(中考复习)第12讲 一次函数及其图象

合集下载

2023年中考数学一轮复习之必考点题型全归纳与分层精练-一次函数(解析版)

2023年中考数学一轮复习之必考点题型全归纳与分层精练-一次函数(解析版)

专题12一次函数【专题目录】技巧1:一次函数常见的四类易错题技巧2:一次函数的两种常见应用技巧3:一次函数与二元一次方程(组)的四种常见应用【题型】一、正比例函数的定义【题型】二、正比例函数的图像与性质【题型】三、一次函数的定义求参数【题型】四、一次函数的图像【题型】五、一次函数的性质【题型】六、求一次函数解析式【题型】七、一次函数与一元一次方程【题型】八、一次函数与一元一次不等式【题型】九、一次函数与二元一次方程(组)【题型】十、一次函数的实际应用【考纲要求】1、理解一次函数的概念,会画一次函数的图象,掌握一次函数的基本性质.2、会求一次函数解析式,并能用一次函数解决实际问题.【考点总结】一、一次函数和正比例函数的定义一次函数与正比例函数一次函数与正比例函数的定义如果y=kx+b(k≠0),那么y叫x的一次函数,当b=0时,一次函数y=kx也叫正比例函数.正比例函数是一次函数的特例,具有一次函数的性质.一次函数与正比例函数的关系一次函数y=kx+b(k≠0)的图象是过点(0,b)与直线y=kx平行的一条直线。

