spss统计分析及应用教程-第9章-结构方程模型
多元统计分析讲座-结构方程模型
![多元统计分析讲座-结构方程模型](https://img.taocdn.com/s3/m/b87269c085868762caaedd3383c4bb4cf7ecb705.png)
02 结构方程模型的理论基础
线性代数基础
向量与矩阵
线性变换与矩阵表示
了解向量的基本概念、矩阵的运算规 则以及矩阵的逆、转置等基本性质。
理解线性变换的概念,掌握如何通过 矩阵表示一个线性变换。
特征值与特征向量
掌握特征值和特征向量的定义、性质 以及求解方法。
概率统计基础
概率论基础
理解概率的基本概念、条件概率 、独立性等基本概验的基本 原理和方法,包括最大似然估计 、贝叶斯估计等参数估计方法和 假设检验方法。
模型设定与识别
01
02
03
模型设定
理解模型设定的基本原则 和方法,包括对变量之间 关系的假设、对误差项的 假设等。
模型识别
掌握模型识别的基本方法, 包括基于样本数据的模型 识别和基于先验知识的模 型识别。
结构方程模型需要大量的样本数据,对于小样本数据可 能不太适用。
该模型对于数据的分布假设较为严格,如果数据不满足 正态分布假设,可能会导致估计结果的不准确。
未来发展方向与挑战
未来发展方向
随着大数据时代的到来,结构方程模型将与机器学习、人工智能等技术结合,实现更高效、 准确的因果关系推断。
随着研究领域的不断拓展,结构方程模型将应用于更多领域,如心理学、经济学、社会学等。
未来发展方向与挑战
01
未来发展挑战
02
03
04
需要进一步研究如何处理非正 态分布的数据,以提高模型的
适用性和稳健性。
需要进一步研究如何处理高维 度的数据,以适应大数据时代
的需求。
需要进一步研究如何将结构方 程模型与其他统计方法结合, 以更好地揭示数据背后的复杂
关系。
06 结论
研究总结
spss统计分析和应用教程_第9章_结构方程模型
![spss统计分析和应用教程_第9章_结构方程模型](https://img.taocdn.com/s3/m/ad260217ec630b1c59eef8c75fbfc77da3699756.png)
模型识别
确定所设定的模型是否能够对其估计求解.,如果模型是可 识別的,表示理论上模型中的每一个参数都可以估计出唯一的一 个估计值.
模型识别结果包括不能识别<Under-Identified>、适度识别 <just-Identified>及过度识别<Over-Identified>三种.
❖ 模型识别
实验一 结构方程模型
❖ 实验目的
明确结构方程分析有关的概念 熟练掌握结构方程模型构建的过程 能用SPSS软件中的AMOS插件进行结构方程模拟及检验 培养运用结构方程分析方法解决身边实际问题的能力
❖ 准备知识
结构方程模型中常用概念
测量变量:也叫观察变量或显示变量,是直接可以测量的指标. 潜变量:其测量是通过一个或几个可观察指标来间接完成的. 外生潜在变量:他们的影响因素处于模型之外,也就是常说的自变量. 内生潜在变量:由模型内变量作用所影响的变量〔因变量.
〔3可以在一个模型中同时处理因素的测量和因素之间的结构 传统的统计方法中,因素自身的测量和因素之间的结构关系往
往是分开处理的——对因素先进行测量,评估概念的信度与效度,通 过评估标准之后,才将测量资料用于进一步的分析.
在结构方程模型中,则允许将因素测量与因素之间的结构关系纳 入同一模型中同时予以拟合,这不仅可以检验因素测量的信度和效 度,还可以将测量信度的概念整合到路经分析等统计推理中.
❖ 请对大学生闲暇时间消费与满意度之间构 建结构方程模型.
❖ 实验步骤
❖ 结构方程分析由SPSS17.0软件中的 AMOS插件完成.下面以案例说明判别分析 的基本操作步骤.
❖ 实验步骤
〔1准备工作.在SPSSl7.0软件中安装AMOS插件后,先 调用SPSS17.0软件,打开数据文件9-1.sav,通过选择" 文件—打开"命令将数据调入SPSSl7.0的工作文件窗口.
结构方程模型原理及其应用
![结构方程模型原理及其应用](https://img.taocdn.com/s3/m/1e2ec0c848d7c1c708a145fd.png)
一、结构方程模型简介
结构方程模型由一种因素模型和一种结构方程式模型组 成,将心理测量学和经济计量学有效的结合起来。
一个包括一组自变量和一组或更多因变量的计量模型。
模型由两部分组成:测量模型(即验证性因素分析模型, Confirmatory Factor Analysis , CFA)和结构模型 (又称潜变量的因果关系模型,Causal Model )。测量 模型主要是用于表示观测变量和潜变量之间的关系;而 结构方程模型主要是用于来表示潜变量之间的关系。 其相应的统计分析软件:SPSS/AMOS与LISREL的应用,特 别是AMOS的操作与应用。
?1 ?2 ?3
情商
ξ1
? 21
? 21 外部潜在变量
? 11
智商
ξ2
?4 ?5 ?6
?12
η ? Βη ? Γξ ? ζ
?10 ?11 ?12
η2 ζ2 人际
关系
? 21 内部潜在变量
η1
ζ1 学业
成绩
?7 ?8 ?9
x4
x5
x6
y1
y2
y3
δ4 δ5 δ6
ε1 ε2 ε3
测量模型(验证性因素分析模型,如社会经济指
一、结构方程模型简介
结构方程模型是基于变量的协方差矩阵来分析变量之间关系的 一种统计方法,是路径分析和因素分析的有机结合。
对于那些不能准确、直接测量的潜变量( latent variable , 如家庭的社会经济地位、学业成就等),可以用一些外显指标 ( observed variable ,如学生父母的教育程度和父母职业及 收入作为家庭社会经济地位的指标,以学生的语文、数学英语 三科成绩作为学业成就的指标 )去间接测量。结构方程模型 可以同时处理潜变量及指标。
结构方程模型及其应用
![结构方程模型及其应用](https://img.taocdn.com/s3/m/e538dc5359fafab069dc5022aaea998fcc224032.png)
