四年级奥数:盈亏问题知识讲解

合集下载

四年级奥数专题第14讲 盈亏问题

四年级奥数专题第14讲 盈亏问题

四年级奥数专题第14讲盈亏问题概念:盈亏问题是在等分除法的基础上发展起来的。

它的特点是:把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余,或两次都不足),已知所余和不足的数量,求物品数量和参加分配人数的问题,叫作盈亏问题。

解题关键:盈亏问题的解法要点是:先求两次分配中分配者每份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者数,进而再求得物品数。

解题规律:总差额÷每人差额=人数例1.育红幼儿园给小朋友分桃子,如果每人分5个,少15个;如果每人分3个,多31个;幼儿园共有多少个小朋友?共有多少个桃子?例2.幼儿园给小朋友分糖,若每人分5块,少27块;若每人分4块,正好完成。

求小朋友有几个?糖有多少块?例3.参加美术小组同学,每个人分得相同支数的色笔,如果小组有10人,色笔多余25支;如果小组有12人,色笔多余5支;求每人分得多少支?共有色笔多少支?例4.实验小学买来一批铅笔,发给三好学生,如果每人发5支,则差8支;如果每人发7支,则差30支。

求三好学生有多少人?学校共买铅笔多少支?习题1.少年宫参加无线电小组的同学,如果分成12个小组,则多16人;如果分成14个小组,则少8人。

求每组多少人?共有多少人?2.四年级上体育课,老师教一部分同学打羽毛球,每两人分一组,每组分6个球,少10个球;每组分4个球,还少2个球。

问共有多少个组?有多少个羽毛球?3.用一块布给小朋友做儿童服,如果裁8件,则多14米布;如果裁10件,则多4米布。

这块布有多少米?4.幼儿园老师把一堆苹果分给小朋友,如果每人分5个,则少14个;如果每人分3个,正好分完。

一共有多少个小朋友?有多少个苹果?5.给同学们分练习本,每人分4本,余57本;每人分6本,则少31本。

问有多少个同学?有多少本练习本?6.用一条绳子测桥长,量14次,则绳子少3米;量16次,绳子余5米。

四年级奥数:盈亏问题知识讲解

四年级奥数:盈亏问题知识讲解

四年级奥数:盈亏问盈亏问题“幼儿园老师给小朋友分糖果,每个小朋友分5颗糖果,就多出22颗糖果;每个小朋友分7颗糖果,就少18颗糖果.有多少个小朋友和多少颗糖果?像这样以份数平均分一定数量的物品,每份少一些,则物品有余(盈);每份多一些,则物品不足(亏).凡是研究这一类算法的应用题叫做盈亏问题盈亏问题的基本解法是:份数=(盈+亏)*两次分配数的差;物品总数二每份个数X份数+盈数,或物品总数二每份个数X份数-亏数例1幼儿园老师给小朋友分糖果,每个小朋友分5颗糖果,就多出22颗糖果;每个小朋友分7颗糖果,就少18颗糖果.有多少个小朋友和多少颗糖果?例2某校安排学生宿舍,如果每间5人,则有14人没有床位;如果每间7人,则多4个空床位.问:宿舍有几间?住宿学生有几人?随堂练习1(1)参加体操的同学排队,如果每行站9人,则多37人;而每行站12人,则少20人.求参加团体操的同学有多少人?(2)用一根绳子绕树三圈,余3米;如果绕树四圈,则差4米.树周长有几米?绳长有几米?例3人民路小学三、四、五年级的同学乘汽车去春游,如果每车坐45人,有10人不能坐车;如果每车多坐5人,又多出一辆汽车•一共有多少辆车?有多少名同学去春游?例4动物园为猴山的猴买来桃,这些桃如果每只猴分5个,还剩32个;如果其中10只小猴分4个,其余的猴分8个,就恰好分完•问:猴山有猴多少只?共买来多少个桃?随堂练习2(1)全班同学去划船,如果减少一条船,每条船正好坐9人;如果增加一条船,每条船正好坐6人.全班共有多少人?(2)华中路第一小学组织学生去春游,如果每车坐65人,则有15人不能乘车;如果每车多坐5人,恰好多余了一辆•一共有几辆汽车?有多少学生?例5学校组织同学乘车去科技馆参观,原计划每车坐30人,还剩下1个人;后来又临时增加了100人,汽车却比原来少1辆,这样每辆车要坐36人,还剩5个人.原计划乘坐几辆车?原计划去多少人?例6果树专业队上山植果树,所需栽的苹果树苗是梨树苗的2倍.如果梨树苗每人栽3棵,还余2棵;苹果树苗每人栽7棵,则少6棵•问:果树专业队上山植树的有多少人?要栽多少棵苹果树和梨树?随堂练习3(1)农民种树,其中有3人分得树苗各4棵,其余的每人分得3棵,这样最后余下树苗11棵;如果1人先分得3棵,其余的每人分得5棵,则树苗恰好分尽求人数和树苗的总数.(2)学校买来一些篮球和排球分给各班,买来的排球个数是篮球的2倍,如果篮球每班分2个,多余4个;如果排球每班分5个,则少2个.学校买来篮球和排球各多少个?练习题一、填空题1、学校分配宿舍,每个房间住3人,则多出20人;每个房间住5人,恰巧安排好.则房间有__________ 间.2、学校买来一批故事书,每班发16本,多10本;每班发18本,少6本.则买来故事书的本数为______ 本.3、一小包糖分给几个小朋友,如果每人分3块,则余3块;如果每人分5块,则少7块.那么小朋友有______ 个.4、某数的5倍减去41,则比其3倍多19,这个数是 ________5、儿童分玩具,每人6个则多12个;每人8个,有一人没有分到•儿童有_____ 人,玩具有______ 个.6老师给幼儿园的小朋友分苹果,如果每位小朋友分2个,还多30个;如果其中的12位小朋友每人分3个,剩下的每人分4个,正好分完.一共有 ________ 位小朋友,有____ -个苹果.二、选择题7、学校给参加夏令营的同学租了几辆大轿车,如果每辆轿车乘28人则有13名同学上不了车;如果每辆车乘32人,贝U还有3个空座.一共有同学( ).(A) 100 名(B) 143 名(C) 125 名(D) 137 名8、学校给新生安排宿舍,如果按7人一间安排(刚好住满)要比按8人一间安排(也刚好住满)多用两间宿舍.一共有新生( ).(A) 110 名(B) 111 名(C) 123 名(D) 112 名9、全班同学站队排成若干行,如果每行14人则多5人;如果每行17人则少4 人,那么排成的行数是( ).(A) 4 (B) 5 (C) 3 (D) 210、苹果个数是梨子的2倍,梨子每人分3个,余2个;苹果每人分7个,少6个.那么人数、苹果数和梨数分别是( ).(A) 10,64,32 (B) 12,62,31 (C) 9,54,27 (D) 13,68,34三、简答题11、四年级同学参加植树活动,如果每班种10棵,还剩6棵树苗;如果剩下的每班再种2棵,就少4棵树苗.四年级一共植树多少棵?12、同学们到阶梯教室听科技报告,如每张长椅坐8人,则剩下50人没有座位;如果每张长椅上坐12人,则空出10个座位.如果每张长椅上坐7人,还剩下多少学生无座位?13、某商店从深圳运来一批水果,运费花了1000元,水果报损了100千克.若按1千克2元卖出,则要亏损300元;若按1千克3元卖出,则可盈利500元. 问:原来进货多少千克?水果进货的金额是多少元?14、小刚从家去学校,如果每分钟走80米,结果比上课时间提前6分钟到校;如果每分钟走50米,则要迟到3分钟.小刚的家到学校的路程有多远?。

