智能控制指导作业

合集下载

智能控制作业_模糊自适应PID控制

智能控制作业_模糊自适应PID控制

模糊自适应PID 控制的Matlab 仿真设计研究姓名:陈明学号:201208070103班级:智能1201一、 模糊控制思想、PID 控制理论简介:在工业生产过程中,许多被控对象受负荷变化或干扰因素很多基于模糊自适应控制理论, 设计了一种模糊自适应PID 控制器, 具体介绍了这种PID 控制器的控制特点及参数设计规则, 实现PID 控制器的在线自整定和自调整。

通过matlab 软件进行实例,仿真表明, , 提高控制系统实时性和抗干扰能力,易于实现.便于工程应用。

1.1 模糊控制的思想:应用模糊数学的基本理论和方法, 控制规则的条件、操作用模糊集来表示、并把这些模糊控制规则以及有关信息, 诸如PID 控制参数等作为知识存入计算机知识库, 然后计算机根据控制系统的实际情况(系统的输入, 输出) , 运用模糊推理。

1.2 PID 算法:u(t)=k p * e(t)+k i * ∫e(t)t 0dt +k d *de(t)dt= k p *e(t)+ k i *∑e i (t) + k d * e c (t)其中, u (t) 为控制器输出量, e(t) 为误差信号, e c (t)为误差变化率, k p , k i , k d 分别为比例系数、积分系数、微分数。

然而,课本中,为了简化实验难度,只是考虑了kp ,ki 参数的整定。

1.3 模糊PID 控制器的原理图:二、基于Matlab的模糊控制逻辑模块的设计关于模糊逻辑的设计,主要有隶属函数的编辑,参数的选型,模糊规则导入,生成三维图等观察。

2.1 模糊函数的编辑器的设定:打开matlab后,在命令窗口输入“fuzzy”,回车即可出现模糊函数编辑器,基本设置等。

基于课本的实验要求,我选的是二输入(e, e c)二输出(k p ,k i)。

需要注意的是,在命名输入输出函数的时候,下标字母需要借助下划线的编辑,即e_c 能够显示为e c。

2.2四个隶属函数的N, Z, P 函数设定:在隶属函数的设定中,N 选用的是基于trimf(三角形隶属函数) , Z是基于zmf(Z型隶属函数),P是基于smf(S型隶属函数)。

智能控制技术第二章作业

智能控制技术第二章作业
2-3设误差的离散论域为【-30,-20,-10,0,10,20,30】,且已知误差为零(ZE)和误差为正小(PS)的隶属度函数为
求:
(1)误差为零和误差为正小的隶属度函数
(2)误差为零或误差为正小的隶属度函数

定义2-4并:并 的隶属函数 对所有 被逐点定义为取大运算,即 ,式中,符号“∨”为取极大值运算。
定义2-5交:交 的隶属函数 对所有 被逐点4已知模糊矩阵P、Q、R、S为
求:
(1)
(2)
(3)

定义2-14模糊关系合成:如果R和S分别为笛卡尔空间 和 上的模糊关系,则R和S的合成是定义在笛卡尔空间 上的模糊关系,并记作 ,其隶属度函数的计算方法
上确界(Sup)算子
(1)
(2)
2-6设有论域 , ,并定义
试确定模糊条件语言“如果x轻,则y重,否则y不非常重”所决定的模糊关系矩阵R,并计算出当x为非常轻,重条件下所对应的模糊集合y。
(不做)
解:B′=非常重=
B″=不非常重=B =
关系矩阵R=(A×B)U
A×B=

(完整版)智能控制题目及解答

(完整版)智能控制题目及解答

智能控制题目及解答第一章绪论作业作业内容1.什么是智能、智能系统、智能控制?2.智能控制系统有哪几种类型,各自的特点是什么?3.比较智能控制与传统控制的特点.4.把智能控制看作是AI(人工智能)、OR(运筹学)、AC(自动控制)和IT(信息论)的交集,其根据和内涵是什么?5.智能控制有哪些应用领域?试举出一个应用实例,并说明其工作原理和控制性能.1 答:智能:能够自主的或者交互的执行通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习等一系列活动的能力,即像人类那样工作和思维。

智能系统:是指具有一定智能行为的系统,对于一定的输入,它能产生合适的问题求解相应。

智能控制:智能控制是控制理论、计算机科学、心理学、生物学和运筹学等多方面综合而成的交叉学科,它具有模仿人进行诸如规划、学习、逻辑推理和自适应的能力。

是将传统的控制理论与神经网络、模糊逻辑、人工智能和遗传算法等实现手段融合而成的一种新的控制方法。

2 答:(1)人作为控制器的控制系统:人作为控制器的控制系统具有自学习、自适应和自组织的功能。

(2)人—机结合作为作为控制器的控制系统:机器完成需要连续进行的并需快速计算的常规控制任务,人则完成任务分配、决策、监控等任务。

(3)无人参与的自组控制系统:为多层的智能控制系统,需要完成问题求解和规划、环境建模、传感器信息分析和低层的反馈控制任务.3 答:在应用领域方面,传统控制着重解决不太复杂的过程控制和大系统的控制问题;而智能控制主要解决高度非线性、不确定性和复杂系统控制问题。

在理论方法上,传统控制理论通常采用定量方法进行处理,而智能控制系统大多采用符号加工的方法;传统控制通常捕获精确知识来满足控制指标,而智能控制通常是学习积累非精确知识;传统控制通常是用数学模型来描述系统,而智能控制系统则是通过经验、规则用符号来描述系统。

在性能指标方面,传统控制有着严格的性能指标要求,智能控制没有统一的性能指标,而主要关注其目的和行为是否达到。

智能控制作业

智能控制作业

1、已知某一炉温控制系统,要求温度保持在600度恒定。

针对该控制系统有以下控制经验:(1)若炉温低于600度,则升压;低的越多升压越高。

(2)若炉温高于600度,则降压;高的越多降压越低。

(3)若炉温等于600度,则保持电压不变。

设模糊控制器为一维控制器,输入语言变量为误差,输出为控制电压。

输入、输出变量的量化等级为7级,取5个模糊集。

试设计隶属度函数误差变化划分表、控制电压变化划分表和模糊控制规则表。

解:1)确定变量定义理想温度为600℃,实际温度为T,则温度误差为E=600-T。

将温度误差E作为输入变量2)输入量和输出量的模糊化将偏差E分为5个模糊集:NB、NS、ZO、PS、PB,分别为负小、负大、零、正小、正大。

将偏差E的变化分为7个等级:-3 -2 -1 0 1 2 3,从而得到温度模糊表如表1所示。

表1 温度变化E划分表控制电压u也分为5个模糊集:NB、NS、ZO、PS、PB,分别为负小、负大、零、正小、正大。

将电压u的变化分为7个等级:-3 -2 -1 0 1 2 3,从而得到电压变化模糊表如表2所示。

表2 电压变化u划分表表3 模糊控制规则表E PB PS ZO NS NB u PB PS ZO NS NB2、利用MATLAB,为下列两个系统设计模糊控制器使其稳态误差为零,超调量不大于1%,输出上升时间≤0.3s 。