结构方程模型及其应用引言结构方程模型(SEM)是一种广泛应用于社会科学、心理学、经济学、医学等领域的统计方法。
SEM可以同时处理潜在变量和观测变量,并能够准确地估计模型中各种参数的值,以便更好地理解和预测现实世界中的各种现象。
基本概念结构方程模型包括路径分析、因素分析和结构方程建模等方面。
路径分析旨在揭示变量之间的因果关系,通过建立变量之间的路径图来表现各个变量之间的相互作用。
因素分析则是将变量之间的关系转化为潜在因素之间的关系,从而更好地理解变量之间的本质。
而结构方程建模则是将路径分析和因素分析结合起来,建立一个完整的模型,并估计模型中各种参数的值。
方法与技术结构方程模型的方法和技术包括问卷调查、数据采集、数据分析等。
在建立SEM模型之前,需要通过问卷调查来收集数据,确定潜在变量和观测变量的具体指标。
数据采集的方法可以包括网络调查、调查、面对面访谈等。
在数据采集完成后,需要使用特定的统计分析软件,如SPSS、AMOS等,来进行数据分析,估计模型中各种参数的值,并检验模型的拟合程度。
应用场景结构方程模型在教育、金融、医疗等领域有广泛的应用。
在教育领域,SEM可以帮助教育工作者了解学生学习成果的影响因素,为教育政策的制定提供科学依据。
在金融领域,SEM可以用来研究投资组合优化、风险管理等问题,帮助投资者做出更加明智的投资决策。
在医疗领域,SEM可以用来研究疾病发生、发展及其影响因素,为疾病的预防和治疗提供新的思路和方法。
案例分析以一个实际案例来说明结构方程模型的应用过程。
假设我们想要研究学生的心理健康状况对其学业成绩的影响。
首先,我们需要通过问卷调查来收集数据,确定潜在变量和观测变量。
潜在变量包括学生的心理健康状况和学业成绩,观测变量则包括学生的性别、年龄、家庭背景等。
然后,我们使用AMOS软件来建立SEM模型,并估计模型中各种参数的值。
在模型中,我们建立了一条从心理健康状况到学业成绩的路径,表示心理健康状况对学业成绩的影响。
结 构 方 程 模 型
![结 构 方 程 模 型](https://img.taocdn.com/s3/m/f1bd314603768e9951e79b89680203d8ce2f6ab4.png)
结构方程模型结构方程模型(Structural Equation Modeling,简称SEM)是一种多变量统计分析方法,其主要用于探究变量之间的关系和影响。
它不仅可以用于描述变量之间的相关性,还可以帮助我们理解变量之间的因果关系。
在社会科学、教育学、心理学等领域中,SEM已经成为了一种常用的分析方法。
本文将从以下几个方面对SEM进行详细介绍。
一、 SEM的基本概念1. 结构方程模型结构方程模型是一种复杂的统计分析方法,它可以同时考虑多个因素对某个结果变量的影响,并且可以建立一个包含多个因素和结果变量之间相互作用关系的模型。
2. 因果关系在SEM中,我们通常会建立一个因果模型来描述变量之间的关系。
因果关系指的是一个事件或现象引起另一个事件或现象发生的关系。
在SEM中,我们通过设定不同变量之间的路径来表示它们之间可能存在的因果关系。
3. 测量模型测量模型是指将观测到的数据转化为潜在变量(latent variable)或者隐含特征(hidden feature)所形成的数学模型。
在SEM中,我们通常会将多个测量指标(observed variables)用一个潜在变量来代表。
4. 结构模型结构模型是指变量之间的关系模型。
在SEM中,我们通常会建立一个结构方程模型,其中包含多个因素和结果变量之间相互作用的关系。
二、 SEM的应用领域1. 社会科学社会科学领域是SEM的主要应用领域之一。
在社会科学研究中,SEM 可以帮助研究人员探究不同因素对社会现象产生的影响,并且可以通过因果关系的建立来分析各种社会问题。
2. 教育学教育学领域也是SEM的重要应用领域之一。
在教育研究中,SEM可以帮助研究人员分析不同因素对学生学习成绩产生的影响,并且可以通过建立因果模型来探究各种教育问题。
3. 心理学心理学是SEM的另一个主要应用领域。
在心理学研究中,SEM可以帮助研究人员探究不同因素对心理问题产生的影响,并且可以通过建立因果模型来分析各种心理问题。
spssau 结构方程模型
![spssau 结构方程模型](https://img.taocdn.com/s3/m/0de2cd3ecc22bcd126ff0cbc.png)
结构方程模型出现问题如何办?目录1结构方程模型SEM的拟合指标 (1)2 解决办法1:梳理建模流程(因子分析) (3)3 解决办法2:调整模型(MI指数调整和手工调整) (3)3 解决办法3:换用模型(路径分析或线性回归) (4)结构方程模型SEM是一种多元数据分析方法,其包括测量模型和结构模型,类似如下图:上图中红框即为测量模型,Factor1是A1~A4共4项表示;类似还有Factor2,Factor3和Factor4。
而结构模型是指影响关系情况,比如模型中Factor1和Factor2影响Factor3;Factor3影响Factor4。
如果说只研究测量模型,那么通常是指验证性因子分析CFA;如果说只研究结构模型,则称作路径分析path analysis。
验证性因子分析和路径分析均是结构方程模型的特殊形式。
结构方程模型由测量模型和结构模型构成,如果进行结构方程模型构建时想达到良好的模型效果。
那么就需要保证测量模型和结构模型均有着良好的拟合性,否则最终结构方程模型拟合效果都不会太好。
同时,结构方程模型有着非常多的拟合指标,比如卡方自由度比,RMSEA,CFA,RMR等几十种,但在实际研究中会发现基本上很难所有指标均达标,而且很多指标都不达标。
那怎么办呢?接下来针对结构方程模型的拟合指标、拟合效果不好时的3种解决办法等分别进行说明,期许得到最佳模型。
结构方程模型SEM的拟合指标结构方程模型拟合时,会有非常多的指标。
SPSSAU默认提供常用的15类指标,说明如下:在已有文献中,还会出现各类拟合指标,但基本上都是上述拟合指标的一种变型而已。
一般来说,模型拟合效果越好,各类指标越容易达标,但即使模型已经拟合非常好,也不能保证所有的参数均在标准范围内。
