601高等数学三考试大纲
2024年全国硕士研究生数学(三)考试大纲
2024年全国硕士研究生数学(三)考试大纲
2024年全国硕士研究生数学(三)考试大纲主要包括以下几个部分:
一、考试性质
数学(三)是2024年全国硕士研究生招生考试中的一门公共基础科目,用于检验考生的数学知识和思维能力。
二、考试目标
数学(三)的考试目标是检验考生是否具备以下能力:
1. 掌握高等数学的基本概念、基本理论和基本方法,包括微积分、线性代数、概率论与数理统计等方面的知识。
2. 具备一定的数学思维和解决实际问题的能力,包括分析和推理、计算和数据处理等方面的能力。
3. 了解数学在各领域的应用,包括经济、管理、工程等领域。
三、考试内容和要求
数学(三)的考试内容包括高等数学、线性代数和概率论与数理统计。
具体要求如下:
1. 高等数学:要求考生掌握微积分、级数、多元函数微分学、重积分等基本概念和理论,理解其在实际问题中的应用。
2. 线性代数:要求考生掌握矩阵论、向量空间与线性变换等基本概念和理论,理解其在解决实际问题中的应用。
3. 概率论与数理统计:要求考生掌握随机事件与概率、多维随机变量及其分布、大数定律与中心极限定理等基本概念和理论,理解其在数据处理和决策分析中的应用。
四、考试形式和试卷结构
1. 考试形式:数学(三)为闭卷考试,考试时间为180分钟,满分150分。
2. 试卷结构:试卷包括选择题和解答题两部分,其中选择题为四选一形式,共40分;解答题包括计算题、证明题和分析题等,共110分。
五、参考书目
数学(三)的参考书目包括《高等数学》(同济大学出版社)、《线性代数》(高等教育出版社)、《概率论与数理统计》(浙江大学出版社)等教材。
数学3考试大纲
数学3考试大纲数学3考试大纲是针对所有中国高中学生的一个标准的考试大纲,由教育部制定和发布。
这一考试大纲涵盖了数学3的各个方面,包括几何、代数、概率与统计以及应用数学。
一、几何:几何的内容包括平面几何、立体几何、投影与正射等。
具体涉及的内容有:1. 求几何图形的面积与体积;2. 平面几何中的直线、圆、三角形、四边形、多边形等的性质;3. 球面几何中的球面上的点、线、面的性质;4. 平行线、平行平面、垂直线、垂直平面的性质;5. 投影与正射中的投影法则、直角投影等。
二、代数:代数内容涉及了一元多项式、方程、不等式、恒等式、函数等。
具体涉及的内容有:1. 一元多项式的定义及其特征;2. 一元二次方程的求解;3. 一元三次方程的求解;4. 恒等式的求解;5. 不等式的求解;6. 函数的定义及特征;7. 函数的求导、微分及其应用;8. 函数的积分及其应用。
三、概率与统计:概率与统计的内容涉及概率、数据分析等。
具体涉及的内容有:1. 概率的定义及特征;2. 随机变量及其分布;3. 离散随机变量及其期望;4. 连续随机变量及其期望;5. 抽样分布及其特征;6. 数据的提取、分析、汇总及其应用;7. 数据的可视化及其应用;8. 时间序列分析及其应用。
四、应用数学:应用数学的内容涉及如何使用数学原理来解决实际问题等。
具体涉及的内容有:1. 用概率解决实际问题;2. 用数学模型解决实际问题;3. 利用统计学原理解决实际问题;4. 利用微积分解决实际问题;5. 利用线性代数解决实际问题;6. 利用几何解决实际问题;7. 利用抽样理论解决实际问题。
总之,“数学3考试大纲”是中国高中学生的一个统一标准,涵盖了几何、代数、概率与统计以及应用数学等方面的内容,旨在培养学生的数学思维能力,提高学生的数学素养,为学生的后续学习奠定基础。
2021数学三考试大纲(2021新版)
2021数学三考试大纲(2021新版)本次数学三考试大纲包括微积分、线性代数、概率论与数理统计三个科目。
试卷满分为150分,考试时间为180分钟,考试方式为闭卷、笔试。
微积分约占试卷60%的比重,线性代数约占20%,概率论与数理统计约占20%。
试卷题型结构包括单项选择题、填空题和解答题,总共有22小题,共计150分。
在微积分部分,考生需要掌握函数、极限和连续的概念,包括函数的表示法、有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数的概念,基本初等函数的性质及其图形,数列极限与函数极限的定义及其性质,函数的左极限和右极限,无穷小量和无穷大量的概念及其关系,极限的四则运算,极限存在的两个准则,函数连续性的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质等。
此外,考生还需要掌握一元函数微分学的知识,包括导数和微分的概念,导数的几何意义和经济意义,函数的可导性与连续性之间的关系,平面曲线的切线与法线,导数和微分的四则运算,基本初等函数的导数,复合函数、反函数和隐函数的微分法,高阶导数,一阶微分形式的不变性,微分中值定理,洛必达法则,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点及渐近线,函数图形的描绘的数的最大值与最小值等。
总之,考生需要熟练掌握微积分和一元函数微分学的知识,理解概念,掌握性质和运算法则,能够应用到具体问题中去。
掌握二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质。
2.掌握多元函数偏导数的概念与计算,了解多元复合的数的求导法与隐函数求导法,会求二阶偏导数。
3.了解金微分的概念,掌握多元函数的极值和条件极值的求法,了解最大值和最小值的概念。
4.掌握二重积分的概念、基本性质和计算,了解无界区域上简单的反常二重积分的计算方法。