小学奥数盈亏问题解题思路详解(附盈亏问题公式)

小学奥数盈亏问题解题思路详解(附盈亏问题公式)

盈亏问题解题思路详解(附盈亏问题公式)解题思路:盈亏问题的解法要点是先求两次分配中分配者每份所得物品数量的差,再求两次分配中的总差额,用前一个差去除后一个差,就得到分配者的人数,进而再求得物品数。

解题规律:总差额÷每人差额=人数。

一般解法:(盈数+亏数)÷两次每份分配之差=份数、(大盈-小盈)÷两次分配之差=份数、(大亏--小亏)÷两次分配之差=份数,再求总数量。

每次分的数量*份数+盈=总数量或。

每次分的数量*份数-亏=总数量。

物品数可由其中一种分法的份数和盈亏数求出。

其它(高级):盈亏临界点——交易所股票交易量的基数点,超过这一点就会实现盈利,反之则亏损。

盈亏临界点计算的基本模型设以P代表利润,V代表销量,SP代表单价、VC代表单位变动成本,FC代表固定成本,BE代表盈亏临界点,根据利润计算公式可求得盈亏临界点的基本模型为:盈亏临界点的计算,可以采用实物和金额两种计算形式:1.按实物单位计算:其中,单位产设某产品单位售价为10元,单位变动成本为6元,相关固定成本为8000元,则盈亏临界点的销售量(实物单位)=8000÷(10-6)=2000(件)。

品贡献毛益=单位产品销售收入-单位变动成本2.按金额综合计算:盈亏临界点的销售量(用金额表现)=固定成本÷贡献毛益率其中,贡献毛益率=贡献毛益/销售收入附盈亏问题公式:(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差/大分-小分)=人数。

(2)两次都有余(盈),可用公式:(大盈-小盈)÷(两次每人分配数的差/大分-小分)=人数。

(3)两次都不够(亏),可用公式:(大亏-小亏)÷(两次每人分配数的差/大分-小分)=人数。

(4)一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每人分配数的差/大分-小分)=人数。

(5)一次有余(盈),另一次刚好分完,可用公式:盈÷(两次每人分配数的差/大分-小分)=人数。

奥数盈亏问题详解

奥数盈亏问题详解

盈亏问题知识点说明:盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.可以得出盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”.注意1.条件转换 2.关系互换板块一、直接计算型盈亏问题【例 1】三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?【解析】比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差541-=(块).第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:729+=(块),每人相差1块,结果总数就相差9块,所以有少先队员919÷=(人).共有砖:49743⨯+=(块).【巩固】明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?【解析】“多8元”与“多4元”两者相差844-=-=(元),每个人要多出871(元),因此就知道,共有414⨯-=(元).÷=(人),蛋糕价钱是84824【巩固】老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?【解析】老猴子的第一种方案盈9个桃子,第二种方案盈2个,所以盈亏总和是927-=(个),由盈亏问题公式得,-=(个),两次分配之差是11101有小猴子:717⨯+=(个)桃子.÷=(只),老猴子有710979【巩固】有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢?【解析】由题意知:第一种方案:每人发5本多出70本;第二种方案:每人发7本多出10本;两种方案分配结果相差:701060-=(本),这是因为两次分配中每人所发的本数相差:752-=(本),相差60本的学生有:60230⨯+=(本)(或30710220⨯+=).÷=(人).练习本有:30570220【例 2】(2007年“走进美妙的数学花园”初赛)猴王带领一群猴子去摘桃.下午收工后,猴王开始分配.若大猴分5个,小猴分3个,猴王可留10个.若大、小猴都分4个,猴王能留下20个.在这群猴子中,大猴(不包括猴王)比小猴多只.【详解】当大猴分5个,小猴分3个时,猴王可留10个.若大、小猴都分4个,猴王能留下20个.也就是说在大猴分5个,小猴分3个后,每只大猴都拿出1个,分给每只小猴1个后,还剩下201010-=个,所以大猴比小猴多10只.【巩固】学而思学校新买来一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差2本,请问有多少老师?多少本书?【解析】“差9本”和“差2本”两者相差927-=(本),每个人要多发1091-=(本),因此就知道,共有老师717⨯-=(本).÷=(人),书有710961【巩固】幼儿园给获奖的小朋友发糖,如果每人发6块就少12块,如果每人发9块就少24块,总共有多少块糖呢?【解析】由题意知:两次的分配结果相差:241212-=(块),这是因为第一次与第二次分配中每人相差:963÷=-=(块),多少人相差12块呢?1234(人),糖果数是:641212⨯-=(块)(或942412⨯-=).【巩固】王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30元,问儿童小提琴多少钱一把?王老师一共带了多少钱?【解析】本题购物的两个方案,第一个方案:买7把差110元,第二个方案:买5把还多30元,从买7把变成买5把,少买了752-=(把),而钱的差额为:11030140+=(元),即140元可以买2把小提琴,可见小提琴的单价是每把70元,王老师一共带了707110380⨯-=(元).【巩固】工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?【解析】本题中“损坏一个倒赔100元”的意思是运一个完好的花瓶与损坏1个花瓶相差10020120+=(元),即损1个花瓶不但得不到20元的运费,而且要付出120元.本例可假设250个花瓶都完好,这样可得运费-=(元).202505000⨯=(元).这样比实际多得50004400600就是因为有损坏的瓶子,损坏1个花瓶相差120元.现共相差600元,从而求出共损坏多少个花瓶.根据以上分析,可得损坏了⨯-÷+=()()(个).202504400100205【例 3】某校安排学生宿舍,如果每间住5人则有14人没有床位;如果每间住7人,则多出4个床位,问宿舍几间?住宿生几人?【解析】由已知条件每间5人少14个床位每间7人多4个床位比较两次分配的方案,可以看出,由于第二种方案比第一种每间多住(75)2-=人,一共要多出(144)18+=个床位,根据两种方案每间住的人数的差和床位差,可以求出宿舍间数,然后根据已知条件可求出住宿生人数.解:(414)(75)=9+÷-(间)⨯-=(人)591459⨯+=(人),或79459【巩固】学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍?【解析】如果30间都是小宿舍,那么只能住430120⨯=(人),而实际上住了168人.大宿舍比小宿舍每间多住642-=(人),所以大宿舍有168120224()(间).(这是一个鸡兔同笼,放在这里做对比)-÷=【巩固】智康学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?【解析】由题目条件知道,同学的人数与糖果的粒数不变,比较两种分配方案,第一种每人分4粒就多9粒,第二种每人分5粒则少6粒,两种不同方案一多一少差9+6=15(粒),相差原因在于两种方案分配数不同,两次分配数之差为:5-4=1(粒),每人相差一粒,15人相差15粒,所以参与分糖果的同学的人数是15÷1=15(位),糖果的粒数为:4×15+9=69(粒).【巩固】秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个?计划吃多少天?【解析】题中告诉我们每天吃4个,多出48个萝卜;每天吃6个,少8个萝卜.观察每天吃的个数与萝卜剩余个数的变化就能看出,由每天吃4个变为每天吃6个,也就是每天多吃2个时,萝卜从多出48个到少8个,也就是所需的萝卜总数要相差48+8=56(个).从这个对应的变化中可以看出,只要求56里面含有多少个2,就是所求的计划吃的天数;有了计划吃的天数,就不难求出共有多少个萝卜了.吃的天数:(48+8)÷(6-4)=56÷2=28(天),萝卜数:6×28-8=160(个)或 4×28+48=160(个).板块二、条件关系转换型盈亏问题【例 4】猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?【解析】猫妈妈的第一种方案盈8条鱼,第二种方案不盈不亏,所以盈亏总和是8条,两次分配之差是11101-=(条),由盈亏问题公式得,有小猫:818⨯+=(条)鱼.÷=(只),猫妈妈有810888【巩固】学而思学校三年级基础班的一部分同学分小玩具,如果每人分4个就少9个,如果每人分3个正好分完,问:有多少位同学分多少个小玩具?【解析】第一种分配方案亏9个小玩具,第二种方案不盈不亏,所以盈亏总和是9个,两次分配之差是:431-=(个),由盈亏问题公式得,参与分玩具的同学有:919⨯=(个).÷=(人),有小玩具9327【巩固】学而思学校买来一批小足球分给各班:如果每班分4个,就差66个,如果每班分2个,则正好分完,学而思小学一共有多少个班?买来多少个足球?【解析】第一种分配方案亏66个球,第二种方案不盈不亏,所以盈亏总和是66个,两次分配之差是422-=(个),由盈亏问题公式得,朝阳小学有:66233⨯=(个).÷=(个)班,买来足球33266【巩固】一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生?共多少粒糖果?【解析】第一种分配方案盈9粒糖,第二种方案不盈不亏,所以盈亏总和是9粒,两次分配之差是541-=(粒),由盈亏问题公式得,参与分糖的同学有:919÷=(人),有糖果9545⨯=(粒).【巩固】实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生?【解析】没辆车坐60人,则多余15人,每辆车坐60+5=65人,则多出一辆车,也就是差65人.因此车辆数目为:(65+15)÷5=80÷5=16(辆).学生人数为:60×(16-1)+15=60×15+15=900+15=915(人).【例 5】甲、乙两人各买了相同数量的信封与相同数量的信纸,甲每封信用2 张信纸,乙每封信用3 张信纸,一段时间后,甲用完了所有的信封还剩下20 张信纸,乙用完所有信纸还剩下10 个信封,则他们每人各买了多少张信纸?【解析】由题意,如果乙用完所有的信封,那么缺30 张信纸.这是盈亏问题,盈亏总额为(20+30)张信纸,两次分配的差为(3-2)张信纸,所以有信封(20+30)÷(3-2)=50(个),有信纸2×50+20=120(张).【例 6】幼儿园将一筐苹果分给小朋友,如果全部分给大班的小朋友,每人分5个,则余下10个。