为什么会出现这种情况呢,比如卡方自由度值使用较多,但是该指标容易受到样本量的影响,样本量越大时,该指标越可能更小,有的指标在标准范围内,那么对应有的指标就可能不在标准范围内,没有一个指标可以完全性地确定模型的好或坏。
结构方程模型
![结构方程模型](https://img.taocdn.com/s3/m/b0cff507f18583d04864590b.png)
(Structural Equation Modeling,SEM) –
结构方程模型 结构方程模型是一门基于统计分析技术的研究方法学,它主要用于解决社会科学研 究中的多变量问题, 用来处理复杂的多变量研究数据的探究与分析。 在社会科学及经济、 市场、管理等研究领域,有时需处理多个原因、多个结果的关系,或者会碰到不可直接 观测的变量(即潜变量),这些都是传统的统计方法不能很好解决的问题。 SEM 能够对 抽象的概念进行估计与检定,而且能够同时进行潜在变量的估计与复杂自变量 /因变量 预测模型的参数估计。 结构方程模型是一种非常通用的、主要的线形统计建模技术,广泛应用于心理学、经济 学、社会学、行为科学等领域的研究。实际上,它是计量经济学、计量社会学与计量心理学 等领域的统计分析方法的综合。多元回归、因子分析和通径分析等方法都只是结构方程模型 中的一种特例。 结构方程模型是利用联立方程组求解,它没有很严格的假定限制条件,同时允许自变量 和因变量存在测量误差。在许多科学领域的研究中,有些变量并不能直接测量。实际上,这 些变量基本上是人们为了理解和研究某类目的而建立的假设概念,对于它们并不存在直接测 量的操作方法。人们可以找到一些可观察的变量作为这些潜在变量的“标识”,然而这些潜 在变量的观察标识总是包含了大量的测量误差。在统计分析中,即使是对那些可以测量的变 量,也总是不断受到测量误差问题的侵扰。自变量测量误差的发生会导致常规回归模型参数 估计产生偏差。虽然传统的因子分析允许对潜在变量设立多元标识,也可处理测量误差,但 是,它不能分析因子之间的关系。只有结构方程模型即能够使研究人员在分析中处理测量误 差,又可分析潜在变量之间的结构关系。
线性回归分析: 线性回归是比线性相关更复杂的方法,它在模型中定义了因变量和自变量。但它只 能提供变量间的直接效应而不能显示可能存在的间接效应。而且会因为共线性的原因, 导致出现单项指标与总体出现负相关等无法解释的数据分析结果。 结构方程模型分析: 结构方程模型是一种建立、估计和检验因果关系模型的方法。模型中既包含有可观 测的显在变量, 也可能包含无法直接观测的潜在变量。 结构方程模型可以替代多重回归、 通径分析、因子分析、协方差分析等方法,清晰分析单项指标对总体的作用和单项指标 间的相互关系。
IBM SPSS AMOS 结构方程模型教程
![IBM SPSS AMOS 结构方程模型教程](https://img.taocdn.com/s3/m/9aa1218d964bcf84b8d57b87.png)
表一、关于顾客满意调查数据的收集本次问卷调研的对象为居住在某大学校内的各类学生(包括全日制本科生、全日制硕士和博士研究生),并且近一个月内在校内某超市有购物体验的学生。
调查采用随机拦访的方式,并且为避免样本的同质性和重复填写,按照性别和被访者经常光顾的超市进行控制。
问卷内容包括7个潜变量因子,24项可测指标,7个人口变量,量表采用了Likert10级量度,如对1正向的,采用Likert10级量度从“非常低”到“非常高”二、缺失值的处理采用表列删除法,即在一条记录中,只要存在一项缺失,则删除该记录。
最终得到401条数据,基于这部分数据做分析。
三、数据的的信度和效度检验1.数据的信度检验信度(reliability)指测量结果(数据)一致性或稳定性的程度。
一致性主要反映的是测验内部题目之间的关系,考察测验的各个题目是否测量了相同的内容或特质。
稳定性是指用一种测量工具(譬如同一份问卷)对同一群受试者进行不同时间上的重复测量结果间的可靠系数。
如果问卷设计合理,重复测量的结果间应该高度相关。
由于本案例并没有进行多次重复测量,所以主要采用反映内部一致性的指标来测量数据的信度。
折半信度(split-half reliability)是将测量工具中的条目按奇偶数或前后分成两半,采用Spearman-brown公式估计相关系数,相关系数高提示内部一致性好。
然而,折半信度系数是建立在两半问题条目分数的方差相等这一假设基础上的,但实际数据并不一定满足这一假定,因此信度往往被低估。
Cronbach在1951年提出了一种新的方法(Cronbach's Alpha系数),这种方法将测量工具中任一条目结果同其他所有条目作比较,对量表内部一致性估计更为慎重,因此克服了折半信度的缺点。
本章采用SPSS16.0研究数据的内部一致性。
在Analyze菜单中选择Scale下的Reliability Analysis(如图7-1),将数据中在左边方框中待分析的24个题目一一选中,然后点击,左边方框中待分析的24个题目进入右边的items方框中,使用Alpha 模型(默认),得到图7-2,然后点击ok即可得到如表7-3的结果,显示Cronbach's Alpha系数为0.892,说明案例所使用数据具有较好的信度。
结构方程模型
![结构方程模型](https://img.taocdn.com/s3/m/4e540f4317fc700abb68a98271fe910ef12daee1.png)
分,在测量模型即测量误差,在结构模型中为 干扰变量或残差项,表示内生变量无法被外生 变量及其他内生变量解释的部分。
ηη11== γ ξ + γ111ξ11+ ζ11 ζ1 η 1= γ11 ξ1+ γ12 ξ2 +ζ1
符号表示
潜在变量:被假定为因的外因变量,以ξ(xi/ksi) 表示;假定果的内因变量以η(eta)表示。
外因变量ξ的观测指标称为X变量,内因变量η观测值 表称为Y变量。
