人教版七年级下册数学第2课时 实数的运算课件
合集下载
人教版数学七年级下册-实数的性质及运算
a,当 a 0 时.
例2 求下列各数的相反数和绝对值:
3,π 3.14. 解: 因为 ( 3) 3, (π 3.14) 3.14 π,
所以 3,π 3.14 的相反数分别为
3,3.14 π.
由绝对值的意义得
3 3,π 3.14 π 3.14.
练一练
(1)求 3 2的7 相反数; (2)已知 | a | = 3,求 a.
解:(1)∵ 3 64 =-4,
∴3 (2)∵
64 的相反数是4,倒数是 225 =15,
1 4
,绝对值是
4.
∴
225
的相反数是-15,倒数是
1 15
,绝对值是15.
(3)
11 的相反数是- 11,倒数是
1 ,绝对值是 11 .
11
练一练 1. 3 的相反数是 3 ,
π 的相反数是 π , 3 27 的 相反数是 -3.
(2) 因为 3 3, 3 3,所以 a 的值是 3 和 3.
实数的运算
填空:设 a,b,c 是任意实数,则
(1)a + b = b + a (加法交换律);
(2)(a + b) + c = a + (b + c) (加法结合律);
(3)a + 0 = 0 + a = a ;
(4)a + (-a) = (-a) + a = 0
;
(5)ab = ba (乘法交换律); (6)(ab)c = a(bc) (乘法结合律); (7) 1 ·a = a ·1 = a ;
(8)a(b + c) = ab + ac (乘法对于加法的分配律),
典例精析 例4 计算下列各式的值: (1)( 3 2) 2;
例2 求下列各数的相反数和绝对值:
3,π 3.14. 解: 因为 ( 3) 3, (π 3.14) 3.14 π,
所以 3,π 3.14 的相反数分别为
3,3.14 π.
由绝对值的意义得
3 3,π 3.14 π 3.14.
练一练
(1)求 3 2的7 相反数; (2)已知 | a | = 3,求 a.
解:(1)∵ 3 64 =-4,
∴3 (2)∵
64 的相反数是4,倒数是 225 =15,
1 4
,绝对值是
4.
∴
225
的相反数是-15,倒数是
1 15
,绝对值是15.
(3)
11 的相反数是- 11,倒数是
1 ,绝对值是 11 .
11
练一练 1. 3 的相反数是 3 ,
π 的相反数是 π , 3 27 的 相反数是 -3.
(2) 因为 3 3, 3 3,所以 a 的值是 3 和 3.
实数的运算
填空:设 a,b,c 是任意实数,则
(1)a + b = b + a (加法交换律);
(2)(a + b) + c = a + (b + c) (加法结合律);
(3)a + 0 = 0 + a = a ;
(4)a + (-a) = (-a) + a = 0
;
(5)ab = ba (乘法交换律); (6)(ab)c = a(bc) (乘法结合律); (7) 1 ·a = a ·1 = a ;
(8)a(b + c) = ab + ac (乘法对于加法的分配律),
典例精析 例4 计算下列各式的值: (1)( 3 2) 2;
人教版《实数》优秀课件初中数学ppt
品比赛,小红很高兴,他 想裁出一块面积为25dm2 的正方形画布,画上自己 的得意之作参加比赛,这 块正方形画布的边长应取 多少?你能帮小明算一算 吗?
二、推进新课
填表1
正方形的边长 1 正方形的面积 1
3 0.1 9 0.01
思考:你能从表格中发现什么共同点吗?
已知一个正数,求这个正数的平方, 这就是平方运算。
一、创设情境,导入新课 一、创设情境,导入新课 算数平方根的数学符号表示 会用根号表示一个数的算术平方根(重点); 一个正数有两个算术平方根,且互为相反数。 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 第1课时 算术平方根 了解算术平方根的概念; 思考:你从表2中能发现什么? 算术平方根具有双重非负性 算数平方根的数学符号表示 已知一个数的平方,求这个数的运算叫做开平方。 会用根号表示一个数的算术平方根(重点); 了解算术平方根的概念; 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 一个正数有两个算术平方根,且互为相反数。 用大小完全相同的250块正方形地板砖,铺一间面积为160 m2的地面,每块地板砖的边长是多少? 第1课时 算术平方根 会用根号表示一个数的算术平方根(重点); 已知一个正数,求这个正数的平方,这就是平方运算。
已知一个数的平方,求这个数的运算叫做开平方。
算数平方根的数学符号表示
所以m+n=2
了解算术平方根的概念;
算术平方根具有双重非负性
问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方
二、推进新课
填表1
正方形的边长 1 正方形的面积 1
3 0.1 9 0.01
思考:你能从表格中发现什么共同点吗?