它可以由直线y=kx平移得到.它与x轴的交点为⎪⎭⎫⎝⎛-0,kb,与y轴的交点为(0,b).【考点总结】二、一次函数的图象与性质【注意】1、确定一次函数表达式用待定系数法求一次函数表达式的一般步骤:(1)由题意设出函数的关系式;(2)根据图象所过的已知点或函数满足的自变量与因变量的对应值列出关于待定系数的方程组;(3)解关于待定系数的方程或方程组,求出待定系数的值;(4)将求出的待定系数代回到原来设的函数关系式中即可求出.2、y=kx+b与kx+b=0直线y=kx+b与x轴交点的横坐标是方程kx+b=0的解,方程kx+b=0的解是直线y=kx+b与x轴交点的横坐标.3、y =kx +b 与不等式kx +b >0从函数值的角度看,不等式kx +b >0的解集为使函数值大于零(即kx +b >0)的x 的取值范围;从图象的角度看,由于一次函数的图象在x 轴上方时,y >0,因此kx +b >0的解集为一次函数在x 轴上方的图象所对应的x 的取值范围.4、一次函数与方程组两个一次函数图象的交点坐标就是它们的解析式所组成的二元一次方程组的解;以二元一次方程组的解为坐标的点是两个二元一次方程所对应的一次函数图象的交点.【技巧归纳】技巧1:一次函数常见的四类易错题【类型】一、忽视函数定义中的隐含条件而致错1.已知关于x 的函数y =(m +3)x |m +2|是正比例函数,求m 的值.2.已知关于x 的函数y =kx-2k +3-x +5是一次函数,求k 的值.【类型】二、忽视分类或分类不全而致错3.已知一次函数y =kx +4的图像与两坐标轴围成的三角形的面积为16,求这个一次函数的表达式.4.一次函数y =kx +b ,当-3≤x≤1时,对应的函数值的取值范围为1≤y≤9,求k +b 的值.5.在平面直角坐标系中,点P(2,a)到x 轴的距离为4,且点P 在直线y =-x +m 上,求m 的值.【类型】三、忽视自变量的取值范围而致错6.若等腰三角形的周长是80cm ,则能反映这个等腰三角形的腰长y(cm )与底边长x(cm )的函数关系的图像是()7.若函数y 2+6(x≤3),(x>3),则当y =20时,自变量x 的值是()A .±14B .4C .±14或4D .4或-148.现有450本图书供给学生阅读,每人9本,求余下的图书本数y(本)与学生人数x(人)之间的函数表达式,并求自变量x 的取值范围.【类型】四、忽视一次函数的性质而致错9.若正比例函数y =(2-m)x 的函数值y 随x 的增大而减小,则m 的取值范围是()A .m<0B .m>0C .m<2D .m>210.下列各图中,表示一次函数y =mx +n 与正比例函数y =mnx(m ,n 是常数,且mn≠0)的大致图像的是()11.若一次函数y =kx +b 的图像不经过第三象限,则k ,b 的取值范围分别为k________0,b________0.参考答案1.解:因为关于x 的函数y =(m +3)x |m +2|是正比例函数,所以m +3≠0且|m +2|=1,解得m =-1.2.解:若关于x 的函数y =kx-2k +3-x +5是一次函数,则有以下三种情况:①-2k +3=1,解得k =1,当k =1时,函数y =kx -2k +3-x +5可化简为y =5,不是一次函数.②x-2k +3的系数为0,即k =0,则原函数化简为y =-x +5,是一次函数,所以k =0.③-2k +3=0,解得k =32,原函数化简为y =-x +132,是一次函数,所以k =32.综上可知,k 的值为0或32.3.解:设函数y =kx +4的图像与x 轴、y 轴的交点分别为A ,B ,坐标原点为O.当x =0时,y =4,所以点B 的坐标为(0,4).所以OB =4.因为S △AOB =12OA·OB =16,所以OA =8.所以点A 的坐标为(8,0)或(-8,0).把(8,0)代入y =kx +4,得0=8k +4,解得k =-12.把(-8,0)代入y =kx +4,得0=-8k +4,解得k =12.所以这个一次函数的表达式为y =-12x +4或y =12x +4.4.解:①若k>0,则y 随x 的增大而增大,则当x=1时y=9,即k+b=9.②若k<0,则y随x的增大而减小,则当x=1时y=1,即k+b=1.综上可知,k+b的值为9或1.5.解:因为点P到x轴的距离为4,所以|a|=4,所以a=±4,当a=4时,P(2,4),此时4=-2+m,解得m=6.当a=-4时,同理可得m=-2.综上可知,m的值为-2或6.6.D7.D8.解:余下的图书本数y(本)与学生人数x(人)之间的函数表达式为y=450-9x,自变量x的取值范围是0≤x≤50,且x为整数.9.D10.A11.<;≥技巧2:一次函数的两种常见应用【类型】一、利用一次函数解决实际问题题型1:行程问题1.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(km)与甲车行驶的时间t(h)之间的函数关系如图所示,则下列结论:①A,B两城相距300km;②乙车比甲车晚出发1h,却早到1h;③乙车出发后2.5h追上甲车;④当甲、乙两车相距50km时,t=54或154.其中正确的结论有()A.1个B.2个C.3个D.4个2.甲、乙两地相距300km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图像,解答下列问题:(1)线段CD表示轿车在途中停留了________h;(2)求线段DE对应的函数表达式;(3)求轿车从甲地出发后经过多长时间追上货车.