3电容式传感器的等效电路
第3章电容式传感器
由图3Z C 7 可( 得R 到S 等1 效 阻R 2 抗R PZ2 C C,2) 即j(1 R 2 P R 2 C 2 C 2L )
P
P
式中2f为激励电源角频率
由于传感器并联电阻RP很大,上式经简化后得等效电容为
等效电容
CE1 C 2LC 1(C f/f)2
式中 f
1
0
为电路谐振. 频率
例如在图3-10(b)中a=1,=0。根据图3-9曲线知:k=0.25, =0, 因此输出电压USC=0.25E;图(c)中当
R 1 时,a1,900 根据图3-9曲线得到k=0.5, =0 jC
USC=0.5E;图3-10(c)和(d)线路形式相同,但是由于(d)图
中采用了差动式电容传感器,故输出电压USC=E ,比图 (c)的输出电压提高了一倍。
对于变极距型, 其静态灵敏度
KCC 0( 1 ) d d 1d/d
因△d/d <<1,上式可按 台劳级数展开而得
KC0[1d(d)2 ] d dd
KC0[1d(d)2 ] d dd
由上式可知,灵敏度与起始极间距d有关,而且不是常数, 是随被测量变化而改变。要提高灵敏度,应减小d,但δ过 小容易引起电容器击穿(空气的击穿电压3kV/mm)。
注意:1.上述各种电桥输出电压是在假设负载阻抗无限 大(即输出端开路)时得到的,
实际上由于负载阻抗的存在而使输出电压偏小。
2.电桥输出为交流信号,不能判断输入传感器信号的极 性,只有将电桥输出信号经交流放大后,再用相敏检波电 路和低通滤波器,才能得到反映输入信号极性的输出信号。
(四)运算法测量电路 它由传感器电容CX和固定电容 C。、以及运算放大器A组成。
④采用“驱动电缆”技 术(也称“双层屏蔽等位 传输”技术)。 见教材P60
电容式传感器
电容值与电极材料无关,仅取决于电极的几何尺寸,且空 气等介质的损耗很小。因此仅需从强度、温度系数等机械性考 虑,合理选择尺寸即可,本身发热极小,影响稳定性甚微。 2)结构简单,适用性强。
3)动态响应好。 (固有频率很高,动态响应时间很短外,又由于其介质损耗小, 可以用较高频率供电,因此系统工作频率高。 4)可以实现非接触式测量,具有平均效应。
d d0
d d0
2
d d0
3
C
C1
C2
C0
2
d d0
2
d d0
3
2
d d0
C
0
1
d d0
2
d d0
4
略去高次项,则
C
2
d d0
C0
传感器的灵敏度为 K C 2C0 d d0
其非线性误差为
( d )3
d 0 (d /d 0)2 100%
( d ) d0
灵敏度较单组变极距型提高了一倍,非线性大大减小。
②等有U关sc ,与任电何源这电些压参U数的、波固动定都电将容使C0及输电出容特式性传产感生器误的差ε,0因、此A 固定电容C0必须稳定,且需要高精度的交流稳压源。 ③由于电容传感器的电容小,容抗很高,故传感器与放大器之 间的联结,需要有屏蔽措施。 ④不适用于差动式电容传感器的测量。
五、电容式传感器的特点及设计要点
主要缺点:
输出阻抗高,负载能力差 寄生电容影响大
输出特性是非线性
2、设计要点
设计时可从以下几个方面考虑:
1)减小环境温度、湿度等变化所产生的误差,保证绝缘材料
的绝缘性能;
2)消除和减小边缘效应 边缘效应不仅使电容传感器灵敏度降低而且产生非线性,
电容式传感器原理和应用
2(d)
d0
d0
比较以上式子可见,电容传感器做成差动式之 后,灵敏度提高一倍,而且非线性误差大大降 低了。
4.3 特点及应用中存在的问题
4.3.1 电容式传感器的特点
1.优点: ●温度稳定性好
电容式传感器的电容值一般与电极材料无关, 有利于选择温度系数低的材料,又因本身发热 极小,影响稳定性甚微。而电阻传感器有电阻, 供电后产生热量;电感式传感器有铜损、磁游 和涡流损耗等,易发热产生零漂。 ●结构简单 电容式传感器结构简单,易于制造,易于保证
4.1电容式传感器的工作原理和结构
4.1.2 变面积型电容式传感器
图4-3 变面积型电容传感器原理图
上图是变面积型电容传感器原理结构示意图。 被测量通过动极板移动引起两极板有效覆盖面 积S改变,从而改变电容量。
