典型飞行控制系统 ppt
第五章典型飞行控制系统工作原理-纵向姿态控制
G等 (S)
L M e (S Z ) S 2 C1d S C2d
❖ 根轨迹如右图所示:
内回路 L ,使短周期
一对复根左移且虚部减小,最
s1
终进入实轴,振荡减小,
阻尼加大。内回路的动态
过程由振荡运动转为按指
z
数规律衰减的单调运动,
s2
L 越大,阻尼作用越强。
j
全系统情况:
图 L 过大时,修正 的过渡过程
要想减弱这一振荡过程,应在控制律中引入 俯仰角速率q,对飞机运动起阻尼作用,也就是 引入微分信号。
(4)一阶微分信号在比例式控制中的作用
t1•
t •
2
t
e
e1 L
e2 L
t
e L L
由图可见,微分作用的物理本质为:
❖
为t1零时,刻当t
在减小但值为正,此时舵e 已
1、比例式自动驾驶仪修正初始俯仰角偏差
(1)稳定过程 0 0 驾驶仪控制律为:
g 0
e L L ( g )
讨论俯仰角稳定过程,认为
e L L
修正 0 的过程:0 0
比例式控制如何减小静差:
❖ 由前面计算可知:
g
Mf Q0Sb Cme
L
❖ ❖
所 要 只以 减 有:小使这b个静, g差就存,可在应使静加静差大差。减L小。Lb2
,所以
❖ 极端情况: b 0(切断硬反馈)就可完全
消除常值干扰下的静差。
2、积分式自动驾驶仪
在舵回路中采用速度反馈或称为软反馈形式的 信号,组成了积分式自动驾驶仪。
1
T s 1
s 2 c1d s c2d
s
内 s
第五章 飞行操纵系统
第三节 助力机械操纵系统
助力机械操纵系统的提出
舵面铰链力矩是随舵面尺寸和飞行速压的增加而增加! 当舵面铰链力矩变得很大时,即使利用当时的空气动力补偿法,也不能使驾 驶杆(脚蹬)力保持在规定的范围之内:
1. 研究效率更高的空气动力补偿; 2. 研究液压助力器,以实现液压助力操纵!
助力机械操纵系统的分类
钢索承受拉力时,容易伸长。由于操纵系统的弹性变形而产 生的“间隙”称为弹性间隙; 钢索的弹性间隙太大,会降低操纵的灵敏性; 钢索预紧(施加予张力)是减小弹性间隙的措施! 常见故障:断丝与锈蚀,主要部位是滑轮或导索板处。
几个注意问题: 1、为了改善软式操纵系统的灵敏性,钢索在未安 装之前,必须用相当于设计强度50%~60%的力进 行予拉伸处理; 2、装在飞机上的钢索必须根据周围温度的高低而 保持一定的予张力; 3、在飞机主操纵系统中,可以使用的钢索最小直 径是1/8英寸; 4、钢索不可气割,不可焊接,只能用钢索剪剪断 或用錾子錾断; 5、在改变钢索方向不大于 3º的情况下,可以使用 导索板或导索环。
中央操纵机构—手操纵机构
驾驶杆式手操纵机构
推拉驾驶杆操纵升降舵; 左右压杆操纵副翼!
横纵向操纵的独立性
驾驶杆要操纵升降舵和副翼, 但两者不会互相干扰!
独 立 性 分 驾驶杆左右摆时,传动杆沿着以b-b线为中 析 心轴,以c点为顶点的锥面运动;
由于圆锥体的顶点c到底部周缘上任一点的 距离相等,所以当驾驶杆左右摆动时,摇 臂1不会绕其支点前后转动,因而升降舵不 会偏转!