题型2:工程问题3.甲、乙两组工人同时加工某种零件,乙组在工作中有一段时间停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(h)之间的函数图像如图所示.(1)求甲组加工零件的数量y与时间x之间的函数表达式.(2)求乙组加工零件总量a的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?题型3:实际问题中的分段函数4.某种铂金饰品在甲、乙两个商场销售.甲标价为477元/g,按标价出售,不优惠;乙标价为530元/g,但若买的铂金饰品质量超过3g,则超出部分可打八折.(1)分别写出到甲、乙两个商场购买该种铂金饰品所需费用y(元)和质量x(g)之间的函数表达式;(2)李阿姨要买一个质量不少于4g且不超过10g的此种铂金饰品,到哪个商场购买合算?5.我国是世界上严重缺水的国家之一.为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一个月用水10t以内(包括10t)的用户,每吨收水费a元;一个月用水超过10t的用户,10t水仍按每吨a元收费,超过10t的部分,按每吨b(b>a)元收费.设一户居民月用水x t,应交水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8t,应交水费多少元?(2)求b的值,并写出当x>10时,y与x之间的函数表达式.【类型】二、利用一次函数解决几何问题题型4:利用图像解几何问题6.如图①所示,正方形ABCD的边长为6cm,动点P从点A出发,在正方形的边上沿A→B→C→D运动,设运动的时间为t(s),△APD的面积为S(cm2),S与t的函数图像如图②所示,请回答下列问题:(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,△APD的面积S的最大值为________cm2;(2)求出点P在CD上运动时S与t之间的函数表达式;(3)当t为何值时,△APD的面积为10cm2?题型5:利用分段函数解几何问题)7.在长方形ABCD中,AB=3,BC=4,动点P从点A开始按A→B→C→D的方向运动到点D.如图,设动点P所经过的路程为x,△APD的面积为y.(当点P与点A或D重合时,y=0)(1)写出y与x之间的函数表达式;(2)画出此函数的图像.参考答案1.B2.解:(1)0.5(2)设线段DE对应的函数表达式为y=kx+b(2.5≤x≤4.5).将D(2.5,80),E(4.5,300)的坐标分别代入y=kx+b =2.5k+b,=4.5k+b.=110,=-195.所以y=110x-195(2.5≤x≤4.5).(3)设线段OA对应的函数表达式为y=k1x(0≤x≤5).将A(5,300)的坐标代入y=k1x可得300=5k1,解得k1=60.所以y=60x(0≤x≤5).令60x=110x-195,解得x=3.9.故轿车从甲地出发后经过3.9-1=2.9(h)追上货车.3.解:(1)设甲组加工零件的数量y与时间x之间的函数表达式为y=kx,因为当x=6时,y=360,所以k =60,即甲组加工零件的数量y与时间x之间的函数表达式为y=60x(0≤x≤6).(2)a=100+100÷2×2×(4.8-2.8)=300.(3)当工作2.8h时共加工零件100+60×2.8=268(件),所以装满第1箱的时刻在2.8h后.设经过x1h恰好装满第1箱.则60x1+100÷2×2(x1-2.8)+100=300,解得x1=3.从x=3到x=4.8这一时间段内,甲、乙两组共加工零件(4.8-3)×(100+60)=288(件),所以x>4.8时,才能装满第2箱,此时只有甲组继续加工.设装满第1箱后再经过x2h装满第2箱.则60x2+(4.8-3)×100÷2×2=300,解得x2=2.故经过3h恰好装满第1箱,再经过2h恰好装满第2箱.4.解:(1)y甲=477x,y乙(0≤x≤3),+318(x>3).(2)当477x=424x+318时,解得x=6,即当x=6时,到甲、乙两个商场购买所需费用相同;当477x<424x+318时,解得x<6,又x≥4,于是当4≤x<6时,到甲商场购买合算;当477x>424x +318时,解得x>6,又x≤10,于是当6<x≤10时,到乙商场购买合算.5.解:(1)当x≤10时,由题意知y =ax.将x =10,y =15代入,得15=10a ,所以a =1.5.故当x≤10时,y =1.5x.当x =8时,y =1.5×8=12.故应交水费12元.(2)当x >10时,由题意知y =b(x -10)+15.将x =20,y =35代入,得35=10b +15,所以b =2.故当x >10时,y 与x 之间的函数表达式为y =2x -5.点拨:本题解题的关键是从图像中找出有用的信息,用待定系数法求出表达式,再解决问题.6.解:(1)6;2;18(2)PD =6-2(t -12)=30-2t ,S =12AD·PD =12×6×(30-2t)=90-6t ,即点P 在CD 上运动时S 与t 之间的函数表达式为S =90-6t(12≤t≤15).(3)当0≤t≤6时易求得S =3t ,将S =10代入,得3t =10,解得t =103;当12≤t≤15时,S =90-6t ,将S=10代入,得90-6t =10,解得t =403.所以当t 为103或403时,△APD 的面积为10cm 2.7.解:(1)点P 在边AB ,BC ,CD 上运动时所对应的y 与x 之间的函数表达式不相同,故应分段求出相应的函数表达式.