掌握变量可分离、齐次、一阶线性和二阶常系数齐次线性微分方程的解法,以及线性微分方程解的性质和结构定理。
2.了解差分方程的概念,掌握一阶常系数线性差分方程的解法,会求差分方程的通解和特解。
601高等数学考试大纲
601高等数学考试大纲一、课程概述高等数学是理工科专业学生的一门基础课程,旨在培养学生的数学思维和分析问题的能力。
本课程内容广泛,涵盖了微积分、线性代数、常微分方程等数学分支,为学生进一步学习专业课程打下坚实的数学基础。
二、考试目标通过本课程的学习和考核,学生应能够:1. 掌握微积分的基本理论、方法和应用。
2. 理解线性代数的基本概念和运算规则。
3. 熟悉常微分方程的求解技巧和实际应用。
4. 培养解决实际问题时的数学建模能力。
三、考试内容1. 微积分部分- 极限与连续性:理解极限的概念,掌握极限的运算法则,理解函数的连续性。
- 导数与微分:掌握导数的定义、几何意义及物理意义,理解高阶导数,掌握微分法则。
- 微分中值定理及其应用:理解罗尔定理、拉格朗日中值定理和柯西中值定理,掌握洛必达法则。
- 积分学:掌握不定积分和定积分的计算方法,理解积分的几何意义和物理意义,掌握换元积分法和分部积分法。
- 级数:理解级数的收敛性,掌握几何级数、调和级数等常见级数的求和方法。
2. 线性代数部分- 矩阵理论:理解矩阵的运算规则,掌握矩阵的转置、逆矩阵和行列式。
- 线性方程组:掌握高斯消元法和克拉默法则,理解线性方程组的解的结构。
- 向量空间:理解向量空间的概念,掌握基、维数和坐标变换。
3. 常微分方程部分- 一阶微分方程:掌握可分离变量方程、齐次方程和非齐次方程的解法。
- 高阶微分方程:理解特征方程法、降阶法和常系数线性微分方程的解法。
- 微分方程的应用:理解微分方程在物理、工程等领域的应用。
四、考试形式考试将采用闭卷笔试的形式,题型包括选择题、填空题、计算题、证明题和应用题。
考试将全面考察学生对高等数学知识的掌握程度和应用能力。
五、评分标准1. 选择题和填空题:主要考察学生对基本概念和基本运算的掌握。
2. 计算题:考察学生的计算能力和对公式的熟练运用。
3. 证明题:考察学生的逻辑思维能力和数学推理能力。
4. 应用题:考察学生将数学知识应用于实际问题的能力。
高等数学:高等数学三(I)考试大纲
高等数学三(I)考试大纲适用专业:工商管理,物流,国贸等专业一.课程的性质与要求《高等数学》是高校经济类专业的一门重要基础课.通过教学,要求学生比较系统地理解高等数学的基本概念和基本理论,掌握高等数学的基本方法,培养学生的抽象思维能力,逻辑推理能力、空间想象能力、计算能力、分析问题和解决问题的能力,以及运用微积分知识解决实际问题的能力,为学习后续课程打下良好的基础.二.学习用书⒈《高等数学》上册高洁赵建华主编⒉《高等数学》(少学时版)同济大学应用数学系编高等教育出版社三.课程内容及考试要求本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次。
第一章函数极限与连续⒈考核知识点:函数的概念,函数的有界性、单调性、周期性和奇偶性,反函数,复合函数,基本初等函数,初等函数;数列极限与函数极限的定义以及它们的性质,左、右极限;无穷大与无穷小的概念及其关系,无穷小的计算性质及无穷小的比较;极限的四则运算,两个重要极限;函数连续的概念,函数间断点及其类型;初等函数的连续性,闭区间上连续函数的性质(有界性定理、最大值、最值定理、零点定理).⒉考试要求⑴理解函数的概念. 了解函数的有界性、单调性、周期性和奇偶性,理解复合函数及分段函数的概念,了解反函数的概念,掌握基本初等函数的性质及图形.⑵了解极限的概念,理解函数左、右极限的概念,以及极限存在与左、右极限之间的关系,了解极限的性质. 掌握极限四则运算法则,以及利用两个重要极限求极限的方法.⑶理解无穷大与无穷小的概念,会无穷小比较的方法.⑷理解函数连续的概念,会判别函数的间断点类型.⑸了解连续函数的性质和初等函数的连续性,以及闭区间上连续函数的性质.第二章导数与微分⒈考核知识点:导数的概念,导数的几何意义,函数的可导性与连续性的关系,平面曲线的切线与法线;基本初等函数的导数,导数的四则运算法则,复合函数、反函数与隐函数及参数方程所确定的函数的求导法;高阶导数的概念,某些简单函数的n阶导数,微分的概念,微分的基本公式,一阶微分形式的不变性,微分的四则运算法则.⒉考试要求⑴理解导数与微分的概念,理解导数的几何意义. 会求平面曲线的切线方程、法线方程,理解函数可导与连续的关系.⑵熟练掌握基本初等函数的导数公式,掌握导数的四则运算法则和复合函数的求导法则,了解一阶微分形式的不变性,会求函数的微分.⑶了解高阶导数的概念,会求简单函数的n阶导数.⑷会求分段函数的导数.⑸会求隐函数的导数及使用对数求导,会求参数方程所确定的函数的导数.第三章中值定理与导数的应用⒈考核知识点:罗尔定理,拉格朗日中值定理,洛必达法则;函数单调性的判定,函数极值的求法,函数最大值、最小值的求法;函数图形的凹凸性、拐点.⒉考试要求⑴理解并会用罗尔定理,拉格朗日中值定理.⑵掌握用洛必达法则求未定式极限的方法.⑶理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值、最小值的求法及其简单应用.⑷会用导数判断函数图形的凹凸性和拐点.第四章不定积分⒈考核知识点:原函数和不定积分的概念,不定积分的基本性质,基本积分公式;第一换元积分法和第二换元积分法,分部积分法;有理函数的积分举例.⒉考试要求⑴理解原函数及不定积分的概念.⑵熟练掌握不定积分的基本性质和基本积分公式.⑶掌握不定积分的第一换元积分法、第二换元积分法和分部积分法.⑷掌握有理函数的积分.第五章定积分⒈考核知识点:定积分的概念,定积分的基本性质及中值定理,变上限定积分及其导数,牛顿—莱布尼兹公式,定积分换元积分法和分部积分法.⒉考试要求⑴理解定积分的概念.⑵掌握定积分的基本性质及积分中值定理.⑶理解变上限定积分定义的函数及求导定理,掌握牛顿—莱布尼兹公式.⑷掌握定积分换元积分法和分部积分法.四.试卷结构试卷总分:100分考试时间:120分钟试卷内容比例:函数、极限和连续约20%导数与微分约20%中值定理、导数的应用约20%不定积分约20%定积分约20%试卷题型比例:选择题约15%填空题约15%计算题约60%证明题约10%试题难易比例:容易题约60%中等难度题约30%较难题约10%。
