abcd与等腰三角形pqr重合部分的面积为7,求时间t;a dlb?,求这时点p的坐标;且ba8【篇二:一元二次方程测试题(含答案)】(时间一、填空题:(每题2分共50分)1.一元二次方程(1-3x)(x+3)=2x2120分钟满分150分)+1 化为一般形式为:,二次项系数32为:,一次项系数为:,常数项为:。

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案一、选择题(每题3分,共30分)1. 下列哪个方程是一元二次方程?A. x^2 + 3x + 2 = 0B. 2x - 5 = 0C. 3y^2 + y = 7D. x^3 - 4x^2 + x - 6 = 02. 解一元二次方程 x^2 - 5x + 6 = 0 的判别式Δ 的值是多少?A. 1B. 25C. 49D. 03. 方程 x^2 + 4x + 4 = 0 有几个实数解?A. 0B. 1C. 2D. 34. 如果一元二次方程 ax^2 + bx + c = 0 的一个解是 x = 2,那么2a + b 的值是多少?A. aB. -cC. a - bD. c5. 用配方法解方程 x^2 - 6x + 5 = 0 的解是什么?A. x = 1, 5B. x = 2, 3C. x = 3, 4D. x = 4, 56. 方程 2x^2 - 8x + 5 = 0 的解的和是多少?A. 0B. 4C. 8D. 167. 方程 x^2 + 2x + 1 = 0 的解是:A. x = -1B. x = 1C. x = -1, 1D. 无实数解8. 一元二次方程的一般形式是:A. ax + b = 0B. ax^2 + bx + c = 0C. a(x - b)^2 = cD. ax^2 + bx = c9. 如果一元二次方程的系数 a = 1,b = -6,c = 5,那么方程的根的情况是:A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 一个实数根10. 解方程 3x^2 - 12x + 10 = 0 的判别式Δ 的值是:A. 36B. 0C. -4D. 4二、填空题(每题4分,共20分)11. 方程 2x^2 - 3x + 1 = 0 的判别式Δ = ____。

12. 方程 x^2 - 4x + __ = 0 是完全平方。

13. 如果一元二次方程的解为x = 3 ± 2√2,那么 a = ____,b = ____。

(完整版)一元二次方程全章测试及答案

(完整版)一元二次方程全章测试及答案

一元二次方程全章测试及答案一、填空题1.一元二次方程x 2-2x +1=0的解是______.2.若x =1是方程x 2-mx +2m =0的一个根,则方程的另一根为______.3.小华在解一元二次方程x 2-4x =0时,只得出一个根是x =4,则被他漏掉的另一个根是x =______.4.当a ______时,方程(x -b )2=-a 有实数解,实数解为______.5.已知关于x 的一元二次方程(m 2-1)x m -2+3mx -1=0,则m =______.6.若关于x 的一元二次方程x 2+ax +a =0的一个根是3,则a =______.7.若(x 2-5x +6)2+|x 2+3x -10|=0,则x =______.8.已知关于x 的方程x 2-2x +n -1=0有两个不相等的实数根,那么|n -2|+n +1的化简结果是______.二、选择题9.方程x 2-3x +2=0的解是( ).A .1和2B .-1和-2C .1和-2D .-1和210.关于x 的一元二次方程x 2-mx +(m -2)=0的根的情况是( ).A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定11.已知a ,b ,c 分别是三角形的三边,则方程(a +b )x 2+2cx +(a +b )=0的根的情况是( ).A .没有实数根B .可能有且只有一个实数根C .有两个不相等的实数根D .有两个不相等的实数根12.如果关于x 的一元二次方程0222=+-k x x 没有实数根,那么k 的最小整数值是( ).A .0B .1C .2D .313.关于x 的方程x 2+m (1-x )-2(1-x )=0,下面结论正确的是( ).A .m 不能为0,否则方程无解B .m 为任何实数时,方程都有实数解C .当2<m <6时,方程无实数解D .当m 取某些实数时,方程有无穷多个解三、解答题14.选择最佳方法解下列关于x 的方程:(1)(x +1)2=(1-2x )2.(2)x 2-6x +8=0.(3).02222=+-x x (4)x (x +4)=21.(5)-2x 2+2x +1=0.(6)x 2-(2a -b )x +a 2-ab =0.15.应用配方法把关于x 的二次三项式2x 2-4x +6变形,然后证明:无论x 取任何实数值,二次三项式的值都是正数.16.关于x 的方程x 2-2x +k -1=0有两个不等的实数根.(1)求k 的取值范围;(2)若k +1是方程x 2-2x +k -1=4的一个解,求k 的值.17.