4.1电容式传感器的工作原理和结构
当动极板相对于定极板延长度a方向平移Δx时,
可得:
图4-1 变极距型电容传感器原理图
4.1电容式传感器的工作原理和结构
若电容器极板间距离由初始值d0缩小Δd,电容量增大
Δ由C式,(则4C -3有)知C0传 感C器d的00输rA出d特C1性0(1(Cdd =0d2)d02f()d)不是(4线3)性关系,
而是如图4-2所示的曲线关系。
C d 1d
(1 )
C0 d0
d0
由此可得出传感器的相对非线性误差δ为:
(d)2 d
100%
d
100%
d
d0
d
由以上三个式可以看出:要提高灵敏度,应减 小起始间隙d0,但非线性误差却随着d0的减小而 增大。在实际应用中,为了提高灵敏度,减小 非线性误差,大都采用差动式结构。
唐文彦《传感器》习题答案
已知:f0=20kHz, ξ=0.1。求:g < 3% 时的工作频率范围。
解:二阶传感器频率特性(p141—30 式)
∵ k(w) =
k
(1 - w 2t 2 ) 2 (2xwt ) 2
í ïî0.98
- w 2t
2
>
-1.011
îíìww12
> <
0 176.3kHz
即:
ççèæ107£3.w7k£H2z1£.7wkH£z176.3kHz
取: 则有:
0 £ w £ 21.7kHz
0 £ f £ 21.7kHz / 2p = 3.44kHz
第二章 思考题与习题 1、何为金属的电阻应变效应?怎样利用这种效应制成应变片? 答:(1)当金属丝在外力作用下发生机械变形时,其电阻值将发生变化,这种现象称为金属的电阻应变效 应。(2)应变片是利用金属的电阻应变效应,将金属丝绕成栅形,称为敏感栅。并将其粘贴在绝缘基片上 制成。把金属丝绕成栅形相当于多段金属丝的串联是为增大应变片电阻,提高灵敏度, 2、什么是应变片的灵敏系数?它与电阻丝的灵敏系数有何不同?为什么? 答:(1)应变片的灵敏系数是指应变片安装于试件表面,在其轴线方向的单向应力作用下,应变片的阻值 相对变化与试件表面上安装应变片区域的轴向应变之比。
ïì(1 - w 2t 2 )2 + (2xwt )2 > 0.943
í ïî(1
-
w
2t
2)2
+ (2xwt
)2
< 1.063
ïì1 -1.96w 2t 2 + w 4t 4 > 0.943
电容式传感器的等效电路
1 变压器式交流电桥
图4-6 变压器式电桥线路方框图 图4-7 变压器式电桥等效电路图
2 紧耦合比率臂交流电桥
图4-8 紧耦合电感比率臂电桥
图4-9 紧耦合电感比率臂电桥等效电路
图4-8与图4-9电路参数之间的对应关系为
Z12 Zs Z p jL
ZZps
jM
Z12
jKL KZ12
d0
d0 d0
C
S d0
C
C
C0
S
d0
很明显,这种形式的传感器其电容量C与水平位移Δx呈线性关系。
a
d
x S
b
动极板 定极板
x
变面积型电容传感器原理图 电容式角位移传感器原理图
4.2.3 变介质式电容式传感器
面积S与介电常数的位置是等价的,因此当介电常数的变化量为△ε时,电容量的变 化量为
灵敏度为
4.1.2 基本结构 电容式传感器可分为变间隙式、 变面积式和变介电常数式三种。
图4-2 变间隙式电容传感器
图4-3变面积式电容传感器示意图
图4-4 变介电常数式电容传感器示意图
4.2 传感特性
4.2.1 变间隙型电容传感器
当εr和S为常数,初始极距为d0时
C S 0r S
d0
d0
设动极板2位移 x ,参考方向为向 x 0 上运动,即动极板2上移,
A、B两端间的等效电容为
Ce
1
C Cp
2L(C
Cp)
Ce
C
1 2L(C
Cp)
应保证激励频率的稳定性。在较高激励频率下使用电容传感器时,每当改变激励频 率或者更换传输电线时都必须对测量系统重新进行标定。
4.4 电容式传感器的信号调理
传感器原理及应用第三版第3章
电桥初始平衡条件为: 则输出:
•上一页
•与书中公式差一符号,对 交流电无影响。
•下一页
•返 回
当Z1有一变化时,电桥失去平衡,其输出为Usc ;将平衡条件代入得下式:
令:
为传感器阻抗相对变化值
•上一页
•下一页
•返 回
3-3 电容式传感器的误差分析
第一节所讨论的传感器原理均是在理想条件下进行,没有考虑 如温度,电场边缘效应,寄生与分布电容等因素的影响,实际上它 们对精度影响很大,严重时使传感器无法工作,因此在设计时应予 考虑。
一、温度对结构尺寸的影响:
由于组成传感器各材料的温度膨胀系数不同,当环境温度变化 时,传感器各结构尺寸发生变化从而引起电容变化。
• 如果
或而
时,则
,即输出与输入同相
位 ,没有滞后;
• 如果
,
时, ,这时电桥为谐振电桥,但桥臂
元件必须是纯电感和纯电容组成。实际上不可能。
• 由图3-9b可知:对于不同的 值, 角随 变化。当 时
;
时, 趋于最大值 ,并且
。只有 时,
值均为零。因此在一般情况下电桥输出电压 与电源 之间总有
相位差,即 ,只有当桥臂阻抗模相等
变大)。
根据上面讨论,所以在实际应用中多采用差动结构,如下图,
当动片上移 ,则
,
同时C2减小 ,两者初值为C0
则有:
•上一页
•下一页
•返 回
差动输出电容为:
同样当
时,忽略高次项得:
其非线性误差 为:
•考虑问题: • C1、C2如何连接才能满足 该式,即形成差动输出。
电容式传感器
图5-5 电容式传感器等效电路
L 为引线电感和电容电感之和,是电容式传感器的标定电感。 Rs 包括引线电阻、极
板电阻和金属支架电阻。 Rp 为并联损耗电阻,它代表了极板间的泄漏电阻及介质损耗。
电容式传感器的有效电容 Ce 可以近似表示为
C Ce 1 2LC
式中, 2πf 为电源的角频率(f 为电源频率)。
3.减小外界温度的影响
(1)对结构尺寸的影响。电容式传感器极板间距 很小,因此对结构尺寸的变化非常敏感。 (2)对介质介电常数的影响。温度对介电常数的 影响由于介质不同而不同,空气及云母片的介电常 数温度系数近似为零;而某些液体介质,如硅油、 蓖麻油、煤油等,其介电常数的温度系数较大。
1.5 应用实践——简易液位指示及报警系统设计
图5-12 简易液位指示及报警系统
传感器原理与应用
1.5 应用实践——简易液位指示及报警系统设计
3.实践过程 系统采用柱状电容式传感器采集液体的液位。该传感器的介电质随被测液体液位的 变化而变化,从而引起对应电容的变化。由于电容式传感器的电压变化微弱且存在非线 性,所以要通过放大整形电路进行放大和整形。 放大整形后的信号通过A/D转换电路后送至单片机。单片机对信号处理后送至显示 电路,用于显示液位的高度,当液位达到报警极限时,单片机向报警电路发出报警信号。
1.实践目的
(1)了解电容式传感器的工作原理。 (2)能根据系统需求选择合适的电容式传感器。
2.应用描述
液位监测和控制在生产、生活中应用非常广泛, 如自动注水系统、恒压供水系统、水文监测系统和油 位检测系统等。简易液位指示及报警系统通常采用柱 状电容式传感器作为测量器件,结合单片机及其他外 围电路设计而成。
(5-10)
传感器技术 电容式、测量电路
① 驱动电缆法
☻ 原理:驱动电缆法是一种等电位屏蔽法。使用电缆屏蔽 层电位跟踪与电缆相连的传感器电容极板电位,使两电 位的幅值和相位均相同,从而消除电缆分布电容的影响。
11
介质变化型电容传感器
☻ 原理:利用极板间介质的介电常数变化将被测量转换成电
容变化的传感器称为介质变化型电容传感器。 以电介质插
入式为例, C C1 C2
0a
[ r1(
L
x
)
r2x
]
x
L
☻
S dC
应用特性: dx
0a
(
r2
r1
)
① 变介质型电容传感器可用来测量电介质的液位或某些材 料的温度、湿度和厚度等。
② 介质变化型电容传感器常用于非导电液体液位的测量, 其灵敏度与介电常数的差值(ε2-ε1)的值成正比,(ε2-ε1)值 越大灵敏度越高。
2020/6/30
12
应用中存在的问题和改进措施
(1) 等效电路(Equivalent circuit)
☎ 考虑电容传感器在高温、高
湿及高频激励的条件下工作,
而不可忽视其附加损耗和电 效应影响时,其等效电路如