已知一个正数,求这个正数的平方, 这就是平方运算。
一、创设情境,导入新课 一、创设情境,导入新课 算数平方根的数学符号表示 会用根号表示一个数的算术平方根(重点); 一个正数有两个算术平方根,且互为相反数。 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 第1课时 算术平方根 了解算术平方根的概念; 思考:你从表2中能发现什么? 算术平方根具有双重非负性 算数平方根的数学符号表示 已知一个数的平方,求这个数的运算叫做开平方。 会用根号表示一个数的算术平方根(重点); 了解算术平方根的概念; 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 一个正数有两个算术平方根,且互为相反数。 用大小完全相同的250块正方形地板砖,铺一间面积为160 m2的地面,每块地板砖的边长是多少? 第1课时 算术平方根 会用根号表示一个数的算术平方根(重点); 已知一个正数,求这个正数的平方,这就是平方运算。
已知一个数的平方,求这个数的运算叫做开平方。
算数平方根的数学符号表示
所以m+n=2
了解算术平方根的概念;
算术平方根具有双重非负性
问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方
七年级数学下册:第六章实数6.3实数第2课时实数的运算教学课件(新版新人教版)
18、只要愿意学习,就一定能够学会。——列宁 19、如果学生在学校里学习的结果是使自己什么也不会创造,那他的一生永远是模仿和抄袭。——列夫·托尔斯泰
20、对所学知识内容的兴趣可能成为学习动机。——赞科夫 21、游手好闲地学习,并不比学习游手好闲好。——约翰·贝勒斯 22、读史使人明智,读诗使人灵秀,数学使人周密,自然哲学使人精邃,伦理学使人庄重,逻辑学使人善辩。——培根 23、我们在我们的劳动过程中学习思考,劳动的结果,我们认识了世界的奥妙,于是我们就真正来改变生活了。——高尔基 24、我们要振作精神,下苦功学习。下苦功,三个字,一个叫下,一个叫苦,一个叫功,一定要振作精神,下苦功。——毛泽东 25、我学习了一生,现在我还在学习,而将来,只要我还有精力,我还要学习下去。——别林斯基、学习外语并不难,学习外语就像交朋友一样,朋友是越交越熟的,天天见面,朋友之间就亲密无间了。——高士其 2、对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如了。——高士其 3、学和行本来是有联系着的,学了必须要想,想通了就要行,要在行的当中才能看出自己是否真正学到了手。否则读书虽多,只是成为一座死书库。——谢觉哉、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。 12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 13、你想过普通的生活,就会遇到普通的挫折。你想过最好的生活,就一定会遇上最强的伤害。这个世界很公平,想要最好,就一定会给你最痛。
D. 8
11.计算: (1)3 3-5 3; (2)1- 2+ 3- 2; (3)2 3+3 2-5 3-3 2; (4)| 3-2|+| 3-1|.
20、对所学知识内容的兴趣可能成为学习动机。——赞科夫 21、游手好闲地学习,并不比学习游手好闲好。——约翰·贝勒斯 22、读史使人明智,读诗使人灵秀,数学使人周密,自然哲学使人精邃,伦理学使人庄重,逻辑学使人善辩。——培根 23、我们在我们的劳动过程中学习思考,劳动的结果,我们认识了世界的奥妙,于是我们就真正来改变生活了。——高尔基 24、我们要振作精神,下苦功学习。下苦功,三个字,一个叫下,一个叫苦,一个叫功,一定要振作精神,下苦功。——毛泽东 25、我学习了一生,现在我还在学习,而将来,只要我还有精力,我还要学习下去。——别林斯基、学习外语并不难,学习外语就像交朋友一样,朋友是越交越熟的,天天见面,朋友之间就亲密无间了。——高士其 2、对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如了。——高士其 3、学和行本来是有联系着的,学了必须要想,想通了就要行,要在行的当中才能看出自己是否真正学到了手。否则读书虽多,只是成为一座死书库。——谢觉哉、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。 12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 13、你想过普通的生活,就会遇到普通的挫折。你想过最好的生活,就一定会遇上最强的伤害。这个世界很公平,想要最好,就一定会给你最痛。
D. 8
11.计算: (1)3 3-5 3; (2)1- 2+ 3- 2; (3)2 3+3 2-5 3-3 2; (4)| 3-2|+| 3-1|.
人教版七年级数学下7.1.1有序实数对课件(共42张PPT)
(3)甲地距我市29km
如图,写出表示下列各点的有序数对:
如图,写出表示下列各点的有序数对:
或者老师说一个数对,请代表相应位置的人站起来。
如图,写出表示下列各点的有序数对:
下列关于有序数对的说法正确的是( )
5排8号 5排6号 在数轴上,确定一个点的位置需要几个数据呢?
问题⑴: 新学期开始,老师要重新调整学生的座位,老师如何描述才能让学生准确地找到自己的新座位呢?
的方式表示出图中“怪兽”经过的其他几个位置吗?
排5
(4,5) (5,5)
4
(5,4)
(7,4)
3
(3,3)
(4,3)
在生活中,确定物体的位置,还有
其他方法吗2? (1,2)(3,2)(7,3) (8,3)
1 (1,1)
列
1
2
3
4
5
6
7
8
如图( 1 , 3 )表示 第一列第三排,请用 彩笔把以下位置的五 角星涂上颜色。
(4 ,6)
(3 ,4)
(5 ,4)
设计图案
排 7 6
5
4
3
(2 ,2)
2
(4 ,2)
1
(6 ,2)
12
34
5
6
7列
神州飞船的发 射和回收都那么成 功 ,圆了几代中国 人的梦想,让全中 国人为之骄傲和自 豪!但是,同学们知 道我们的科学家是 怎样迅速地找到返 回舱着陆的位置的 吗?
