第14章用力法计算超静定结构

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X1←↓↑→X1
X2
第14章用力法计算超静定结构
4
(3) 在刚结处作一切口,或去掉一个固定端,相当于去掉
Hale Waihona Puke Baidu
←↓
三个约束。
← ↓ X1 X3 X2
(4)将刚结改为单铰联结,相当于去掉一个约束。
X1
X1
第14章用力法计算超静定结构
5
例1: 确定图示结构的超静定次数。 2 1 3
n=6
第14章用力法计算超静定结构
第十四章 用力法计算超静定结构
学习要求: ➢ 了解超静定次数的判断; ➢ 掌握力法计算超静定结构在荷载下的内力, 对称性的应用; ➢ 理解力法的基本原理。
第14章用力法计算超静定结构
1
第十四章 用力法计算超静定结构
主要内容: 14.1 超静定结构概述 14.2~4、7 力法的基本原理及其应用 14.5 对称性的利用 14.6 超静定结构的位移计算 14.8 支座移动和温度改变时的计算 14.9 超静定结构的特性
(5)超静定组合结构。
第14章用力法计算超静定结构
8
➢ 超静定结构的解法 综合考虑二个方面的条件: (1)平衡条件; (2)几何条件;
具体求解时,有两种基本(经典)方法— 力法和位移法。
第14章用力法计算超静定结构
9
14.2~4、7 力法的基本原理及其应用
教学要求:
➢ 理解力法的基本概念; ➢ 掌握力法的基本解题过程,能够利用力法求解
8m
6m
(1)基本体系 —基本未知量
(2)位移协调条件 —写力法基本方程
(3)求系数和自由项 —单位荷载法
(4)解力法方程 —求基本未知量
第14章用力法计算超静定结构
24
20kN/m
C I1 D
I2
I2
A
B
X1
8m
6m
(1)基本体系 —基本未知量
(2)位移协调条件 —写力法基本方程
1P 11X1 0
第14章用力法计算超静定结构
25
20kN/m
C I1 160 I2
A MP
8m 6
M1
D
I2 B
6m
(3)求系数和自由项 —单位荷载法
第14章用力法计算超静定结构
18
q
0.5qa2
A
B
A
a
X1
3 8
qa
A
a
3 qa2 8
(6)叠加法作弯矩图
M M1X1 MP
1 qa2 8
A
第14章用力法计算超静定结构
B MP
B
M1 MX1
1
X1
3 8
qa
1 qa2 8
M
0
B
19
小结
1P 11X1 0
(1)确定基本体系——确定基本未知量 (2)根据位移协调条件——写出力法基本方程 (3)求出系数和自由项——单位荷载法 (4)解力法方程 ——求解基本未知量
17
(3)作出基本结构的 荷载弯矩图,单位弯矩图
1P 11X1 0
0.5qa2
(4)求出系数和自由项
A
B
—单位荷载法
MP
1P
qa4 8EI
11
a3 3EI
A
B
X1
1P
11
3 qa 8
(5)解力法方程
a
M1
1
X1为正值,说明基本未知量的方向
与假设方向相同;如为负值,则方
—求解基本未知量 向相反。
简单的超静定结构。
第14章用力法计算超静定结构
10
1 引例
q
q
A
BA
a
B
a
解超静定问题时,我们不是孤立地研究超静定问题, 而是利用静定结构与超静定结构之间的约束,从中找到由 静定问题过渡到超静定问题的途径。
第14章用力法计算超静定结构
11
q
A
B
a
X1
q
A
B
a
X1
X1 ?
思考
第14章用力法计算超静定结构
第14章用力法计算超静定结构
14
q
A
B A 变形协调条件
a
Δ1=Δ1P+Δ11=0
q
Δ1P:基本体系在荷载q单独
A
B
作用下沿X1方向产生的位移;
Δ1P
Δ11
Δ11:基本体系在荷载X1单
A
B
独作用下沿X1方向产生的
X1
位移;
第14章用力法计算超静定结构
15
1 1P 11 0
δ11 : 在X1=1单独作用下,基本
n1X1 n2X2 ....nnXn nP 0
M M 1 X 1 M 2 X 2 .. .M .n X n M P
N N 1 X 1 N 2 X 2 .. .N n .X n N P
R R 1 X 1 R 2 X 2 .. R .n .X n R P
第14章用力法计算超静定结构
22
系数和自由项 ➢ 梁、刚架:
第14章用力法计算超静定结构
2
14.1 超静定结构概述
➢ 超静定结构 几何不变且具有多余约束(外部或内部)
A
B
PC
有一个多余约束
P 有二个多余约束
第14章用力法计算超静定结构
3
➢ 超静定次数 多余约束的个数。
去掉或切断一根链杆,相当于去掉一个约束。
↓ ↑X1
拆开一个单铰,相当于去掉两个约束。
第14章用力法计算超静定结构
20
P
B
C
P
X1
B
C
X2
A
A
11x1 12x2 1P 0
21x1 22x2 2P 0
第14章用力法计算超静定结构
21
n 次超静定结构力法基本方程:
11X1 12X2 ....1nXn 1P 0
21X1 22X2
..........
....2nXn
2P
0
6
例2: 确定图示结构的超静定次数。
n=3×7=21
对于具有较多框格的结构, 可按框格的数目确定,因为一 个封闭框格,其超静定次数等 于3。
当结构的框格数目为 f ,则 n=3f 。
第14章用力法计算超静定结构
7
➢ 超静定结构的类型
(1)超静定梁; (2)超静定桁架;
(3)超静定拱;
(4)超静定刚架;
12
B点的位移条件Δ1=0
q
q
A
BA
B
a
Δ1P
Δ1P:荷载q单独作用下沿X1方向产生的位移;
Δ11:荷载X1单独作用下沿X1方向产生的位移; Δ11
q
A
BA
B
a
X1
X1
第14章用力法计算超静定结构
13
2 力法的基本概念
力法的基本体系
q
q
A
BA
B
a
a
X1
力法的基本未知量
B点的位移条件Δ1=0
变形协调条件
结构沿X1方向产生的位移
A
根据叠加原理
δ11 B
X1=1
11 11X1
1P 11X1 0
力法的基本方程
第14章用力法计算超静定结构
16
3 力法解题的基本步骤 q
A
B
a
(1)确定基本体系
A
—确定基本未知量
q
B
a
X1
(2)根据位移协调条件
—写出力法基本方程
1P 11X1 0
第14章用力法计算超静定结构
ii
M i 2 ds
EI
Ai yi EI
ij
M i M j ds EI
Aj yi EI
iP
M i M P ds EI
➢ 桁架:
2
ii
Ni l EA
ij
Ni N jl EA
iP
Ni N Pl EA
第14章用力法计算超静定结构
23
➢ 刚架
20kN/m
C I1 D
I2
I2
A
B
相关文档
最新文档