①当点P 在边AB 上运动,即0≤x <3时,y =12×4x =2x ;②当点P 在边BC 上运动,即3≤x <7时,y =12×4×3=6;③当点P 在边CD 上运动,即7≤x≤10时,y =12×4(10-x)=-2x +20.所以y 与x 之间的函数表达式为y (0≤x <3),(3≤x <7),2x +20(7≤x≤10).(2)函数图像如图所示.点拨:本题考查了分段函数在动态几何中的运用,体现了数学中的分类讨论思想和数形结合思想.根据点P 在边AB ,BC ,CD 上运动时所对应的y 与x 之间的函数表达式不相同,分段求出相应的函数表达式,再画出相应的函数图像.技巧3:一次函数与二元一次方程(组)的四种常见应用【类型】一、利用两直线的交点坐标确定方程组的解1.已知直线y =-x +4与y =x +2=-x +4,=x +2的解为()A =3=1B =1=3C =0=4D =4=02.已知直线y =2x 与y =-x +b 的交点坐标为(1,a)-y =0,+y -b =0的解和a ,b 的值.3.在平面直角坐标系中,一次函数y =-x +4的图像如图所示.(1)在同一坐标系中,作出一次函数y =2x -5的图像;(2)+y =4,-y =5;(3)求一次函数y =-x +4与y =2x -5的图像与x 轴所围成的三角形的面积.【类型】二、利用方程(组)的解求两直线的交点坐标4mx +y =n ,+y =f =4,=6,则直线y =mx +n 与y =-ex +f 的交点坐标为()A .(4,6)B .(-4,6)C .(4,-6)D .(-4,-6)5.=3,=-2=2,=1是二元一次方程ax +by =-3的两组解,则一次函数y =a x +b 的图像与y 轴的交点坐标是()A .(0,-7)B .(0,4)CD -37,【类型】三、方程组的解与两个一次函数图像位置的关系6+y =2,+2y =3没有解,则一次函数y =2-x 与y =32-x 的图像必定()A .重合B .平行C .相交D .无法确定7.直线y =-a 1x +b 1与直线y =a 2x +b 21x +y =b 1,2x -y =-b 2的解的情况是()A .无解B .有唯一解C .有两个解D .有无数解【类型】四、利用二元一次方程组求一次函数的表达式8.已知一次函数y =kx +b 的图像经过点A(1,-1)和B(-1,3),求这个一次函数的表达式.9.已知一次函数y =kx +b 的图像经过点A(3,-3),且与直线y =4x -3的交点B 在x 轴上.(1)求直线AB 对应的函数表达式;(2)求直线AB 与坐标轴所围成的△BOC(O 为坐标原点,C 为直线AB 与y 轴的交点)的面积.参考答案1.B2.解:将(1,a)代入y =2x ,得a =所以直线y =2x 与y =-x +b 的交点坐标为(1,2),所以方-y =0,+y -b =0=1,=2.将(1,2)代入y =-x +b ,得2=-1+b ,解得b =3.3.解:(1)画函数y =2x -5的图像如图所示.(2)由图像看出两直线的交点坐标为(3,1)=3,=1.(3)直线y =-x +4与x 轴的交点坐标为(4,0),直线y =2x -5与x 又由(2)知,两直线的交点坐标为(3,1),所以三角形的面积为12×=34.4.A5.C6.B7.B8.解:依题意将A(1,-1)与B(-1,3)的坐标分别代入y =kx +b+b =-1,k +b =3,=-2,=1.所以这个一次函数的表达式为y =-2x +1.9.解:(1)因为一次函数y =kx +b 的图像与直线y =4x -3的交点B 在x 轴上,所以将y =0代入y =4x -3中,得x =34,所以把A(3,-3),By =kx +b+b =-3,+b =0,=-43,=1.则直线AB 对应的函数表达式为y =-43x +1.(2)由(1)知直线AB 对应的函数表达式为y =-43x +1,所以直线AB 与y 轴的交点C 的坐标为(0,1),所以OC =1,又OB =34.所以S △BOC =12OB·OC =12×34×1=38.即直线AB 与坐标轴所围成的△BOC 的面积为38.【题型讲解】【题型】一、正比例函数的定义例1、若一次函数y=(m ﹣3)x+m 2﹣9是正比例函数,则m 的值为_______.【答案】m=﹣3【解析】∵y=(m ﹣3)x+m 2﹣9是正比例函数,∴29030m m -⎧⎨-≠⎩=解得m=-3.故答案是:-3.【题型】二、正比例函数的图像与性质例2、若正比例函数12y x =经过两点(1,1y )和(2,2y ),则1y 和2y 的大小关系为()A .12y y <B .12y y >C .12y y =D .无法确定【答案】A【分析】分别把点(1,1y ),点(2,2y )代入函数12y x =,求出点1y ,2y 的值,并比较出其大小即可.【详解】∵点(1,1y ),点(2,2y )是函数12y x =图象上的点,∴112y =,21y =,∵112<,∴12y y <.故选:A .【题型】三、一次函数的定义求参数例3、已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是()A .()1,2-B .()1,2-C .()2,3D .()3,4【答案】B【分析】先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可.【详解】∵一次函数3y kx =+的函数值y 随x 的增大而减小,∴k ﹤0,A .