它们之间的关系是:①ξ与Y、η与X无关②ξ的协差 阵以Φ(phi)表示③ξ与η的关系以γ表示,即内因 被外因解释的归回矩阵④ξ与X之间的关系,以Λx表 示,X的测量误差以δ表示,δ间的协方差阵以Θε表 示⑥内因潜变量η与η之间以β表示。
观察变量
观察变量作为反映潜在变量的指标变量,可分为反映性指 标与形成性指标两种。
反映性指标又称为果指标,是指一个以上的潜在变量是引 起观察变量或显性变量的因,此种指标能反映其相对应的 潜在变量,此时,指标变量为果,而潜在变量为因。
相对的,形成性指标是指指标变量是成因,而潜在变量被 定义为指标变量的线性组合,因此潜在变量变成内生变量, 指标变量变为没有误差项的外生变量。
SEM包含了许多不同的统计技术
SEM融合了因子分析和路径分析两种统计技 术,可允许同时考虑许多内生变量、外生变量 与内生变量的测量误差,及潜在变量的指标变 量,可评估变量的信度、效度与误差值、整体 模型的干扰因素等。
SEM重视多重统计指标的运用
SEM所处理的是整体模型契合度的程度,关注整体模 型的比较,因而模型参考的指标是多元的,研究者必 须参考多种不同的指标,才能对模型的是陪读做整体 的判断,个别参数显著与否并不是SEM的重点。
结构方程模型精讲
![结构方程模型精讲](https://img.taocdn.com/s3/m/1733ba7030126edb6f1aff00bed5b9f3f90f722c.png)
结构方程模型精讲结构方程模型(Structural Equation Modeling,即SEM)是一种多变量统计分析方法,主要用于建立和验证变量之间的因果关系模型。
SEM在社会科学研究领域中被广泛应用,可以用于研究因果关系的生成机制、模型拟合度评估和预测效果等。
一个SEM模型通常包括以下几个重要的组成部分:1. 构念(Latent variables):构念是无法直接观察到的理论概念,代表研究对象的特征、态度或行为。
通过测量指标来间接度量构念。
构念可以是单一的或多个指标组合而成的。
2. 指标(Indicators):指标是可以直接观察到的变量,用于测量构念的表现。
指标可以是连续变量、二元变量、有序变量等。
3. 因果路径(Causal paths):因果路径是指构念之间或构念与指标之间的直接或间接影响关系。
因果路径可以是正向的、负向的或双向的。
4. 误差项(Error terms):误差项是构念和指标之间的测量误差或未被模型涵盖的因素。
误差项是模型的随机部分,代表了模型解释不了的部分。
5. 模型拟合度(Model fit):模型拟合度指模型是否能够较好地解释观察数据。
常用的模型拟合度指标包括卡方检验、比较拟合指数(CFI)、均方根误差逼近指数(RMSEA)等。
在进行SEM分析时,通常需要进行以下步骤:1.建立理论模型:根据研究问题和理论背景,构建起变量间的理论关系模型。
2.设计测量指标:选择符合研究目标的指标,考虑指标之间的相关性和可信度。
3.收集数据:通过问卷调查或实验等方法,收集观察数据。
4.编码和建模:将数据输入到结构方程模型软件进行分析和建模。
5.评估拟合度:使用适当的拟合度指标,评估模型对实际数据的拟合效果。
6.参数解释和检验:分析模型结果,解释参数估计值和检验统计量,判断变量间的因果关系和显著性。
通过SEM分析,可以帮助研究者建立潜在的因果关系模型,验证理论假设和推断变量间的关系。
SEM具有灵活性和广泛适用性,可以应用于各种类型的数据和研究领域。
结构方程模型及其应用
![结构方程模型及其应用](https://img.taocdn.com/s3/m/87d6f5f668dc5022aaea998fcc22bcd126ff4223.png)
结构方程模型及其应用结构方程模型(Structural Equation Modeling, SEM)是一种统计分析方法,用于建立和检验观测数据与潜在变量之间的关系模型。
它能够同时分析多个变量之间的直接和间接关系,并结合测量误差,以探索变量之间的因果关系。
SEM的应用领域广泛,如社会科学、行为科学、管理学、教育学、医学研究等,目的是通过数据分析来验证已有的理论模型或构建新的理论模型。
以下是SEM的主要应用领域:1.教育研究:SEM可以用于探究学习者的特质、学习环境、教学方法对学习成绩的影响,以及教育政策的实施对学生学业成就的影响等。
通过SEM可以分析学生学习动机、自尊心、学习方法等的影响因素,从而提出教育和教学改进的建议。
2.管理研究:SEM可以用于分析和解释组织绩效的影响因素。
例如,可以使用SEM来研究领导风格、员工满意度、组织文化对组织绩效的影响,从而提出管理措施和改进建议,促进组织发展。
3.社会科学研究:SEM可以用于研究社会行为、社会关系和社会问题。
例如,可以使用SEM来分析就业满意度的影响因素,探究家庭背景、教育程度和工作环境对就业满意度的影响关系。
4.医学研究:SEM可以应用于医学健康领域,探究各种疾病的发生与多个因素之间的关系。
例如,可以使用SEM来研究肥胖与心血管疾病之间的关系,分析饮食、运动、遗传等因素对肥胖和心血管疾病的影响。
结构方程模型的分析步骤主要包括模型设定、模型估计和模型检验。
模型设定是根据理论和研究目的确定潜在变量和观测变量之间的关系模型。
模型估计是利用统计方法计算模型中的参数估计,一般使用最大似然估计或广义最小二乘估计。
模型检验是通过计算模型拟合度指标来评估拟合效果,如卡方拟合度检验、比较拟合指数(CFI)、均方根误差逼近(RMSEA)等。
结构方程模型的优势在于可以同时分析多个变量之间的直接和间接关系,能够更好地理解变量之间的因果关系。
但是,需要注意的是,SEM对数据的要求较高,包括样本量要求较大、变量的度量要求合理、模型设定要合理等。
结构方程模型课件
![结构方程模型课件](https://img.taocdn.com/s3/m/cff7ac98c8d376eeafaa3122.png)
传统的统计建模分析方法不能有效处理潜变量,
而结构方程模型能同时处理潜ห้องสมุดไป่ตู้量和显变量(指
标)。传统的线性回归分析不允许有多个因变量
存在测量误差,假设自变量是没有误差的,结构
结构方程模型
3
3.结构方程的基本原理?