东北林业大学2023自命题科目考研大纲:601理学数学
东北林业大学2023自命题科目考研大纲:601理学数学1500字东北林业大学2023年自命题考研大纲:601理学数学一、考试目的理学数学是一门应用数学学科,是工科、理科和农科等学科的基础课程之一。
通过考试,旨在考核考生对数学基本概念、基本理论和基本方法的掌握程度,以及对数学在实际问题中的应用能力。
同时,还旨在培养考生的逻辑思维和分析解决问题的能力。
二、考试内容1.微积分1.1 极限与连续1.2 导数与微分1.3 高阶导数与高阶微分1.4 微分中值定理1.5 泰勒公式1.6 函数的极值与最值1.7 不定积分1.8 定积分与定积分的应用2.数学分析2.1 数列与级数2.2 函数序列与函数级数2.3 一元函数的连续性与可导性2.4 地三维曲面及其方程2.5 多元函数极限与连续2.6 多元函数的偏导数及全微分2.7 方向导数与梯度2.8 重积分及其应用2.9 曲线积分与曲面积分2.10 向量场的散度与旋度3.概率统计3.1 随机事件与概率3.2 随机变量及其分布3.3 多元随机变量及其分布3.4 期望与方差3.5 大数定律与中心极限定理3.6 统计估计与检验4.线性代数4.1 线性空间与线性变换4.2 矩阵与行列式4.3 线性方程组的解法及其应用4.4 特征值与特征向量4.5 线性相关与线性无关4.6 正交变换与对称矩阵4.7 正定矩阵与二次型5.常微分方程5.1 常微分方程的基本概念5.2 一阶常微分方程5.3 二阶常微分方程及其应用5.4 高阶常微分方程5.5 线性微分方程组三、考试要求1.理解和掌握各个章节的基本概念和基本理论。
2.熟练掌握各个章节的数学运算方法和应用方法。
3.具备分析和解决实际问题的能力,能够将数学方法应用于解决实际问题。
4.具备一定的数学写作能力,能够清晰、准确地表达数学思想和数学推理过程。
四、考试形式考试采用闭卷方式进行,考试时间为180分钟,共分为两部分:选择题和解答题。
1.选择题:共40道选择题,每题2分,总分80分。
2023年数三考研大纲
2023年数三考研大纲2023年考研数学(三)大纲原文如下:数学三考试大纲包括微积分、线性代数和概率论与数理统计三部分,具体内容如下:一、微积分1. 函数、极限、连续2. 一元函数微分学3. 一元函数积分学4. 多元函数微积分学5. 常微分方程与差分方程6. 无穷级数7. 微分学在经济学中的应用二、线性代数1. 行列式2. 矩阵3. 向量4. 线性方程组5. 矩阵的特征值和特征向量6. 二次型7. 应用问题(数一、数二)三、概率论与数理统计1. 随机事件和概率2. 随机变量及其分布3. 多维随机变量及其分布4. 随机变量的数字特征5. 大数定律和中心极限定理6. 数理统计的基本概念及抽样分布7. 参数估计与假设检验(数一)8. 回归分析(数一)9. 方差分析(数一)10. 统计决策理论(数一)11. 随机过程(数一)12. 时间序列分析(数一)13. 多元统计分析(数一)14. 非参数估计方法(数一)15. 分位数回归(数一)16. 应用问题(数一)17. 高维数据分析(选讲,仅对选做题45有所涉及)18. 高维数据分析综合练习(选讲,仅对选做题45有所涉及)19. 高维数据分析综合练习答案及解析(选讲,仅对选做题45有所涉及)20. 高维数据分析练习题答案及解析(选讲,仅对选做题45有所涉及)21. 高维数据分析练习题(选讲,仅对选做题45有所涉及)22. 高维数据分析综合练习题(选讲,仅对选做题45有所涉及)23. 高维数据分析综合练习答案及解析(选讲,仅对选做题45有所涉及)24. 高维数据分析练习题答案及解析(选讲,仅对选做题45有所涉及)25. 高维数据分析练习题(选讲,仅对选做题45有所涉及)。
考研数学601考试范围
考研数学601考试范围
考研数学601考试范围包括以下几个方面的内容:
1. 复变函数与积分变换:复数的运算,复数函数的导数与积分,全纯函数与调和函数,柯西-黎曼方程等。
2. 常微分方程:一阶常微分方程、高阶常微分方程、线性常微分方程等。
3. 线性代数:向量空间、矩阵的运算与特征值特征向量、线性方程组等。
4. 概率论与数理统计:随机事件与概率、随机变量及其分布、多维随机变量分布、大数定律与中心极限定理、参数估计与假设检验等。
5. 数学分析:实数系与极限、连续函数与一致连续性、一元函数微积分、多元函数微积分等。
6. 数值计算与计算机应用:插值与逼近、数值微积分与数值常微分方程、矩阵计算与特征值问题等。
以上是考研数学601考试的大致范围,具体内容可能会有些变化,建议以当年教材和考纲为准。
601理学数学考试大纲