当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C .当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意,故选:B .【题型】四、一次函数的图像例4、若m <﹣2,则一次函数()11y m x m =++-的图象可能是()A .B .C .D .【答案】D【分析】由m <﹣2得出m +1<0,1﹣m >0,进而利用一次函数的性质解答即可.【详解】解:∵m <﹣2,∴m +1<0,1﹣m >0,所以一次函数()11y m x m =++-的图象经过一,二,四象限,故选:D .【题型】五、一次函数的性质例5、设k 0<,关于x 的一次函数2y kx =+,当12x ≤≤时的最大值是()A .2k +B .22k +C .22k -D .2k -【答案】A【分析】利用一次函数的性质可得当x=1时,y 最大,然后可得答案.【详解】∵一次函数2y kx =+中0k <,∴y 随x 的增大而减小,∵12x ≤≤,∴当1x =时,122y k k =⨯+=+最大,故选:A .【题型】六、求一次函数解析式例6、直线y kx b =+在平面直角坐标系中的位置如图所示,则不等式2kx b +≤的解集是()A .2x -≤B .4x ≤-C .2x ≥-D .4x ≥-【答案】C【分析】先根据图像求出直线解析式,然后根据图像可得出解集.【详解】解:根据图像得出直线y kx b =+经过(0,1),(2,0)两点,将这两点代入y kx b =+得120b k b =⎧⎨+=⎩,解得112b k =⎧⎪⎨=-⎪⎩,∴直线解析式为:112y x =-+,将y=2代入得1212x =-+,解得x=-2,∴不等式2kx b +≤的解集是2x ≥-,故选:C .【题型】七、一次函数与一元一次方程例7、一次函数3y kx =+(k 为常数且0k ≠)的图像经过点(-2,0),则关于x 的方程()530k x -+=的解为()A .5x =-B .3x =-C .3x =D .5x =【答案】C【分析】根据一次函数图象的平移即可得到答案.【详解】解:∵()53y k x =-+是由3y kx =+的图像向右平移5个单位得到的,∴将一次函数3y kx =+的图像上的点(-2,0)向右平移5个单位得到的点的坐标为(3,0)∴当y=0时,方程()530k x -+=的解为x=3,故选:C .【题型】八、一次函数与一元一次不等式例8、如图,直线(0)y kx b k =+<经过点(1,1)P ,当kx b x +≥时,则x 的取值范围为()A .1x ≤B .1≥xC .1x <D .1x >【答案】A【分析】将(1,1)P 代入(0)y kx b k =+<,可得1k b -=-,再将kx b x +≥变形整理,得0bx b -+≥,求解即可.【详解】解:由题意将(1,1)P 代入(0)y kx b k =+<,可得1k b +=,即1k b -=-,整理kx b x +≥得,()10k x b -+≥,∴0bx b -+≥,由图像可知0b >,∴10x -≤,∴1x ≤,故选:A .【题型】九、一次函数与二元一次方程(组)例9、在平面直角坐标系中,O 为坐标原点.若直线y =x +3分别与x 轴、直线y =﹣2x 交于点A 、B ,则△AOB 的面积为()A .2B .3C .4D .6【答案】B 【分析】根据方程或方程组得到A (﹣3,0),B (﹣1,2),根据三角形的面积公式即可得到结论.【详解】解:在y =x +3中,令y =0,得x =﹣3,解32y x y x =+⎧⎨=-⎩得,12x y =-⎧⎨=⎩,∴A (﹣3,0),B (﹣1,2),∴△AOB的面积=12⨯3×2=3,故选:B.【题型】十、一次函数的实际应用例10、A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y (千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?【答案】(1)y=80x﹣128(1.6≤x≤3.1);(2)货车乙返回B地的车速至少为75千米/小时【分析】(1)先设出函数关系式y=kx+b(k≠0),观察图象,经过两点(1.6,0),(2.6,80),代入求解即可得到函数关系式;(2)先求出货车甲正常到达B地的时间,再求出货车乙出发回B地时距离货车甲比正常到达B地晚1个小时的时间以及故障地点距B地的距离,然后设货车乙返回B地的车速为v千米/小时,最后列出不等式并求解即可.【详解】解:(1)设函数表达式为y=kx+b(k≠0),把(1.6,0),(2.6,80)代入y=kx+b,得0 1.680 2.6k bk b=+⎧⎨=+⎩,解得:80128 kb=⎧⎨=-⎩,∴y 关于x 的函数表达式为y =80x ﹣128(1.6≤x≤3.1);(2)根据图象可知:货车甲的速度是80÷1.6=50(km/h )∴货车甲正常到达B 地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),当y =200﹣80=120时,120=80x ﹣128,解得x =3.1,5﹣3.1﹣0.3=1.6(小时),设货车乙返回B 地的车速为v 千米/小时,∴1.6v≥120,解得v≥75.答:货车乙返回B 地的车速至少为75千米/小时.一次函数(达标训练)一、单选题1.已知一次函数4y kx =+经过()11,y ,()22,y ,且12y y <,它的图象可能是()A .B .C .D .