已知关于x 的两个一元二次方程:方程:02132)12(22=+-+-+k k x k x ①方程:0492)2(2=+++-k x k x ②(1)若方程①、②都有实数根,求k 的最小整数值;(2)若方程①和②中只有一个方程有实数根;则方程①,②中没有实数根的方程是______(填方程的序号),并说明理由;(3)在(2)的条件下,若k 为正整数,解出有实数根的方程的根.18.已知a ,b ,c 分别是△ABC 的三边长,当m >0时,关于x 的一元二次方程+2(x c 02)()2=--+ax m m x b m 有两个相等的实数根,试说明△ABC 一定是直角三角形.19.如图,菱形ABCD 中,AC ,BD 交于O ,AC =8m ,BD =6m ,动点M 从A 出发沿AC方向以2m/s 匀速直线运动到C ,动点N 从B 出发沿BD 方向以1m/s 匀速直线运动到D ,若M ,N 同时出发,问出发后几秒钟时,ΔMON 的面积为?m 412答案与提示一元二次方程全章测试1.x 1=x 2=1. 2.-2. 3.0. 4..,0a b x -±=≤5.4. 6.⋅-49 7.2. 8.3.9.A. 10.A. 11.A. 12.D. 13.C.14.(1)x 1=2,x 2=0; (2)x 1=2,x 2=4; (3);221==x x (4)x 1=-7,x 2=3; (5);31,3121-=+=x x (6)x 1=a ,x 2=a -b .15.变为2(x -1)2+4,证略.16.(1)k <2;(2)k =-3.17.(1)7;(2)①;∆2-∆1=(k -4)2+4>0,若方程①、②只有一个有实数根,则∆2>0> ∆ 1;(3)k =5时,方程②的根为;2721==x x k =6时,方程②的根为x 1=⋅-=+278,2782x 18.∆=4m (a 2+b 2-c 2)=0,∴a 2+b 2=c 2.19.设出发后x 秒时,⋅=∆41MON S (1)当x <2时,点M 在线段AO 上,点N 在线段BO 上.⋅=--41)3)(24(21x x 解得);s (225,2)s (225,21-=∴<±=x x x x (2)当2<x <3时,点M 在线段OC 上,点N 在线段BO 上,)3)(42(21x x --⋅=41解得);s (2521==x x (3)当x >3时,点M 在线段OC 上,点N 在线段OD 上,=--)3)(42(21x x ⋅41解得).s (225+=x 综上所述,出发后s,225+或s 25时,△MON 的面积为.m 412。

初中数学一元二次方程单元综合测试题(含答案)

初中数学一元二次方程单元综合测试题(含答案)

初中数学一元二次方程单元综合测试题(含答案)一、填空题(每题2分,共20分)1.方程12x (x -3)=5(x -3)的根是_______.2.下列方程中,是关于x 的一元二次方程的有________.(1)2y 2+y -1=0;(2)x (2x -1)=2x 2;(3)21x-2x=1;(4)ax 2+bx+c=0;(5)12x 2=0. 3.把方程(1-2x )(1+2x )=2x 2-1化为一元二次方程的一般形式为________.4.如果21x -2x -8=0,则1x的值是________.5.关于x 的方程(m 2-1)x 2+(m -1)x+2m -1=0是一元二次方程的条件是________. 6.关于x 的一元二次方程x 2-x -3m=0•有两个不相等的实数根,则m•的取值范围是定______________.7.x 2-5│x │+4=0的所有实数根的和是________. 8.方程x 4-5x 2+6=0,设y=x 2,则原方程变形_________ 原方程的根为________.9.以-1为一根的一元二次方程可为_____________(写一个即可).10.代数式12x 2+8x+5的最小值是_________.二、选择题(每题3分,共18分)11.若方程(a -b )x 2+(b -c )x+(c -a )=0是关于x 的一元二次方程,则必有( ).A .a=b=cB .一根为1C .一根为-1D .以上都不对12.若分式22632x x x x ---+的值为0,则x 的值为( ).A .3或-2B .3C .-2D .-3或2 13.已知(x 2+y 2+1)(x 2+y 2+3)=8,则x 2+y 2的值为( ). A .-5或1 B .1 C .5 D .5或-1 14.已知方程x 2+px+q=0的两个根分别是2和-3,则x 2-px+q 可分解为( ). A .(x+2)(x+3) B .(x -2)(x -3) C .(x -2)(x+3) D .(x+2)(x -3)15已知α,β是方程x2+2006x+1=0的两个根,则(1+2008α+α2)(1+2008β+β2)的值为().A.1 B.2 C.3 D.416.三角形两边长分别为2和4,第三边是方程x2-6x+8=0的解,•则这个三角形的周长是().A.8 B.8或10 C.10 D.8和10三、用适当的方法解方程(每小题4分,共16分)17.