西安财经学院硕士研究生入学考试初试考试大纲考试科目:理学数学考试科目代码:601适用专业:统计学参考书目:[1] 同济大学数学系主编. 高等数学(上、下)(第六版),高等数学出版社.[2] 同济大学数学系主编. 线性代数(第五版),高等数学出版社.[3] 《概率论与数理统计》(第四版).浙江大学盛骤.谢式千.潘承毅编.高等教育出版社.考试总分:150分考试时间:3小时考试内容之高等数学函数、极限、连续考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念,会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最值定理、介值定理),并会应用这些性质.一元函数微分学考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义,会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理、拉格朗日( Lagrange)中值定理,了解泰勒定理和柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点和渐近线.9.会描述简单函数的图形.一元函数积分学考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿——莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算简单反常积分.多元函数微积分学考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标和极坐标),了解无界区域上较简单的反常二重积分并会计算.无穷级数考试要求1.了解级数的收敛与发散、收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及P -级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛域的和函数.6.了解 x e 、x sin 、x cos 、)1ln(x +及α)1(x +的麦克劳林(Maclaurin)展开式.常微分方程考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程.5.会用微分方程求解简单的经济应用问题.考试内容之线性代数行列式考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.矩阵考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.向量考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特方法.线性方程组考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.矩阵的特征值和特征向量考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.二次型考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.考试内容之概率论与数理统计随机事件和概率考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算,理解独立重复试验的概念,掌握计算有关事件概率的方法.随机变量及其分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、泊松(Poisson)分布及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用.5.会求随机变量函数的分布.多维随机变量及其分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.随机变量的数字特征考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.大数定律和中心极限定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.数理统计的基本概念考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.2.了解产生离散型随机变量、连续性随机变量的典型模式,了解正态分布和标准正态分布、均匀分布、指数分布以及分布的双侧分位数,会查相应的数值表.3.掌握正态总体的样本均值、样本方差、样本矩的抽样分布.4.了解经验分布函数的概念和性质.试卷结构选择题(24分)、填空题(32分)、解答题(94分).。
数三考试大纲
数三考试大纲
数学三是一个高考课程,它的考试大纲包括以下内容:
一、解函数及其图形、极限和导数:
1.理解方程的概念,熟悉整体的解,并能够求解一元一次方程及其应用;
2.掌握函数的概念,理解函数的性质,能够表示初等函数、解决一元
二次方程及其应用;
3.熟悉函数图形,能够观察和描述函数图形性质及其变化规律;
4.理解极限的概念,掌握定义型极限及其性质,能够计算定义型极限;
5.掌握导数的概念及其性质,能够计算一般函数的导数,并有深刻的
认识。
二、微积分:
1.能够求函数的积分及其应用;
2.理解函数的无穷级数概念,掌握函数的无穷级数的性质、级数的收
敛性;
3.掌握微分中值定理的概念;
4.了解立体几何的基本概念,掌握内积及其表示;
5.掌握微分学中简单的应用,如曲线上点的速度、加速度最大值等;
6.掌握偏微分方程基本概念及简单问题的解法。
三、统计学:
1.掌握统计概念及基本概念,能够提出简单的统计问题;
2.掌握抽样调查的基本方法,能够进行实际的统计抽样调查;
3.掌握假设检验的基本思想,能够运用t检验及其它检验方法来检验