【答案】B【分析】根据一次函数的增减性,可知它的图象可能为B 、C 选项,结合一次函数y=kx +4的图象经过点(0,4),即可得到答案.【详解】∵一次函数y=kx +4经过(1,y 1),(2,y 2)且y 1<y 2,∴y 随x 的增大而增大,又∵一次函数y =kx +4的图象经过点(0,4),∴它的图象可能是B 选项,故选B .【点睛】本题主要考查一次函数的系数与函数图象之间的关系,掌握一次函数系数的几何意义,是解题的关键.2.已知一次函数1y kx =-经过()11,A y -,()22,B y 两点,且12y y >,则k 的取值范围是()A .0k >B .0k =C .0k <D .不能确定【答案】C【分析】根据一次函数的增减性可得出结论.【详解】∵1212,y y -<>,∴函数y 随x 的增大而减小.∴k <0,故选:C .【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的性质是解答此题的关键.3.一次函数2y x m =-+的图象经过第一、二、四象限,则m 可能的取值为()A .-1B .34C .0D .1【答案】B【分析】根据一次函数的图象和性质,即可求解.【详解】解:∵一次函数2y x m =-+的图象经过第一、二、四象限,∴0m >,∴m 可能的取值为34.故选:B【点睛】本题主要考查了一次函数的图象,熟练掌握一次函数()0y kx b k =+≠,当0,0k b >>时,一次函数图象经过第一、二、三象限;当0,0k b ><时,一次函数图象经过第一、三、四象限;当0,0k b <>时,一次函数图象经过第一、二、四象限;当0,0k b <<时,一次函数图象经过第二、三、四象限是解题的关键.4.一次函数31y x =-+的图象经过()A .一、二、四象限B .一、三、四象限C .一、二、三象限D .二、三、四象限【答案】A【分析】根据一次函数关系中系数符号k <0,b >0解答即可.【详解】解:∵31y x =-+中0k <,∴一次函数图象经过第二、四象,∵0b >,∴一次函数图象经过一、二、四象限.故选:A .【点睛】此题考查了一次函数的图象,根据k 和b 的符号进行判断是解题的关键.5.若23y x b =+-,y 是x 的正比例函数,则b 的值是()A .0B .23-C .23D .32【答案】C【分析】根据y 是x 的正比例函数,可知23=0b -,即可求得b 值.【详解】解:∵y 是x 的正比例函数,∴23=0b -,解得:23b =,故选:C .【点睛】本题主要考查的是正比例函数的定义,掌握其定义是解题的关键.二、填空题6.请写出一个图象经过点()2,0A 的函数的解析式:______.【答案】24y x =-(答案不唯一)【分析】写出一个经过点(2,0)的一次函数即可.【详解】解:经过点()2,0A 的函数的解析式可以为24y x =-,故答案为:24y x =-(答案不唯一).【点睛】本题主要考查了函数图象上点的坐标特征,熟知函数图象上的点一定满足其函数解析式是解题的关键.7.将直线y =2x -1向下平移3个单位后得到的直线表达式为________.【答案】24y x =-【分析】根据一次函数平移的规律解答.【详解】解:直线y =2x -1向下平移3个单位后得到的直线表达式为y =2x -1-3=2x -4,即y =2x -4,故答案为y =2x -4.【点睛】此题考查了一次函数平移的规律:左加右减,上加下减,熟记平移的规律是解题的关键.三、解答题8.某中学积极响应“双减”政策,为了丰富学生的课外活动,激发学生参加体育活动的兴趣,准备购买一批新的羽毛球拍.已知甲、乙两商店销售同一种羽毛球拍,但两个商店的原价和销售方式均不同.在甲商店,无论一次性购买多少支羽毛球拍,一律按原价出售;在乙商店,一次性购买羽毛球拍的数量不超过20支,按原价销售,若一次性购买球拍数量超过20支,超出的部分打八折.设该学校购买了x 支羽毛球拍,在甲商店购买所需的费用为1y 元,在乙商店购买所需的费用为2y 元,1y ,2y 关于x 的函数图像如图所示.(1)分别求出1y ,2y 关于x 的函数解析式.(2)请求出m 的值,并说明m 的实际意义.(3)若该学校一次性购买羽毛球拍的数量超过80支,但不超过120支,到哪家商店购买更优惠?【答案】(1)142y x =;()()2500204020020x x y x x ⎧≤≤⎪=⎨+>⎪⎩(2)m =100,m 的实际意义是当一次性购买羽毛球球拍的数量100支时,甲、乙商店所需费用相同,都为4200元(3)当80<x <100时,选择甲商店更合算;当x =100时,两家商店所需费用相同;当100<x ≤120时,选择乙商店更合算【分析】(1)根据函数图像设出表达式,利用待定系数法解得即可;(2)根据图像交点,当x >20时,令12y y =,解得x ,y 的值即可;(3)由m 的意义,结合图像,谁的图像靠下谁更合算.(1)由题意,甲商店设11y k x =,∴184020k =,∴142k =,∴1142y x =;乙商店:当0<x≤20时,设22y k x =,∴2100020k =,∴250k =,∴250y x =,当x >20时,()2100020500.84020y x x =+-⨯⨯=+,∴()()2500204020020x x y x x ⎧≤≤⎪=⎨+>⎪⎩;(2)当x>20时,令12y y =,即4020042x x +=,∴x =100,y =4200,∴m =100,∴m 的实际意义是当一次购买羽毛球球拍的数量100支时,甲、乙商店所需费用相同,都为4200元;(3)由m 的意义,结合图像可知,谁的图像在下谁更合算,当80<x <100时,选择甲商店更合算;当x =100时,两家商店所需费用相同;当100<x ≤120时,选择乙商店更合算.