假定被控对象的传递函数分别为:255.01)1()(+=-s e s G s)456.864.1)(5.0(228.4)(22+++=s s s s G解:在matlab 窗口命令中键入fuzzy ,得到如下键面:设e 的论域范围为[-1 1],de 的论域范围为[-0.1 0.1],u 的论域范围为[0 2]。

将e 分为8个模糊集,分别为NB ,NM, NS, NZ, PZ, PS, PM, PB; de 分为7个模糊集,分别为NB ,NM ,NS, Z ,PS ,PM ,PB;u分为7个模糊集,分别为NB ,NM ,NS, Z ,PS ,PM ,PB; MATLAB中的设置界面如下:模糊规则的确定:模糊控制器的输出量在simulink中调用模糊控制器,观察输出结果运行结果为ScopeScope1 Scope23、利用去模糊化策略,分别求出模糊集A 的值。

智能控制(神经网络)-作业

智能控制(神经网络)-作业

智能控制作业学生姓名: 学号: 专业班级:(一)7-2 采用BP网路、RBF网路、DRNN网路逼近线性对象, 分别进行matlab 仿真。

(二)采用BP网络仿真网络结构为2-6-1。

采样时间1ms, 输入信号, 权值的初值随机取值, 。

仿真m文件程序为:%BP simulationclear all;clear all;xite=0.5;alfa=0.5;w1=rands(2,6); % value of w1,initially by randomw1_1=w1;w1_2=w1;w2=rands(6,1); % value of w2,initially by randomw2_1=w2;w2_2=w2_1;dw1=0*w1;x=[0,0]';u_1=0;y_1=0;I=[0,0,0,0,0,0]'; % input of yinhanceng cellIout=[0,0,0,0,0,0]'; % output of yinhanceng cellFI=[0,0,0,0,0,0]';ts=0.001;for k=1:1:1000time(k)=k*ts;u(k)=0.5*sin(3*2*pi*k*ts);y(k)=(u_1-0.9*y_1)/(1+y_1^2);for j=1:1:6I(j)=x'*w1(:,j);Iout(j)=1/(1+exp(-I(j)));endyn(k)=w2'*Iout; %output of networke(k)=y(k)-yn(k); % error calculationw2=w2_1+(xite*e(k))*Iout+alfa*(w2_1-w2_2); % rectify of w2for j=1:1:6FI(j)=exp(-I(j))/(1+exp(-I(j))^2);endfor i=1:1:2for j=1:1:6dw1(i,j)=e(k)*xite*FI(j)*w2(j)*x(i); % dw1 calculation endendw1=w1_1+dw1+alfa*(w1_1-w1_2); % rectify of w1% jacobian informationyu=0;for j=1:1:6yu=yu+w2(j)*w1(1,j)*FI(j);enddyu(k)=yu;x(1)=u(k);x(2)=y(k);w1_2=w1_1;w1_1=w1;w2_2=w2_1;w2_1=w2;u_1=u(k);y_1=y(k);endfigure(1);plot(time,y,'r',time,yn,'b');xlabel('times');ylabel('y and yn');figure(2);plot(time,y-yn,'r');xlabel('times');ylabel('error');figure(3);plot(time,dyu);xlabel('times');ylabel('dyu');运行结果为:(三)采用RBF网络仿真网路结构为2-4-1, 采样时间1ms, 输入信号, 权值的初值随机取值, , 高斯基函数初值, 。

智能控制技术作业1

智能控制技术作业1

智能控制11.已知系统的传递函数为:G(s)=^^e g。

假设系统给定为阶跃值r=30,10S+1系统的初始值r(0)=0。

试分别设计常规的PID控制器;常规的模糊控制器;比较两种控制器的控制效果。

解:(1).利用Ziegler-Nichols 整定公式整定PID调节器的初始参数表1.调节器Ziegler-Nichols 整定公式KP TI TDPT /(K T)PI0.9T/(K T) 3.3 TPID1.2T/(K T)2.2 T0.5 T由公式可得\ /常规PID控制器的设计:P=18Ti=1.65Td=O SIMULINK仿真图^Bl*ck FardBCtcrsL Step]—S-tn 口tiJM:F:n且!valae.|35Saocrle tiae:pP iRt^Tpret vect{}r pEiTKHteri AB 1-D1*7 二「二匕二匸匚rzzrinb c -二:"〔二r.QBl*ck rarutt«rs: Tr^nsstrl Dclarp Tf Dfrlaj丄口sir <PE匚LT;td do:口T tp the qrpvt ;iEnJl- n;匚ur*cr i;au订:<hiTi tm delay i i lariE^r t郎an tJifr iinlat^on it»口i;£«上冒itlA* Ln^tLBl iTlDUt'I偌斗设定仿真时间为10s仿真结果CdX1C«l M*lp ApplyU2SJ 厂Direct r*fr;throi;ch at input liiXiiu liJieaxisttian.Pndfl prdflh tfo-T ;incari;ftt iQTL;:A也Q何丹ASS S昌嘩ffl 也| ** C? ® e附币■(2).模糊控制器的设计:1.在matlab命令窗口输入“ fuzzy ”确定模糊控制器结构:即根据具体的系统确定输入、输出量。

智能控制题目及解答

智能控制题目及解答

智能控制题目及解答 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT智能控制题目及解答第一章绪论作业作业内容1.什么是智能、智能系统、智能控制2.智能控制系统有哪几种类型,各自的特点是什么3.比较智能控制与传统控制的特点。

4.把智能控制看作是AI(人工智能)、OR(运筹学)、AC(自动控制)和IT(信息论)的交集,其根据和内涵是什么5.智能控制有哪些应用领域试举出一个应用实例,并说明其工作原理和控制性能。

1 答:智能:能够自主的或者交互的执行通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习等一系列活动的能力,即像人类那样工作和思维。