C—传感器电容;RP—低频损耗并联电 阻; RS—串联损耗电阻;L—电容器及
图。
引线电感;CP—寄生电容
☎ 在实际应用中高频激励时,每当改变激励频率或者更换 传输线缆时,会使传感器有效电阻和有效灵敏度都发生 变化,因此必须对测量系统重新进行标定。
2020/6/30
13
应用中存在的问题和改进措施
第3章 电容式传感器
ε r1 ( L0 − L) + ε r 2 L
d0
当L=0时,传感器的初始电容
C0 =
ε 0 ε r1 L0 b0
d0
=
ε 0 L0 b0
d0
当被测电介质进入极板间L深度后,引起电容相对变化量为
∆C C − C 0 (ε r 2 − 1) L 电容变化量与电介质移动量L呈线性关系 = = C0 C0 L0
∆d 3 相对非线性误差为: = ( δ ) d0
∆d 2 ∆d ( ) = ( ) × 100% d0 d0
结论:差动式电容传感器,不仅使灵敏度提高一倍, 结论 而且非线性误差可以减小一个数量级。
3.2 电容式传感器的测量电路
一、等效电路 如图,C为传感器电容,RP 为并联电阻,它包括电极间 直流电阻和气隙中介质损耗 的等效电阻。串联电感L表 示传感器各连线端间的总电 感。串联电阻RS表示引线电 阻、金属接线柱电阻及电容 极板电阻之和。
C max − C min 87.07 pF − 41.46 pF = = 0.19 pF / L K= V 235.6 L
三、变极板间距(d)型
图中极板1固定不动,极板2为可动电极(动片),当动片随被测量 变化而移动时,使两极板间距变化,从而使电容量产生变化 。 设动片2未动时极板间距为d0,板间 介质为空气,初始电容为C0,则
d0 d1 ε0 ε1
变ε的电容传感器 ε
ε 0S ε 1S ⋅ 3 . 6π d 0 3 . 6π d 1 C 0 C1 S = C= = ε 0S d1 d 0 ε 1S C 0 + C1 3 . 6π ( + ) + 3 . 6π d 0 3 .6π d 1 ε1 ε 0
《传感器与检测技术》练习题
一、填空题1、传感器的一般定义:“能把外界非电信息转换成电信号输出的器件或装置”或“能把非电量转换成电量的器件或装置”。
2、标准误差的估算一般采用称贝塞尔公式,此公式为:。
3、根据测量误差的性质及产生的原因,可分为三类:系统误差、随机误差与粗大误差。
4、传感器(变送器)输出的标准信号,即国际电工委员会确定为过程控制系统电模拟信号的统一标准是:4-20mADC 的直流电流信号和 1~5VDC 的直流电压信号。
5、对某一量进行一系列等精度测量,一般以全部测得值的算术平均值作为最后测量结果。
算术平均值的计算公式为:6、随机误差分布的特点是:(1)对称性、(2)抵偿性、(3)单峰性、(4)有界性。
7、修正值与误差值大小相等符号相反。
8、测量误差有以下三的表示方法:绝对误差、相对误差和引用误差。
9、在测量中作为测量对象的特定量,也就是需要确定量值的量,称为被测量。
10、从技术的层面看,检测技术研究的主要内容是测量原理、测量方法、测量系统和数据处理四个方面。
11、在电阻应变片的桥式测量电路中,全桥电路的灵敏度是单臂电桥电路的 4 倍12、半导体材料受到应力作用时,其电阻率会发生变化,这种现象称为压阻效应。
13、电感式传感器可分为:自感式传感器、互感式传感器和电涡流式传感器三类14、单一式变气隙型自感式传感器的输入——输出特性可表示为: P54 。
15、差动式变气隙型自感式传感器的输入——输出特性可表示为: P55 。
16、电容式传感器的等效电路如图:其中R P为并联损耗电阻,R S为引线电阻,L为电容器本身的电感与外部引线电感。
17、自感式传感器的等效电路如图:其中R S为总的等效损耗电阻,C为电容,L为自感线圈自身的纯电感。
18、如图能产生压电效应的石英晶体切片,纵向轴z称为光轴,垂直于光轴的x轴称为电轴,与z轴和x轴同时垂直的y轴称为机械轴。
19、能产生压电效应的石英晶体切片沿X轴方向施加作用力,晶体表面产生电荷,这种压电效应称为纵向压电效应。
电容式传感器
电容的相对变化量为