一、结构方程模型的原理 结构方程模型的基本思路是:
首先,根据已有理论和知识,经推理和假设形成一个关于一组变量之 间相互关系的模型;
(4)内生变量:是指那些在模型或系统中,受模型或系统中其
它变量包括外生变量和内生变量影响的变量,即在路径图中,有箭头
指向它的变量。它们也可以影响其它变量。
结构方程模型
6
3.结构方程的基本原理?
结构方程模型在形式上是反映隐变量和显变量 关系的一组方程,一般来讲由两类矩阵方程构成:
(1)测量方程(Measurement Equation)
二、结构方程模型的结构 结构方程模型的结构示意图如下所示:
结构方程模型
5
3.结构方程的基本原理?
首先了解几个概念:
(1)观测变量:可直接测量的变量,通常是指标
(2)潜变量:潜变量亦称隐变量,是无法直接观测并测量的变 量。潜变量需要通过设计若干指标间接加以测量。
(3)外生变量 :是指那些在模型或系统中,只起解释变量作用 的变量。它们在模型或系统中,只影响其他变量,而不受其他变量的 影响。在路径图中,只有指向其他变量的箭头,没有箭头指向它的变 量均为外生变量。
(2)特定的方法可能需要很大的样本含量;
(3)需要满足多变量正态分布的假设;
(4) 很少用于预测的应用;
(5)完全掌握结构方程需要基础知识、练习和努 力;
(6)很多问题还没有很结构方好程模的型 答案和可以遵循的指
结构方程模型入门(纯干货!)
![结构方程模型入门(纯干货!)](https://img.taocdn.com/s3/m/ea3dd8c029ea81c758f5f61fb7360b4c2e3f2a9f.png)
结构⽅程模型⼊门(纯⼲货!)⼀、结构⽅程模型的概念结构⽅程模型(Structural Equation Model,简称SEM)是基于变量的协⽅差矩阵来分析变量之间关系的⼀种统计⽅法,因此也称为协⽅差结构分析。
结构⽅程模型属于多变量统计分析,整合了因素分析与路径分析两种统计⽅法,同时可检验模型中的显变量(测量题⽬)、潜变量(测量题⽬表⽰的含义)和误差变量直接按的关系,从⽽活动⾃变量对因变量影响的直接效果、间接效果和总效果。
结构⽅程模型基本上是⼀种验证性的分析⽅法,因此通常需要有理论或者经验法则的⽀持,根据理论才能构建假设的模型图。
在构建模型图之后,检验模型的拟合度,观察模型是否可⽤,同时还需要检验各个路径是否达到显著,以确定⾃变量对因变量的影响是否显著。
⽬前,结构⽅程模型的分析软件较多,如Lisrel、EQS、Amos、Mplus、 Smartpls等等,其中AMOS的使⽤率甚⾼,因此我们重点了解⼀下使⽤AMOS软件进⾏结构⽅程模型分析的过程。
⼆、结构⽅程模型的相关概念在构建模型假设图,我们⾸先需要了解⼀些有关的基本概念1、显变量显变量有多种称呼,如“观察变量”、“测量变量”、“显性变量”、“观测变量”等等。
从这些称呼中可以看到,显变量的主要含义就是:变量是实际测量的内容,也就是我们问卷上⾯的题⽬。
在Amos中,显变量使⽤长⽅形表⽰。
2、潜变量潜变量也叫潜在变量,是⽆法直接测量,但是可以通过多个题⽬进⾏表⽰的变量。
在Amos中,潜变量使⽤椭圆表⽰。
在使⽤的过程中,我们可以通过这样的⽅式区分显变量和潜变量:在数据⽂件中有具体值的变量就是显变量,没有具体值但可通过多个题⽬表⽰的则是潜变量。
3、误差变量误差变量是不具有实际测量的变量,但必不可少。
在调查中,显变量不可能百分之百的解释潜变量,总会存在误差,这反映在结构⽅程模型中就是误差变量,每⼀个显变量都会有误差变量。
在Amos中,误差变量使⽤圆形进⾏表⽰(与潜变量类似)。
结构方程模型讲义_图文
![结构方程模型讲义_图文](https://img.taocdn.com/s3/m/d1c6f06f3b3567ec102d8aba.png)
何时能说X引起Y?