智能系统:是指具有一定智能行为的系统,对于一定的输入,它能产生合适的问题求解相应。

智能控制:智能控制是控制理论、计算机科学、心理学、生物学和运筹学等多方面综合而成的交叉学科,它具有模仿人进行诸如规划、学习、逻辑推理和自适应的能力。

是将传统的控制理论与神经网络、模糊逻辑、人工智能和遗传算法等实现手段融合而成的一种新的控制方法。

2 答:(1)人作为控制器的控制系统:人作为控制器的控制系统具有自学习、自适应和自组织的功能。

(2)人-机结合作为作为控制器的控制系统:机器完成需要连续进行的并需快速计算的常规控制任务,人则完成任务分配、决策、监控等任务。

(3)无人参与的自组控制系统:为多层的智能控制系统,需要完成问题求解和规划、环境建模、传感器信息分析和低层的反馈控制任务。

3 答:在应用领域方面,传统控制着重解决不太复杂的过程控制和大系统的控制问题;而智能控制主要解决高度非线性、不确定性和复杂系统控制问题。

在理论方法上,传统控制理论通常采用定量方法进行处理,而智能控制系统大多采用符号加工的方法;传统控制通常捕获精确知识来满足控制指标,而智能控制通常是学习积累非精确知识;传统控制通常是用数学模型来描述系统,而智能控制系统则是通过经验、规则用符号来描述系统。

智能控制作业

智能控制作业

题目1:求取模糊控制表(课本62-67页,matlab编程求解)解:MATLAB编程如下:%实现功能:计算模糊控制表clcclear%x的隶属度表,其中x代表的是误差eX=[1.0 0.8 0.7 0.4 0.1 zeros(1,8);0.2 0.7 1.0 0.7 0.3 zeros(1,8);0 0.1 0.3 0.7 1.0 0.7 0.2 zeros(1,6);zeros(1,4) 0.1 0.6 1.0 zeros(1,6);zeros(1,6) 1.0 0.6 0.1 zeros(1,4);zeros(1,6) 0.2 0.7 1.0 0.7 0.3 0.1 0;zeros(1,8) 0.2 0.7 1.0 0.7 0.3;zeros(1,8) 0.1 0.4 0.7 0.8 1.0];%y的隶属度表,其中y表示的是误差的导数Y=[1.0 0.7 0.3 zeros(1,10);0.3 0.7 1.0 0.7 0.3 zeros(1,8);0 0 0.3 0.7 1.0 0.7 0.3 zeros(1,6);zeros(1,4) 0.3 0.7 1.0 0.7 0.3 zeros(1,4);zeros(1,6) 0.3 0.7 1.0 0.7 0.3 0 0;zeros(1,8) 0.3 0.7 1.0 0.7 0.3;zeros(1,10) 0.3 0.7 1];%z的隶属度表,其中z表示的是控制量uZ=Y;%模糊控制规则表%其中: 1代表NB,2代表NM,3代表NS% 4代表ZE,5代表PS,6代表PM,7代表PBrule=[1 1 1 1 2 4 4;1 1 1 12 4 4;2 2 2 2 4 5 5;2 23456 6;2 23456 6;3 34 6 6 6 6;4 4 6 7 7 7 7;4 4 6 7 7 7 7];Set=[-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6]; %模糊集合control_data=[]; %control_data待求的模糊控制表for i=1:13 %控制模糊表的行变量control=[];for j=1:13 %控制模糊表的列变量x0=Set(i);y0=Set(j);CCC=[]; %存放Ci;CCC矩阵将来存放的是56*13维的矩阵for m=1:8 %模糊控制规则表的行变量Ai=X(m,:); %Ai为列向量for n=1:7 %模糊控制规则表的列变量Bi=Y(n,:); %Bi为列向量Ci=Z(rule(m,n),:); %模糊控制规则表的控制变量%得到RiA矩阵RiA=zeros(13,13);for p=1:13for q=1:13RiA(p,q)=min(Ai(p),Ci(q));endend%AA表示A' 矩阵AA=zeros(1,13);[a1,b1]=find(x0==Set);AA(a1,b1)=1;%最小最大原则求取CiACIA_temp=zeros(13,13);for ii=1:13CIA_temp(:,ii)=min(AA',RiA(:,ii));%先取小endCIA=max(CIA_temp);%再取大%%%%%%%%%%%%%%%%%%%%%%%%%得到RiB矩阵RiB=zeros(13,13);for p=1:13for q=1:13RiB(p,q)=min(Bi(p),Ci(q));endend%BB表示B' 矩阵BB=zeros(1,13);[a2,b2]=find(y0==Set);BB(a2,b2)=1;%最小最大原则求取CiBCIB_temp=zeros(13,13);for ii=1:13CIB_temp(:,ii)=min(BB',RiB(:,ii));endCIB=max(CIB_temp);%求CIA和CIB的交C=min(CIA,CIB);CCC=[CCC;C];endend%求出56个Ci的并C_max=max(CCC);%利用重心法解模糊temp=C_max.*Set;control_temp=sum(temp)/sum(C_max);control=[control,control_temp];endcontrol_data=[control_data;control];enddisp('模糊控制表如下:');control_data=roundn(control_data,-2) %保留2位小数且四舍五入fid=fopen('kongzhi.txt','w');count=fprintf(fid,'%d\n',control);fclose(fid);运行结果如下:题目二:被控对象)14)(12(20)(++=s s s G 给定为100,设计一个模糊控制器实现对象系统的控制。

智能控制实验指导书

智能控制实验指导书

. . .. . ..《智能控制技术》实验指导书适用专业:自动化电气工程及其自动化2011年3 月前言智能控制课程是自动化、电气工程及其自动化等专业的主要技术基础课。

主要是通过本课程的学习,使学生了解智能控制的基本理论、智能控制系统的分析方法和工程应用,了解智能控制发展前沿动态等。

为了使学生更好地理解和深刻地把握这些知识,并在此基础上训练和培养学生使用MATLAB的能力以及进行系统仿真的设计技能,设置了“模糊控制与传统PID控制的性能比较”以及“神经元自适应PID控制仿真研究”2个实验项目,2个皆为综合性实验。

模糊控制与传统PID控制的性能比较实验,主要通过本实验的学习,使学生了解传统PID控制、模糊控制等基本知识,掌握传统PID控制器设计、模糊控制器设计等知识,训练学生设计控制器的能力,培养他们利用MATLAB进行仿真的技能,为今后继续模糊控制理论研究以及控制仿真等学习奠定基础。