【点睛】本题考查了一次函数的实际应用,解题的关键是掌握一次函数图像的性质.一次函数(提升测评)一、单选题1.一次函数()32y k x k =++-()01k +-有意义的k 的值可能为()A .-3B .-1C .-2D .2【答案】B【分析】通过一次函数图象可以得出:3020k k +>⎧⎨->⎩,解得:32k -<<.()01k -有意义的条件为:1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且0k ≠.将两个关于k 的解集综合,得到k 的范围是:12k -≤<且0k ≠.根据所求范围即可得出答案选B .【详解】解:由图象得:3020k k +>⎧⎨->⎩,解得:32k -<<()01k +-有意义,则1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且1k ≠∴综上所述,k 的取值范围是:12k -≤<且0k ≠.A 、-3不在k 的取值范围内,不符合题意;B 、-1在k 的取值范围内,符合题意;C 、-2不在k 的取值范围内,不符合题意;D 、2不在k 的取值范围内,不符合题意.故选B .【点睛】本题主要考查知识点为,一次函数图象与一次函数系数的关系、使二次根式有意义的条件,零指数幂中底数的范围.熟练掌握以上知识点,是解决此题的关键.2.已知直线1:24l y x =+与x 轴、y 轴分别交于A ,B 两点,若将直线1l 向右平移m (m >0)个单位得到直线2l ,直线2l 与x 轴交于C 点,若△ABC 的面积为6,则m 的值为()A .1B .2C .3D .4【答案】C【分析】先求出点B (0,4),可得OB =4,再根据平移的性质,可得AC =m ,再根据△ABC 的面积为6,即可求解.【详解】解:∵直线1:24l y x =+与x 轴、y 轴分别交于A ,B 两点,当x =0时,y =4,∴点B (0,4),∴OB =4,∵将直线1l 向右平移m (m >0)个单位得到直线2l ,直线2l 与x 轴交于C 点,∴AC =m ,∵△ABC 的面积为6,∴1462m ´=,解得:m =3.故选:C .【点睛】本题主要考查了一次函数的性质,一次函数的平移问题,熟练掌握一次函数的图象和性质是解题的关键.3.已知一次函数y =-kx +k ,y 随x 的增大而减小,则在直角坐标系内大致图象是()A .B .C .D .【答案】C 【分析】由于一次函数y =-kx +k (k ≠0),y 随x 的增大而减小,可得-k <0,然后,判断一次函数y =-kx +k 的图象经过的象限即可.【详解】解:∵一次函数y =-kx +k (k ≠0),y 随x 的增大而减小,∴-k <0,即k >0,∴一次函数y =-kx +k 的图象经过一、二、四象限.故选:C .【点睛】本题主要考查了一次函数的图象,掌握一次函数y =kx +b 的图象性质:①当k >0,b >0时,图象过一、二、三象限;②当k >0,b <0时,图象过一、三、四象限;③当k <0,b >0时,图象过一、二、四象限;④当k <0,b <0时,图象过二、三、四象限.4.在平而直角坐标系中,一次函数32y x m =-+的图像关于直线1y =对称后经过坐标原点,则m 的值为()A .1B .2C .1-D .2-【答案】A【分析】由题意一次函数32y x m =-+与y 轴的交点为(0,2m ),根据点(0,2m )与原点关于直线1y =对称,即可求出答案.【详解】解:根据题意,在一次函数32y x m =-+中,令0x =,则2y m =,∴一次函数32y x m =-+与y 轴的交点为(0,2m ),∵点(0,2m )与原点关于直线1y =对称,∴22m =,∴1m =;故选:A .【点睛】本题考查了一次函数的性质,轴对称的性质,解题的关键是掌握一次函数的性质进行解题.5.甲、乙两自行车运动爱好者从A B 地,匀速骑行.甲、乙两人离A 地的距离y (单位:km )与乙骑行时间x (单位:h )之间的关系如图所示.下列说法正确的是()A .乙骑行1h 时两人相遇B .甲的速度比乙的速度慢C .3h 时,甲、乙两人相距15kmD .2h 时,甲离A 地的距离为40km【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由图象可知,甲乙骑行1.5h 时两人相遇,故选项A 不合题意;甲的速度比乙的速度快,故选项B 不合题意;甲的速度为:30÷(1.5-1)=30(km/h ),乙的速度为:30÷1.5=20(km/h ),3h 时,甲、乙两人相距:30×(3-0.5)-20×3=15(km ),故选项C 符合题意;2h 时,甲离A 地的距离为:30×(2-0.5)=45(km ),故选项D 不合题意.故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题6.如图,直线3y x =和2y kx =+相交于点(),3P a ,则关于x 的不等式32≤+x kx 的解集是______.【答案】1x ≤【分析】先根据直线3y x =求出P 点坐标,不等式32≤+x kx 的解即为直线OP 在直线PQ 下方时,对应的x 的范围【详解】∵(),3P a 点在3y x =上。