神州飞船
这全依赖于 “GPS——卫星全球定位系统”
A.(7,4)
B.(4,7)
C.(7,5)
D.(7,6)
例1. 如图,点A表示3街与5大道的十字路口,点B 表示5街与3大道的十字路口,如果用(3,5)→(4,5) →(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么 你能用同样的方法写出由A到B的其他几条路径吗?
人教版七年级数学下册精品作业课件(RJ) 第六章 实 数 实数 第2课时 实数的比较与运算
(2)|2- 5 |+|3- 5 |的值是_1__.
三、解答题(共 40 分) 18.(8 分)求出下列各式中 x 的值:
(1)|x|= 5 ;
(2)|x-1|= 2 .
解:(1)x=± 5
(2)x= 2 +1 或 x=- 2 +1
19.(8 分)计算:
(1)|-5|-3 27 +(-2)2+4÷(-23 );
A.-3 与 3
B.|-3|与-13
C.|-3|与13
D.-3 与 (-3)2
4.(4 分)实数 3 -2 的相反数是_2_-___3_,绝对值是_2_-___3_.
5.(3 分)化简: (1)(襄阳中考)|1- 2 |=__2__-__1_;
(2) (1- 2)2 =_Байду номын сангаас2__-__1_.
6.(3 分)下列四个实数中,最小的是( B )
12.(8 分)计算: (1) 5 +2 2 -( 5 + 2 ); 解:原式= 2 (2)(杭州中考)|1+3 3 |+|1- 3 |; 解:原式=4 3
(3)| 3 - 5 |+3( 3 - 5 ); 解:原式=2 3 -2 5 (4)3( 2 + 3 )+3( 2 -2 3 ). 解:原式=6 2 -3 3
已知 7+3 19 的小数部分是 m,11-3 19 的小数部分为 n,求 m+n. 解:∵8<19<27,∴2<3 19 <3,∴9<7+3 19 <10,∴m=7+3 19 -9 =3 19 -2.∵2<3 19 <3,∴-3<-3 19 <-2,∴8<11-3 19 <9,∴n =11-3 19 -8=3-3 19 ,∴m+n=3 19 -2+3-3 19 =1
9.(3 分)(包头中考)计算- 4 -|-3|的结果是( B ) A.-1 B.-5 C.1 D.5
三、解答题(共 40 分) 18.(8 分)求出下列各式中 x 的值:
(1)|x|= 5 ;
(2)|x-1|= 2 .
解:(1)x=± 5
(2)x= 2 +1 或 x=- 2 +1
19.(8 分)计算:
(1)|-5|-3 27 +(-2)2+4÷(-23 );
A.-3 与 3
B.|-3|与-13
C.|-3|与13
D.-3 与 (-3)2
4.(4 分)实数 3 -2 的相反数是_2_-___3_,绝对值是_2_-___3_.
5.(3 分)化简: (1)(襄阳中考)|1- 2 |=__2__-__1_;
(2) (1- 2)2 =_Байду номын сангаас2__-__1_.
6.(3 分)下列四个实数中,最小的是( B )
12.(8 分)计算: (1) 5 +2 2 -( 5 + 2 ); 解:原式= 2 (2)(杭州中考)|1+3 3 |+|1- 3 |; 解:原式=4 3
(3)| 3 - 5 |+3( 3 - 5 ); 解:原式=2 3 -2 5 (4)3( 2 + 3 )+3( 2 -2 3 ). 解:原式=6 2 -3 3
已知 7+3 19 的小数部分是 m,11-3 19 的小数部分为 n,求 m+n. 解:∵8<19<27,∴2<3 19 <3,∴9<7+3 19 <10,∴m=7+3 19 -9 =3 19 -2.∵2<3 19 <3,∴-3<-3 19 <-2,∴8<11-3 19 <9,∴n =11-3 19 -8=3-3 19 ,∴m+n=3 19 -2+3-3 19 =1
9.(3 分)(包头中考)计算- 4 -|-3|的结果是( B ) A.-1 B.-5 C.1 D.5
实数课件人教版数学七年级下册3
填空:设a,b,c是任意实数,则
(1)a+b = b+a (2)(a+b)+c = a+(b+c) (3)a+0 = 0+a = a
(加法交换律); (加法结合律);
;
(4)a+(-a) = (-a)+a = 0
;
(5)ab = ba
(乘法交换律);
(6)(ab)c =a(bc) (乘法结合律);
(1)( 3 2) 2;
(2)3 3 2 3.
解:(1)( 3 2) 2 3 2 2 3
(2)3 3 2 3 (3 2) 3 5 3
在实数运算中,当遇到无理数并且需要求出结果的近似值时, 可以按照所要求的精确度用相应的近似有限小数去代替无理 数,再进行计算.
例3 计算(结果保留小数点后两位):
(1)规定用符号[m]表示实数 m 的整数部分,例如:[23 ]=0,[ 6 ]=2, 按此规定[ 10 +1]的值为__4__;
(2)若 7 的整数部分为 a,小数部分为 b,且|c|= 7 ,求 c(a-b)- 4(c-2)的值.
解:(2)∵ 4 < 7 < 9 ,即 2< 7 <3,∴a=2,b= 7 -2, ∴a-b=2-( 7 -2)=4- 7 ,∵|c|= 7 ,∴c=± 7 .当 c= 7 时,原式= 7 (4- 7 )-4( 7 -2)=4 7 -7-4 7 +8=1;当 c =- 7 时,原式=- 7 (4- 7 )-4(- 7 -2)=-4 7 +7+ 4 7 +8=15,即 c(a-b)-4(c-2)的值为 15 或 1
(乘法对于加法的分配律),
在进行实数的运算时,有理数的运算法则及运算性质等同样适用.