小学四年级奥数《盈亏问题》知识点+练习题

小学四年级奥数《盈亏问题》知识点+练习题

专题简析:在日常生活中常有这样的问题:一定数量的物品分给一定数量的人,每人多一些,物品就不够;每人少一些,物品就有余.盈亏问题就是在已知盈亏的情况下来确定物品总数和参加分配的人数.解答盈亏问题的关键是弄清盈、亏与两次分得差的关系.盈亏问题的数量关系是:(1)(盈+亏)÷两次分配差=份数(大盈-小盈)÷两次分配差=份数(大亏-小亏)÷两次分配差=份数(2)每次分得的数量×份数+盈=总数量每次分得的数量×份数-亏=总数量例1:一个植树小组植树.如果每人栽5棵,还剩14棵;如果每人栽7棵,就缺4棵.这个植树小组有多少人?一共有多少棵树?由题意可知,植树的人数和树的棵数是不变的.比较两种分配方案,结果相差14+4=18棵,即第一种方案的结果比第二种多18棵.这是因为两种分配方案每人植树的棵数相差7-5=2棵.所以植树小组有18÷2=9人,一共有5×9+14=59棵树.练习一1,幼儿园把一些积木分给小朋友,如果每人分2个,则剩下20个;如果每人分3个,则差40个.幼儿园有多少个小朋友?一共有多少个积木?2,某校安排宿舍,如果每间6人,则16人没有床位;如果每间8人,则多出10个床位.问宿舍多少间?学生多少人?3,有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人.问:这个班共有多少学生?例2:学校将一批铅笔奖给三好学生.如果每人奖9支,则缺45支;如果每人奖7支,则缺7支.三好学生有多少人?铅笔有多少支?分析与解答:这是两亏的问题.由题意可知:三好学生人数和铅笔支数是不变的.比较两种分配方案,结果相差45-7=38支.这是因为两种分配方案每人得到的铅笔相差9-7=2支.所以,三好学生有38÷2=19人,铅笔有9×19-45=126支.练习二1,将月季花插入一些花瓶中.如果每瓶插8朵,则缺少15朵;如果每瓶改为插6朵,则缺少1朵.求花瓶的只数和月季花的朵数.2,王老师给美术兴趣小组的同学分发图画纸.如果每人发5张,则少32张;如果每人发3张,则少2张.美术兴趣小组有多少名同学?王老师一共有多少张图画纸?3,老师将一些练习本发给班上的学生.如果每人发10本,则有两个学生没分到;如果每人发8本,则正好发完.有多少个学生?多少本练习本?例3:有一些少先队员到山上去种一批树.如果每人种16棵,还有24棵没种;如果每人种19棵,还有6棵没有种.问有多少名少先队员?有多少棵树?分析与解答:这是两盈的问题.由题意可知:少先队员的人数和树的棵数是不变的.比较两种分配方案,结果相差24-6=18棵,这是因为两种分配方案每人种的树相差19-16=3棵.所以,少先队员有18÷3=6名,树有16×6+24=120棵.练习三1,小虎在敌人窗外听里边在分子弹:一人说每人背45发还多260发;另一人说每人背50发还多200发.有多少敌人?多少发子弹?2,杨老师将一叠练习本分给第一小组的同学.如果每人分7本,还多7本;如果每人分8本则正好分完.请算一算,第一小组有几个学生?这叠练习本一共有多少本?3,崔老师给美术兴趣小组的同学分若干支彩色笔.如果每人分5支则多12支;如果每人分8支还多3支.请问每人分多少支刚好把彩色笔分完?例4:学校给一批新入学的学生分配宿舍.如果每个房间住12人,则34人没有位置;如果每个房间住14人,则空出4个房间.求学生宿舍有多少间?住宿学生有多少人?分析与解答:把“每间住14人,则空出4个房间”转化为“每间住14人,则少14×4=56人”.比较两种分配方案,结果相差34+56=90人,而每个房间相差14-12=2人.所房间数为90÷2=45间,学生人数为12×45+34=574人.练习四1,某校有若干个学生寄宿宿舍,若每一间宿舍住6人,则多出34人;若每间宿舍住7人,则多出4间宿舍.问宿舍有多少间?寄宿学生有多少人?2,育才小学学生乘汽车去春游.如果每车坐65人,则有15人不能乘车;如果每车多坐5人,恰好多余了一辆车.问一共有几辆汽车?有多少学生?3,学校分配学生宿舍.如果每个房间住6人,则少2间宿舍;如果每个房间住9人,则空出2个房间.问学生宿舍有多少间?住宿学生有多少人?例5:少先队员去植树,如果每人挖5个树坑,还有3个坑没人挖;如果其中2人各挖4个,其余的人各挖6个树坑,就恰好挖完所有树坑.少先队员一共挖多少树坑?分析与解答:如果每人都挖6个树坑,那么少(6-4)×2=4个树坑,两次相差4+3=7个树坑.这是因为两种分配方案每人挖的相差6-5=1个树坑.所以,少先队员一共有7÷1=7人,一共挖5×7+3=38个树坑.练习五1,老师给幼儿园的小朋友分苹果.如果每个小朋友分2个,还多30个;如果其中的12个小朋友每人分3个,剩下的每人分4个,则正好分完.一共有多少个苹果?2,在一次大扫除中,老师分配若干人擦玻璃.如果其中2人各擦4块,其余每人擦5块,则余22块;如果每人擦7块,则正好擦完.求擦玻璃的人数和玻璃的块数.3,小红家买来一篮橘子分给全家人.如果其中二人每人分4只,其余每人分2只,则多出4只;如果其中一人分6只,其余每人分4只,则又缺12只.小红家买来多少只橘子?小红家一共有多少人?。