假设;
4.掌握回归分析的基本思想,能够运用con-variance 分析、时间分
析法进行实际问题的分析;
5.掌握卡方检验的概念,并能够运用卡方检验进行实际问题的分析。
西北工业大学 601数学(理学) 硕士研究生考试大纲
5. 理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解并会用柯西中值定理。 6. 掌握用洛必达法则求未定式极限的方法。 7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最 大值和最小值的求法及其应用. 8. 会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平和铅直渐近线,会描绘 函数的图形。 9. 了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。
y(n) f ( x), y'' f ( x, y') 和 y'' f ( y, y').
4. 理解线性微分方程解的性质及解的结构。 5. 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分 方程。 6. 会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数 非齐次线性微分方程。
二、参考书目
1.西北工业大学高等数学教材编写组编,《高等数学》,科学出版社,2005 2.西北工业大学线性代数编写组编, 《线性代数》,科学出版社,2006 3. 陆全主编, 《高等数学常见题型解析及模拟题》,西北工业大学出版社,2003 4. 徐仲、张凯院主编,《线性代数辅导讲案》,西北工业大学出版社, 2007
(四)、多元函数微分学 考试内容
多元函数的概念,二元函数的几何意义,二元函数的极限与连续的概念,有界闭区域上 多元连续函数的性质,多元函数的偏导数和全微分,全微分存在的必要条件和充分条件,多 元复合函数、隐函数的求导法,二阶偏导数,方向导数和梯度,空间曲线的切线与法平面, 曲面的切平面与法线,多元函数的极值和条件极值,多元函数的最大值、最小值及其简单应 用。 考试要求 1. 理解多元函数的概念,理解二元函数的几何意义。 2. 了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。 3. 理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分 条件,了解全微分形式的不变性。 4. 理解方向导数与梯度的概念,掌握其计算方法。 5. 掌握多元复合函数一阶、二阶偏导数的求法。 6.了解隐函数存在定理,会求多元隐函数的偏导数 7. 了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。 8. 理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函 数极值存在的充分条件,会求二元函数的极值;会用拉格朗日乘数法求条件极值,会求简单 多元函数的最大值和最小值,并会解决一些简单的应用问题。
2024考研高数三大纲
2024年考研数学三大纲一、考试性质数学三是全国硕士研究生招生考试的重要组成部分,考查考生对基础数学知识的理解和应用能力。
考试要求考生具备扎实的数学基础,能够运用数学知识解决实际问题,并具备一定的创新能力和数学素养。
二、考试内容1. 函数、极限、连续:考查函数的基本性质、极限的计算、连续函数的性质等。
2. 一元函数微分学:考查导数的概念、导数的计算、微分中值定理等。
3. 一元函数积分学:考查不定积分、定积分的概念和计算、积分的应用等。
4. 多元函数微分学:考查多元函数的导数、偏导数的概念和计算,以及多元函数极值和最值的求解。
5. 多元函数积分学:考查二重积分、三重积分的概念和计算,以及曲线和曲面积分的求解。
6. 常微分方程:考查常微分方程的基本概念、一阶和二阶常微分方程的求解方法,以及常微分方程的应用。
7. 无穷级数:考查数项级数、幂级数的概念和性质,以及幂级数的展开等。
8. 随机事件和概率:考查随机事件的关系和运算、概率的定义和性质,以及古典概型和几何概型的概率计算。
9. 数理统计初步:考查数理统计的基本概念、参数估计和假设检验的方法等。
三、考试要求1. 理解数学基础知识,能够正确运用数学知识解决实际问题。
2. 掌握基本的数学方法,包括抽象思维、逻辑推理、空间想象等。
3. 具备创新能力和数学素养,能够运用数学知识进行数据处理、统计分析等。
四、考试形式和试卷结构1. 考试形式:数学三考试时间为180分钟,满分为150分。
考试形式为闭卷、笔试。
2. 试卷结构:试卷由选择题、填空题和解答题三种题型组成。
选择题和填空题分值占40%,解答题分值占60%。
3. 难易程度:试卷难度分为容易、较易、中等和较难四个等级。
容易题占30%,较易题占30%,中等题占20%,较难题占20%。
《高等数学Ⅲ》考试大纲
《高等数学Ⅲ》考试大纲(法政系本科各专业适用)参考学时:78 学分:5 课程编号: 1001303一、本课程的性质和任务 《高等数学》课程是法政系各专业学生的一门必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量的专门人才服务的。
通过本课程的学习,要使学生获得:1.一元函数微分学2.一元函数积分学3. 微分方程4.二重积分等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取知识奠定必要的数学基础。