2 4 d d C d 1 2 C0 d0 d0 d0
略去高次项,近似成线性关系
C 差动电容式传感器的灵敏系数为 K d 2 d 0 C0
结论:灵敏度提高一倍
第3章 电容式传感器
3.1 电容式传感器 3.2 电容式传感器的输出电路及等效电路
3.3 影响电容传感器精度的因素及提高精 度的措施 3.4 电容式传感器的应用
1
基本要求
1. 掌握电容式传感器基本工作原理、类型、线 性、灵敏度
2.理解电容式传感器的输出电路及等效电路
3.了解影响电容传感器精度的因素及提高精度 的措施 4.掌握电容式传感器的典型应用
C C C
灵敏度为
KC
C / C 0 1 a a
灵敏度系数KC为常数,可见减小极板宽度a可提高灵敏度,而极板的起 始覆盖长度b与灵敏度系数KC无关。但b不能太小,必须保证b>>d(极距), 否则边缘处不均匀电场的影响将增大。 平板式极板作线位移最大不足之处是对移动极板的平行度要求高,稍 有倾斜会导致极距d变化,影响测量精度。 因此在一般的情况下,变面积式的电容传感器常作成圆柱式的。
2l l C C ln(r2 / r1 ) l
C C 1 灵敏度 K ——常数 l l
若采用差动结构,动极向上移动Δl,则上面部分的 电容量Ca增加,下面部分的电容量Cb减少,使输出为差 动形式,有
2 (l l ) 2 (l l ) l C Ca Cb 2C ln(r2 / r1 ) ln(r2 / r1 ) l
13
C 2 d C0 d0
2 4 C d d C d 2 d 1 2 C0 d0 d0 d0 d0 C0
《传感器技术》教学课件第3章
14
2 、变面积型电容式传感器
图3-5是变面积型电 容传感器原理结构 示意图。 被测量通
b
a d
x S
过动极板移动引起
两极板有效覆盖面
a)平行板
b)扇形
c)圆筒形
1——定极板
2——动极板
图 3-6 变面积型电容传感器结构图 17
电容b
d
x
(3-8)
平行板电容传感器的灵敏度为
S C b
(3-9)
x d
可见,平板形电容传感器的输出特性是线性的,适合测
量较大的位移,其灵敏度 为常数。增大极板长度 或减小间
距 ,均可使灵敏度提高。极板宽度 的大小不影响灵敏度,
由运算放大器的原理可得:
U0
1 ( jwC x ) U 1 ( jwC )
C Cx
U
(3-18)
S
对于平板电容器,Cx d ,代入(3-18)后可得:
U0
UC
S
d
(3-19)
由式(3-19)可见,输出电压与d是线性关系,负 号表明输出与电源电压反相。这从原理上克服了变极 距型电容式传感器的非线性。但是仍然存在一定的非 线性误差。另外,为保证仪器精度,还要求电源电压U 的幅值和固定电容C值稳定。
24
变介电常数型电容传感器图3-8 如下所示:
a)
b)
例: 极板
带条
c)
滚轮
电容传感器测量
绝缘带条的厚度
25
若忽略边缘效应,圆筒式液位传感器如下图,传
第四章 电容式传感器
低频时: 传感器电容的阻抗非常大,因此L 和r的影响可以忽略。图中
Ce
Re
Ce C0 C p
Re Rg
低频
高频时: 传感器电容的阻抗变小,L和r的影 响不可忽略,漏电影响可以忽略。图中
L
re Ce
Ce C0 C p
re r
高频
二、电桥电路
C1 Z1
. .
.
E
C1
U~
U~
.
如右图所示,是圆形平板电 容器加等位环的原理图等位环3与 电极2在同一平面上,将电极2包 围,使得电极1和2之间的电场基 本均匀。
2 3 均匀电磁场
3 边 缘 电 场
1
图4-14 带有等位环的平板 电容传感器原理图
3. 减小和消除寄生电容的影响
减小和消除寄生电容的方法主要有以下几种:
增加传感器原始电容值; 注意传感器的接地和屏蔽; 集成化; 采用“驱动电缆”技术; 采用运算放大器法;
兆赫的频率下工作,特别适合动态测量。
介质损耗小,可以用较高频率供电,因此可用于测量高速
变化的参数,如高频振动,瞬时压力等。
4. 可以实现非接触测量点
1.输出阻抗高,负载能力差 由于电容量小,致使输出阻抗很高,因此传感器负载 能力差,易受外界干扰产生不稳定现象。
Z2
C2
.