。
操纵系统
主操纵系统
副翼
升降舵
辅助操纵系统
前缘襟翼缝翼
后缘襟翼 扰流板 水平安定面
警告系统
《飞行操纵系统》课件
THANKS
感谢观看
飞行员通过Байду номын сангаас纵杆、脚蹬等输入装置 ,将控制指令传递给飞行操纵系统, 以改变飞机的飞行姿态和轨迹。
它包括主操纵系统和辅助操纵系统, 主操纵系统包括升降舵、方向舵和副 翼,辅助操纵系统包括襟翼、缝翼和 起落架收放机构等。
飞行操纵系统的动力学基础
飞行操纵系统的动力学基础包 括空气动力学和飞行力学。
空气动力学是研究气体流动和 物体在气体中运动的科学,它 为飞行操纵系统的设计和性能 提供了理论基础。
分类
根据飞行器类型和设计需求的不同,飞行操纵系统有多种分类方式。例如,按照传力介质的不同,可以分为机械 式操纵系统、液压式操纵系统和电气式操纵系统等;按照控制方式的不同,可以分为助力操纵系统和主动控制系 统等。
发展历程与趋势
发展历程
飞行操纵系统的发展经历了多个阶段,从早期的机械操纵系统到现代的电传操纵系统和 主动控制系统。随着科技的不断进步,飞行操纵系统的性能和安全性得到了极大的提升
权限管理与安全认证
限制飞行员对系统的操作权限,防止误操作或 恶意干扰。
自适应容错控制
在系统发生故障时,自动调整控制策略,降低故障对飞行安全的影响。
05
飞行操纵系统的应用与案例分析
飞行操纵系统在无人机中的应用
1 2 3
无人机飞行操纵系统概述
无人机飞行操纵系统是无人机控制的重要组成部 分,负责无人机的起飞、巡航、降落等操作。
飞行操纵系统的传感器
01
02
03
04
角位移传感器
检测飞行员的操纵角度,转换 为电信号。
力矩传感器
检测飞行员施加在操纵杆上的 力矩,转换为电信号。
侧杆传感器
飞机结构与系统(飞行操纵系统)课件
04
飞行操纵系统维护与检修
飞行操纵系统日常维护
01
02
03
每日检查
检查飞行操纵系统外观, 确保没明显损坏或异常情 况。
清洁润滑
飞行操纵系统进行清洁润 滑,保持其良好工作状态 。
校准
飞行操纵系统进行校准, 确保其准确性可靠性。
飞行操纵系统定期检修
定期检查
按照规定周期飞行操纵系 统进行检查,包括内部结 构元件。
飞行管理系统
飞行管理系统现代飞行操纵系统核心组 成部它集成导航、气象、通讯等多种功 能,能够飞行员提供全面飞行信息支持
。
飞行管理系统通过接收处理自各种传感 器数据,飞行员提供实时飞行计划、航 向、速度、高度等信息,帮助飞行员更
好掌握飞行状态决策。
飞行管理系统还可根据气象条件飞行计 划,飞行员提供最佳飞行轨迹发动机管
安全标准与规范
参考相关安全标准规范,如国际民航组织(ICAO)美国联邦航空局(FAA)等发布相关指南标准,飞行操纵系统进 行安全性评估。些标准规范评估提供指导参考框架。
安全改进措施
根据安全性评估结果,制定并实施相应安全改进措施,提高飞行操纵系统安全性可靠性。些措施可能包 括硬件升级、软件修复、操作程序改进等各方面。
飞行操纵系统历史与发展
历史
早期飞机采简单机械式操纵系统,通过钢索、连杆等机械部件实现飞行员翼面舵面直接控制。随着技术发展,液 压式操纵系统电传式操纵系统逐渐取代机械式操纵系统。电传式操纵系统目前最先进飞行操纵系统,具更高可靠 性灵活性。
发展
未飞行操纵系统将朝着更加智能化、自主化协同化方向发展。智能化能够提高系统自主决策能力容错能力;自主 化能够减轻飞行员工作负担提高飞行安全性;协同化则能够实现飞行员与无机之间效协作,提高整体作战效能。
第1章 自动飞行控制系统概述《民航飞机自动飞行控制系统》
➢ 飞行管理计算机系统的功能如下:
飞行计划
性能管理
导航计算
对 VOR/DME 自动调谐 自动油门速度指令
第4节
有关飞行控制自动化的争议
4.1 关于自动飞行控制系统自动化程度的争议
➢ 人机接口关系上曾提出过一些正面教学的观点:
自动飞行方式过多,在某些方式 的自动过渡中易使驾驶员模糊或 误解。
某些驾驶员过分依赖自动化,造成 盲目的安全感而导致意外失控。 驾驶员长期依靠自动化系统而缺乏 手动操纵实践,技术熟练程度逐渐 下降和荒废,当出现某些意外时, 将手足无措,不能操纵改出。
4.1 关于自动飞行控制系统自动化程度的争 议
➢ 人机接口关系上曾提出过一些正面教学的观点:
信息量加大,输入/输出数 据 量加大,一方面减少了 驾驶 员体力负荷,另一方 面增加 了驾驶员对信息读 取理解、 判断决策上的脑 力负荷,使 得心理负荷更为 沉重。
驾驶员成为管理员,脱离了对 飞机的实时控制,靠编程计划 去实现飞行,对飞行中实时空 情察觉的把握程度降低了,一 旦发生意外,就不能立即进入 角色。
子管、半导体、集成电路以及微处理器和数字化。
➢ 由于通用航空飞机和大型运输客机对自动飞行的要求不同,因而自动驾驶 仪的类型多种多样,其发展极不平衡。在单发私人小飞机上,可能只用到 单独的“横滚稳定系统”或“机翼改平系统”,而大型客机却有从起飞至 接地和滑行的全自动系统。
1.2 从自动驾驶仪到自动飞行控制系统
3.2 改善飞机的性能
《飞机飞行控制》课件
导航控制
飞行控制系统集成了先进的导航 技术,如惯性导航、卫星导航等 ,能够实时确定飞机位置和航向 ,确保飞机沿着预定航线飞行。
防碰撞警告系统
飞行控制系统通过与空中交通管 制系统的交互,实时监测周围空 域的飞机,当存在碰撞风险时, 及时发出警告,避免空中交通事
故的发生。
飞行控制系统在军事航空领域的应用
飞行控制系统的发展趋势与未来展望
智能化控制
随着人工智能技术的发展,未来的飞行控制系统将更加智能化,能 够自适应地处理各种复杂情况,提高飞行的安全性与效率。
集成化与模块化设计
为了降低成本和提高可靠性,未来的飞行控制系统将采用集成化与 模块化设计,便于维护和升级。
自主可控技术
随着航空工业的发展,未来的飞行控制系统将更加注重自主可控技术 的研发和应用,以提高我国航空工业的竞争力。
融合技术
传感器融合技术是指将多个传感器的信息进行综合处理,以 获得更加准确和可靠的数据。在飞行控制系统中,传感器融 合技术能够提高飞机的导航精度和稳定性。
舵机与舵面
舵机
舵机是飞行控制系统中的执行机构, 能够根据控制系统的指令,精确地调 整舵面的角度,从而控制飞机的姿态 和轨迹。
舵面
舵面是飞机机翼和尾翼上的可动翼面 ,包括副翼、升降舵和方向舵等。通 过调整舵面的角度,可以改变飞机的 气动性能,实现飞机的姿态和轨迹控 制。
飞机飞行控制系统
03
的控制算法
线性控制算法
PID控制算法
通过比例、积分和微分三个环节 ,对飞机飞行过程中的误差进行 调节,以减小误差。
线性回归算法
通过对飞机飞行数据的线性回归 分析,预测飞行状态,为控制算 法提供参考。
非线性控制算法
民用飞机自动飞行控制系统:第8章 现代民机飞控系统实例ppt
2. 工作模态 .应急备份人工配平:由驾驶员手动机械配平; · 人工电子配平:驾驶员通过电子配平系统实现人
工配平; ·自动配平:由自动驾驶仪FCC自动实现的配平; ·马赫数配平:当襟翼收起,且自动驾驶仪断开,
备用或电子人工配平也没有使用时,水平尾翼 自动地随马赫数变化实现配平。
➢ 偏航阻尼器系统
• 利用面板上温度选择按钮,选择假设温度,实现 推力减免。较高温度对应给出较低的推力。