在传授知识的同时,要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力、自学能力和创新能力,还要特别注意培养学生综合运用所学知识分析问题和解决问题的能力。
二、本课程的基本内容基本内容 考核目标 (一)函数、极限、连续 1.函数 一般了解 2.极限 熟悉理解 3.函数的连续性 熟悉理解 (二)一元函数微分学 1.导数与微分 熟悉理解 2.中值定理与导数应用 掌握应用 (三)一元函数积分学 1.不定积分 熟悉理解 2.定积分及其应用 掌握应用 (四)常微分方程 1.微分方程的基本概念 熟悉理解 2.特殊类型的一阶微分方程 掌握应用 3.二阶常系数线性齐次微分方程 一般了解 (五)二重积分 1.多元函数 一般了解 2.二重积分 熟悉理解3.二重积分的应用 一般了解三、考试说明(一)考核方式 1、期末笔试为120分钟的闭卷考试,占总评成绩的70%。
2、平时成绩根据作业完成情况、出勤情况和课堂表现确定,占总评成绩的30%。
3、根据考试方法的改革要求,考核方式另行确定。
(二)命题原则 1、命题范围。
在教学大纲要求的范围内命题,考试内容覆盖到章,并适当突出重点章节,加大重点内容的覆盖密度。
2、命题比例。
每一章节的内容,均按一般了解、熟悉理解和掌握应用三个目标层次提出了要求。
在考试内容中,了解的部分约占10%,熟悉的部分约占30%,掌握的部分约占60%。
3、难易程度。
《高等数学》(601)考试大纲
辽宁师范大学城市与环境学院硕士研究生入学考试《高等数学》(601)考试大纲2016年8月注意:本大纲为参考性考试大纲,是考生需要掌握的基本内容。
一、考试科目设立目的《高等数学》作为理科最基本的数学基础课,是考察学生逻辑思维和运算能力的基本检验手段。
掌握“高等数学”中的函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及应用、多元函数微分法级应用、重积分、曲线积分与曲面积分、无穷级数等基本概念和基本理论;掌握各部分的基本方法、知识结构的内在联系;侧重考察学生的抽象思维、逻辑思维、运算能力、空间想象力;运用基本概念、理论方法进行正确推理证明、准确计算的能力、能综合运用所学知识分享并解决实际问题的能力。
二、考察主要知识点(一)、函数与极限1.映射与函数2.数列的极限3.函数的极限4.无穷小与无穷大5.极限运算法则6.极限存在准则7.两个重要极限8.无穷小的比较9.函数的连续性与间断性10.连续函数的运算与初等函数的连续性11.闭区间上连续函数的性质(二)、导数与微分1.导数概念2.函数的求导法则3.高阶导数4.隐函数及由参数方程所确定的函数的导数5.函数的微分(三)、微分中值定理与导数的应用1.微分中值定理2.洛必达法则3.泰勒公式4.函数的单调性与曲线的凹凸性5.函数的极值与最大值最小值(四)、不定积分1.不定积分的概念与性质2.换元积分法3.分部积分法4.有理函数的积分(五)、定积分1.定积分的概念与性质2.微积分基本公式3.定积分的换元法和分部积分法(六)、定积分的应用1.定积分的元素法2.定积分在几何学上的应用(七)、多元函数微分法及其应用1.多元函数的基本概念2.偏导数3.全微分4.多元复合函数的求导法则5.隐函数的求导公式6.方向导数与梯度7.多元函数的极值及其求法(八)、重积分1.二重积分的概念与性质2.二重积分的计算法(九)、曲线积分与曲面积分1.对弧长的曲线积分2.对坐标的曲线积分3.格林公式及其应用4.对面积的曲面积分5.对坐标的曲面积分(十)、无穷级数1.常数项级数的概念和性质2.常数项级数的审敛法3.幂级数4.函数展开成幂级数。
高数三考试大纲
高数三考试大纲一、考试范围与要求本考试大纲适用于高等数学第三学期的课程,旨在考察学生对高等数学知识的掌握程度和应用能力。
考试内容涵盖微积分、线性代数、概率论与数理统计等基础数学知识,要求学生能够熟练运用这些知识解决实际问题。
二、微积分部分1. 多元函数微分学- 多元函数的极限、连续性、偏导数、可微性- 复合函数的偏导数、隐函数的偏导数- 多元函数的极值问题及其应用2. 重积分- 二重积分的概念、性质和计算方法- 三重积分的计算方法- 重积分在几何和物理问题中的应用3. 曲线积分与曲面积分- 第一类曲线积分和曲面积分的计算- 第二类曲线积分和曲面积分的计算- 格林公式、高斯公式和斯托克斯定理4. 无穷级数- 数项级数的收敛性判别- 幂级数、泰勒级数及其应用- 函数的傅里叶级数展开三、线性代数部分1. 向量空间- 向量空间的定义、性质和子空间- 线性组合、线性相关与线性无关2. 线性变换- 线性变换的定义、矩阵表示- 线性变换的核与像- 特征值与特征向量3. 矩阵理论- 矩阵的运算、逆矩阵- 行列式的性质和计算- 矩阵的秩、特征值和特征向量4. 线性方程组- 线性方程组的解法- 齐次线性方程组和非齐次线性方程组的解的结构- 线性方程组的矩阵表示四、概率论与数理统计部分1. 随机事件与概率- 随机事件的概率、条件概率- 概率的加法公式、乘法公式- 全概率公式和贝叶斯公式2. 随机变量及其分布- 离散型随机变量和连续型随机变量- 常见分布:二项分布、泊松分布、均匀分布、指数分布、正态分布- 随机变量的数学期望、方差、标准差3. 多维随机变量- 多维随机变量的联合分布、边缘分布- 多维随机变量的期望、协方差、相关系数4. 大数定律和中心极限定理- 大数定律的概念和应用- 中心极限定理的陈述和应用5. 数理统计基础- 抽样分布、样本均值和样本方差的分布- 点估计、区间估计和假设检验五、考试形式与题型考试形式为闭卷笔试,题型包括选择题、填空题、计算题、证明题和应用题。