U0 ~
E
. C2 U ~ 0
图4-11 电桥电路
电桥臂接入了两个相邻的电容作为传感器,另一侧接入 电阻或电容或电感,第二个电路是两个二次线圈。
如图所示的电桥是紧耦合电感臂电桥,具有较高的灵敏度 和稳定性,且寄生电容影响极小,大大的简化了电桥的屏 蔽和接地,非常适合于高频工作。
3.6 传感器技术-电容式传感器(2)
U1
,U BP
T2 T1 T2
U1
UAP、UBP—A点和B点的矩形脉冲的平均值; T1、T2 —分别为C1和C2的充电时间; U1—触发器输出的高电位。
C1、C2的充电时间T1、T2为:
T1
R1C1
ln U1 U1 Ur
T2
R2C2
ln U1 U1 Ur
3.2.3 电容式传感器的信号调理电路
4. 脉冲宽度调制电路
3.2.5 电容式传感器的应用
1. 电容式位移传感器
电容式液位计利用液位高低变化影响电容器电 容量大小的原理进行测量。依此原理还可进行其它形 式的物位测量。对导电介质和非导电介质都能测量, 此外还能测量有倾斜晃动及高速运动的容器的液位。 不仅可作液位控制器,还能用于连续测量。
3.2.5 电容式传感器的应用
2. 调频电路
➢ 把电容式传感器作为振荡器谐振回路的一部分。当 输入量导致电容量发生变化时, 振荡器的振荡频率
就发生变化。
传感器
f0
调频振
荡器
fz=f0z±Δf f0z=f0-fb=465kHz
混频器
fb
限幅 放大器
鉴频器
调频振 荡器
输出
非线性 校正
外差式调频电路方框图
3.2.3 电容式传感器的信号调理电路
(1)增加传感器原始电容值 (2)注意传感器的接地和屏蔽 (3)集成化 (4)采用“驱动电缆”技术 (5)整体屏蔽法
3.2.4 影响电容传感器精度的因素及提高精度的措施
4. 寄生电容的影响
驱动电缆法
3.2.4 影响电容传感器精度的因素及提高精度的措施
4. 寄生电容的影响 将电容式传感器和所采用的转换电路、传输电缆 等用同一个屏蔽壳屏蔽起来,正确选取接地点可减小 寄生电容的影响和防止外界的干扰。
现代传感技术课程作业
《现代传感技术》课程作业11. 什么是传感器?它有什么作用?其典型组成结构是什么样的?答:传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。
在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。
通常传感器由敏感元件、转换元件、变换电路和辅助电源四部分组成。
敏感元件直接感受被测量,并输出与被测量有确定关系的物理量信号;转换元件将敏感元件输出的物理量信号转换为电信号;变换电路负责对转换元件输出的电信号进行放大调制;转换元件和变换电路一般还需要辅助电源供电2. 什么是传感器的静态特性?它有哪些性能指标?分别说明这些性能指标的含义。
答:传感器的静态特性是指被测量的值处于稳定状态(被测量是一个不随时间变化,或随时间变化缓慢的量)时的输出输入关系。
传感器的静态特性可以用一组性能指标来描述,有灵敏度、迟滞、线性度、重复性和漂移等。
①灵敏度是指传感器输出量增量△y 与引起输出量增量△y 的相应输入量增量△x 的之比。
用S 表示灵敏度,即S=△y/△x②传感器的线性度是指在全量程范围内实际特性曲线与拟合直线之间的最大偏差值满量程输出值之比。
线性度也称为非线性误差,用表示,即 Lmax L r =100%FSY ∆±⨯ ③迟滞:是指传感器在输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入输出特性曲线不重合的现象。
即传感器在全量程范围内最大的迟滞差值ΔH max 与满量程输出值之比称为迟滞误差,用表示,即: H max H r =100%FSY ∆±⨯ ④重复性:是指传感器在输入量按同一方向作全量程连续多次变化时,所得特性曲线不一致的程度。
重复性误差属于随机误差,常用均方根误差计算,也可用正反行程中最大重复差值R max ∆计算,即:R FS2~3=100%Y σϒ±⨯()3. 有一个二阶系统的力传感器。
2-3-电容传感器解析
2、非线性
当变极距型传感器的极板间距变化时,其电容变化:
C C0
C0
1
1
/
C
C0
1
2
3
显然,∆C与被测量为非线性关系。仅当(∆δ/δ<<1时,
略去各非线性项后才得到近似线性关系C=C0(∆δ/δ)。δ取