(1)2(x+2)2-8=0;(2)x(x-3)=x;(3)2=6x;(4)(x+3)2+3(x+3)-4=0.四、解答题(18,19,20,21题每题7分,22,23题各9分,共46分)18.如果x2-10x+y2-16y+89=0,求xy的值.19.阅读下面的材料,回答问题:解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.(1)在由原方程得到方程①的过程中,利用___________法达到________的目的,•体现了数学的转化思想.(2)解方程(x2+x)2-4(x2+x)-12=0.20.如图,是丽水市统计局公布的2000~2003年全社会用电量的折线统计图.(1)填写统计表:2000~2003年丽水市全社会用电量统计表:年份2000 2001 2002 2003全社会用电量(单位:亿kW·h)13.33(2)根据丽水市2001年至2003年全社会用电量统计数据,求这两年年平均增长的百分率(保留两个有效数字).21.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.22.设a,b,c是△ABC的三条边,关于x的方程12x2b x+c-12a=0有两个相等的实数根,•方程3cx+2b=2a的根为x=0.(1)试判断△ABC 的形状.(2)若a ,b 为方程x 2+mx -3m=0的两个根,求m 的值. 23.已知关于x 的方程a 2x 2+(2a -1)x+1=0有两个不相等的实数根x 1,x 2.(1)求a 的取值范围;(2)是否存在实数a ,使方程的两个实数根互为相反数?如果存在,求出a 的值;如果不存在,说明理由.解:(1)根据题意,得△=(2a -1)2-4a 2>0,解得a<14.∴当a<0时,方程有两个不相等的实数根.(2)存在,如果方程的两个实数根x 1,x 2互为相反数,则x 1+x 2=-21a a=0①,解得a=12,经检验,a=12是方程①的根.∴当a=12时,方程的两个实数根x 1与x 2互为相反数.上述解答过程是否有错误?如果有,请指出错误之处,并解答.24、如图,A 、B 、C 、D 为矩形的4个顶点,AB =16cm ,BC =6cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3cm/s 的速度向点B 移动,一直到达点B 为止;点Q 以2cm/s 的速度向点B 移动,经过多长时间P 、Q 两点之间的距离是10cm?25、如图,在△ABC 中,∠B =90°,BC =12cm ,AB =6cm ,点P 从点A 开始沿AB 边向点B 以2cm/s 的速度移动(不与B 点重合),动直线QD 从AB 开始以2cm/s 速度向上平行移动,并且分别与BC 、AC 交于Q 、D 点,连结DP ,设动点P 与动直线QD 同时出发,运动时间为t 秒,(1)试判断四边形BPDQ 是什么特殊的四边形?如果P 点的速度是以1cm/s ,则四边形BPDQ 还会是梯形吗?那又是什么特殊的四边形呢?(2)求t 为何值时,四边形BPDQ 的面积最大,最大面积是多少?C QP B D A C1、如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点时间为t 秒,(1)当t为何值时,△APQ 与△AOB 相似?(2)当t 为何值时,△APQ 的面积为524个平方单位?2、有一边为5cm 的正方形ABCD 和等腰三角形PQR ,PQ =PR =5cm ,QR =8cm ,点B 、C 、Q 、R 在同一直线l 上,当C 、Q 两点重合时,等腰三角形PQR 以1cm/s 的速度沿直线l 按箭头方向匀速运动,(1)t 秒后正方形ABCD 与等腰三角形PQR 重合部分的面积为5,求时间t ; (2)当正方形ABCD 与等腰三角形PQR 重合部分的面积为7,求时间t ;3、如图所示,在平面直角坐标中,四边形OABC 是等腰梯形,CB ∥OA ,OA=7,AB=4,∠COA=60°,点P 为x 轴上的—个动点,点P 不与点0、点A 重合.连结CP ,过点P 作PD 交AB 于点D ,(1)求点B 的坐标;(2)当点P 运动什么位置时,△OCP 为等腰三角形,求这时点P 的坐标;(3)当点P 运动什么位置时,使得∠C PD=∠OAB, 且58BD BA ,求这时点P 的坐标;C BQ R A D lP参考答案:1.x1=3,x2=102.(5)点拨:准确掌握一元二次方程的定义:即含一个未知数,未知数的最高次数是2,整式方程.3.6x2-2=04.4 -2 点拨:把1x看做一个整体.5.m≠±16.m>-112点拨:理解定义是关键.7.0 点拨:绝对值方程的解法要掌握分类讨论的思想.8.y2-5y+6=0 x1x2=,x3x4=9.x2-x=0(答案不唯一)10.-2711.D 点拨:满足一元二次方程的条件是二次项系数不为0.12.A 点拨:准确掌握分式值为0的条件,同时灵活解方程是关键.13.B 点拨:理解运用整体思想或换元法是解决问题的关键,同时要注意x2+y2式子本身的属性.14.C 点拨:灵活掌握因式分解法解方程的思想特点是关键.15.D 点拨:本题的关键是整体思想的运用.16.C 点拨:•本题的关键是对方程解的概念的理解和三角形三边关系定理的运用.17.