神经元自适应PID控制仿真研究实验,主要是通过本实验的学习,使学生了解传统PID控制、神经元自适应控制等基本知识,掌握传统PID 控制器设计、掌握基于二次型性能指标学习算法的单神经元自适应PID 控制等知识,训练学生设计控制器的能力,培养他们利用MATLAB进行仿真的技能,为今后继续神经网络控制理论的研究以及控制仿真等学习奠定基础。

实验一:模糊控制与传统PID控制的性能比较实验学时:2实验类型:设计实验要求:必修一、实验目的通过本实验的学习,使学生了解传统PID控制、模糊控制等基本知识,掌握传统PID控制器设计、模糊控制器设计等知识,训练学生设计控制器的能力,培养他们利用MATLAB进行仿真的技能,为今后继续模糊控制理论研究以及控制仿真等学习奠定基础。

二、实验内容本实验主要是设计一个典型环节的传统PID控制器以及模糊控制器,并对他们的控制性能进行比较。

主要涉及自控原理、计算机仿真、智能控制、模糊控制等知识。

通常的工业过程可以等效成二阶系统加上一些典型的非线性环节,如死区、饱和、纯延迟等。

自动化概论作业——智能控制

自动化概论作业——智能控制

自动化概论作业—智能控制智能控制基本概念智能控制的定义一: 智能控制是由智能机器自主地实现其目标的过程.而智能机器则定义为,在结构化或非结构化的,熟悉的或陌生的环境中,自主地或与人交互地执行人类规定的任务的一种机器.定义二: K.J.奥斯托罗姆则认为,把人类具有的直觉推理和试凑法等智能加以形式化或机器模拟,并用于控制系统的分析与设计中,以期在一定程度上实现控制系统的智能化,这就是智能控制.他还认为自调节控制,自适应控制就是智能控制的低级体现.定义三: 智能控制是一类无需人的干预就能够自主地驱动智能机器实现其目标的自动控制,也是用计算机模拟人类智能的一个重要领域.定义四: 智能控制实际只是研究与模拟人类智能活动及其控制与信息传递过程的规律,研制具有仿人智能的工程控制与信息处理系统的一个新兴分支学科。

智能控制的特点同时具有以知识表示的非数学广义模型和以数学模型表示的混合过程,也往往是那些含有复杂性,不完全性,模糊性或不确定性以及不存在已知算法的非数学过程,并以知识进行推理,以启发引导求解过程;智能控制的核心在高层控制,即组织级;智能控制器具有非线性特性;智能控制具有变结构特点;智能控制器具有总体自寻优特性;智能控制系统应能满足多样性目标的高性能要求;智能控制是一门边缘交叉学科;智能控制是一个新兴的研究领域。

智能控制的主要技术方法智能控制是以控制理论、计算机科学、人工智能、运筹学等学科为基础,扩展了相关的理论和技术,其中应用较多的有模糊逻辑、神经网络、专家系统、遗传算法等理论和自适应控制、自组织控制、自学习控制等技术。

专家系统专家系统是利用专家知识对专门的或困难的问题进行描述. 用专家系统所构成的专家控制,无论是专家控制系统还是专家控制器,其相对工程费用较高,而且还涉及自动地获取知识困难、无自学能力、知识面太窄等问题. 尽管专家系统在解决复杂的高级推理中获得较为成功的应用,但是专家控制的实际应用相对还是比较少。

智能控制作业

智能控制作业

一.全自动洗衣机的模糊控制分析摘要: 对全自动洗衣机的模糊控制进行了分析,详细介绍了如何定义洗衣机的模糊控制输入、输出量.根据专家知识和手动操作人员长期积累的经验,给出了模糊控制的具体规则.以确定洗衣机洗涤时间为例,利用Matlab进行了仿真研究,采用取小运算对模糊规则进行推理,并采用最大平均法得到反模糊化结果,所得结果与理论计算结果接近相同.关键词: 全自动洗衣机; 模糊控制; 模糊推理1.全自动洗衣机的一般模糊控制原理1. 1模糊控制输入量模糊控制输入量是模糊推理的前件,对于全自动洗衣机模糊控制器而言,主要有衣质、衣量、脏污程度和脏污性质4个输入量.这4个输入量的模糊子集隶属函可定义为:衣质,论域的语言值定义为棉、棉纤、纤3 种; 衣量,论域的语言值定义为多、中多、中少、少4种; 脏污程度,论域的语言值定义为很脏、一般脏不太脏3 种; 脏污性质,论域的语言值定义为油性、中性和泥性3种1. 2模糊控制的输出量模糊控制的输出是模糊推理的后件, 对于全自动洗衣机模糊控制器而言, 主要包括水位、洗涤时间、洗涤剂投放量和水流强度4个量.这4个输出量的模糊子集隶属函数可定义为:洗涤剂投放量,论域的语言值定义为很少、少、中、多和很多5种;洗涤时间,论域的语言值定义为很短、短、中、长、很长5种;水位高低, 论域的语言值定义为很低、低、高、很高4种;水流强度,论域的语言值定义为弱、中和强3种.1. 3模糊控制规则模糊控制器的规则库是基于专家知识和手动操作人员长期积累的经验, 是按人的直觉推理的一种语言表示形式. 通常有一系列的关系词连接而成, 如IF-THEN, ELSE 等. 为了简明表示模糊规则,将上述模糊控制输出量用数字表示. 例如: 洗涤时间(很短、短、中、长、很长) = ( 1、2、3、4、5), 其余3个输出量表示与此类似, 当输出量论域为3 种时,则用3个数字表示. 根据专家的经验并结合衣物的实际洗涤情况, 可得到表1所示的模糊控制规则.表1,全自动洗衣机模糊控制规则衣物很脏一般脏不太脏衣质衣量油污泥污油污泥污油污泥污棉多 4 553 4 553 4 353 4 353 4 343 4 343中多 3 553 3 453 3 342 3 332 3 232 3 232中少 2 453 2 342 2 342 2 342 2 232 2 122少 1 342 1 232 1 232 1 222 1 111 1 111棉纤多 4 553 4 453 4 353 4 343 4 342 4 242中多 3 553 3 453 3 442 3 342 3 232 3 232中少 2 442 2 342 2 332 2 232 2 221 2 111少 1 332 1 232 1 221 1 221 1 111 1 111纤多 4 553 4 553 4 442 4 342 4 332 4 232中多 3 552 3 442 3 432 3 332 3 232 3 222中少 2 442 2 332 2 332 2 222 2 211 2 111少 1 331 1 231 1 221 1 221 1 111 1 111表1中每一项有4位数字,从左到右依次代表水位、洗涤剂投放量、冼涤时间、水流方式4 个输出变量,每位数的取值代表相应的输出所取的模糊子集.参考文献:[ 1] 经顺林, 潘皓炫, 肖健华. 全自动洗衣机的自适应模糊控制方法[ J] . 计算机技术与自动化1999, 18( 4): 13- 17.[ 2] 彭小娟. 智能洗衣机的模糊控制系统[ J] . 新余高专学报, 2001, 6( 2) : 17- 18.[ 3] 冯海涛. 智能模糊技术在全自动洗衣机中的应用[ J]. 家用电器, 2002( 6): 30- 31.[ 4] 张道德, 杨光友, 周国柱, 等. 工业洗衣机模糊控制的设计[ J]. 微计算机信息, 2005, 21( 7): 37- 39二.全自动洗衣机的自适应模糊控制方法摘要本文分析了模糊控制技术在全自动洗衣机的应用及其不足,提出了一种可行的自适应模糊控制法,应用该方法可使全自动洗衣机在保证洗涤质量的前提下,降低生产成本。