值不能大,否则降低灵敏度。因此变极距型电容传感器常工
运算放大器式 电路原理图
般A和Zi足够大,这种误差很小。
三、 主要性能、特点和设计要点
(一) 主要性能
1、 静态灵敏度
被测量缓慢变化时传感器电容变化与引起其变化的被测量变
化之比。对于变极距型,其静态灵敏度kg为
Kg
C
C0
1
1
/
Kg
C0
1
2
3
4
可见灵敏度是初始极距的函数,同时还随被测量变化。减小
C
ab
( x ) / 0 x /
δx
厚度传感器
C1
C2
C
C3
若忽略边缘效应,单组式平板形线位移传感器如下图, 传感器的电容量与被位移的关系为:
lx
l
平 板
形
C1 C2
C4
C
C3
C
blx
b(a lx )
( x ) / 0 x / / 0
a、b、lx:定极板长度和宽度及被测物进入两极板间的长度 ; δ:两固定极板间的距离;
r
C0
Ce
re
Cp L
Re
L
Ce
Rg
供电电源频率为谐振频率的1/3~1/2
(二)测量电路
1、电桥电路
将传感器电容接入交流电桥一个臂(另一个为固定电容)或 两相邻臂,另两臂可以是电阻或电容或电感或者变压器的 两个二次线圈。其中另两臂是紧耦合电感臂的电桥具有较 高灵敏度和稳定性、寄生电容影响极小,大大简化了电桥 的屏蔽和接地,适于高频电源下工作。变压器式电桥使用 元件最少,桥路内阻最小,因此较多采用。
第3章-电容式传感器
结构形式二
电容传感器分类比较
§2电容式传感器的输出特性
差动电容传感器的结构如图3—4所示( )其输出特性 曲线如图3—5所示。在零点位臵上设臵一个可动的接 地中心电极,它离两块极板的距离均为d。当中心电极 在机械位移的作用下发生位移 d 时,则传感器电容 量分别为
1 C1 d 0 d d 0 1 d d0
d ) d0 A A C1 d d 2 (3—3) d 0 d d (1 ) d 0 (1 2 ) 0 d0 d0
A(1
d 2 当 d d0 时, 1 d 2 1 ,则式(3—3)可以简化为: 0 d
A(1
C1 d0 ) d0 C0 C0 d d0
(3—4)
C
C1
C2
0
d1
d2
d
图3-2 电容量与极板距离的关系 由图3—2可以看出,当 d 0 较小时,对于同样的 d变化所引起的电容变化量 C可以增大,从而使传感 器的灵敏度提高;
在实际应用中,为了提高传感器的灵敏度和克服某 些外界因素(例如电源电压、环境温度、分布电容等) 对测量的影响,常常把传感器做成差动的形式,其原 理如图3—4所示。
差动电容式传感器的相对非线性误差为:
C C C d ( ) ( ) 2 C0 实际 C0 线性 C0 d0 d 2 d 4 d 2 r ( ) ( ) ... ( ) C d d0 d0 d0 ( ) 2 C0 线性 d0
灵敏度
若略去高次项,则 C 与 C0
RS 代表串联损耗,即引线电阻,电容器支架和极板
的电阻。
电感L由电容器本身的电感和外部引线电感组成。 由等效电路可知,等效电路有一个谐振领率,通常 为几十兆赫,当工作频率等于或接近谐振频率时, 谐振频率破坏了电容的正常作用。因此,应该选择 低于谐振频率的工作频率,否则电容传感器不能正 常工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 0 r L 1 2.5 CF pF 4.828pF R1 6.0 1.8ln ln 4.5 r
Cx
r ( L x)
R1 1.8ln r
(4.828 0.193x)pF
a d x S
b
动极 板
x
定极 板
电容式角位移传感器原理图
变面积型电容传感器原理图
4.2.3
变介质式电容式传感器
面积S与介电常数的位置是等价的,因此当介电常数的
变化量为△ε时,电容量的变化量为
S C C C0 d0
灵敏度为
C S d 0
变介质型电容传感器有较多的结构形式,可以用来测 量纸张、绝缘薄膜等的厚度,也可用来测量粮食、纺 织品、木材或煤等非导电固体介质的湿度。
第四章 电容式传感器及其信号调理
4.1 4.2 4.3 4.4 4.5 电容式传感器的工作原理 电容式传感器的传感特性 电容式传感器的等效电路 电容式传感器的信号调理 电容式传感器的典型应用举例
4.1 电容式传感器的工作原理
4.1.1 传感原理:
由绝缘介质分开的两个平行金属板组成的平板电容器,
如果不考虑边缘效应,其电容量为