数学三大纲
考试科目:微积分.线性代数.概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分 56%线性代数 22%概率论与数理统计 22%四、试卷题型结构试卷题型结构为:单项选择题选题8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性.单调性.周期性和奇偶性复合函数.反函数.分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数.反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性.拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton- Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值.最大值和最小值二重积分的概念.基本性质和计算无界区域上简单的反常二重积分1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径.收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解...及的麦克劳林(Maclaurin)展开式.六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型.正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解产生变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布得上侧分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法..会用导数判断函数图形的凹凸性(注:时,的图形是凹的图形是凸具有二阶导数.当时,的图形是凹的;的图形是凸的),会求函数图形的拐级数及其收敛性级数的收敛与发散的条件,,,及,,,及、考试内容总体 个体 简单随机样本 统计量 经验分布函数 样本均值 样本方差和样本矩 分布 t 分布 F 分布 分位数 正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为 2.了解产生 变量、 t 变量和 F 变量的典型模式;了解标准正态分布、分布、 t 分布和 F 分布得上侧分位数,会查相应的数值表. 3.掌握正态总体的样本均值、样本方差、样本矩的抽样分布. 4.了解经验分布函数的概念和性质.考试内容 总体 个体 简单随机样本 统计量 经验分布函数 样本均值 样本方差和样本矩 分布 t 分布 F 分布 分位数 正态总体的常用抽样分布考试要求 1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为 2.了解产生 变量、 t 变量和 F 变量的典型模式;了解标准正态分布、 分布、 t 分布和 F 分布得上侧 分位数,会查相应的数值表. 3.掌握正态总体的样本均值、样本方差、样本矩的抽样分布. 4.了解经验分布函数的概念和性质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系的建立;数列极限与函数极限的定义及其性质;函数的左极限和右极限;无穷
小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较;极限的四
则运算;极限存在的两个准则:单调有界准则和夹逼准则;两个重要极限:
lim sin x 1 x0 x
lim
x
1
1 x
x
e
函数连续的概念;函数间断点的类型;初等函数的连续性;闭区间上连续函
(6) 了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌
握利用两个重要极限求极限的方法。
(7) 理解无穷小量的概念和基本性质,掌握无穷小量的比较方法.了解无穷
大量的概念及其与无穷小量的关系。
(8) 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
(9) 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性
解答题(包括证明题)
9~14 题,每小题 10 分;15~17 题,每小
题 15 分,共 105 分
四、考查内容
Ⅰ 微积分
(一)函数、极限、连续 1. 考试内容
函数的概念及表示法;函数的有界性、单调性、周期性和奇偶性 复合函数、
反函数、分段函数和隐函数;基本初等函数的性质及其图形;初等函数;函数关
601 高等数学三考试大纲
一、考试性质
高等数学三是理学学位招收硕士研究生而设置的具有选拔性质的考试科目。 目的是科学、公平、有效地测试考生是否具有攻读理学硕士学位所需要的数学基 础知识和能力,要求的标准是各学科分析与解决问题的基本工具和基础理论,以 利于学校择优选拔,确保硕士研究生的招生质量。
二、考查目标
考核微积分、线性代数、概率论与数理统计的基本概念和方法。要求考生具 备分析和处理带有随机性数据的能力。初步掌握处理微积分理论与应用、线性代 数基本方法和随机现象统计分析的基本思想,能够运用所学的高等数学相关基本 理论、基本知识和基本技能综合分析、判断和解决有关理论问题和实际问题。
三、考试形式和试卷结构