6-3 实数 第二课时 实数的性质及运算 22-23学年人教版数学七年级下册
实数
实数的运算律 实数的运算
实数的大小比较
课后作业 见本课时练习
实数之间不仅可以进行加减乘除(除数不为 0)、 乘方运算,而且正数及 0 可以进行开平方运算,任意 一个实数可以进行开立方运算. 在进行实数的运算时, 有理数的运算性质等同样适用.
例 2 计算下列各式的值. (1) ( 3 2) 2 (2)3 3 2 3
解:(1)原式 = 3 ( 2 2)= 3 0 = 3
练习
4.计算.
(1) 2 2 3 2
(2) 2 3 2 2
解:原式 2
原式 3 2 2 2 3 2
1.判断: (1) 3 64 4; (2) 2 的绝对值是 2 ; (3) 3 的相反数是 3 .
(×) (× ) ()
习题6.3
习题6.3
课堂小结 在实数范围内,相反数、绝对值、 倒数的意义和有理数范围内的相反 数、绝对值、倒数的意义完全一样.
(3)a+0 = 0+a = a
;
(4)a+(-a) = (-a)+a = 0
;
(5)ab = ba (乘法交换律);
(6)(ab)c = a(bc) (乘法结合律);
(7) 1 ·a = a ·1 = a ;
(8)a(b+c) = ab+ac (乘法对于加法的分配律), (b+c)a = ba+ca (乘法对于加法的分配律);
(9)实数的减法运算规定为a-b = a+ (-b) ;
(10)对于每一个非零实数a,存在一个实数b, 满足a·b = b·a =1,我们把b叫作a的__倒_数__;
(11)实数的除法运算(除数b≠0),规定为
a÷b = a·b1 ;
实数的运算律 实数的运算
实数的大小比较
课后作业 见本课时练习
实数之间不仅可以进行加减乘除(除数不为 0)、 乘方运算,而且正数及 0 可以进行开平方运算,任意 一个实数可以进行开立方运算. 在进行实数的运算时, 有理数的运算性质等同样适用.
例 2 计算下列各式的值. (1) ( 3 2) 2 (2)3 3 2 3
解:(1)原式 = 3 ( 2 2)= 3 0 = 3
练习
4.计算.
(1) 2 2 3 2
(2) 2 3 2 2
解:原式 2
原式 3 2 2 2 3 2
1.判断: (1) 3 64 4; (2) 2 的绝对值是 2 ; (3) 3 的相反数是 3 .
(×) (× ) ()
习题6.3
习题6.3
课堂小结 在实数范围内,相反数、绝对值、 倒数的意义和有理数范围内的相反 数、绝对值、倒数的意义完全一样.
(3)a+0 = 0+a = a
;
(4)a+(-a) = (-a)+a = 0
;
(5)ab = ba (乘法交换律);
(6)(ab)c = a(bc) (乘法结合律);
(7) 1 ·a = a ·1 = a ;
(8)a(b+c) = ab+ac (乘法对于加法的分配律), (b+c)a = ba+ca (乘法对于加法的分配律);
(9)实数的减法运算规定为a-b = a+ (-b) ;
(10)对于每一个非零实数a,存在一个实数b, 满足a·b = b·a =1,我们把b叫作a的__倒_数__;
(11)实数的除法运算(除数b≠0),规定为
a÷b = a·b1 ;
第二课时实数的性质及运算-七年级数学下册同步精品课件(人教版)
1
A.3与
3
B.2与(-2)2
3
C. ( − 1)2与 −1
D.5与/-5/
课堂练习
3.判断:
(1)
−=5
(× )
的绝对值是 −
(
×
)
(3) − 的相反数是
(
)
(2)
课堂练习
4.下列各组数中互为相反数的一组是( C )
A.3
与
C.
(−)
B.2与(-2)2
(2)指出 5 , 1 3 3 分别是什么数的相反数;
(3)求 −的绝对值
(4)已知一个数的绝对值是 3 ,求这个数.
解: (1)因为 ( 6) 6, (π 3.14) 3.14 π ,
所以 6, π 3.14 的相反数分别为 6, 3.14 π ;
(2)因为 ( 5) 5, ( 3 3 1) 1 3 3 ,
是
巩固练习
3.- 是 的相反数; - 的相反数
.
4.| -3|- |2- |的值是( C )
A.5
B.-1
C.5-2
-
D.2 -5
新知探究
实数的运算
ห้องสมุดไป่ตู้
判断下列等式是否成立.如果成立,这些等式用了什么运算律?这些运
算律在实数范围内能使用吗?
加法交换律
3 + 2= 2+ 3
乘法交换律
巩固练习
5.计算(-
)-
(-
【解析】原式=
)+
(-
(-
A.3与
3
B.2与(-2)2
3
C. ( − 1)2与 −1
D.5与/-5/
课堂练习
3.判断:
(1)
−=5
(× )
的绝对值是 −
(
×
)
(3) − 的相反数是
(
)
(2)
课堂练习
4.下列各组数中互为相反数的一组是( C )
A.3
与
C.