• TMS的工作状态和某些参数,可以在EADI和 EICAS上显示。
• 自动油门断开按钮位于油门杆上。
➢ 安定面配平系统 1. 功能
通过转动水平安定面,以保持飞机俯仰轴处于配 平的状态。 .B757的水平安定面是一个可转动的尾翼。
• 飞行指引(F/D) FCC产生指令信号,在EFIS的电子姿态指引 仪及电子水平状态指示器上,产生相应的舵面 操纵指令信号,驾驶员通过给出的指令信号操 纵飞机,此时舵机不工作。
8.1.4 B757 飞机自动飞行工作模式
针对不同阶段的飞行要求,设置了许多不同飞行 方式。驾驶员可以依据飞行要求,在方式控制板上 加以选择。
3. 自动油门伺服机构 .伺服机构的马达依TMC指令驱动油门; .一个测速反馈电机将速度信号反馈给TMC; .伺服机构的输出轴与齿轮箱耦合在一起,控制 油门杆的运动; .油门杆的运动速度为14°/s。 .油门动力杆的角度(PLA),通过传感器测量反 馈给自动油门杆系统。
4. 推力方式选择板(TMSP)
B777飞机电传飞行控制系统的特点:
➢采用传统的盘柱、方向舵进行控制;
➢采用3余度的数字式飞行控制计算机(三台计 算机,每台计算机内有三个支路,每个支路都 具有非相似的处理器),并行工作;
➢副翼、襟副翼、升降舵、方向舵的每片舵面上 都有两台主-主方式工作的电液作动器驱动; 扰流板作动器可以机械控制,也可在减速控制 时电传操纵控制;
自动飞行控制系统
• 高速飞行与马赫数的概念
飞机飞行中的受力与力矩
➢升力 ➢纵向力矩 ➢侧力 ➢滚转力矩L与偏航力矩N
一、升力
在亚音速流中,气流流过有迎角的翼型(a)时,在 下表面临近前缘点A,流线在此点分开,在该点上的流速 必须为零,A点称为驻点;驻点以上气流绕翼型上表面流 过,驻点以下气流绕下表面流过,然后到后缘点B处汇合 成一条流线。B点也是驻点,其流速也为零。
上图表示推力向量不通过质心时的情况,发动机推 力对质心的力矩为 :MT=TZT T表示推力。推力向量在质心之下时,定义ZT为正值,则 MT为正值,表示力矩矢量与OY轴一致。
空气动力引起的俯仰力矩
空气动力引起的俯仰力矩取决于飞行的 速度、高度、迎角及升降舵偏角。此外, 当飞机的俯仰速率 q=dθ/dt,迎角变化 率,以及升降舵偏转速率等不为零时,还 会产生附加俯仰力矩,称为动态气动力矩。 气动俯仰力矩可写为:
滚转角速度P和偏航角速度r 引起的侧力
滚转力矩L与偏航力矩N
绕机体轴OX轴的力矩称为滚转力矩L, 绕机体轴OZ轴的力矩称为偏航力矩N, 这两种力矩统称为侧向力矩。 (一)绕OX轴的滚转力矩(L) (二)绕OZ轴的偏航力矩(N)
*:前面已用L表示升力,此处的L表示滚转力矩。
飞机转弯时的受力状态及影响因素
第三节自动驾驶仪的基本工作原理
• 飞机运动的划分 • AFCS的组成作用和基本作用原理 • A/P的结构类型、控制方案、控制规律和系
统工作原理
• 安定面配平、马赫数配平系统的功能和基
本工作原理
• 飞行方式控制板
飞机运动的划分
把飞机视为刚体,飞机在空间的运动有六个自 由度:三个移动自由度和绕质心的三个转动自由 度。可把飞机运动用两组互不相关的运动微分方 程来描述,每组微分方程包括三个自由度,即:
飞机飞行控制系统
飞机飞行控制系统飞行控制系统(简称飞控系统)的作用是保证飞机的稳定性和操纵性,提高飞机飞行性能和完成任务的能力,增强飞行的安全性和减轻驾驶员的工作负担。
飞行控制系统概述飞控系统分类飞控系统分为人工飞行控制系统和自动飞行控制系统两大类。
由驾驶员通过对驾驶杆和脚蹬的操纵实现控制任务的系统,称为人工飞行控制系统。