四年级数学:盈亏问题完整版

四年级数学:盈亏问题完整版

四年级数学:盈亏问题 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】盈亏问题一、考点、热点回顾在日常生活中常有这样的问题:一定数量的物品分给一定数量的人,每人多一些,物品就不够;每人少一些,物品就有余。

盈亏问题就是在已知盈亏的情况下来确定物品总数和参加分配的人数。

解答盈亏问题的关键是弄清盈、亏与两次分得差的关系。

盈亏问题的数量关系是:(1)(盈+亏)÷两次分配差=份数(大盈-小盈)÷两次分配差=份数(大亏-小亏)÷两次分配差=份数(2)每次分的数量×份数+盈=总数量每次分的数量×份数-亏=总数量二、典型例题例1、一个植树小组植树。

如果每人栽5棵,还剩14棵;如果每人栽7棵,就缺4棵。

这个植树小组多少人一共有多少棵树例2、学校将一批铅笔奖给三好学生。

如果每人奖9支,则缺45支;如果每人奖7支,则缺7支。

三好学生有多少人铅笔有多少支例3、学校给一批新入学的学生分配宿舍。

如果每个房间住12人,则34人没有位置;如果每个房间住14人,则空出4个房间。

求学生宿舍有多少间住宿学生有多少人三、课堂练习1、幼儿园把一些积木分给小朋友,如果每人分2个,则剩下20个;如果每人分3个,则差40个。

幼儿园有多少个小朋友一共有多少个积木2、3、某校安排宿舍,如果每间6人,则16人没有床位;如果每间8人,则多出10个床位。

问宿舍多少间学生多少人4、5、将月季花插入一些花瓶中,如果每瓶插8朵,则缺少15朵;如果每瓶改为插6朵,则缺少1朵。

求花瓶的只数和月季花的朵数。

6、美术小组的同学分发图画纸。

如果每人发5张,则少32张;如果每人发3张,则少2张。

美术小组有多少名同学一共有多少张图画纸7、8、一些少先队员到山上去种一批树。

如果每人种16棵,还有24棵没种;如果每人种19棵,还有6棵没有种。

问有多少名少先队员有多少棵树9、10、杨老师将一叠练习本分给同学。

小学四年级奥数讲解:盈亏问题

小学四年级奥数讲解:盈亏问题

小学四年级奥数讲解:盈亏问题小学四年级奥数讲解:盈亏问题在日常生活中常有这样的问题:一定数量的物品分给一定数量的人,每人多一些,物品就不够;每人少一些,物品就有余。

盈亏问题就是在已知盈亏的情况下来确定物品总数和参加分配的人数。

解答盈亏问题的关键是弄清盈、亏与两次分得差的关系。

盈亏问题的数量关系是:(1)(盈+亏)÷两次分配差=份数(大盈-小盈)÷两次分配差=份数(大亏-小亏)÷两次分配差=份数(2)每次分得的数量×份数+盈=总数量每次分得的数量×份数-亏=总数量例1:一个植树小组植树。

如果每人栽5棵,还剩14棵;如果每人栽7棵,就缺4棵。

这个植树小组有多少人?一共有多少棵树?由题意可知,植树的人数和树的棵数是不变的。

比较两种分配方案,结果相差14+4=18棵,即第一种方案的结果比第二种多18棵。

这是因为两种分配方案每人植树的棵数相差7-5=2棵。

所以植树小组有18÷2=9人,一共有5×9+14=59棵树。

练习一1,幼儿园把一些积木分给小朋友,如果每人分2个,则剩下20个;如果每人分3个,则差40个。

幼儿园有多少个小朋友?一共有多少个积木?2,某校安排宿舍,如果每间6人,则16人没有床位;如果每间8人,则多出10个床位。

问宿舍多少间?学生多少人?3,有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人。

问:这个班共有多少学生?例2:学校将一批铅笔奖给三好学生。

如果每人奖9支,则缺45支;如果每人奖7支,则缺7支。

三好学生有多少人?铅笔有多少支?分析与解答:这是两亏的问题。

由题意可知:三好学生人数和铅笔支数是不变的。

比较两种分配方案,结果相差45-7=38支。

这是因为两种分配方案每人得到的铅笔相差9-7=2支。

所以,三好学生有38÷2=19人,铅笔有9×19-45=126支。

小学奥数总复习第四十三讲《盈亏问题》

小学奥数总复习第四十三讲《盈亏问题》

小学奥数总复习第四十三讲《盈亏问题》一、专题分析:“盈”指的是物品有多余;“亏”是指物品有不足。

把一定数量的物品平均分配给一定数量的人,每人少分,则会有余;每人多分,则物品会不足。

已知所余(所盈)和不足(所亏)的数量,求物品数量和人数的应用题叫做盈亏问题。

盈亏问题一般要进行两次分配,它包含5种情况:(1)一盈一亏类:一次有余,一次不足;(前面是还剩下一些,后面则是不仅剩下的被分配完了,还差了一些数量,等于还要去借一些或者买一些才够)(2)双盈类:两次都有余;(两次都有多余,只是多余的数量不一样)(3)双亏类:两次都不足;(两次都不足,只是两次不足的数量不一样)(4)一个正好不多不少一个是有余的;(5)一个正好不多不少一个是不足的;“两次分配”的理解:前后两次对比,造成有差别,而差别来源于两次分配数量的多与少。

二、解决盈亏问题的基本公式:人数=总差额÷两次分配的差理解:比如说老师给小朋友发糖果吃,每个人发5颗,则还剩下10颗,如果每个人发7颗,就还差了10颗。

请问有多少小朋友呢?其中一次发5颗,一次发7颗,两次分配的差是7-5=2,总差额:一次余下10颗,一次还差10颗,两次对比,我们可以得到第二次比第一次多发了20颗糖。

(这样理解:第一种情况下还余下10颗,而第二种情况下不仅会把剩下的10颗发完,而且还不够,还需要去购买10颗回来才能保证每个人发7颗,所以第二种情况比第一种情况需要多发20颗糖)。

那为什么要多发20颗呢?因为每个小朋友都多发了2颗,所有就多要了20颗糖,可见有20÷2=10个小朋友。

知道了小朋友有多少,我们就可以按照第一种来算糖果的颗数,也可以按照第二种来算。

三、解题步骤:1、求出总差额:即两次分配每次所分配物品的总数量差额;(第二次比第一次多需要多少或者是少需要多少)2、求出两次分配的数量差额,即分配者每份所得物品数量的差;(第一次和第二次每一份所分到的数量)3、用基本关系式求出分配者人数,进而求出物品的数量。

四年级奥数第4讲盈亏问题

四年级奥数第4讲盈亏问题

1、老师拿来一批树苗,分给一些同学去栽,每人每次分给一棵,一轮一轮往下分,当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。