(−)
B.2与(-2)2
(2)指出 5 , 1 3 3 分别是什么数的相反数;
(3)求 −的绝对值
(4)已知一个数的绝对值是 3 ,求这个数.
解: (1)因为 ( 6) 6, (π 3.14) 3.14 π ,
所以 6, π 3.14 的相反数分别为 6, 3.14 π ;
(2)因为 ( 5) 5, ( 3 3 1) 1 3 3 ,
是
巩固练习
3.- 是 的相反数; - 的相反数
.
4.| -3|- |2- |的值是( C )
A.5
B.-1
C.5-2
-
D.2 -5
新知探究
实数的运算
ห้องสมุดไป่ตู้
判断下列等式是否成立.如果成立,这些等式用了什么运算律?这些运
算律在实数范围内能使用吗?
加法交换律
3 + 2= 2+ 3
乘法交换律
巩固练习
5.计算(-
)-
(-
【解析】原式=
)+
(-
(-
中考数学专题复习课件(第2讲_实数的运算及大小比较)
D )
4.-23×(-2)2+2 的结果是( B ) A.18 B.-30 C.0
D.34
5.下列计算正确的是(
B
)
3 A. -27 =3 B.(π-3.14)0= 1 1- C.( ) 1=-2 D. 16 =± 4 2
目录 首页 上一页 下一页 末页
3 1- 6.设 a=20,b=(-3)2,c= -9,d=( ) 1,则 a、b、c、d 按由小到大的顺序排列正 2 确的是( A ) A.c<a<d< b B.b<d<a<c C.a<c<d<b D.b<c<a<d
)
(4)(2010· 毕节)若|m-3|+(n+2)2=0,则 m+2n 的值为( ) A.-4 B.-1 C.0 D.4 【点拨】本组题主要考查实数的简单运算及大小比较.(1)题画出数轴描出各点,最右边 1 的点表示的数即为最大的数;(2)题 A 选项结果为 1,C 选项结果为 ,D 选项结果为 3;(3) 3 题由图可知 a<0,b>0 且|a|>|b|,故 D 选项正确;(4)题因为 |m- 3|≥0,且(n+2)2≥0,又因为 |m-3|+(n+2) 2=0,所以 m-3= 0 且 n+2= 0.所以 m=3,n=- 2,所以 m+2n=3+2×(- 2)=-1.
下一页
末页
1.下列各数中,最大的数是( A.-1 B.0 C.1 D. 2
D )
2 2.如果□×(- )=1,则“□”内应填的实数是( 3 3 2 2 3 A. B. C.- D .- 2 3 3 2
3.下列各式,运算结果为负数的是( D A.-(-2)-(-3) B.(-2)×(-3) - - C.(-2) 2 D.(- 3) 3 )
【解答】(1)原式= 1-3+2- 1=- 1. 2 (2)原式=1+(- 3)-(2- 2)-2× 2 =1-3-2+ 2- 2=-4. (3)原式=3-1+ 3 2-4 2=2- 2. (4)原式=3+(- 2)- 2× 2 +1=3-2-1+1=1. 2
人教版七年级数学下册《实数》专题PPT课件
为 2 的整数是 1,将这个数减去其整数部分,差就是 2 的小数部分,又例如:∵22<( 7)2<32,即2< 7<3,
∴ 7的整数部分为2,小数部分为( 7 2).
请解答:
(1) 如果 5 的整数部分为a, 13 的整数部分为b,
求(a b)2 b(a 1)的立方根; (2) 若- 5 x y,其中 x 是整数,且0<y<1, 求 x、y 的值; (3) 在(1)(2)的条件下求(x a)(1 b y)的值.
a b 3 ( 13 3) a b 6 13
【应对策略】估算 a (a>0)在哪两个整 数之间及整数、小数的部分:根据算术平 方根的定义,有 m2<a<n2,其中 m,n 是 连续非负整数,则m< a<n,则 a 的整 数部分为 m,小数部分为 a m .
练一练
阅读下面的文字,解决问题:大家知道 2 是无理数, 而无理数是无限不循环小数,因此 2 的小数部分我们 不可能全部地写出来,于是小明用 2 1 来表示 2 的 小数部分,事实上,小明的表示方法是有道理的,因
第六章 实数
综合专题讲解
专题目录 专题一:算术平方根的非负性 专题二:实数的估算 专题三:比较实数大小的方法
专题一:算术平方根的非负性
例1 若 a 4 2b 10 0 互为相反数,求 a+b 的
算术平方根.
算术平方根有什么性质呢?
分析:算术平方根具有非负性 两式都为 0
a4
a-4 = 0
a=4
2b 10 2b-10 = 0 b = 5
a b 9 a+b 的算术平方根为 3
例2 如果 a 1 与 2 b 互为相反数,那么 a+b 的绝
对值为____2___1__. 算术平方根和绝对值有什 么性质呢?
∴ 7的整数部分为2,小数部分为( 7 2).