最简单的人工飞行控制系统就是机械操纵系统。
不依赖于驾驶员操纵驾驶杆和脚蹬指令而自动完成控制任务的飞控系统,称为自动飞行控制系统。
自动驾驶仪是最基本的自动飞行控制系统。
飞控系统构成飞控系统由控制与显示装置、传感器、飞控计算机、作动器、自测试装置、信息传输链及接口装置组成。
控制及显示装置是驾驶员输入飞行控制指令和获取飞控系统状态信息的设备,包括驾驶杆、脚蹬、油门杆、控制面板、专用指示灯盘和电子显示器(多功能显示器、平视显示器等)。
传感器为飞控系统提供飞机运动参数(航向角、姿态角、角速度、位置、速度、加速度等)、大气数据以及相关机载分系统(如起落架、机轮、液压源、电源、燃油系统等)状态的信息,用于控制、导引和模态转换。
飞控计算机是飞控系统的“大脑”,用来完成控制逻辑判断、控制和导引计算、系统管理并输出控制指令和系统状态显示信息。
作动器是飞控系统的执行机构,用来按飞控计算机指令驱动飞机的各种舵面、油门杆、喷管、机轮等,以产生控制飞机运动的力和力矩。
自测试装置用于飞行前、飞行中、飞行后和地面维护时对系统进行自动监测,以确定系统工作是否正常并判断出现故障的位置。
信息传输链用于系统各部件之间传输信息。
常用的传输链有电缆、光缆和数据总线。
接口装置用于飞控系统和其他机载系统之间的连接,不同的连接情况可以有多种不同的接口形式。
图3.4.1 飞行控制系统基本原理飞控系统基本工作原理除个别的开环操纵系统(如机械操纵系统)外,所有的飞控系统都采用了闭环反馈控制的工作原理。
图,驾驶员通过驾驶杆、脚蹬、油门杆的位移(或力)给出控制信号U0,经过飞控计算机控制率计算后给出控制指令U1。
飞行操纵系统概述(空客A320系列)ppt课件
MENU 系统概述
37/42
SFCC 1
FLAP 通道
SLAT 通道
SFCC 2
FLAP 通道
SLAT 通道
每一SFCC有两个通道,一个通道用于襟翼,另 一通道用于缝翼。
每一通道能驱动相应的操纵面。
飞行操纵
MENU 系统概述
38/42
位于中央操纵台右侧的襟翼手柄用来 操纵缝翼和襟翼。 它有下列位置:
飞行操纵
MENU 系统概述
22/42
ELAC 1 ELAC 2
FCDC 1 FCDC 2
SEC 1 SEC 2 SEC 3
飞行操纵
另外,两个飞行控制数据集合计算 机(FCDU)用于从ELAC和SEC获取 数 据 , 然 后 将 数 据 送 给 EIS( 电 子 仪 表系统)。
MENU 系统概述
23/42
飞行操纵
MENU 系统概述
34/42
飞行操纵
在每一机翼前缘有五块缝翼。
MENU 系统概述
35/42
并且每一机翼后缘有两块襟 翼。
飞行操纵
MENU 系统概述
36/42
SFCC 1 SFCC 2
缝翼和襟翼象其它操纵面一样是由液压驱动的 。它们由两个缝翼襟翼控制计算机(SFCC)电动 控制。
飞行操纵
MENU 系统概述
10/42
左副翼
右副翼
俯仰配平
左安定面
方向舵
右安定面
飞行操纵
MENU 系统概述
11/42
左副翼
减速板
右副翼
俯仰配平
左安定面
方向舵
右安定面
飞行操纵系统包括: 副翼, 用于俯仰配平的一个可配平式水平安定面(THS), 一个方向舵, 地面扰流板/减速板。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
增稳系统
-
9
某超声速歼击机的横侧增稳系统系统的功能虽比阻尼器完善,但对操纵性影响较大,在 使阻尼比、固有频率和静稳定性提高的同时,却减小了系统 的传递增益,降低了飞机对操纵指令的响应,是以牺牲操纵 性为代价的.