问参加栽树的有多少名同学?原有树苗多少棵?分析:当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。

通过这一句话,我们可以知道参加种树的同学一共有12+8=20人,加上再拿来的8棵,一共有20*10=200棵。

所以,原有树苗=200-8=192棵。

解答:有同学12+8=20名,原有树苗20*10-8=192棵。

2、少先队员去植树,如果每人挖5个树坑,还有3个树坑没人挖;如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑。

请问,共有多少名少先队员?共挖了多少树坑?分析:这是一个典型的盈亏问题,关键在于要将第二句话“如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑”统一一下。

即:应该统一成每人挖6个树坑,形成统一的标准。

那么它就相当于每人挖6个树坑,就要差(6-4)*2=4个树坑。

这样,盈亏总数就是3+4=7,所以,有少先队员7/(6-5)=7名,共挖了5*7+3=38个坑。

解答:盈亏总数等于3+(6-4)*2=7,少先队员有7/(6-5)=7名,共挖了5*7+3=38个树坑。

3、学校安排学生到会议室听报告。

如果每3人坐一条长椅,那么剩下48人没有坐;若每5人坐一条长椅,则刚好空出两条长椅。

问听报告的学生有多少人?分析:典型盈亏问题。

盈亏总数48+5*2=58,所以,长椅的数量就等于58/(5-3)=29条。

那么,听报告的人数等于29*3+48=135人。

解答:长椅有(48+5*2)/(5-3)=29条,听报告的学生有29*3+48=135人。

4、钢笔与圆珠笔每支相差1元2角,小明带的钱买5支钢笔差1元5角,买8支圆珠笔多6角。

问小明带了多少钱?分析:在盈亏问题中,我们得到的计算公式是指同一对象的。

四年级奥数盈亏问题

四年级奥数盈亏问题

盈亏问题知识点说明:盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数板块一、直接计算型盈亏问题【例 1】六年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人要搬的砖共有多少块【巩固】1.明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4元.那么有多少个同学去买蛋糕这个蛋糕的价钱是多少2、老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子老猴子一共有多少个桃子3有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢【例 2】(“走进美妙的数学花园”初赛)猴王带领一群猴子去摘桃.下午收工后,猴王开始分配.若大猴分5个,小猴分3个,猴王可留10个.若大、小猴都分4个,猴王能留下20个.在这群猴子中,大猴(不包括猴王)比小猴多只.【巩固】1.学而思学校新买来一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差2本,请问有多少老师多少本书2.幼儿园给获奖的小朋友发糖,如果每人发6块就少12块,如果每人发9块就少24块,总共有多少块糖呢3.王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30元,问儿童小提琴多少钱一把王老师一共带了多少钱4.工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个【例 3】某校安排学生宿舍,如果每间住5人则有14人没有床位;如果每间住7人,则多出4个床位,问宿舍几间?住宿生几人?【巩固】 1.学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍2.智康学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果3.秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个计划吃多少天板块二、条件关系转换型盈亏问题【例 4】猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫猫妈妈一共有多少条鱼【巩固】 1.学而思学校三年级基础班的一部分同学分小玩具,如果每人分4个就少9个,如果每人分3个正好分完,问:有多少位同学分多少个小玩具2.学而思学校买来一批小足球分给各班:如果每班分4个,就差66个,如果每班分2个,则正好分完,学而思小学一共有多少个班买来多少个足球2.一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生共多少粒糖果3.实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生【例 5】甲、乙两人各买了相同数量的信封与相同数量的信纸,甲每封信用2 张信纸,乙每封信用3 张信纸,一段时间后,甲用完了所有的信封还剩下20 张信纸,乙用完所有信纸还剩下10 个信封,则他们每人各买了多少张信纸【例 6】幼儿园将一筐苹果分给小朋友,如果全部分给大班的小朋友,每人分5个,则余下10个。

四年级奥数之盈亏问题

四年级奥数之盈亏问题

盈亏问题知识概要:人们在分东西的时候,经常会遇到剩余(盈)或不足(亏),根据分东西过程中的盈或亏所编成的应用题叫做盈亏问题。

解题的关键在于确定两次分配数之差与盈亏总额(盈数+亏数),由此得到求解盈亏问题的总公式:分配总人数=盈亏总额÷两次分配数之差.具体问题中有不同的表达形式:1、一盈一亏(盈+亏)÷个数差=人数2、两盈(大盈-小盈)÷个数差=人数3、两亏(大亏-小亏)÷个数差=人数1、少年宫参加无线电小组的同学如果分12个小组,则多16人;如果分成14个小组,则少8 人。

求每组多少人,共有多少人?2、四年级上体育课.老师叫一部分同学打羽毛球。

每两人一组,每组分6个球,少10个球。

每组分4个球,还少2个球。

问共有多少个组?有多少个羽毛球?3、用一块布给小朋友做儿童服。

如果裁8件,则多14米布。

如果裁10件,则多4米布。

这块布有多少米?4、幼儿园老师把一堆苹果分给小朋友.如果每人分5个,则少4个。

如果每人分3个。

正好分完.一共有多少个小朋友?有多少个苹果?5、同学们分练习本.每人分4本,余57本.每人分6本,则少31本。

问有多少个同学?有多少本练习本?6、学校买来若干本连环画,分给美术组同学。

如果每人分5本,少4本。

如果每人分7本少24本。

参加美术组有多少人?有多少本连环画?7、同学们去划船。

如果每只船坐4人,则少3只船。

若每只船坐6人,还有2人留在岸边。

有多少个同学去划船?共租了多少只船?8、有一个班的同学去划船.他们算了一下如果增加一条船,正好每条坐6人。

如果减少一条船,正好每条坐9人。

问这个班有多少个同学?9、在一次大扫除中,老师分配若干人擦玻璃。

如果其中二人各擦4块,其余每人擦5块,则余22块。

如果每人擦7块,正好擦完。

求玻璃数和擦玻璃人数。

10、几个老人去赶集。

半路买来一堆梨。

一人一个多1个,1人两个少两个。

问有几个老人几只梨?11、小李把一堆桃子、分给若干只猴子。

(完整word版)四年级奥数 盈亏问题

(完整word版)四年级奥数 盈亏问题
第三十九周盈亏问题
在日常生活中常有这样的问题:一定数量的物品分给一定数量的人,每人多一些,物品就不够;每人少一些,物品就有余。盈亏问题就是在已知盈亏的情况下来确定物品总数和参加分配的人数。
解答盈亏问题的关键是弄清盈、亏与两次分得差的关系。
盈亏问题的数量关系是:
(1)(盈+亏)÷两次分配差=份数
(大盈-小盈)÷两次分配差=份数
练习三
1,小虎在敌人窗外听里边在分子弹:一人说每人背45发还多260发;另一人说每人背50发还多200发。有多少敌人?多少发子弹?
2,杨老师将一叠练习本分给第一小组的同学。如果每人分7本,还多7本;如果每人分8本则正好分完。请算一算,第一小组有几个学生?这叠练习本一共有多少本?
3,崔老师给美术兴趣小组的同学分若干支彩色笔。如果每人分5支则多12支;如果每人分8支还多3支。请问每人分多少支刚好把彩色笔分完?
例5:少先队员去植树,如果每人挖5个树坑,还有3个坑没人挖;如果其中2人各挖4个,其余的人各挖6个树坑,就恰好挖完所有树坑。少先队员一共挖多少树坑?
分析与解答:如果每人都挖6个树坑,那么少(6-4)×2=4个树坑,两次相差4+3=7个树坑。这是因为两种分配方案每人挖的相差6-5=1个树坑。所以,少先队员一共有7÷1=7人,一共挖5×7+3=38个树坑。
1,某校有若干个学生寄宿宿舍,若每一间宿舍住6人,则多出34人;若每间宿舍住7人,则多出4间宿舍。问宿舍有多少间?寄宿学生有多少人?
2,育才小学学生乘汽车去春游。如果每车坐65人,则有15人不能乘车;如果每车多坐5人,恰好多余了一辆车。问一共有几辆汽车?有多少学生?
3,学校分配学生宿舍。如果每个房间住6人,则少2间宿舍;如果每个房间住9人,则空出2个房间。问学生宿舍有多少间?住宿学生有多少人?