请解答:
(1) 如果 5 的整数部分为a, 13 的整数部分为b,
求(a b)2 b(a 1)的立方根; (2) 若- 5 x y,其中 x 是整数,且0<y<1, 求 x、y 的值; (3) 在(1)(2)的条件下求(x a)(1 b y)的值.
a b 3 ( 13 3) a b 6 13
【应对策略】估算 a (a>0)在哪两个整 数之间及整数、小数的部分:根据算术平 方根的定义,有 m2<a<n2,其中 m,n 是 连续非负整数,则m< a<n,则 a 的整 数部分为 m,小数部分为 a m .
练一练
阅读下面的文字,解决问题:大家知道 2 是无理数, 而无理数是无限不循环小数,因此 2 的小数部分我们 不可能全部地写出来,于是小明用 2 1 来表示 2 的 小数部分,事实上,小明的表示方法是有道理的,因
第六章 实数
综合专题讲解
专题目录 专题一:算术平方根的非负性 专题二:实数的估算 专题三:比较实数大小的方法
专题一:算术平方根的非负性
例1 若 a 4 2b 10 0 互为相反数,求 a+b 的
算术平方根.
算术平方根有什么性质呢?
分析:算术平方根具有非负性 两式都为 0
a4
a-4 = 0
a=4
2b 10 2b-10 = 0 b = 5
a b 9 a+b 的算术平方根为 3
例2 如果 a 1 与 2 b 互为相反数,那么 a+b 的绝
对值为____2___1__. 算术平方根和绝对值有什 么性质呢?
【新】人教版七年级数学下册第六章《实数的运算》公开课课件 (2).ppt
变式训练 1 3:|2- 5 |= 5 2 ,
|3-π|= π-3 . 解析:∵2< 5 ,∴|2- 5 |= 5 -2; ∵3<π,∴|3-π|=π-3.
第六章 实数
探究二:实数的运算 【例 2】 计算下列各式的值. (1)3( 3 + 2 )-2( 3 + 5 ); (2)|-3|+(-1)2013×(-1)2012- 3 27 +(-2)2;
第六章 实数
第2课时 实数的运算
1.理解实数的性质,能利用实数的性质求实数的相反数,绝对值等. 2.熟练进行实数的加、减、乘、除及乘方运算,并能运用运算律.
第六章 实数
1.实数的性质
(1)实数的相反数:实数 a 的相反数是 -a . (2)实数的绝对值:一个正实数的绝对值等于 它本身 ;0 的绝对值等于 0 实数的绝对值等于 它的相反数 .即设 a 表示一个实数,
解析:(1) 2 - 3 的相反数为-( 2 - 3 )= 3 - 2 , ∵ 2 - 3 <0,∴| 2 - 3 |=-( 2 - 3 )= 3 - 2 . (2)∵|x+3|= 5 ,∴x+3=± 5 , 即 x+3= 5 ,则 x= 5 -3, x+3=- 5 ,则 x=- 5 -3.
第六章 实数
;一个负
a ,a 0 时;
则|a|=
0 ,a=0
时;
a ,a 0 时;
2.实数的运算
(1)实数之间可以进行加、减、乘、除(除数不为 0)、乘方运算.正数及 0 可以进行
开平方 运算.任意一个实数都可以进行 开立方 运算.
(2)实数运算中,有理数的运算法则及运算性质、运算律等同样适用.
人教版2019学年数学七年级下 6.3 第2课时 实数的有关概念及运算课件 (共17张PPT)
随堂训练 1.判断:
(1)
(×)
×
B
B > >
5.计算: (1)2 3 3 2 5 3 3 2;
3 3
(2) 3 2 3 1; 1
(3)2 3 (4)2 2 3. 4
练一练
规律总结
2.①一个正实数的绝对值是它本身; ②一个负实数的绝对值是它的相反数; ③0的绝对值是0.
a, 当a 0时; a 0, 当a 0时;
a, 当a 0时.
2.实数的运算
填空:设a,b,c是任意实数,则
(1)a+b =
b+a
(加法交换律);
(2)(a+b)+c = a+(b+c)
(加法结合律);
0
ba
(5)(ab)c =
(乘法结合律);
(6) 1 ·a = a ·1 = a ;
ba+ca
倒数
≠
实数的平方根与立方根的性质: 每个正实数有且只有两个平方根,它们互为相反数.0的平 方根是0. 在实数范围内,负实数没有平方根.
在实数范围内,每个实数有且只有一个立方根,而且与 它本身的符号相同.
例2
解:
例3 计算(结果保留小数点后两位):
(1) 5 π ;
(2) 3 2.
(1) 5 π 2.236 3.142 5.38;
(2) 3 2 1.7321.414 2.45.
【方法总结】在实数运算中,如果遇到无理数,并 且需要求出结果的近似值时,可按要求的精确度用 相应的近似有限小数代替无理数,再进行计算.
③倒数 如果两个数的积是1,则这两个数互为倒数 . 思考:无理数也有相反数吗?怎么表示?有绝对值吗?怎么 表示?有倒数吗?怎么表示?
人教版七年级下册数学作业课件 第六章 实数 第二课时 实数的性质及运算
15.老师在上完了本章的内容后设计了如下问题: 定义:把形如 a+b m 与 a-b m (a、b 为有理数且 b≠0, m 为正整数且开方开不尽)的两个实数称为共轭实数. (1) 请你举出一对共轭实数; 解:如 8-2 5 与 8+2 5 (答案不唯一).
(2)3 2 与 2 3 是共轭实数吗?-2 3 与 2 3 呢? 解:3 2 与 2 3 不是共轭实数,-2 3 与 2 3 是共轭实数.