北航智能控制神经网络控制作业

北航智能控制神经网络控制作业

《智能控制及应用》—人工神经网络学号姓名指导老师2013-12-16目录一、设计题目 (3)二、任务解答 (3)2.1任务一解答 (3)2.1.1逻辑“与”的计算原理 (3)2.1.2感知器的学习算法 (4)2.1.3训练c++程序 (4)2.2任务二解答 (7)一、设计题目1、设计一个实现逻辑“与”的单计算层感知器,并写出其学习算法和程序。

2、紧密结合自己的专业背景、科研方向或解决问题的经历,说明人工神经网络在解决与你有关的某个工程技术问题上的应用概况。

要求:说明自己的科研或专业背景,所关注的工程技术问题,人工神经网络在该问题上的应用概况,指出采用神经网络法比传统方法的优势所在。

二、任务解答2.1任务一解答2.1.1逻辑“与”的计算原理实现逻辑“与”计算的真值表:由真值表可以看出,4个样本的输出分为两类,一类输出为0,另一类输出为1。

据此,画出逻辑“与”的运算分类图:由图可知,应用感知器学习规则进行训练得到的连接权值和阈值并不会单一,只需要保证输入输出满足真值表即可,利用符号函数对各点计算,符号函数为sgn:2.1.2感知器的学习算法感知器训练按如下步骤进行:(1)给定权初值w i (0)(较小的随机非零值,包括阈值w 0= -θ,阈值并入权W 中),学习次数k=0;(2)输入一个样本X p 和d p ,计算输出(f 为符号函数);(3)修正权 w i (k+1)= w i (k) +α(d p -y p ) x pi ,i=0,1,2,…,n ,学习率0<α<=1,用于控制修正速度;(4)选另外一组样本,k 增1,重复(2)~(4),直到w i (k+1)对一切样本均稳定不变(即dp=yp )为止。

2.1.3训练c++程序(Qt 下开发)#include <QCoreApplication> #include<QTextStream> #include<QTextCodec>double alpha=0.2; //学习率,用于控制学校速度 //根据输入得到函数输出值 int f(double w[],double x[]){ double y=0;for(int i=0;i<3;i++) y+=w[i]*x[i]; return y>=0?1:0; }//根据结果调整权值void revise(double x[],double w[],int yp,int dp){ for(int k=0;k<3;k++)w[k]+=alpha*(dp-yp)*x[k]; }int main(int argc, char *argv[]) {QCoreApplication a(argc, argv);QTextStream cout(stdout,QIODevice::WriteOnly); int i;double w[3]={0,1,1}; //阈值初试值,权值初始值 cout<<"**********************"<<endl; cout<<"**********************"<<endl;00()(1,01np i pi p p i y f w x x X ===∑设取的第个分量总为)cout<<"**********************"<<endl;cout<<"alpha="<<w[0]<<endl;cout<<"w:"<<endl;cout.setRealNumberPrecision(4);cout<<"w1="<<w[1]<<" w2="<<w[2]<<endl;cout<<"**********************"<<endl;cout<<"**********************"<<endl;double x1[3]={1,1,1}; //输入值double x2[3]={1,0,1};double x3[3]={1,1,0};double x4[3]={1,0,0};int dp[4]={1,0,0,0}; //期望输出值int yp[4]={0,0,0,0};cout<<"training....."<<endl;//周而复始的进行训练while(dp[0]!=yp[0]||dp[1]!=yp[1]||dp[2]!=yp[2]||dp[3]!=yp[3]) {yp[0]=f(w,x1);revise(x1,w,yp[0],dp[0]);yp[1]=f(w,x2);revise(x2,w,yp[1],dp[1]);yp[2]=f(w,x3);revise(x3,w,yp[2],dp[2]);yp[3]=f(w,x4);revise(x4,w,yp[3],dp[3]);}cout<<"result>>"<<endl;cout<<"**********************"<<endl;cout<<"alpha="<<w[0]<<endl;cout<<"w:"<<endl;cout.setRealNumberPrecision(4);cout<<"w1="<<w[1]<<" w2="<<w[2]<<endl;cout<<"**********************"<<endl;cout.setRealNumberPrecision(8);cout<<"--real--"<<"--hope--"<<endl;cout.setRealNumberPrecision(10);for(i=0;i<4;i++)cout<<yp[i]<<" "<<dp[i]<<endl;return a.exec();}输出结果如下图所示。

建筑环境智能控制技术实训指导书.docx

建筑环境智能控制技术实训指导书.docx

建筑环境智能控制技术实训一、实训目的通过实训,了解楼宇自控系统软硬件系统的构成,掌握建筑设备(特别是空调系统)的控制原理, 掌握楼宇自控系统设计的一般方法。

在熟悉美国八LC 楼宇自控系统软硬件的基础上,完成某楼宇口控系统中部分设备控制的初步方案 设计,并进行软件设计调试。

二、实训装置ALC/WebCTRL 楼宇自控实训平台:联大实训室VAV 空调系统及ALC/WebCTRL 控制系统,并与局域网相连,实训室的每台计算机均为服务器/工作站,监控系统的运行状况。