小学奥数之盈亏问题

小学奥数之盈亏问题

一、知识简介:“盈”指的是物品有多余;“亏”是指物品有不足。

把一定数量的物品平均分配给一定数量的人,每人少分,则会有余;每人多分,则物品会不足。

已知所余(所盈)和不足(所亏)的数量,求物品数量和人数的应用题叫做盈亏问题。

盈亏问题一般要进行两次分配,它包含5种情况:(1)一盈一亏类:一次有余,一次不足;(前面是还剩下一些,后面则是不仅剩下的被分配完了,还差了一些数量,等于还要去借一些或者买一些才够)(2)双盈类:两次都有余;(两次都有多余,只是多余的数量不一样)(3)双亏类:两次都不足;(两次都不足,只是两次不足的数量不一样)(4)一个正好不多不少一个是有余的;(5)一个正好不多不少一个是不足的;我对两次分配的理解:前后两次对比,造成有差别,而差别来源于两次分配数量的多与少。

二、解决盈亏问题的基本公式:人数=总差额三两次分配的差理解:比如说老师给小朋友发糖果吃,每个人发5颗,则还剩下10颗,如果每个人发7颗,就还差了10颗。

请问有多少小朋友呢?其中一次发5颗,一次发7颗,两次分配的差是7-5=2,总差额:一次余下10颗,一次还差10颗,两次对比,我们可以得到第二次比第一次多发了20颗糖。

(这样理解:第一种情况下还余下10颗,而第二种情况下不仅会把剩下的10颗发完,而且还不够,还需要去购买10颗回来才能保证每个人发7颗,所以第二种情况比第一种情况多需要发20颗糖)那为什么要多发20颗呢?因为每个小朋友都多发了2颗,所有就多要了20颗糖,可见有2 0^2=10个小朋友。

知道了小朋友有多少,我们就可以按照第一种来算糖果的颗数,也可以按照第二种来算。

三、解题关键:1、求出总差额:即两次分配每次所分配物品的总数量差额;(第二次比第一次多需要多少或者是少需要多少)2、求出两次分配的数量差额,即分配者每份所得物品数量的差;(第一次和第二次每一份所分到的数量)3、用基本关系式求出分配者人数,进而求出物品的数量。

典型例题:1、幼儿园的小朋友分饼干,如果每个人分6块饼干,那么还多出12块,如果每个人分8块饼干,那还差24块。

四年级奥数盈亏问题应用题专项讲义

四年级奥数盈亏问题应用题专项讲义

四年级奥数盈亏问题应用题专项讲义知识点说明:盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.可以得出盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”.一、精讲精练【例1】妈妈带了一些钱去逛超市,若要买3条10元钱一条的毛巾,则还剩5元钱。

妈妈带了多少钱?【例2】妈妈买来了一些苹果分给全家人,如果每人分6个,则多了12个,如果每人分7个,则多了6个,全家有几人?妈妈共买回来多少个苹果?【例3】孙悟空采到一堆桃子,平均分给花果山的小猴子吃。

每只小猴子分9个,有4只小猴子没有分到;第二次重分,每只小猴分7个,刚好分完。

问:孙悟空采到多少个桃子?小猴子有多少只?【例4】老师买来了一些练习本分给同学,如果每人分5本,则多了14本;如果每人分7本,则多了2本,老师买来了多少本练习本?【例5】某校有若干个学生寄宿学校,若每一间宿舍住6人,则多出34人;若每间宿舍住7人,则多出4间宿舍。

问宿舍有多少间?寄宿学生有多少人?【例6】班主任给同学们分发写日记的稿纸。

如果每人分5张,则缺32张;如果每人分3张,则缺2张。

有多少名同学?班主任一共准备了多少张稿纸?【例7】同学们来到游乐园游玩,他们乘坐观光车。

如果每车坐6人,则多出6人;如果每车坐8人,则少2人。

一共多少辆观光车?共有多少名同学?【例8】到了午饭时间,老师给同学们分饼干,如果每人分6块,还有1人分9块就正好分完;如果其中两人各分5块,其余每人分7块饼干,也恰好分完所有饼干。

四年级奥数-盈亏问题经典题讲解

四年级奥数-盈亏问题经典题讲解

大家好,我是陈说数学的陈老师,牛吃草问题暂告一段落,我们转为学习下盈亏问题。

盈亏问题也是重要考试的常考题,其核心的公式是:两次分配的总差额+两次分配的差=份数,一般有一盈一亏,一盈(亏)一正好,或同盈同亏三种情况。

例1:一个植树小组,如果每人植5棵,还剩14棵;如果每人植7棵,就缺4棵。

这个植树小组有多少人?一共有多少棵树?分析:这是属于一道一盈一亏的问题。

(1)总差额=盈+亏=14+4=18棵,(2)两次分配的差是:7-5=2棵(千米),(3)“份数”也就是分配对象,这里是学生为:18-2=9A,一共有:9x5+14=59棵树。

例2:将月季花插入一些花瓶中。

如果每瓶插8朵,则缺少15朵;如果每瓶改为插6朵,则缺少1朵,求花瓶的只数和月季花的朵数?分析:这是同亏的情况,和同盈的情况一样,总差额是“大减小两 次分配的总差额是15-1=14朵,两次分配的差是8-6=2朵,所以花瓶的只数是:14小2=7只,月季花有:7x8-15=41朵。

例3:有若干同学去植树,如果每人挖5个树坑,还有3个树坑没人挖:如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑,请问,共有多少名同学?共挖了多少树坑?分析:因为第二次分配的对象不统一,两人挖4个,其他6个,我们把第二次分配转化为统一的个数,于是变为“每人挖6个,多挖(6-4)x2=4个”这样,总差额是3+4=7个,分配差是6-5=1个,于是同学有:7-1=7人,共挖了:7x6-4=38个树坑。

解这道题用了一个转化的思想,转化思想也是奥数一个重要的解题思想,把不规则的、不统一的、甚至不熟悉的问题,转化为规则的、统一的、熟悉的,从而解决问题。

例4:四年级同学6.1儿童节去划船,如果增加一条船,每条船坐6个,如果减少一条船,则正好坐9个,共有几个坐船?分析:这道题关键在于理解“如果增加一条船,每条船坐6个,如果减少一条船,则正好坐9个”。

其实,这段话应该这样理解:每条船坐6个,要多一条船,也就是多6人,因为每条船上坐的人少了,自然船就要多:如果每船坐9人,则可少一条船,也就是少9人。

小学四年级奥数《盈亏问题》知识点+练习题

小学四年级奥数《盈亏问题》知识点+练习题

专题简析:在日常生活中常有这样的问题:一定数量的物品分给一定数量的人;每人多一些;物品就不够;每人少一些;物品就有余。

盈亏问题就是在已知盈亏的情况下来确定物品总数和参加分配的人数。

解答盈亏问题的关键是弄清盈、亏与两次分得差的关系。

盈亏问题的数量关系是:(1)(盈+亏)÷两次分配差=份数(大盈-小盈)÷两次分配差=份数(大亏-小亏)÷两次分配差=份数(2)每次分得的数量×份数+盈=总数量每次分得的数量×份数-亏=总数量例1:一个植树小组植树。