(1)整理得(x+2)2=4,即(x+2)=±2,∴x1=0,x2=-4(2)x(x-3)-x=0,x(x-3-1)=0,x(x-4)=0,∴x1=0,x2=4.(326x=0,x2-x+1=0,由求根公式得x1,x2.(4)设x+3=y,原式可变为y2+3y-4=0,解得y1=-4,y2=1,即x+3=-4,x=-7.由x+3=1,得x=-2.∴原方程的解为x1=-7,x2=-2.18.由已知x2-10x+y2-16y+89=0,得(x-5)2+(y-8)2=0,∴x=5,y=8,∴xy=58.19.(1)换元降次(2)设x2+x=y,原方程可化为y2-4y-12=0,解得y1=6,y2=-2.由x2+x=6,得x1=-3,x2=2.由x2+x=-2,得方程x2+x+2=0,b2-4ac=1-4×2=-7<0,此时方程无解.所以原方程的解为x1=-3,x2=2.20(则2001年用电量为14.73亿kW·h,2002年为14.73(1+x)亿kW·h,2003年为14.73(1+x)2亿kW·h.则可列方程:14.73(1+x)2=21.92,1+x=±1.22,∴x1=0.22=22%,x2=-2.22(舍去).则2001~2003年年平均增长率的百分率为22%.21.(1)设每件应降价x元,由题意可列方程为(40-x)·(30+2x)=1200,解得x1=0,x2=25,当x=0时,能卖出30件;当x=25时,能卖出80件.根据题意,x=25时能卖出80件,符合题意. 故每件衬衫应降价25元. (2)设商场每天盈利为W 元.W=(40-x )(30+2x )=-2x 2+50x+1200=-2(x 2-25x )+1200=-2(x -12.5)2+1512.5 当每件衬衫降价为12.5元时,商场服装部每天盈利最多,为1512.5元.22.∵12x 2x+c -12a=0有两个相等的实数根,∴判别式=)2-4×12(c -12a )=0,整理得a+b -2c=0 ①,又∵3cx+2b=2a 的根为x=0, ∴a=b ②.把②代入①得a=c ,∴a=b=c ,∴△ABC 为等边三角形. (2)a ,b 是方程x 2+mx -3m=0的两个根, 所以m 2-4×(-3m )=0,即m 2+12m=0, ∴m 1=0,m 2=-12.当m=0时,原方程的解为x=0(不符合题意,舍去), ∴m=12.23.上述解答有错误.(1)若方程有两个不相等实数根,则方程首先满足是一元二次方程, ∴a 2≠0且满足(2a -1)2-4a 2>0,∴a<14且a ≠0. (2)a 不可能等于12. ∵(1)中求得方程有两个不相等实数根,同时a 的取值范围是a<14且a ≠0, 而a=12>14(不符合题意) 所以不存在这样的a 值,使方程的两个实数根互为相反数.。

2024人教版数学九年级上册第一章一元二次方程单元复习卷(含答案)

2024人教版数学九年级上册第一章一元二次方程单元复习卷(含答案)

第二十一章一元二次方程章末复习测试题(二)一.选择题1.一元二次方程(x﹣2)2=0的根是()A.x=2B.x1=x2=2C.x1=﹣2,x2=2D.x1=0,x2=2 2.用公式法解一元二次方程2x2+3x=1时,化方程为一般式当中的a、b、c依次为()A.2,﹣3,1B.2,3,﹣1C.﹣2,﹣3,﹣1D.﹣2,3,1 3.若关于x的一元二次方程m2x2﹣(2m﹣1)x+1=0有两个实数根,则m的取值范围是()A.m <B.m≤C.m≥D.m ≤且m≠04.已知关于x的一元二次方程x2﹣2ax+4=0的一个根是2,则a的值为()A.1B.﹣1C.2D.﹣25.方程(m﹣1)x2+2mx﹣3=0是关于x的一元二次方程,则()A.m≠±1B.m=1C.m≠﹣1D.m≠16.菱形ABCD的一条对角线长为6cm,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长等于()A.10cm B.12cm C.16cm D.12cm或16cm7.已知一元二次方程x2+2x﹣1=0的两实数根为x1、x2,则x1•x2的值为()A.2B.﹣2C.1D.﹣1 8.九江某快递公司随着网络的发展,业务增长迅速,完成快递件数从六月份的10万件增长到八月份的12.1万件.假定每月增长率相同,设为x.则可列方程为()A.10x+x2=12.1B.10(x+1)=12.1C.10(1+x)2=12.1D.10+10(1+x)=12.19.若等腰三角形一条边的边长为3,另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是()A.27B.36C.27或36D.1810.用配方法解方程x2﹣8x+5=0,将其化为(x+a)2=b的形式,正确的是()A.(x+4)2=11B.(x+4)2=21C.(x﹣8)2=11D.(x﹣4)2=112024人教版数学九年级上册第一章一元二次方程单元复习卷(含答案)11.若a,b,c满足,则关于x的方程ax2+bx+c=0(a≠0)的解是()A.1,0B.﹣1,0C.1,﹣1D.