第二章计算流体力学的基本知识

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章计算流体力学的基本知识

流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。

2.1计算流体力学简介

2.1.1计算流体力学的发展

流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20 世纪30~40 年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943 年一直算到1947 年。

数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学" 。

从20 世纪60 年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。

自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。

流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解读解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解读解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力

学这门交叉学科

计算流体力学是一门用数值计算方法直接求解流动主控方程(Euler 或Navier-Stokes 方程)以发现各种流动现象规律的学科。它综合了计算数学、计算机科学、流体力学、科学可视化等多种学科。广义的CFD包括计算水动力学、计算空气动力学、计算燃烧学、计算传热学、计算化学反应流动,甚至数值天气预报也可列入其中。

自20世纪60年代以来,CFD技术得到飞速发展,其原动力是不断增长的工业需求,而航空航天工业自始至终是最强大的推动力。传统飞行器设计方法实验昂贵、费时,所获信息有限,迫使人们需要用先进的计算机仿真手段指导设计,大量减少原型机实验,缩短研发周期,节约研究经费。四十年来,CFD在湍流模型、网格技术、数值算法、可视化、并行计算等方面取得飞速发展,并给工业界带来了革命性的变化。如在汽车工业中,CFD和其它计算机辅助工程(CAE)工具一起,使原来新车研发需要上百辆样车减少为目前的十几辆车;国外飞机厂商用CFD取代大量实物实验,如美国战斗机YF-23采用CFD进行气动设计后比前一代YF- 17减少了60%的风洞实验量。目前在航空、航天、汽车等工业领域,利用CFD进行的反复设计、分析、优化己成为标准的必经步骤和手段。

当前CFD问题的规模为: 机理研究方面如湍流直接模拟,网格数达到了109(十亿)量级,在工业应用方面,网格数最多达到了107(千万)量级。

与实验研究相比,理论计算具有花费少、速度快、信息完整、模拟能力强等优点,特别是大量的计算流体力学软件的出现,大大减少了计算流体力学研究的工作量,从而扩大了计算流体力学的应用范围,推动了流体力学更深入的发展。计算流体力学还不是一项很成熟的技术,在用计算流体力学对流动现象进行预测的时候,需要对复杂的流动现象进行处理,然后用数学模型来描述它,计算的结果既取决于计算方法,也取决于数学模型本身,如果数学模型的描述不够精确,甚至不恰当,其计算结果也就没有任何价值可言。尽管作为一门新兴的学科,计算流体力学还有缺陷,但它会随着技术的进步和发展而日趋成熟,并将在化工领域得到广泛的应用。一个完整的计算流体力学模型应包含如下几个方面的内容: 本构方程,即流体力学基本方程:连续性方程(质量方程)、动量方程、能量方程、状态方程等。

湍流模型,不同于层流,必须考虑流体单元的脉动速度,脉动是湍流流动的基本特征。从模型的建立及求解过程可以看出,其实质是寻找出由于脉动而起的运动粘度的表达式。

多相流模型,对于多相流模拟计算来说,基本的湍流模型还不够用,需要进一步寻找各相运动规律及相间作用力规律。

模型的求解数值方法,对模型进行计算时,需要选择好的差分格式、松弛因子、时间步长等,以使结果收敛尽量减少CPU运算时间。

2.1.2计算流体力学的定义

计算流体动力学( Computational Fluid Dynamics , 简称CFD)是建立在经典流体力学与数值计算方法基础上的新型独立的学科,通过计算机数值计算和图像显示的方法,在时间和空间上定量描述流场的数值解,从而达到对物理问题研究的目的。它兼有理论性和实践性的双重特点,建立了理论和方法,为现代科学中许多复杂流动和传热问题提供了有效的计算技术。

计算流体动力学( CFD)是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。它的基本思想是:把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的几何来代替,通过一定的原则和方式建立起来的关于这些离散点上场变量之间关系的代数方程组,然后代数方程组获得场变量的近似值[5]。

CFD方法和传统的理论分析方法、实验测量方法组成了研究流体流动问题的完整体系。

理论分析方法的优点在于所得结果具有普遍性,各种影响因素清晰可见,是指导实验研究和验证数值计算方法的理论基础,但是它往往要求对计算进行抽象和简化,才可能得出理论解。对于非线性情况,只有少数流动才能给出解读结果。

实验测量方法所得到的实验结果真实可信,它是理论分析和数值方法的基础,其重要性不容低估。然而,实验往往受到模型尺寸、流场流动、人身安全和测量精度的限制,有时可能很难通过实验的方法得到满意的结果。

而CFD 方法恰好克服了前面两种方法的弱点,在计算机上实现一个特定的计

相关文档
最新文档