如果每人栽5棵;还剩14棵;如果每人栽7棵;就缺4棵。

这个植树小组有多少人?一共有多少棵树?由题意可知;植树的人数和树的棵数是不变的。

比较两种分配方案;结果相差14+4=18棵;即第一种方案的结果比第二种多18棵。

这是因为两种分配方案每人植树的棵数相差7-5=2棵。

所以植树小组有18÷2=9人;一共有5×9+14=59棵树。

练习一1;幼儿园把一些积木分给小朋友;如果每人分2个;则剩下20个;如果每人分3个;则差40个。

幼儿园有多少个小朋友?一共有多少个积木?2;某校安排宿舍;如果每间6人;则16人没有床位;如果每间8人;则多出10个床位。

问宿舍多少间?学生多少人?3;有一个班的同学去划船;他们算了一下;如果增加一条船;正好每条船坐6人;如果减少一条船;正好每条船坐9人。

问:这个班共有多少学生?例2:学校将一批铅笔奖给三好学生。

如果每人奖9支;则缺45支;如果每人奖7支;则缺7支。

三好学生有多少人?铅笔有多少支?分析与解答:这是两亏的问题。

由题意可知:三好学生人数和铅笔支数是不变的。

比较两种分配方案;结果相差45-7=38支。

这是因为两种分配方案每人得到的铅笔相差9-7=2支。

所以;三好学生有38÷2=19人;铅笔有9×19-45=126支。

练习二1;将月季花插入一些花瓶中。

小学四年级奥数讲解:盈亏问题

小学四年级奥数讲解:盈亏问题

小学四年级奥数讲解:盈亏问题专题简析:在日常生活中常有这样的问题:一定数量的物品分给一定数量的人,每人多一些,物品就不够;每人少一些,物品就有余。

盈亏问题就是在已知盈亏的情况下来确定物品总数和参加分配的人数。

解答盈亏问题的关键是弄清盈、亏与两次分得差的关系。

盈亏问题的数量关系是:(1)(盈+亏)÷两次分配差=份数(大盈-小盈)÷两次分配差=份数(大亏-小亏)÷两次分配差=份数(2)每次分得的数量×份数+盈=总数量每次分得的数量×份数-亏=总数量例1:一个植树小组植树。

如果每人栽5棵,还剩14棵;如果每人栽7棵,就缺4棵。

这个植树小组有多少人?一共有多少棵树?由题意可知,植树的人数和树的棵数是不变的。

比较两种分配方案,结果相差14+4=18棵,即第一种方案的结果比第二种多18棵。

这是因为两种分配方案每人植树的棵数相差7-5=2棵。

所以植树小组有18÷2=9人,一共有5×9+14=59棵树。

练习一1,幼儿园把一些积木分给小朋友,如果每人分2个,则剩下20个;如果每人分3个,则差40个。

幼儿园有多少个小朋友?一共有多少个积木?2,某校安排宿舍,如果每间6人,则16人没有床位;如果每间8人,则多出10个床位。

问宿舍多少间?学生多少人?3,有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人。

问:这个班共有多少学生?例2:学校将一批铅笔奖给三好学生。

如果每人奖9支,则缺45支;如果每人奖7支,则缺7支。

三好学生有多少人?铅笔有多少支?分析与解答:这是两亏的问题。

由题意可知:三好学生人数和铅笔支数是不变的。

比较两种分配方案,结果相差45-7=38支。

这是因为两种分配方案每人得到的铅笔相差9-7=2支。

所以,三好学生有38÷2=19人,铅笔有9×19-45=126支。

练习二1,将月季花插入一些花瓶中。

小学四年级奥数《盈亏问题》知识点+练习题

小学四年级奥数《盈亏问题》知识点+练习题

专题简析:在日常生活中常有这样的问题:一定数量的物品分给一定数量的人,每人多一些,物品就不够;每人少一些,物品就有余.盈亏问题就是在已知盈亏的情况下来确定物品总数和参加分配的人数.解答盈亏问题的关键是弄清盈、亏与两次分得差的关系.盈亏问题的数量关系是:(1)(盈+亏)÷两次分配差=份数(大盈-小盈)÷两次分配差=份数(大亏-小亏)÷两次分配差=份数(2)每次分得的数量×份数+盈=总数量每次分得的数量×份数-亏=总数量例1:一个植树小组植树.如果每人栽5棵,还剩14棵;如果每人栽7棵,就缺4棵.这个植树小组有多少人?一共有多少棵树?由题意可知,植树的人数和树的棵数是不变的.比较两种分配方案,结果相差14+4=18棵,即第一种方案的结果比第二种多18棵.这是因为两种分配方案每人植树的棵数相差7-5=2棵.所以植树小组有18÷2=9人,一共有5×9+14=59棵树.练习一1,幼儿园把一些积木分给小朋友,如果每人分2个,则剩下20个;如果每人分3个,则差40个.幼儿园有多少个小朋友?一共有多少个积木?2,某校安排宿舍,如果每间6人,则16人没有床位;如果每间8人,则多出10个床位.问宿舍多少间?学生多少人?3,有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人.问:这个班共有多少学生?例2:学校将一批铅笔奖给三好学生.如果每人奖9支,则缺45支;如果每人奖7支,则缺7支.三好学生有多少人?铅笔有多少支?分析与解答:这是两亏的问题.由题意可知:三好学生人数和铅笔支数是不变的.比较两种分配方案,结果相差45-7=38支.这是因为两种分配方案每人得到的铅笔相差9-7=2支.所以,三好学生有38÷2=19人,铅笔有9×19-45=126支.练习二1,将月季花插入一些花瓶中.如果每瓶插8朵,则缺少15朵;如果每瓶改为插6朵,则缺少1朵.求花瓶的只数和月季花的朵数.2,王老师给美术兴趣小组的同学分发图画纸.如果每人发5张,则少32张;如果每人发3张,则少2张.美术兴趣小组有多少名同学?王老师一共有多少张图画纸?3,老师将一些练习本发给班上的学生.如果每人发10本,则有两个学生没分到;如果每人发8本,则正好发完.有多少个学生?多少本练习本?例3:有一些少先队员到山上去种一批树.如果每人种16棵,还有24棵没种;如果每人种19棵,还有6棵没有种.问有多少名少先队员?有多少棵树?分析与解答:这是两盈的问题.由题意可知:少先队员的人数和树的棵数是不变的.比较两种分配方案,结果相差24-6=18棵,这是因为两种分配方案每人种的树相差19-16=3棵.所以,少先队员有18÷3=6名,树有16×6+24=120棵.练习三1,小虎在敌人窗外听里边在分子弹:一人说每人背45发还多260发;另一人说每人背50发还多200发.有多少敌人?多少发子弹?2,杨老师将一叠练习本分给第一小组的同学.如果每人分7本,还多7本;如果每人分8本则正好分完.请算一算,第一小组有几个学生?这叠练习本一共有多少本?3,崔老师给美术兴趣小组的同学分若干支彩色笔.如果每人分5支则多12支;如果每人分8支还多3支.请问每人分多少支刚好把彩色笔分完?例4:学校给一批新入学的学生分配宿舍.如果每个房间住12人,则34人没有位置;如果每个房间住14人,则空出4个房间.求学生宿舍有多少间?住宿学生有多少人?分析与解答:把“每间住14人,则空出4个房间”转化为“每间住14人,则少14×4=56人”.比较两种分配方案,结果相差34+56=90人,而每个房间相差14-12=2人.所房间数为90÷2=45间,学生人数为12×45+34=574人.练习四1,某校有若干个学生寄宿宿舍,若每一间宿舍住6人,则多出34人;若每间宿舍住7人,则多出4间宿舍.问宿舍有多少间?寄宿学生有多少人?2,育才小学学生乘汽车去春游.如果每车坐65人,则有15人不能乘车;如果每车多坐5人,恰好多余了一辆车.问一共有几辆汽车?有多少学生?3,学校分配学生宿舍.如果每个房间住6人,则少2间宿舍;如果每个房间住9人,则空出2个房间.问学生宿舍有多少间?住宿学生有多少人?例5:少先队员去植树,如果每人挖5个树坑,还有3个坑没人挖;如果其中2人各挖4个,其余的人各挖6个树坑,就恰好挖完所有树坑.少先队员一共挖多少树坑?分析与解答:如果每人都挖6个树坑,那么少(6-4)×2=4个树坑,两次相差4+3=7个树坑.这是因为两种分配方案每人挖的相差6-5=1个树坑.所以,少先队员一共有7÷1=7人,一共挖5×7+3=38个树坑.练习五1,老师给幼儿园的小朋友分苹果.如果每个小朋友分2个,还多30个;如果其中的12个小朋友每人分3个,剩下的每人分4个,则正好分完.一共有多少个苹果?2,在一次大扫除中,老师分配若干人擦玻璃.如果其中2人各擦4块,其余每人擦5块,则余22块;如果每人擦7块,则正好擦完.求擦玻璃的人数和玻璃的块数.3,小红家买来一篮橘子分给全家人.如果其中二人每人分4只,其余每人分2只,则多出4只;如果其中一人分6只,其余每人分4只,则又缺12只.小红家买来多少只橘子?小红家一共有多少人?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四年级奥数:盈亏问