无实数根12.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.32x+2×20x﹣2x2=570B.32x+2×20x=32×20﹣570C.(32﹣2x)(20﹣x)=32×20﹣570D.(32﹣2x)(20﹣x)=570二.填空题13.一元二次方程x(x﹣2)=x﹣2的一个根为x=2,另一个根为.14.用一根20m长的绳子围成一个面积为24m2矩形,则矩形的长与宽分别是.15.今年我国生猪价格不断飙升,某超市的排骨价格由第一季度的每公斤40元上涨到第三季度的每公斤元90,则该超市的排骨价格平均每个季度的增长率为.16.若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为.17.某企业退休职工李师傅2013年月退休金为1500元,2015年达到2160元.设李师傅的月退休金从2013年到2015年年平均增长率为x,可列方程为.18.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒,若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长,设剪去的小正方形边长是xcm,根据题意可列方程,化为一般式为.三.解答题19.解下列方程.(1)(4x﹣1)2=225.(2)(x﹣5)(x﹣6)=x﹣5.20.已知:关于x的一元二次方程x2+(2m+1)x+m2+m=0.(1)求证:此方程总有两个不相等的实数根;(2)请选择一个合适的m值,写出这个方程并求出此时方程的根.21.a为实数,关于x的方程(x﹣a)2+2(x+1)=a有两个实数根x1,x2.(1)求a的取值范围.(2)若(x1﹣x2)2+x1x2=12.试求a的值.22.有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃,设花圃的一边AB为xm,面积为ym2.(1)用含有x的代数式表示y.(2)如果要围成面积为63m2的花圃,AB的长是多少?(3)能围成面积为72m2的花圃吗!如果能,请求出AB的长;如果不能,请说明理由.23.方程x2+ax+b=0与x2+bx+a=0有一个公共根,设它们另两个根为x1,x2;方程x2﹣cx+d=0与x2﹣dx+c=0有一个公共根,设它们另两个根为x3,x4.求x1x2x3x4的取值范围(a、b<0,a≠b,c、d<0,c≠d)24.2019年国庆档上映了多部优质国产影片,其中《我和我的祖国》、《中国机长》这两部影片不管是剧情还是制作,都非常值得一看.《中国机长》是根据真实故事改编的,影片中全组机组人员以自己的实际行动捍卫安全、呵护生命,堪称是“新时代的英雄”、“民航奇迹的创造者”,据统计,某地10月1日该影片的票房约为1亿,10月3日的票房约为1.96亿.(1)求该地这两天《中国机长》票房的平均增长率;(2)电影《我和我的祖国》、《中国机长》的票价分别为40元、45元,10月份,某企业准备购买200张不同时段的两种电影票,预计总花费不超过8350元,其中《我和我的祖国》的票数不多于《中国机长》票数的2倍,请求出该企业有多少种购买方案,并写出最省钱的方案及所需费用.25.为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.参考答案一.选择题1.解:(x﹣2)2=0,则x1=x2=2,故选:B.2.解:∵方程2x2+3x=1化为一般形式为:2x2+3x﹣1=0,∴a=2,b=3,c=﹣1.故选:B.3.解:由已知得:,解得:m≤且m≠0.故选:D.4.解:∵关于x的一元二次方程x2﹣2ax+4=0的一个根是2,∴22﹣2a×2+4=0,即﹣4a=﹣8解得,a=2.故选:C.5.解:根据题意得:m﹣1≠0,解得:m≠1,故选:D.6.解:解方程x2﹣7x+12=0得:x=3或4,即AB=3或4,∵四边形ABCD是菱形,∴AB=AD=DC=BC,当AD=DC=3cm,AC=6cm时,3+3=6,不符合三角形三边关系定理,此时不行;当AD=DC=4cm,AC=6cm时,符合三角形三边关系定理,即此时菱形ABCD的周长是4×4=16,故选:C.7.解:∵一元二次方程x2+2x﹣1=0的两实数根为x1、x2,所以x1•x2==﹣1.故选:D.8.解:设每月增长率为x,根据题意得:10(1+x)2=12.1.故选:C.9.解:当3为腰长时,将x=3代入原方程得9﹣12×3+k=0,解得:k=27,∴原方程为x2﹣12x+27=0,∴x1=3,x2=9,∵3+3<9,∴长度为3,3,9的三条边不能围成三角形∴k=27舍去;当3为底边长时,△=(﹣12)2﹣4k=0,解得:k=36.故选:B.10.解:x2﹣8x+5=0,x2﹣8x=﹣5,x2﹣8x+16=﹣5+16,(x﹣4)2=11.故选:D.11.解:当x=1时,a+b+c=0,当x=﹣1时,a﹣b+c=0,所以关于x的方程ax2+bx+c=0(a≠0)的解为1或﹣1.故选:C.12.解:设道路的宽为xm,则草坪的长为(32﹣2x)m,宽为(20﹣x)m,根据题意得:(32﹣2x)(20﹣x)=570.