西南交通大学网络教育学院

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计试卷二

一、(10分)对一个三人学习小组考虑生日问题

(1) 求三个人中恰有二人的生日在星期天的概率;

(2) 求三个人中至多有一人的生日在星期天的概率;

(3) 求三个人的生日不都在星期天的概率。

二、(10分)在八个数字中0, 1, 2, …,7中不重复地任取四个,能排成一个四位偶数的概率是多少?

三、(10分)袋中装有30个乒乓球,其中20个黄的,10个白的,现有两人依次随机地从袋中各取一次,取后不放回,试求第二次取得黄球的概率。

四、(10分)设盒中有5个球,其中2个白球,3个红球,现从中随机取3球,设X 为抽得白球数,试求X 的数学期望与方差。

五、(12分)设随机变量X 服从参数为3的指数分布,即其概率密度函数为:

⎩⎨⎧≤>=-0

003)(3x x e x f x

X 试求22X Y =的概率密度函数与数学期望。

六、(12分)将一温度调节器放置在贮存着某种液体的容器内,调节器整定在C 90,液体的温度X (以C 记)是一个随机变量,服从正态分布,其方差为26.0 ,试求液体的温度保持在C 91~89的概率。

七、(12分)设随机变量X 与Y 具有概率密度:

⎪⎩⎪⎨⎧≤≤≤≤+=其它020,20)(81),(y x y x y x f

试求:)(),(Y D X D ,与)32(Y X D -。

八、(12分)试求正态总体)5.0,(2μN 的容量分别为10,15的两独立样本均值差的绝对值大于0.4的概率。

九、(12分)已知某种白炽灯泡的寿命服从正态分布。在一批该种灯泡中随机地抽取10只测得其寿命值(以小时记)为:

999.17 993.05 1001.84 1005.36 989.8

1000.89 1003.74 1000.23 1001.26 1003.19

试求未知参数μ,2σ及σ的置信度为0.95的置信区间。

(262.2)9(025.0=t ,023.19)9(2025.0=χ,7.2)9(2975.0=χ)

试卷参考解答

一、(10分)对一个三人学习小组考虑生日问题

(1) 求三个人中恰有二人的生日在星期天的概率;

(2) 求三个人中至多有一人的生日在星期天的概率;

(3) 求三个人的生日不都在星期天的概率。

解: (1)0525.0343

1837671711==⨯⨯⨯=p (2)9446.0343

32437676717676762==⨯⨯⨯+⨯⨯=p (3)9971.0343

34271717113==⨯⨯-=p

二、(10分)在八个数字中0, 1, 2, …,7中不重复地任取四个,能排成一个四位偶数的概率是多少? 解:4464.05

6785663567=⨯⨯⨯⨯⨯⨯+⨯⨯=p

三、(10分)袋中装有30个乒乓球,其中20个黄的,10个白的,现有两人依次随机地从袋中各取一次,取后不放回,试求第二次取得黄球的概率。 解: 设i A =第i 次取得黄球,2,1=i

3

230202920301029193020)|()()|()()(1211212==⨯+⨯=

+=A A P A P A A P A P A P 四、(10分)设盒中有5个球,其中2个白球,3个红球,现从中随机取3球,设X 为抽得白球数,试求X 的数学期望与方差。 解: 1.0101}0{3533====C C X P ,6.010

6}1{352312====C C C X P 3.010

3}2{351322====C C C X P

2.1

3.026.011.00)(=⨯+⨯+⨯=X E

8.13.026.011.00)(2222=⨯+⨯+⨯=X E

36.0)2.1(8.1)]([)()(222=-=-=X E X E X D

五、(12分)设随机变量X 服从参数为3的指数分布,即其概率密度函数为:

⎩⎨⎧≤>=-0

003)(3x x e x f x

X 试求22X Y =的概率密度函数与数学期望。

解:22x y =, 04>='x y ,(0>x ) 2/y x =, y x 221=

' (0>y ) ⎪⎩

⎪⎨⎧≤>='=-000223)())(()(2/3y y e y y h y h f y f y X Y dx xe e x dx e x X E Y E x x x ⎰⎰+∞-∞+-+∞

-+-=⋅==030

3203224|232)2()( 9

4|9434|34030303=-=+-=∞+-∞+-∞+-⎰x x x e dx e xe 另解:因为 23

1)(,31)(),3(~==X D X E Z X })]([)({2)(2)2()(222X E X D X E X E Y E +⨯===9

4319122=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+⨯=

六、(12分)将一温度调节器放置在贮存着某种液体的容器内,调节器整定在C 90,液体的温度X (以C 记)是一个随机变量,服从正态分布,其方差为26.0 ,试求液体的温度保持在C 91~89的概率。 解:()()6667.16667.16.090896.09091}9189{-Φ-Φ=⎪⎭

⎫ ⎝⎛-Φ-⎪⎭⎫ ⎝⎛-Φ=<

七、(12分)设随机变量X 与Y 具有概率密度:

⎪⎩⎪⎨⎧≤≤≤≤+=其它020,20)(81),(y x y x y x f

试求:)(),(Y D X D ,与)32(Y X D -。

相关文档
最新文档