与
2 3
4.在数轴上表示- 3 的点与原点的距离是 3 ,
与原点的距离是 5 的点所表示的实数是 5 .
5.求下列等式中的 x 的值: (1)|x|= 7 ; 解:x=± 7 .
(2)|x|= 2 -1. 解:x= 2 -1 或 1- 2 .
知识点二 实数的运算
6.计算 25 - 3 27 的结果是
12.若规定一种运算为:a★b= 2 ×(b-a),如 3★5= 2 ×(5-3)=2 2 .则 2 ★ 3 8 = 2 2 2 .
【解析】 2 ★ 3 8 = 2 ★2= 2 (2- 2 2 2 2 )=2 2 - 2.
13.计算:
(1)|
3
-2|-(-2)2+2×
3 2
;
解:原式=2- 3 -4+ 3 =-2.
(3)共轭实数 a+b m ,a-b m 是有理数还是无理数? 解:共轭实数 a+b m ,a-b m 是无理数.
(4)共轭实数 a+b m 与 a-b m 的和、差分别是有理数还 是无理数? 解:∵a+b m +a-b m =2a,(a+b)-(a-b)=2b m , ∴共轭实数的和为有理数,差为无理数.
(4)3( 2 + 3 )-2( 2 - 3 ); 解:原式= 2 +5 3 .
人教版数学七年级下册 6.3 实数 课件
2,
2,求 − 的平方根.
得 + 2=3 + 2,
∵, 是有理数,
∴比较 + 2=3 + 2等号两边,得 = 3, = 1.
∴ − பைடு நூலகம் = 3 − 1 = 2,
∴ − 的平方根是± 2.
【例题4】 .设a与b互为相反数,c与d互为倒数,m的倒数等于它本身,化简
13−1
2
3
和 2;
解: (1)用求差法.
∵ 13 < 4.
∴
13−1
3
−
2
2
∴
13−1
2
=
3
<2.
13−1−3
2
=
13 − 4
2
< 0.
(2)
13−1
5
和
.
2
2
(2)平方和求差综合法
13−1
2
∵
又∵
> 0,
13−1
2
2
5
2
=
> 0.
14−2 13
4
=
7− 13
5
,
2
2
2
=
2.5
.
2
∵ 13 < 4.
1 1
= +2 − 2 + −
3 9
2
= .
9
5.若实数a,b互为相反数,c,d互为倒数,m是9的平方根,则− + +
3
5或17
+( − 1)2 = _______________.
无限不循环小数叫做无理数.
有理数和无理数统称为实数.
2019年春人教版七年级下数学《632实数的性质及运算》课件MnnPHM
(1)( 3 2) 2;(2)3 3 2 3
解:(1)( 3 2) 2 3 2 2 3
(2)3 3 2 3 (3 2) 3 5 3
一分耕耘一分收获
当堂练习
1.判断: (1) 3 64 4; (2) 2 的绝对值是 2 ; (3) 3 的相反数是 3 .
(×) (× ) ()
2. -π的绝对值是 π ,
3= 3 ,
0= 0 .
一分耕耘一分收获
总结归纳 1.a是一个实数,实数a的相反数为-a. 2.①一个正实数的绝对值是它本身;
②一个负实数的绝对值是它的相反数; ③0的绝对值是0.
a, 当a 0时; a 0, 当a 0时;
a, 当a 0时.
一分耕耘一分收获
例2 求下列各数的相反数和绝对值:
一分耕耘一分收获
6.计算
(1)2 3 3 2 5 3 3 2 3 3
(2) 3 2 3 1 1
4 (3)2 3 (4)2 2 3 =
一分耕耘一分收获
课堂小结
在实数范围内,相反数、绝对值、 倒数的意义和有理数范围内的相反 数、绝对值、倒数的意义完全一样.
实数 实数的运算律
实数的运算 用计算器计算 实数的大小比较
3,π 3.14.
解: 因为 ( 3) 3, (π- 3.14)= 3.14 π,
所以, 3,π 3.14 的相反数分别为
3, 3.14 π.
由绝对值的意义得:
3 3,π 3.14 π 3.14.
一分耕耘一分收获
练一练 (1)求 3 27 的相反数, (2)已知 a = 3 ,求a.
解:(1)因为3 27 3 ,3的相反数是-3,所以3 27 的相反数是-3.
;
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
= 30
=5 3
=3
在实数运算中,当遇到无理数并且需要求出 结果的近似值时,可以按照所要求的精确度用相 应的近似有限小数去代替无理数,再进行计算.
例 3 计算(结果保留小数点后两位)
(1) 5
(2) 3 2
解:(1) 5 ≈ 2.236 + 3.142 ≈ 5.38
(2) 3 2 ≈ 1.732×1.414 ≈ 2.45
比题目要求的精确度多取一位小数.
要生产一种容积为 36π L 的球形容器,这种
球形容器的半径是多少分米?(球的体积公式是
V= 4 πR3,其中 R 是球的半径)
3
解:由V= ∴R3 = 27,
4 3
πR3 得,36π =
4 3
πR3,
∴R = 3(dm).
答:这种球形容器的半径是 3 dm.
课后作业
a,当 a > 0时; | a | = 0,当 a = 0时;
– a,当 a < 0时.