Ce
C Ce 1 2 L(C C p )
应保证激励频率的稳定性。在较高激励频率下使用电
容传感器时,每当改变激励频率或者更换传输电线时
都必须对测量系统重新进行标定。
4.4
电容式传感器的信号调理
4.4.1 交流电桥电路 将电容传感器接入交流电桥作为电桥的一个臂(另一臂 为固定电容)或两个相邻臂,另两个臂可以是电阻或电 容或电感,也可以是变压器的两个二次线圈。
C C1 C2 2C0
x d0
4.2.2
变面积式电容式传感器
当动极板相对于定极板沿长度方向平移ΔS时,则电容
变化量为
C
(S S )
d0
S
d0
S
d0
C C C d0
很明显,这种形式的传感器其电容量C与水平位移 Δx呈线性关系。
C C0 x d0
灵敏度
但d0过小,易引起电容器击穿或短路。为此,极板间可 采用高介电常数的材料(云母、塑料膜等)作介质。
0
图
放置云母片的电容器
d0
dg
g
差动电容传感器: 当动极板移动时,取其电 容差值
x S S d0 C C1 C2 C0 x d 0 x d 0 x 1 ( )2 d0 2
变压器电桥使用元件少、桥路内阻小,应用较为普遍。
1 变压器式交流电桥
图4-6 变压器式电桥线路方框图
图4-7 变压器式电桥等效电路图
2 紧耦合比率臂交流电桥
图4-8 紧耦合电感比率臂电桥
图4-9 紧耦合电感比率臂电桥等效电路
图4-8与图4-9电路参数之间的对应关系为
Z12 Z s Z p jL Z jM jKL KZ p 12 Z s Z12 Z p (1 K ) Z12 Z13 2 Z s 2(1 K ) Z12
2)活动导杆每深入lmm所引起的电容变化量为多少?
3)输入电压U=6v时,位移为1mm,输山电压U0为多少?
解:1)为了使U0=f(x)呈线性关系,CF与Cx要分 别接在理想运放的反馈支路和输入支路,即CF要 接在图4-11 Cx的位置,Cx接在图4-11 C0的位置, C端接运算放大器反相输入端,D端接运算放大器 同相输入端且接地。按理想运算放大器的条件, 可得特性式
x S S S / d 0 d0 C C0 x d d 0 x 1 x 1 ( )2 d0 d0 1
按泰勒级数展开
x x x 2 x 3 C C C0 C0 [1 ( ) ( ) ] d0 d0 d0 d0
近似为
x C C0 d0
C
S
d
0 r S
d
S ——极板面积(m2);
d
——极板间距离(m);
0 8.85 1012 F/m ——真空介电常数,
0
图4-1 平行板电容器
r ——介质的相对介电常数。
4.1.2 基本结构
电容式传感器可分为变间隙式、 变面积式和变介电 常数式三种。
图4-2 变间隙式电容传感器
L0 L
r2
r1
d0
变介质型电容式传感器
4.3
电容式传感器的等效电路
其中L为传输线的电感;R为传输线的有功电阻; C为传感器的电容;Cp为A、B两端间的寄生电容; Rp为极板间等效漏电阻,它包括两个极板支架上的有
功损耗及极间介质有功损耗。
A、B两端间的等效电容为
C Cp 1 2 L(C C p )
当 K 1、负载阻抗为无穷大时
C 4 2 LC Uo E C 2 2 LC 1
2 C 2 LC 当 K 0 、负载阻抗为无穷大时 U o E C ( 2 LC 1)2
图4-10 用紧耦合与不耦合电感作桥臂时的灵敏度
4.4.2 运算放大器式电路 由于运算放大器的放大倍数非常大,而且输入阻抗 Zi
图4-3变面积式电容传感器示意图
图4-4 变介电常数式电容传感器示意图
4.2 传感特性
4.2.1 变间隙型电容传感器
C
当εr和S为常数,初始极距为d0时
S
d0
0 r S
d0
x 0
设动极板2位移 x ,参考方向为向 上运动,即动极板2上移,
x 0。 动极板2下移,
则电容量为
很高 , 运算放大器的这一特点可以作为电容式传感器
的比较理想的测量电路。
Co Co uo ui ui d Cx S
图4-11 运算放大器电路
【例4-2】 现有一只0~20mm的电容式位移传感器,其结 构如图例4-2所示,已知L=25mm,R1=6mm,R2=5.7mm, r=4.5mm,CBC构成固定电容CF,CAC随活动导杆的深入而 变化构成传感电容Cx ,拟采用理想运放电路,试回答: 1)要求运放输出电压与输入位移x成正比,在运放线 路中CF与Cx应如何连接?