故选:D.二.填空题(共6小题)13.解:方程整理为x2﹣3x+2=0,设方程的另一个解为t,则2t=2,解得t=1,即方程的另一个解为1.故答案为1.14.解:设矩形的长为xm,则宽为m,依题意,得:x•=24,整理,得:x2﹣10x+24=0,解得:x1=6,x2=4.∵x≥,∴x≥5,∴x=6,=4.故答案为:6m,4m.15.解:设平均每个季度的增长率为x,依题意,得:40(1+x)2=90,解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).故答案为:50%.16.解:∵a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,∴a、b可看作方程x2﹣4x+1=0的两个实数解,∴a+b=4,ab=1,而a2+1=4a,b2+1=4b,∴=+=×=×=1.故答案为1.17.解:如果设李师傅的月退休金从2013年到2015年年平均增长率为x,那么根据题意得今年退休金为:1500(1+x)2,列出方程为:1500(1+x)2=2160.故答案为:1500(1+x)2=2160.18.解:设剪去的小正方形边长是xcm,则长方形纸盒的底面长为(10﹣2x)cm,宽为(6﹣2x)cm,依题意,得:(10﹣2x)(6﹣2x)=32,即x2﹣8x+7=0.故答案为:x2﹣8x+7=0.三.解答题(共7小题)19.解:(1)∵(4x﹣1)2=225,∴4x﹣1=15或4x﹣1=﹣15,解得x=4或x=﹣;(2)∵(x﹣5)(x﹣6)﹣(x﹣5)=0,∴(x﹣5)(x﹣7)=0,则x﹣5=0或x﹣7=0,解得x=5或x=7.20.(1)证明:∵△=(2m+1)2﹣4m2﹣4m=1>0,∴方程总有两个不相等的实数根;(2)解:当m=0时,方程化为x2+x=0,解得x1=0,x2=﹣1.21.解:(1)(x﹣a)2+2(x+1)=a,变形为x2﹣2(a﹣1)x+a2﹣a+2=0.根据题意得△=4(a﹣1)2﹣4(a2﹣a+2)=4a2﹣8a+4﹣4a2+4a﹣8=﹣4a﹣4≥0,解得a≤﹣1.即a的取值范围是a≤﹣1;(2)由根与系数的关系得x1+x2=2(a﹣1),x1x2=a2﹣a+2,∵(x1﹣x2)2+x1x2=12,∴(x1+x2)2﹣3x1x2=12,∴[2(a﹣1)]2﹣3(a2﹣a+2)=12,即a2﹣5a﹣14=0,解得a1=﹣2,a2=7,∵a≤﹣1,∴a的值为﹣2.22.解:(1)由题意得:y=x(30﹣3x),即y=﹣3x2+30x.(2)当y=63时,﹣3x2+30x=63.解此方程得x1=7,x2=3.当x=7时,30﹣3x=9<10,符合题意;当x=3时,30﹣3x=21>10,不符合题意,舍去;∴当AB的长为7m时,花圃的面积为63m2.(3)不能围成面积为72m2的花圃.理由如下:如果y=72,那么﹣3x2+30x=72,整理,得x2﹣10x+24=0,解此方程得x1=4,x2=6,当x=4时,30﹣3x=18,不合题意舍去;当x=6时,30﹣3x=12,不合题意舍去;故不能围成面积为72m2的花圃.23.解:∵x2+ax+b=0与x2+bx+a=0有一个公共根,∴x2+ax+b=x2+bx+a,∴(a﹣b)x=a﹣b,∵a≠b,∴x=1,∴x1=b,x2=a,∴a+b=﹣1,∴x1+x2=﹣1,∵x2﹣cx+d=0与x2﹣dx+c=0有一个公共根,∴x2﹣cx+d=x2﹣dx+c,∴﹣(d﹣c)x=d﹣c,∵c≠d,∴x=﹣1,∴x3=﹣d,x4=﹣c,∴d+c=﹣1,∴x3+x4=1,∵a、b<0,c、d<0,∴(﹣x1)+(﹣x2)≥2,x3+x4≥2,∴0<x1x2≤,0<x3x4≤,∴0<x1x2x3x4≤.24.解:(1)设该地这两天《中国机长》票房的平均增长率为x.根据题意得:1×(1+x)2=1.96解得:x1=0.4,x2=﹣2.4(舍)答:该地这两天《中国机长》票房的平均增长率为40%.(2)设购买《我和我的祖国》a张,则购买《中国机长》(200﹣a)张根据题意得:解得:130≤a≤∵a为正整数∴a=130,131,132,133∴该企业共有4种购买方案,购买《我和我的祖国》133张,《中国机长》67张时最省钱,费用为:40×133+45×67=8335(元).答:最省钱的方案为购买《我和我的祖国》133张,《中国机长》67张,所需费用为8335元.25.解:(1)18×10×80%=144(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=144,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18(不合题意,舍去).答:广场中间小路的宽为1米.11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 一元二次方程单元综合测试题一、填空题(每题2分,共20分)1.方程12x (x -3)=5(x -3)的根是_______.2.下列方程中,是关于x 的一元二次方程的有________.