X时间在先。(纵向设计) 明确说明因果方向,比如不可逆,或者循环。 (同时测
量设计) 常识、理论、经验研究的成果都可以成为说明的线索。 难以说明怎么办? X与Y之间的关系不因引进第三变量而消失 (统计控制) 。
结构方程模型的结构
结构方程模型可以分为测量方程( measurement)和结构方程(structural equation)两部分
插入新变量
点击Data菜单Insert Variables选项,打开对话框 点击OK键,在光标的左边,一个新变量就被插入到数据文件中 点击Data菜单Define Variables选项激活Define Variables对话框 选中刚才插入的变量 点击Rename键,键入新的变量名 点击OK键回到Define Variables对话框 点击Define Variables对话框中的OK键得到PSF窗口 点击File菜单上Save as选项,在“文件名”字符区键入新的文件名 这样,一个新变量被插入到原有的数据集中并存储为新的文件名
Factor Loading
三个因子与各变量之间的相关系数,称为因子 载荷量(loading)
系数绝对值越大,与相应因子的相关强度越强 。
因子旋转
因子旋转:用一个正交阵右乘已经得到的因子载荷阵(由线性代 数可知,一次正交变化对应坐标系的一次旋转),使旋转后的因 子载荷阵结构简化。
结构方程模型到底是啥?真的过时了吗
![结构方程模型到底是啥?真的过时了吗](https://img.taocdn.com/s3/m/25997c37e97101f69e3143323968011ca200f75c.png)
结构方程模型到底是啥?真的过时了吗文章转自:SPSS学堂作者:屠西茜本期我们对结构方程模型(SEM)进行初步介绍。
SEM将不可直接观察的概念,通过潜变量的形式,由多个观测变量构成,不仅可以估计测量过程中的误差,还能够评估测量的信度与效度。
探讨变量关系的同时,把测量过程产生的误差包含于分析过程之中,把测量信度的概念整合到路径分析等统计推断决策过程中。
在结构方程模型(SEM)中,将变量分为显变量(观测变量)和潜变量两种。
显变量是可以直接观测到的变量,如:身高、性别、被试在量表上的得分等,在结构方程模型图中用长方形表示;潜变量与显变量相对应,不可以直接观测,包括比较抽象的概念和由于种种原因不能准确测量的变量,需要借助显变量指标来估计。
比如社科研究中的自尊、信任、能力等。
在结构方程模型图中用椭圆形表示。
根据变量间的关系,SEM将变量分为内生变量和外生变量。
内生变量(1)影响自身的因素在模型之内(2)在模型中被影响的变量外生变量(1)影响自身的因素在模型之外(2)在模型中不被影响的变量内生变量和外生变量的关系如上图,对于“责任心”变量,由于在整个模型内没有影响它的因素,因此是一个外生变量,而对于“成功”变量,在模型内有影响它的因素,它被变量“责任心”影响,因此它是一个内生变量。
一般一个结构方程模型由两部分组成:测量模型和结构模型。
测量模型:描述潜变量与测量指标之间的关系,测量模型的基本目的是描述观察变量是否适合作为潜变量的测量手段,可以通过CFA来评估。
结构模型:描述潜变量之间的相互关系。
下图中,虚线框中为测量模型,实线框中为结构模型。
结构方程模型分析步骤假设提出研究假设的提出从研究问题出发。
例如,我们的研究问题是学生的学习动机是否与他的学习投入度有关?那么将问题转化为假设,H0:学习动机与学习投入无关,H1:一个学生的学习动机越积极,其学习投入度就越高。
根据研究假设,建构相关的潜变量,即学习动机和学习投入。
SPSS-结构方程式模型
![SPSS-结构方程式模型](https://img.taocdn.com/s3/m/07032218cd1755270722192e453610661fd95a48.png)
SPSS-结构方程式模型使你的数据更会说话——结构方程式模型在市场调查中的应用内容提要:在IDC日常市场研究工作中一些高级数据分析方法得不到应有的问题普遍存在。
而结构方程式模型作为一种实证性的数据分析技术已经发展的相当完备了,它广泛运用于市场调查的各个方面,成为提供市场营销战略策略的有力工具。
这种实证性统计方法的运用可以提高数据分析结果的有效性和科学性。
希望通过介绍结构方程式模型的建构原理,并通过一个具体研究案例的介绍使IDC同事们能对此项技术有一定了解。
结构方程式中包括了主要的分析方法,在IDC 公司中较为常见的是利用SPSS软件进行相关数字变量分析。
由于篇幅有限,本文只介绍一些基本定义,详细的介绍请参看文章后面的参考书目。
一、结构方程式模型及其建构原理结构方程式模型(Structural Equation Modeling,简称SEM)或称为因果关系模型、协方差结构模型,或者直接称为LISRLE模型,这主要是因为LISREL是用来分析结构方程式模型的早期最流行的软件。
它是一种建立、估计和检验因果关系模型的多元统计分析技术。
它包含了回归分析(multiple regression)、因子分析(factor analysis)、路径分析(path analysis)和多元方差分析(multivariate analysis of variance)等一系列多元统计分析方法,是一种非常通用的、线性的、借助于理论进行假设检验的统计建模技术。
这一模型和方法由K.Joreskog与其合作者在70年代提出并逐步改进和完善,到90年代初期开始得到了广泛的应用。
随着SEM理论和分析软件的不断发展和完善,结构方程式模型不仅在市场研究中成为分析数据、检验理论的好工具,而且在心理学、社会学、计量经济学、管理学、行为科学和传播学等领域都得到了广泛的应用。
结构方程式模型本质上是利用联立方程求解。
我们希望的是模型拟合的再生数据尽可能接近原始数据,如果真是这样的话,假设的因果关系结构与变量间的相互关联模式就是拟合的或是一致的。
戏说统计学习笔记(9)——结构方程模型
![戏说统计学习笔记(9)——结构方程模型](https://img.taocdn.com/s3/m/318361dd4bfe04a1b0717fd5360cba1aa9118c50.png)