例 1 (1)分别写出 6 ,π – 3.14 的相反数; 解:(1)因为
-( 6)= 6
–(π – 3.14)= 3.14 – π 所以, 6,π – 3.14 的相反数为 6 ,3.14 – π
(2)指出 5,1 3 3分别是什么数的相反数; (2)因为
基础巩固
1.填表.
随堂演练
实数 相反数 绝对值
3 8 17 2 3
2 17 2
3
2
2 17
3
2 3 1.4 2 3 1.7 2 3 2 1.4 1.7 3 2 3 2 1.4 3 1.7
2.计算
(1)3 2 2 2 解: 5 2
(1)3 3 3 3
3333
=0
综合运用
探究新知 知识点1 相反数与绝对值
有理数关于相反数和绝对值的意义同样适用于实数.
思考
(1) 2的相反数是_____2_,-π 的相反数 是___π___,0 的相反数是___0___;
(2)| 2 | =__2__,|-π| =π____,| 0 | =0____.
数 a 的相反数是 – a,
任意一个实数 一个正实数的绝对值是它本身;一个负实数 的绝对值是它的相反数;0 的绝对值是 0.
►1Our destiny offers not the cup of despair, but the chalice of opportunity. ►So let us seize it, not in fear, but in gladness. · 命运给予我们的不是失望之酒,而是机会之杯。 因此,让我们毫无畏惧,满心愉悦地把握命运
实数之间不仅可以进行加减 乘除(除数不为 0)、乘方运算, 而且正数及 0 可以进行开平方运 算,任意一个实数可以进行开立 方运算. 在进行实数的运算时, 有理数的运算性质等同样适用.
例 2 计算下列各式的值.(1) ( 3来自 2) 2 (2) 3 3 2 3
解: = 3 ( 2 2)
=(3+2) 3
►Suffering is the most powerful teacher of life. 苦难是人生最伟大的老师。 ►For man is man and master of his fate. 人就是人,是自己命运的主人。 ►A man can't ride your back unless it is bent. 你的腰不弯,别人就不能骑在你的背上。
所以绝对值是 3的数是 3或 3.
练习
1.求下列各数的相反数与绝对值.
相
– 2.5
7
2 2 3
0反 数
2.5 7
32
0
2
绝
2.5
7
2 3
0对
2
值
2.求下列各式中的实数 x.
(1)|x| =2 3
(2)|x| = 0
x2 3
x0
(3)|x| = 10
(4)|x| = π
x 10
x
知识点2 实数的运算
练习
1.计算. (1) 2 2 3 2
2
(2) 2 3 2 2 3 22 2 3 2
误区诊断
误区一:没有掌握实数的运算律
例1 计算 3 3 2 1
2
错解:原式= 3 3 1= 3 3
正解:原式= 3 3 1 1 =
3 3
222
错因分析:本题错将乘法结合律用在乘除 混合运算上了.对于这类同级运算,应该按从左 到右的顺序进行计算,乘除混合运算通常先将 除法转变为乘法再计算.
3.若 a2 = 25,|b|=3,则 a + b 的所有可能 值为( D )
A.8 B.8或2 C.8或-2 D.±8或±2
4.计算.
( 1)2 3 8 1
2
4
12 12 3 42
1 3 4
32
课堂小结
01 在进行实数运算时,有理数的运算法则及
运算性质等同样运用.
02 近似计算时,计算过程中所取的近似值要
1. 从课后习题中选取; 2. 完成练习册本课时的习题.
复习巩固
习题6.3
综合运用
拓广探索
►走进颐和园,眼前是繁华的苏州街,现在依稀可以想象到当年的热闹场 面,苏州街围着一片湖,沿着河岸有许多小绿盘子里装着美丽的荷花。这 里是仿照江南水乡--苏州而建的买卖街。当年有古玩店、绸缎店、点心铺 等,店铺中的店员都是太监、宫女妆扮的,皇帝游览的时候才营业。我正 享受着皇帝的待遇,店里的小贩都在卖力的吆喝着。 ►走近一看,我立刻被这美丽的荷花吸引住了,一片片绿油油的荷叶层层 叠叠地挤在水面上,是我不由得想起杨万里接天莲叶无穷碧这一句诗。荷 叶上滚动着几颗水珠,真像一粒粒珍珠,亮晶希望对您有帮助,谢谢 晶的 。它们有时聚成一颗大水珠,骨碌一下滑进水里,真像一个顽皮的孩子!
第 2 课时 实数的运算
R·七年级下册
学习目标: (1)理解实数的相反数、绝对值的意义,会求
一个实数的相反数和绝对值. (2)会比较实数的大小. (3)知道有理数的运算法则和运算性质等在实
数范围内仍成立,会进行简单的实数运算.
情景导入
把有理数扩充到实数之后,有理数关于 相反数和绝对值的意义,大小比较以及运算 法则和运算律等同样适合于实数,这节课我 们就来学习这些内容.
- ( 5)=- 5 - (3 3 1)=1 3 3
所以, 5,1 3 3分别是 5, 3 3 的1 相反数.
(3)求 3 64的绝对值; (3)因为
3 64= 3 64= 4
所以
3 64 = 4 =4
(4)已知一个数的绝对值是 3 ,求这个数. (4)因为
3 = 3, 3 = 3,