(一)ALC/WebCTRL 楼宇自控系统简介ALC/WebCTRL 楼宇自控系统是一个“Native BACnet”系统,具备先进性,开放性和标准化特性。

是一套先进、可靠和完善的楼宇监控系统,可以收集、记录、保存和管理各系统中重要信息及数据, 从而达到自动化管理和节约能源的效果。

下面分别対ALC/WebCTRL 的软硬件系统进行介绍。

ARCnetBACnet|156KWebCTRL 系统网络结构图1. ALC/WebCTRL 的硬件系统WebCTRL 系统采用分布式结构,分散控制,集屮管理。

它是由操作站(OWS)、通讯网络、网络路由 器及直接数字控制器(DDC)所构成的一种智能化控制网络。

(1)通讯网络:分为三个层次。

① 区域网:通信协议为BACnet/IP 0以太网通讯路由器LGE 支持BACnet/IP 协议RJ45通讯 口及10Mbyte 速度,并连接主控制器网,负责其间路由功能,可和其它路由器及WebCTRL Server 通讯交换资料,达成互动的多主控制器网络的系统。

而WebCTRL Server 负责以网 页标准和各近端及远程操作工作台通讯。

② 主控制器网:通信协议为BACnet(Arcnet, 156kbps),速度快但造价较高。

主网拓扑结构有 三种模式:总线式,星型混合、混合式。

传输介质为屏蔽双绞线。

③ 子控制器网:通信协议为BACnet(MS/TP, 38.4kbps),速度相对慢些但造价便宜。

(完整版)西南大学1085《智能控制》作业答案

(完整版)西南大学1085《智能控制》作业答案

西南大学网络与继续教育学院1085 《智能控制》作业答案1、下列有关推理机说法不正确的是()A. 推理机是用于对知识库中的知识进行推理来得到结论的“思维”机构。

B. 推理机包括三种推理方式,即正向推理、反向推理和双向推理。

C. 推理机和知识库构成了专家系统D. 推理机是指专家系统中无需任何知识就能完成推理功能的组成部分。

答:d2、下列不属于知识库所包含的是()A. 基于专家经验的判断性规则。

B. 用于推理、问题求解的控制性规则。

C. 用于说明问题的状态、事实和概念以及当前的条件和常识等的数据。

D. 所涉及的领域广泛、普遍的常识和数据。

答:d3、下列不属于智能控制的特点的是()A. 自组织功能和优化能力B. 完全具有人的智能C. 学习功能D. 适应功能答:b4、下列有关智能控制的组成正确的是()A. 智能控制由人工智能,自动控制,运筹学组成。

B. 智能控制由人工智能和自动控制组成C. 智能控制由自动控制和运筹学组成D. 智能控制由运筹学和人工智能组成答:a5、下列有关智能控制的概念说法准确的是()A. 所谓智能控制,即设计一个控制器(或系统),使之具有学习、抽象、推理、决策等功能,并能根据环境(包括被控对象或被控过程)信息的变化作出适应性反应,从而实现由人来完成的任务。

B. 所谓智能控制,就是将控制系统进行智能化,使之完全具有人的智能。

C. 所谓智能控制,就是控制过程中,就是人参与控制,从而具有人的智能。

D. 所谓智能控制,就是所设计的控制系统具有很高的智能。

答:a6、下列哪位人物提出模糊集合理论,奠定了模糊控制的基础()A. 美国加州大学自动控制系的L.A.ZedehB. 伦敦大学的Mamdani博士C. 美国的J.H.Holland教授D. 著名的Hopfield教授答:a7、下列不是决定神经网络性能的要素是()A. 神经元(信息处理单元)的特性。

B. 神经元之间相互连接的形式——拓扑结构。

C. 为适应环境而改善性能的学习规则。

武汉理工大学智能控制大作业

武汉理工大学智能控制大作业

智能控制理论与技术设计报告学院自动化学院专业控制科学与工程班级1303姓名聂鹏指导教师徐华中2014 年 2 月20 日武汉理工大学硕士研究生试题课程名称:智能控制理论与技术专业:双控1303班学号:1049721303692 姓名:聂鹏一、简答题(每小题10分)1.智能控制由哪几部分组成?各自的特点是什么?答:智能控制系统由广义对象、传感器、感知信息处理、认知、通信接口、规划和控制和执行器等七个功能模块组成;各部分的特点是:广义对象——包括通常意义下的控制对象和外部环境;传感器——包括关节传感器、力传感器、视觉传感器、距离传感器、触觉传感器等;感知信息处理——将传感器得到的原始信息加以处理;认知——主要用来接收和储存信息、知识、经验和数据,并对它们进行分析、推理,作出行动的决策,送至规划和控制部分;通信接口——除建立人机之间的联系外,还建立系统各模块之间的联系;规划和控制——是整个系统的核心,它根据给定的任务要求、反馈的信息以及经验知识,进行自动搜索,推理决策,动作规划,最终产生具体的控制作用;执行器——将产生的控制作用于控制对象。

2. 智能控制是在什么背景下产生的?答:传统控制理论在应用中面临的难题包括:(1) 传统控制系统的设计与分析是建立在精确的系统数学模型基础上的,而实际系统由于存在复杂性、非线性、时变性、不确定性和不完全性等,一般无法获得精确的数学模型。