戏说统计学习笔记(9)——结构方程模型我们已经发出了李连江教授的《戏说统计》课程中的八篇学习笔记:相关分析、显著性检验、回归分析、多元回归分析、因子分析与量表构造、卡方检验、对数回归、最大似然估计。
今天,我们将发出第九篇学习笔记:结构方程模型。
希望我们的整理可以继续供大家讨论学习。
结构方程模型提纲一、什么是结构方程模型二、结构方程模型的三个优点:(一)证实性因子分析(二)路径分析可以包括中介变量(三)提高拟合程度三、举例一、什么是结构方程模型结构方程模型最早应用于心理学领域,因为在心理学领域中的因变量和自变量都是由多个指标来测量的。
如果要将这几个指标合并在一起,就需要建立一个量表。
建立量表的方式有很多,但是都会遇到一个问题:如果先把几个指标变成一个量表,那么在这个过程中会有信息损失,有些在原生的状态下测得的东西变成量表之后会成为粗略的东西。
在这个过程中会造成信息损失。
因此发展出了结构方程模型。
如果用某几个指标形成量表,再用量表去做回归分析是可以的,但是会损失很多信息。
还有一个问题是做普通的回归分析的时候,回归模块有一个假定:几个自变量之间一定是彼此相关的。
理论上来讲,如果就假定这两个变量不相关,是不被回归的模块所允许的。
而我们在做因果分析的时候,往往会面临这样的情况:我们有充分的理由或充分的理论依据认为这两个自变量之间不相关。
那么这个时候我们就可以规定这两个变量是不相关的,但是在正常做回归分析的时候,是不能够这样做的。
另外一个情况是,有一些因果链条,A的变化会影响C,但是A的变化不是直接影响C的,而是通过影响B来影响C。
举个简单的例子,祖父对于孙子是有影响的,但是祖父对于孙子的影响不是直接的影响,而是通过影响孙子的父母一方。
如果我们想分析祖父影响孙子,就要看一看祖父是怎样影响孙子的父辈,再来看怎么样影响到孙子。
在这里有一个中介变量B。
这用普通的回归分析是不能够得出结果的,而是需要做一个路径分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 模型评价
评价指标
绝对拟合评价
指 标
绝对拟合评价
绝对拟合评价
卡方值
拟合优度指数GFI
标准化均方根残余 SRMR 期望复核效度指标 AGFI 调整后的拟合指数 AGFI 不规范拟合指数 NNFI
增值拟合指数IFI
简效规范拟合指数 PNFI Akaike 信息标准化 AIC 规范卡方Normed Chi-Square
模型识别
确定所设定的模型是否能够对其估计求解。,如果模型是 可识別的,表示理论上模型中的每一个参数都可以估计出唯一 的一个估计值。
模型识别结果包括不能识别(Under-Identified)、适度识别 (just-Identified)及过度识别(Over-Identified)三种。
❖ 模型识别
要把路径图复制到另外的文档或其他文件中时,这里的调整
特别重要;
• Formats标签下提供了参数格式的设置选项; • Colors标签下提供了绘图时所涉及的线条颜色设置。
•Analysis Properties之下提供了一个菜单,用于设置模型 拟合过程中的一些选项 ,如图所示。
ቤተ መጻሕፍቲ ባይዱ
Analysis Properties
非集中化参数NCP 均方根残余RMR 近似误差的均方根 RMSEA 规范拟合指数NFI
比较拟合指数CFI
相对拟合指数RFI
简效良性拟合指数 PGFI 胡特的临界数值CN
❖ 卡方检验指标
❖ 残差分析指标
❖ 评价指标名称
❖ 替代性指标名称
❖ 实验内容
❖ 为了了解大学生闲暇时间消费状况与幸福指数之间的关 系,设计调查问卷并收集相关数据,在理论上将大学生 闲暇时间消费划分为社交活动时间、文化休闲时间和网 络休闲时间。大学生的幸福指数由其个体满意度、就业 准备满意度与社会满意度三个方面组成,
注意:把路径图文件存储在某一特定位置后,在该文件夹 中将会出现几个名字相同而后缀不同的存储文件,其中, *.amw是所存储的路径图文件;*.bk1和*.bk2是自动生 成的备份文件,可以通过Retrieve Backup打开; *.AmosTNP、*.AmosTN、*.AmosP、*.amp都是 AMOS的文件管理文件,可以双击这些文件打开相应的存 储文件。*.amo是模型拟合之后出现的拟合结果文件。
实验一 结构方程模型
❖ 实验目的
明确结构方程分析有关的概念 熟练掌握结构方程模型构建的过程 能用SPSS软件中的AMOS插件进行结构方程模拟及检验 培养运用结构方程分析方法解决身边实际问题的能力
❖ 准备知识
结构方程模型中常用概念
测量变量:也叫观察变量或显示变量,是直接可以测量的指标。 潜变量:其测量是通过一个或几个可观察指标来间接完成的。 外生潜在变量:他们的影响因素处于模型之外,也就是常说的自变 量。 内生潜在变量:由模型内变量作用所影响的变量(因变量)。
• Move是移动所选定的图形; • Duplicate是复制所选定的图形; • Erase是删除所选定的图形; • Move Parameter是移动所设定的参数位置;
•Edit按钮 在Edit下拉的菜单之中,提供了路径图编辑的相关工具, 如图所示。各选项的功能如下:
• Reflect是将所选定的图形作镜面对称; • Rotate是旋转所选定的图形; • Shape of Object是调整所选定的图形大小; • Space Horizontally是水平调整选定的图形; • Space Vertically是水垂直平调整选定的图形; • Drag Properties用来设定正在编辑的图形的性质; • Fit to page是使绘图区的图形与绘图区域大小相适应; • Touch up是用来使图形相对协调美观。
❖ 准备知识
结构方程模型的应用范围
结构方程模型的主要应用范围有两个:其一是对难以直接观测 到的潜变量提供一个可以观测和处理的方式,以便对该变量作进一 步的研究;其二是研究不同变量之间可能存在的相关关系。