2. 考试要求 (1) 理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与 经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。 (2) 掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导 法则,会求分段函数的导数,会求反函数与隐函数的导数。 (3) 了解高阶导数的概念,会求简单函数的高阶导数。 (4) 了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性, 会求函数的微分。 (5) 理解罗尔(Rolle)定理、拉格朗日( Lagrange)中值定理,了解泰勒 (Taylor)定理、柯西(Cauchy)中值定理,掌握这四个定理的简单应用。 (6) 会用洛必达法则求极限。 (7) 掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最 大值和最小值的求法及其应用。 (8) 会用导数判断函数图形的凹凸性(注:在区间 (a,b) 内,设函数 f (x) 具 有二阶导数.当 f (x) 0 时, f (x) 的图形是凹的;当 f (x) 0 时, f (x) 的图形 是凸的),会求函数图形的拐点和渐近线。 (9) 会描述简单函数的图形。 (三)一元函数积分学 1. 考试内容 原函数和不定积分的概念;不定积分的基本性质;基本积分公式 定积分的 概念和基本性质;定积分中值定理;积分上限的函数及其导数;牛顿-莱布尼茨 (Newton- Leibniz)公式;不定积分和定积分的换元积分法与分部积分法;反 常(广义)积分;定积分的应用。 2. 考试要求 (1) 理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公 式,掌握不定积分的换元积分法与分部积分法。
1. 试卷满分及考试时间
试卷满分为 150 分,考试时间为 180 分钟卷、笔试。
3. 试卷内容结构
微积分
约 50%
线性代数
约 25%
概率论与数理统计
约 25%
4. 试卷题型结构
单选题
20 小题,每小题 1.5 分,共 30 分
填空题
10 小题,每小题 1.5 分,共 15 分
数的性质。
2. 考试要求
(1) 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。
(2) 了解函数的有界性、单调性、周期性和奇偶性。
(3) 理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
(4) 掌握基本初等函数的性质及其图形,了解初等函数的概念。
(5) 了解数列极限和函数极限(包括左极限与右极限)的概念。
质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
(二)一元函数微分学
1. 考试内容
导数和微分的概念;导数的几何意义和经济意义;函数的可导性与连续性之
间的关系;平面曲线的切线与法线;导数和微分的四则运算;基本初等函数的导
数;复合函数、反函数和隐函数的微分法;高阶导数;一阶微分形式的不变性; 微分中值定理;洛必达(L'Hospital)法则;函数单调性的判别;函数的极值; 函数图形的凹凸性、拐点及渐近线;函数图形的描绘;函数的最大值与最小值。
(2) 了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的 函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部 积分法。
(3) 会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会 利用定积分求解简单的经济应用问题。
(4) 了解反常积分的概念,会计算反常积分。 (四)多元函数微积分学 1. 考试内容 多元函数的概念;二元函数的几何意义;二元函数的极限与连续的概念;有 界闭区域上二元连续函数的性质;多元函数偏导数的概念与计算;多元复合函数 的求导法与隐函数求导法;二阶偏导数;全微分;多元函数的极值和条件极值、 最大值和最小值;二重积分的概念、基本性质和计算;无界区域上简单的反常二 重积分。 2. 考试要求 (1) 了解多元函数的概念,了解二元函数的几何意义。 (2) 了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的 性质。 (3) 了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导 数,会求全微分,会求多元隐函数的偏导数。 (4) 了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条 件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘 数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问 题。 (5) 了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、 极坐标),了解无界区域上较简单的反常二重积分并会计算。 (五)无穷级数 1. 考试内容 常数项级数的收敛与发散的概念;收敛级数的和的概念;级数的基本性质与 收敛的必要条件;几何级数与 p 级数及其收敛性;正项级数收敛性的判别法;任 意项级数的绝对收敛与条件收敛;交错级数与莱布尼茨定理;幂级数及其收敛半