(2) 研究这类系统时,必须提出并遵循一些比较苛刻的假设,而这些假设在应用中往往与实际不相吻合。

(3) 对于某些复杂的和包含不确定性的对象,根本无法以传统数学模型来表示,即无法解决建模问题。

(4) 为了提高性能,传统控制系统可能变得很复杂,从而增加了设备的初投资和维修费用,降低系统的可靠性。

传统控制理论在应用中面临的难题的解决,不仅需要发展控制理论与方法,而且需要开发与应用计算机科学与工程的最新成果。

人工智能的产生和发展正在为自动控制系统的智能化提供有力支持。

17秋北理工《智能控制基础》在线作业

17秋北理工《智能控制基础》在线作业

1. 解决自动控制面临问题的一条有效途径就是把人工智能等技术用于自动控制系统,其核心是()A. 控制算法B. 控制结构C. 控制器智能化D. 控制系统仿真正确答案:C 满分:2 分2. 一种值得研究的新型智能控制是()A. 机器人控制B. 反馈控制C. 进化控制D. 在线控制正确答案:C 满分:2 分3. 成为“专家控制先行者”的科学家是()A. P.H.WinstonB. N.J.NilssonC. K.J.AstromD. E.A.Feigenbaum正确答案:D 满分:2 分4. 最早提出人工神经网络思想的学者是()A. McCulloch-PittsB. HebbC. Widrow-HoffD. Rosenblatt正确答案:A 满分:2 分5. 递阶控制系统的结构是根据下列原理设计的()A. 精度随智能降低而提高B. 精度随智能提高而提高C. 精度随智能降低而降低D. 精度与智能无关正确答案:A 满分:2 分6. 建立专家系统最艰难的任务是()A. 知识表示B. 知识应用C. 知识推理D. 知识获取正确答案:A 满分:2 分7. 被称为“智能控制先驱”的科学家是()A. G-N-SaridisB. K-S-FuC. K-J-AstromD. N-Wiener正确答案:B 满分:2 分8. 智能控制成为国际上独立新学科的时间为20世纪()A. 60年代B. 70年代C. 80年代D. 90年代正确答案:C 满分:2 分9. 智能控制的“四元交集结构”的四元,指的是()A. 计算机科学、自动控制、人工智能、神经网络B. 人工智能、自动控制、信息论、系统论C. 人工智能、自动控制、信息论、机器学习D. 自动控制、人工智能、信息论、运筹学正确答案:D 满分:2 分10. 增强学习属于()A. 自主学习B. 有师学习C. 主动学习D. 无师学习正确答案:B 满分:2 分11. 基于模式识别的控制系统属于()A. 学习控制系统B. 专家控制系统C. 进化控制系统D. 模糊控制系统正确答案:A 满分:2 分12. 模糊控制是以模糊集合为基础的,提出模糊集合的科学家是()A. N.J.NilsonB. L.A.ZadehC. A.TuringD. H.A.Simon正确答案:B 满分:2 分13. 一般认为,人工神经网络适用于()A. 线性系统B. 多变量系统C. 多输入多输出系统D. 非线性系统正确答案:D 满分:2 分14. 智能自动化研究开发与应用应当面向()A. 生产系统B. 复杂系统C. 管理系统D. 非线性系统正确答案:B 满分:2 分15. 能够在系统运行过程中估计未知信息,并据之进行优化与控制,以便逐步改进系统性能的控制叫做()A. 最优控制B. 反馈控制C. 随机控制D. 学习控制正确答案:D 满分:2 分16. 学习控制具有()等功能。

《智能控制》实验指导书

《智能控制》实验指导书

《智能控制》实验指导书通过对智能控制系统的仿真实验,加深对智能控制原理的理解,并且学习和掌握智能控制的实现方法。

实验一 控制系统的基本结构仿真实验目的:建立智能控制研究的实验环境。

实验要求:1. 对单输入-单输出反馈控制系统(如图一),进行结构仿真。

图1 控制系统的基本结构(1) 被控对象的数学模型0G (s) = )1)(1(21s++-s T s T Ke τ ,(K 、1T 、2T 、τ>0) (2) 控制器包括:PID 控制器、专家系统控制器、模糊控制器、仿人智能控制器。

2. 建立友好的人-机接口(1) 对于被控对象参数可以通过人-机界面设置和修改。

(2) 对于各种控制器可以通过人-机界面选择,并设置该控制器的控制参数。

(3) 通过人-机界面可显示系统的响应曲线。

实验二 PID 控制的设计与实现实验目的:掌握PID 控制的实现方法和系统整定方法,了解PID 控制的鲁棒性。

实验要求:1. 设计并实现PID 控制器。

2. 设被控对象参数为:K=2、1T =1、2T =2.5、τ=0.6;要求单位阶跃响应指标:超调量σ%≤10%,调节时间s t ≤10秒;试对系统进行整定,给出实验结果:(1) 控制器参数:p K 、i K 、d K 及采样时间T ;(2) 系统实际的性能指标:σ%、s t ;(3) 系统的单位阶跃响应曲线y(t);3. 保持控制器所有控制参数不变,只改变被控对象的纯时延τ,检验系统的鲁棒性(对τ变化的适应能力)。

(1) τ=1.2时,运行系统。

给出系统的单位阶跃响应曲线,并计算响应的系统性能指标σ%、s t 。

(2) τ=1.8时,运行系统。

给出系统的单位阶跃响应曲线,并计算响应的系统性能指标σ%、s t 。

实验三 专家系统控制的设计与实现实验目的:掌握专家系统控制的原理和实现方法,了解专家系统控制的鲁棒性。

实验要求:1. 可以采用直接专家系统控制或间接专家系统控制。

说明所采用的专家系统控制原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

语言变量X ,Y ,Z 的隶属度函数.设计带有纯延迟的一阶惯性环节(假设T=6,=0.02):G(s)=se s6102.0+的模糊控制器,观察仿真结果。

编程如下:%被控系统建模 num=1; den=[6,1];[a1,b,c,d]=tf2ss(num,den);%传递函数转换到状态空间 x=[0];%系统参数T=0.01;h=T;td=0.02;N=1000; nd=td/T;%系统纯延迟 R=ones(1,N);%参考输入%定义输入和输出变量及隶属度函数a=newfis('Simple');a=addvar(a,'input','e',[-4 4]);a=addmf(a,'input',1,'NB','trimf',[-4,-4,-2]); a=addmf(a,'input',1,'NS','trimf',[-4,-2,0]); a=addmf(a,'input',1,'ZO','trimf',[-2,0,2]);a=addmf(a,'input',1,'PS','trimf',[0,2,4]);a=addmf(a,'input',1,'PB','trimf',[2,4,4]);a=addvar(a,'input','de',[-4 4]);a=addmf(a,'input',2,'NB','trimf',[-4,-4,-2]); a=addmf(a,'input',2,'NS','trimf',[-4,-2,0]); a=addmf(a,'input',2,'ZO','trimf',[-2,0,2]);a=addmf(a,'input',2,'PS','trimf',[0,2,4]);a=addmf(a,'input',2,'PB','trimf',[2,4,4]);a=addvar(a,'output','u',[-4 4]);a=addmf(a,'output',1,'NB','trimf',[-4,-4,-2]); a=addmf(a,'output',1,'NS','trimf',[-4,-2,0]); a=addmf(a,'output',1,'ZO','trimf',[-2,0,2]); a=addmf(a,'output',1,'PS','trimf',[0,2,4]);a=addmf(a,'output',1,'PB','trimf',[2,4,4]); %模糊规则矩阵rr=[5 5 4 4 35 4 4 3 34 4 3 3 24 3 3 2 23 3 2 2 1];r1=zeros(prod(size(rr)),3);k=1;for i=1:size(rr,1)for j=1:size(rr,2)r1(k,:)=[i,j,rr(i,j)];k=k+1;endend[r,s]=size(r1);r2=ones(r,2);rulelist=[r1,r2];a=addrule(a,rulelist);%采用模糊控制器的二阶系统仿真e=0;de=0;ke=30;kd=5;ku=1;for k=1:N%输入变量变换至论域e1=ke*e;de1=kd*de;if e1>=4e1=4;elseif e1<=-4e1=-4;endif de1>=4de1=4;elseif de1<=-4de1=-4;end%模糊推理,计算出被控对象的控制输入in=[e1 de1];u=ku*evalfis(in,a);uu(1,k)=u;if k<=ndu=0;elseu=uu(1,k-nd);end%控制作用于被控系统,计算系统输出;利用龙格—库塔法进行系统仿真k0=a1*x+b*u;k1=a1*(x+h*k0/2)+b*u;k2=a1*(x+h*k1/2)+b*u;k3=a1*(x+h*k2)+b*u;x=x+(k0+2*k1+2*k2+k3)*h/6;y=c*x+d*u;yy(1,k)=y;%计算系统输出误差及误差导数e1=e;e=y-R(1,k);de=(e-e1)/T;end%典型二阶环节的模糊控制输出曲线kk=[1:N]*T;figure(1);plot(kk,R,'k',kk,yy,'r');grid onxlabel('时间(秒)');ylabel('输出');智能控制大作业姓名: 何成东 学号: S0703234 专业: 导航、制导与控制模糊控制器部分大作业已知()()0.525123s G e s s s -=+++,分别设计PID 控制与模糊控制,使系统达到较好性能,并比较两种方法的结果。