如果所研究的变量都是可以直接观测得到的,结构方程模型所 能检验的就是变量之间相关关系的显著性,这种关系通常也称为结 构关系。
通过固定或限制一些参数,自由参数的数目就可以减少,原来不能 识别的模型有可以变为可以识别模型。
❖ 结构方程构建步骤 3
模型估计
最大似然法(maximum likelihood)和广义最小二乘法( generalized least square)
❖ 结构方程构建步骤 4
模型评价
对模型的整体拟合效果和单一参数的估计值进行评价。如 果模型拟合效果不佳,可以对模型进行修正来提高模型拟合效 果。
❖ 模型识别
自由参数:未知并需要估计的参数。
固定参数:不自由的并固定于设定值的参数。如在测量模型中,或 者将每个潜在变量标识的因子负荷之一设定为1,或将该潜在变量 的方差设定为1;对于结构方程,一些通径系数应该被设定为0,这 意味着被设定为无影响作用。
限制参数,那些未知的,但被规定相等于另一个或另一项参数值的 参数。
(2)打开AMOS对话框 执行“分析”——AMOS 命令,打开结构方程分析 的主对话框。操作过程见 图
❖ AMOS界面图
❖ File的下拉菜单
(3)AMOS界面简介——菜单栏的主要功能 File菜单,在File按钮下拉的菜单之中,提供了文件存取的 一系列选项,如图所示。各选项功能简介如下:
•File菜单 • New是在绘图区新建一个空白的路径图; • New with Template是从Templete文件夹中导 出*.amt文件; • Open是打开一个已知位置的存储文件; • Retrieve Backup是打开之前存储的备份文件; • Save是存储正在编辑的路径图; • Save as是把正在编辑的路径图存储至特定的位 置并重新命名;
如果在研究中所涉及的变量有部分为不可观测到的潜变量,此 时必须首先完成该潜变量的构建,将其转化为可观测的变量后再对 变量间可能的关系进行处理,在这一情况中,结构方程模型可以同 时处理测量关系和结构关系。
主成分分析的基本思想
它通过对原始变量相关矩阵或协方差矩阵内部结构关系的 研究,利用原始变量的线性组合形成几个综合指标(主成分), 在保留原始变量主要信息的前提下起到降维与简化问题的作用 ,使得在研究复杂问题时更容易抓住主要矛盾。
第9章 结构方程模型
第9章 结构方程模型
❖ 本章学习目标
理解结构方程分析的基本思想与原理 了解结构方程模型分析方法的优点 熟悉结构方程模型中常用的概念 掌握结构方程模型构建的步骤 熟练掌握应用SPSS软件中的AMOS插件进行结构方程模
拟的操作 掌握实验结果的分析与利用 了解结构方程模型在经济管理数据分析中的应用
(3)可以在一个模型中同时处理因素的测量和因素之间的结构 传统的统计方法中,因素自身的测量和因素之间的结构关系往
往是分开处理的——对因素先进行测量,评估概念的信度与效度, 通过评估标准之后,才将测量资料用于进一步的分析。
在结构方程模型中,则允许将因素测量与因素之间的结构关系 纳入同一模型中同时予以拟合,这不仅可以检验因素测量的信度和 效度,还可以将测量信度的概念整合到路经分析等统计推理中。
• Data Files是选择模型拟合所采用的数据文件;
(3)AMOS界面简介——菜单栏的主要功能 • Print是打印正在编辑的路径图; • File Manager是管理正在编辑的与文件相关的 一系列文件; • Exit是退出AMOS程序。
Exit下面提供了连接到AMOS最近访问的几个路径图文件 的快捷方式。单击该文件名即可打开相应的路径图文件。
❖ 结构方程模型的优点
(4)允许更具弹性的模型设定 在传统建模技术中,模型的设定通常限制较多,例如,单一指
标只能从属于一个因子,模型自变量之间不能有多重共线性等。 结构方程模型既可以处理单一指标从属于多个因子的因子分析,
也可以处理多阶的因子分析模型。在因素结构关系拟合上,也允许 自变量之间存在多重共线性关系。
• Estimation标签下提供了模型拟合方法的选项,在AMOS分析中 使用最多的是最大似然法,当然,在这一标签之下也提供了其他 几种拟合方法;
• Numerical标签下提供了模型分析过程中迭代法设定的选项,因 为模型的拟合实际上是用迭代法予以实现的;Bias标签下提供了 采用数据资料协方差矩阵进行模型拟合时的一些设定选项;
• Pen Width标签下提供了路径图绘制过程中线条和箭头的大 小格式选择;
• Misc标签下提供了界面属性的一些细微之处的调整,例如, 是否在绘图区设置带有方格的背景,图形过于密集而使用工
具栏上的放大工具查看时的放大倍率等;
• Page Layout标签下提供了界面设置的一些选项,例如绘图 区的上下和左右边距,绘图区是横向还是纵向等,使用者需
(2)可以同时处理多个因变量 在传统计量模型中,方程右边的因变量一般只有一个,但是在
管理学等社会科学领域,因变量常常有多个,例如员工素质可以影 响企业文化,也可以影响企业绩效,这样在结构方程模型中,允许 同一模型中出现多个因变量,在模型拟合时对所有变量的信息都予 以考虑,可以增强模型的有效性。
❖ 结构方程模型的优点
为了方便绘图,这些编辑工具基本上在工具栏中都可以找 到。使用者只需点击工具栏上的图标就可以激活这些工具。
❖ View/Set的下拉菜单
•Interface Properties之下提供了一个菜单,用于设置路径 图编辑界面的属性,如图所示。
Interface Properties
• Language标签下提供了文件界面语言的选择; • Typefaces标签下提供了变量名字、参数值、图形标题的字 体格式选择;
第9章 结构方程模型
❖ 结构方程模型(Structure Equation Modeling, SEM) 是应用线性方程系统表示观测变量与潜变量之间,以及 潜变量之间关系的一种方法,其实质是一种广义的一般 线性模型。与传统的线性回归模型不同,结构方程模型 允许研究人员能够同时检验一批回归方程,而且这些回 归方程在模型形式、变量设置、方程假设等方面也与传 统回归迥然不同,因此,其适用范围也比传统回归分析 更为多元化。