① 阻尼器和增稳系统能提高飞机的阻尼比和固有频率,但却 牺牲了操纵性; ② 阻尼器和增稳系统更无法解决非线性操纵指令问题,即当 飞机进行大机动飞行时,要求飞机具有较高的操纵灵敏度, 而做小机动飞行时,则要求有较小的操纵灵敏度。
由自动控制理论可知,为了改善飞机角运动的阻尼特性,直 接引入姿态角的变化率,形成反馈回路就可以调节飞机角运 动的阻尼比,从而改善飞机的运动品质.有俯仰阻尼器、滚转 阻尼器和偏航阻尼器。
俯仰阻尼器(pitch damper)
①改善飞机的阻尼特性;
②飞机的固有频率变化不大;
③静态增益(静操纵性)下降;
-
舵回路:为了改善舵机的性能以满足飞行控制系统的要求,通 常将舵机的输出信号反馈到输入端形成负反馈回路(或称为 伺服回路)的随动系统(或称为伺服系统).
舵回路方框图
-
2
如果测量部件测量的是飞机的飞行姿态信息,则姿态测量部件 和舵回路就构成了自动驾驶仪;自动驾驶仪和被控对象(飞机) 又构成了稳定回路,主要起稳定和控制飞机姿态的作用。
Flight Dynamics and Control
典型飞行控制系统
Chen Yongliang
Nanjing University of Aeronautics and Astronautics Department of Aerodynamics
-
1
典型飞行控制系统的构成
典型的飞行控制系统一般由三个反馈回路构成,即舵回路、 稳定回路和控制(制导)回路.
-
3
由稳定回路和飞机重心位置测量部件以及描述飞机空间位置几 何关系的运动学环节构成了控制(制导)回路,主要起稳定和 控制飞机的运动轨迹的作用.
通过姿态的变化来控制飞行轨迹的方式,是目前大多数大气 层飞行器控制飞行轨迹的主要方式.
-
4
典型飞行控制系统的分类
根据飞行控制系统的功能和作用,基本的飞行自动控制系 统包括阻尼器(damper)、增稳系统(stability augmentation systems—SAS)、 控 制 增 稳 系 统 (control augmentation systems—CAS)和自动驾驶仪(autopilot)等。
-
5
阻尼器与增稳系统
现代高性能飞机的典型飞行包线
为改善飞机的角运动性能,- 引入阻尼器和增稳系统.
6
阻尼器和增稳系统在飞机起飞时就已经接入,不像自动驾驶仪 那样,需要首先建立基准工作状态。这种增稳系统与驾驶员共 同操纵飞机的方式,是有人驾驶情况下的自动控制问题.
飞机纵向运动方程
or
or
-
7
阻尼器
控制增稳系统
-
11
俯仰控制增稳系统的方框图
当无操纵信号时,此控制增稳系- 统只起增稳的作用.
12