(1)2y 2+y -1=0;(2)x (2x -1)=2x 2;(3)21x-2x=1;(4)ax 2+bx+c=0;(5)12x 2=0. 3.把方程(1-2x )(1+2x )=2x 2-1化为一元二次方程的一般形式为________.4.如果21x -2x -8=0,则1x的值是________.5.关于x 的方程(m 2-1)x 2+(m -1)x+2m -1=0是一元二次方程的条件是________. 6.关于x 的一元二次方程x 2-x -3m=0•有两个不相等的实数根,则m•的取值范围是定______________.7.x 2-5│x │+4=0的所有实数根的和是________. /8.方程x 4-5x 2+6=0,设y=x 2,则原方程变形_________ 原方程的根为________.9.以-1为一根的一元二次方程可为_____________(写一个即可).10.代数式12x 2+8x+5的最小值是_________.二、选择题(每题3分,共18分)11.若方程(a -b )x 2+(b -c )x+(c -a )=0是关于x 的一元二次方程,则必有( ).A .a=b=cB .一根为1C .一根为-1D .以上都不对12.若分式22632x x x x ---+的值为0,则x 的值为( ).A .3或-2B .3C .-2D .-3或2 13.已知(x 2+y 2+1)(x 2+y 2+3)=8,则x 2+y 2的值为( ). #A .-5或1B .1C .5D .5或-1 14.已知方程x 2+px+q=0的两个根分别是2和-3,则x 2-px+q 可分解为( ). A .(x+2)(x+3) B .(x -2)(x -3) C .(x -2)(x+3) D .(x+2)(x -3)15已知α,β是方程x2+2006x+1=0的两个根,则(1+2008α+α2)(1+2008β+β2)的值为().A.1 B.2 C.3 D.416.三角形两边长分别为2和4,第三边是方程x2-6x+8=0的解,•则这个三角形的周长是().A.8 B.8或10 C.10 D.8和10三、用适当的方法解方程(每小题4分,共16分)17.(1)2(x+2)2-8=0;(2)x(x-3)=x;~(3x2=6x;(4)(x+3)2+3(x+3)-4=0.}四、解答题(18,19,20,21题每题7分,22,23题各9分,共46分)18.如果x2-10x+y2-16y+89=0,求xy的值.19.阅读下面的材料,回答问题:解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:'设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.(1)在由原方程得到方程①的过程中,利用___________法达到________的目的,•体现了数学的转化思想.(2)解方程(x2+x)2-4(x2+x)-12=0.20.如图,是丽水市统计局公布的2000~2003年全社会用电量的折线统计图.(1)填写统计表:2000~2003年丽水市全社会用电量统计表:2000200120022003)年份全社会用电量|(单位:亿kW·h)(2)根据丽水市2001年至2003年全社会用电量统计数据,求这两年年平均增长的百分率(保留两个有效数字).21.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.》22.设a ,b ,c 是△ABC 的三条边,关于x 的方程12x 2x+c -12a=0有两个相等的实数根,•方程3cx+2b=2a 的根为x=0.(1)试判断△ABC 的形状.(2)若a ,b 为方程x 2+mx -3m=0的两个根,求m 的值. 23.已知关于x 的方程a 2x 2+(2a -1)x+1=0有两个不相等的实数根x 1,x 2.(1)求a 的取值范围;(2)是否存在实数a ,使方程的两个实数根互为相反数如果存在,求出a 的值;如果不存在,说明理由.解:(1)根据题意,得△=(2a -1)2-4a 2>0,解得a<14.^∴当a<0时,方程有两个不相等的实数根.(2)存在,如果方程的两个实数根x 1,x 2互为相反数,则x 1+x 2=-21a a=0 ①,解得a=12,经检验,a=12是方程①的根. ∴当a=12时,方程的两个实数根x 1与x 2互为相反数.上述解答过程是否有错误如果有,请指出错误之处,并解答.24、如图,A 、B 、C 、D 为矩形的4个顶点,AB =16cm ,BC =6cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3cm/s 的速度向点B 移动,一直到达点B 为止;点Q 以2cm/s 的速度向点B 移动,经过多长时间P 、Q 两点之间的距离是10cm,25、如图,在△ABC 中,∠B =90°,BC =12cm ,AB =6cm ,点P 从点A 开始沿AB 边向点B 以2cm/s 的速度移动(不与B 点重合),动直线QD 从AB 开始:P B D A C以2cm/s 速度向上平行移动,并且分别与BC 、AC 交于Q 、D 点,连结DP ,设动点P 与动直线QD 