盈亏问题
“幼儿园老师给小朋友分糖果,每个小朋友分5颗糖果,就多出22颗糖果;每个小朋友分7颗糖果,就少18颗糖果.有多少个小朋友和多少颗糖果?”
像这样以份数平均分一定数量的物品,每份少一些,则物品有余(盈);每份多一些,则物品不足(亏).凡是研究这一类算法的应用题叫做盈亏问题.
盈亏问题的基本解法是:
份数﹦(盈+亏)÷两次分配数的差;
物品总数﹦每份个数×份数+盈数,
或物品总数﹦每份个数×份数-亏数
例1幼儿园老师给小朋友分糖果,每个小朋友分5颗糖果,就多出22颗糖果;每个小朋友分7颗糖果,就少18颗糖果.有多少个小朋友和多少颗糖果?
例2某校安排学生宿舍,如果每间5人,则有14人没有床位;如果每间7人,则多4个空床位.问:宿舍有几间?住宿学生有几人?
随堂练习1
(1)参加体操的同学排队,如果每行站9人,则多37人;而每行站12人,则少20人.求参加团体操的同学有多少人?
(2)用一根绳子绕树三圈,余3米;如果绕树四圈,则差4米.树周长有几米?绳长有几米?
例3 人民路小学三、四、五年级的同学乘汽车去春游,如果每车坐45人,有10人不能坐车;如果每车多坐5人,又多出一辆汽车.一共有多少辆车?有多少名同学去春游?
例4动物园为猴山的猴买来桃,这些桃如果每只猴分5个,还剩32个;如果其中10只小猴分4个,其余的猴分8个,就恰好分完.问:猴山有猴多少只?共买来多少个桃?
随堂练习2
(1)全班同学去划船,如果减少一条船,每条船正好坐9人;如果增加一条船,每条船正好坐6人.全班共有多少人?
(2)华中路第一小学组织学生去春游,如果每车坐65人,则有15人不能乘车;如果每车多坐5人,恰好多余了一辆.一共有几辆汽车?有多少学生?
例5学校组织同学乘车去科技馆参观,原计划每车坐30人,还剩下1个人;
后来又临时增加了100人,汽车却比原来少1辆,这样每辆车要坐36人,还剩5个人.原计划乘坐几辆车?原计划去多少人?
例6果树专业队上山植果树,所需栽的苹果树苗是梨树苗的2倍.如果梨树苗
每人栽3棵,还余2棵;苹果树苗每人栽7棵,则少6棵.问:果树专业队上山植树的有多少人?要栽多少棵苹果树和梨树?
随堂练习3
(1)农民种树,其中有3人分得树苗各4棵,其余的每人分得3棵,这样最后余下树苗11棵;如果1人先分得3棵,其余的每人分得5棵,则树苗恰好分尽.求人数和树苗的总数.
(2)学校买来一些篮球和排球分给各班,买来的排球个数是篮球的2倍,如果篮球每班分2个,多余4个;如果排球每班分5个,则少2个.学校买来篮球和排球各多少个?
练习题
一、填空题
1、学校分配宿舍,每个房间住3人,则多出20人;每个房间住5人,恰巧安排好.则房间有_____间.
2、学校买来一批故事书,每班发16本,多10本;每班发18本,少6本.则买来故事书的本数为_____本.
3、一小包糖分给几个小朋友,如果每人分3块,则余3块;如果每人分5块,则少7块.那么小朋友有_____个.
4、某数的5倍减去41,则比其3倍多19,这个数是_____.
5、儿童分玩具,每人6个则多12个;每人8个,有一人没有分到.儿童有
_____人,玩具有_____个.
6、老师给幼儿园的小朋友分苹果,如果每位小朋友分2个,还多30个;如果其中的12位小朋友每人分3个,剩下的每人分4个,正好分完.一共有_____位小朋友,有____-个苹果.
二、选择题
7、学校给参加夏令营的同学租了几辆大轿车,如果每辆轿车乘28人则有13名同学上不了车;如果每辆车乘32人,则还有3个空座.一共有同学(). (A)100名(B)143名(C)125名(D)137名
8、学校给新生安排宿舍,如果按7人一间安排(刚好住满)要比按8人一间安排(也刚好住满)多用两间宿舍.一共有新生().
(A)110名(B)111名(C)123名(D)112名
9、全班同学站队排成若干行,如果每行14人则多5人;如果每行17人则少4人,那么排成的行数是().
(A)4 (B)5 (C)3 (D)2
10、苹果个数是梨子的2倍,梨子每人分3个,余2个;苹果每人分7个,少6个.那么人数、苹果数和梨数分别是().
(A)10,64,32 (B)12,62,31 (C)9,54,27 (D)13,68,34
三、简答题
11、四年级同学参加植树活动,如果每班种10棵,还剩6棵树苗;如果剩下的每班再种2棵,就少4棵树苗.四年级一共植树多少棵?
12、同学们到阶梯教室听科技报告,如每张长椅坐8人,则剩下50人没有座位;如果每张长椅上坐12人,则空出10个座位.如果每张长椅上坐7人,还剩下多少学生无座位?
13、某商店从深圳运来一批水果,运费花了1000元,水果报损了100千克.若按1千克2元卖出,则要亏损300元;若按1千克3元卖出,则可盈利500元.问:原来进货多少千克?水果进货的金额是多少元?
14、小刚从家去学校,如果每分钟走80米,结果比上课时间提前6分钟到校;如果每分钟走50米,则要迟到3分钟.小刚的家到学校的路程有多远?。

相关文档
最新文档