具体要求:1、分别采用fuzzy 工具箱和编程实现模糊控制器。

2、分析量化因子和比例因子对模糊控制器控制性能的影响。

3、分析系统在模糊控制和PID 控制作用下的抗干扰能力(加噪声干扰)、抗非线性能力(加死区和饱和特性)以及抗时滞的能力(对时滞大小加以改变)。

4、讨论系统在模糊控制和PID 控制作用下的时间参数和结构变化下的抗干扰能力。

模糊控制部分大作业旨在利用模糊控制器和PID 控制器实现对已知系统的控制,分别得到较好的控制效果。

然后改变系统的参数、结构或者加入非线性环节,以验证模糊控制器的鲁棒性能。

以下是作业过程:1、PID 控制考虑到系统中存在纯延迟环节,使得系统的稳定性大大降低。

如果系统的反馈信号没有延迟,系统的响应特性将会得到很好的改善。

因此,对于存在纯滞后环节的系统,特别是大延迟过程,一般采用Smith 预估控制,即将纯滞后补偿模型与PID 控制器并接。

本题中,延迟环节的时间常数不是很大,仅为0.2,因此基本上不会影响系统的稳定,采用常规PID 控制也基本可以达到很好的控制效果。

常规PID 控制框图如图1-1(相应文件:PID.mdl )图1-1 常规PID 控制框图PID 参数选取:38.0=p K ,285.0=i K ,1.0=d K 常规PID 控制的单位阶跃响应曲线:图1-2 常规PID控制响应曲线2.模糊控制模糊控制规则(相应文件:zdh.fis)各变量论域输入变量:E:[-6 6];EC:[-6 6];输出变量:U:[0 7]语言变量E:NB、NM、NS、NZ、PZ、PS、PM、PB(8个)EC:NB、NM、NS、ZE、PS、PM、PB(7个)U:NB、NM、NS、ZE、PS、PM、PB(7个)各变量隶属度函数:三角形函数(trimf)模糊推理:Mamdani推理法去模糊化:中位数法(bisector)模糊控制框图(相应文件:mohu.mdl)图1-3 模糊控制框图选取量化因子:7.1=e K ,5.0=ec K 选取比例因子:171.0=u K 模糊控制响应曲线图1.4 模糊控制响应曲线在模糊控制器的设计过程中,选择合适的论域和量化因子、比例因子是至关重要的。

量化因子e k 选择过大,系统超调较大,过渡过程较长;ec k 选择过大,系统超调较小,但是响应速度变慢;比例因子u k 选择过大导致系统振荡,过小时系统响应过程变长。

3、在模糊控制和PID 控制中分别加死区、饱和特性以及对时滞大小加以改变。

1)加死区非线性响应曲线比较(如图1-5) 死区参数为(-0.5 0.5)图1-5 PID与模糊控制加死区后的响应曲线比较比较结果可见,模型控制没有PID控制的好2)加饱和非线性响应曲线比较(如图1-6)图1-6 PID与模糊控制加饱和后的响应曲线比较3)改变时滞大小响应曲线比较(如图1-7)图1-7改变时滞大小的PID与模糊控制响应曲线比较由以上两图可知,改变时滞大小以后,PID 控制的控制效果明显变差,而模糊控制的控制效果则相对较好,说明模糊控制较PID 控制有更好的抗时滞能力。

神经网络控制部分大作业已知()0.525123s G e s ss -=+++,分别设计PID 控制与神经网络控制器,使系统达到较好性能,并比较两种方法的结果。

具体要求:1、采用编程实现神经网络控制器。

2、分析神经网络层数和神经元个数对神经网络控制器控制性能的影响。

3、分析系统在神经网络控制和PID 控制作用下的抗干扰能力(加噪声干扰)、抗非线性能力(加死区和饱和特性)以及抗时滞的能力(对时滞大小加以改变)。

4、为系统设计神经网络PID 控制器。

首先设计PID 控制器实现对已知系统的控制,然后利用PID 控制器的采样样本对神经网络进行训练,用训练好的神经网络来控制系统。

然后对加入非线性环节,以验证神经网络控制器的鲁棒性能。

1、PID 控制这里采用模型与模糊控制中的PID 控制模型相同,只是将参数改变了一下,即取27.0=p K ,23.0=i K ,1.0=d K ,单位阶跃响应仿真结果如图2-1所示图2-1 PID控制单位阶跃响应2、神经网络控制利用采集的样本,采用BP算法进行神经网络训练。

训练程序为:p=r';t=u';net=newff([-1 1],[ 20 10 1],{ 'tansig''tansig''purelin'}); net.trainparam.epochs=1000;net.trainparam.goal=0.0001;net=train(net,p,t);gensim(net,-1)利用得到的神经网络控制器进行仿真,控制模型如下图所示:图2-2 神经网络控制模型框图训练结果如下:0 Array图2-3 神经网络训练曲线和模块化描述仿真结果如图2-3所示。

3、增加非线性的仿真结果1)分别在神经网络控制和PID控制系统中加死区非线性进行仿真,如图2-5所示。

相关文档
最新文档