同时出发,运动时间为t 秒,(1)试判断四边形BPDQ 是什么特殊的四边形如果P 点的速度是以1cm/s ,则四边形BPDQ 还会是梯形吗那又是什么特殊的四边形呢(2)求t 为何值时,四边形BPDQ 的面积最大,最大面积是多少1、如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点时间为t 秒,(1)当t 为何值时,△APQ 与△AOB 相似(2)当t 为何值时,△APQ 的面积为524个平方单位)2、有一边为5cm 的正方形ABCD 和等腰三角形PQR ,PQ =PR =5cm ,QR =8cm ,点B 、C 、Q 、R 在同一直线l 上,当C 、Q 两点重合时,等腰三角形PQR 以1cm/s 的速度沿直线l 按箭头方向匀速运动,(1)t 秒后正方形ABCD 与等腰三角形PQR 重合部分的面积为5,求时间t ; (2)当正方形ABCD 与等腰三角形PQR 重合部分的面积为7,求时间t ;~3、如图所示,在平面直角坐标中,四边形OABC 是等腰梯形,CB ∥OA ,OA=7,C A B Q…D ← ↑ yCB Q ,RA D lPAB=4,∠COA=60°,点P为x轴上的—个动点,点P不与点0、点A重合.连结CP,过点P作PD交AB于点D,(1)求点B的坐标;(2)当点P运动什么位置时,△OCP为等腰三角形,求这时点P的坐标;(3)当点P运动什么位置时,使得∠CPD=∠OAB,且58BDBA,求这时点P的坐标;^答案:1.x1=3,x2=102.(5)点拨:准确掌握一元二次方程的定义:即含一个未知数,未知数的最高次数是2,整式方程.3.6x2-2=04.4 -2 点拨:把1x看做一个整体.5.m≠±16.m>-112点拨:理解定义是关键.—7.0 点拨:绝对值方程的解法要掌握分类讨论的思想.8.y2-5y+6=0 x1,x2=,x3x4=9.x2-x=0(答案不唯一)10.-2711.D 点拨:满足一元二次方程的条件是二次项系数不为0.12.A 点拨:准确掌握分式值为0的条件,同时灵活解方程是关键.13.B 点拨:理解运用整体思想或换元法是解决问题的关键,同时要注意x2+y2式子本身的属性.14.C 点拨:灵活掌握因式分解法解方程的思想特点是关键.15.D 点拨:本题的关键是整体思想的运用.16.C 点拨:•本题的关键是对方程解的概念的理解和三角形三边关系定理的运用.¥17.(1)整理得(x+2)2=4,即(x+2)=±2,∴x1=0,x2=-4(2)x(x-3)-x=0,x(x-3-1)=0,x(x-4)=0,∴x1=0,x2=4.(326x=0,x2-x+1=0,由求根公式得x1,x2.—(4)设x+3=y,原式可变为y2+3y-4=0,解得y1=-4,y2=1,即x+3=-4,x=-7.由x+3=1,得x=-2.∴原方程的解为x1=-7,x2=-2.18.由已知x2-10x+y2-16y+89=0,得(x-5)2+(y-8)2=0,∴x=5,y=8,∴xy=58.19.(1)换元降次(2)设x2+x=y,原方程可化为y2-4y-12=0,@解得y1=6,y2=-2.由x2+x=6,得x1=-3,x2=2.由x2+x=-2,得方程x2+x+2=0,b2-4ac=1-4×2=-7<0,此时方程无解.所以原方程的解为x1=-3,x2=2.20(2)设2001年至2003年平均每年增长率为x , 则2001年用电量为亿kW ·h , 2002年为(1+x )亿kW ·h , —2003年为(1+x )2亿kW ·h . 则可列方程:(1+x )2=,1+x=±, ∴x 1==22%,x 2=-(舍去).则2001~2003年年平均增长率的百分率为22%. 21.(1)设每件应降价x 元,由题意可列方程为(40-x )·(30+2x )=1200, 解得x 1=0,x 2=25,当x=0时,能卖出30件; 当x=25时,能卖出80件.根据题意,x=25时能卖出80件,符合题意. 故每件衬衫应降价25元. (2)设商场每天盈利为W 元. W=(40-x )(30+2x )=-2x 2+50x+1200=-2(x 2-25x )+1200=-2(x -)2+ 当每件衬衫降价为元时,商场服装部每天盈利最多,为元.22.∵12x 2+x+c -12a=0有两个相等的实数根,∴判别式=)2-4×12(c -12a )=0,整理得a+b -2c=0 ①,又∵3cx+2b=2a 的根为x=0, ∴a=b ②.把②代入①得a=c ,∴a=b=c ,∴△ABC 为等边三角形.(2)a ,b 是方程x 2+mx -3m=0的两个根, 所以m 2-4×(-3m )=0,即m 2+12m=0, ∴m 1=0,m 2=-12.当m=0时,原方程的解为x=0(不符合题意,舍去), ∴m=12.23.上述解答有错误.(1)若方程有两个不相等实数根,则方程首先满足是一元二次方程,∴a2≠0且满足(2a-1)2-4a2>0,∴a<14且a≠0.(2)a不可能等于12.∵(1)中求得方程有两个不相等实数根,同时a的取值范围是a<14且a≠0,而a=12>14(不符合题意)所以不存在这样的a值,使方程的两个实数根互为相反数.。

相关文档
最新文档