初二数学-第12讲 一次函数k,b与图象关系

初二数学-第12讲  一次函数k,b与图象关系

第十二讲 一次函数k,b 与图象关系【知识要点】1.一次函数)0(≠+=k b kx y 中,k (斜率):倾斜程度,b (截距):与y 轴交点坐标, 一次函数图像:一条交x 轴(0,b ),y 轴(kb-,0)的直线; 2.正比例函数的图像(kx y =的图像)是一条过原点(0,0)的直线。

3.正比例函数,一次函数具有相同的性质: ①当k >0时,y 随x 的增大而增大; ②当k <0时,y 随x 的增大而减小;||k 越大,直线与x 轴相交所成的锐角越大. 4.一次函数b kx y +=的图像与k 、b 的符号关系如下表:★同一平面内,两直线111与222的位置关系可由系数决定:①相交与2221l l k k ⇔≠ ②()平行222121//l l b b k k ⇔⎩⎨⎧≠=③重合与=222121l l b b k k ⇔⎩⎨⎧= ④()点,轴上相交与与=12221210b y l l b b k k ⇔⎩⎨⎧≠【经典例题】【例1】在直角坐标系内分别作出下列函数的图像: ① 42+=x y ② 421+-=x y ③ 42-=x y ④ 421--=x y并写出函数与坐标轴交点坐标及与坐标轴所围成面积总结:两直线平行的条件:两直线垂直的条件: 。

小结:函数y kx b =+的图像与坐标轴围成的三角形的面积为22b k。

【例2】已知一次函数)4()36(-++=n x m y 。

求:①m 为何值时,y 随x 的增大而减小;②m 、n 满足什么条件时,函数图像与y 轴的交点在x 轴下方; ③m 、n 分别为何值时,函数图像经过原点; ④m 、n 满足什么条件时,函数图像不经过第二象限。

【例3】①直线y kx b =+,经过一、二、四象限,到直线y bx k =-的图象只能是( )②设b >a ,将一次函数y=bx+a 与y=ax+b 的图象画在平面直角坐标系内,则有一组a 、b 的取值,使得下列四个图中的一个为正确的是( )③当00<,>ac ab ,直线0ax by c ++=不通过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 ④已知abc ≠0,且p acb bc a c b a =+=+=+,那么直线p px y +=一定经过( )。

2024年中考数学一轮复习考点精讲课件—一次函数的图象与性质

2024年中考数学一轮复习考点精讲课件—一次函数的图象与性质

的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.
4)一次函数与正比例函数有着共同的性质:
①当k>0时,y的值随x值的增大而增大;②当k<0时,y的值随x值的增大而减小.
考点二 一次函数的图象与性质
1. 正比例函数y= kx中,|k|越大,直线y= kx越靠近y轴;反之,|y|越小,直线y= kx越靠近x轴.
C.3
D.−3或3
∴9 = 2 ,∴ = ±3,又∵正比例函数 = 的图象经过第二、
∴ < 0,∴ = −3,故选:B.
【对点训练1】(2023·浙江杭州·统考一模)已知 − 与 − 1成正比例,且当 = −2时, = 3.若关
于的函数图象经过二、三、四象限,则m的取值范围为(
用待定系数法求一次函数表达式的一般步骤:
1)设出函数的一般形式y=kx(k≠0)或y=kx+b(k≠0);
2)根据已知条件(自变量与函数的对应值)代入表达式得到关于待定系数的方程或方程组;
3)解方程或方程组求出k,b的值;
4)将所求得的k,b的值代入到函数的一般形式中,从而得到一次函数解析式.
考点二 一次函数的图象与性质
两点即可,
图象确定
b
k
1)画一次函数的图象,只需过图象上两点作直线即可,一般取(0,b),(− ,0)两点;
2)画正比例函数的图象,只要取一个不同于原点的点即可.
考点二 一次函数的图象与性质
三、k,b的符号与直线y=kx+b(k≠0)的关系


在直线y=kx+b(k≠0)中,令y=0,则x=− ,即直线y=kx+b与x轴交于(− ,0)
综上所述,0 > 1 > 2

第12课 一次函数及其图象

第12课 一次函数及其图象

助学微博
一个防范
一次函数的图象是一条直线,但直线并不一定是一次函数的 图象.
例:已知直线 y=(m+3)x+m2-9 经过点(1,0),求 m 的值. 解答:当 x=1 时,y=0,即 m2+m-6=0.解得 m=2 或 m= -3.很多同学误以为 m+3≠0,m≠-3,舍去 m=-3,故 m=2. 其实,当 m=-3 时,此直线变为 y=0,而 y=0 就是 x 轴, 又因为点(1,0)在 x 轴上,即 x 轴经过点(1,0),所以 m=-3 也 符合题意,不能舍去.故所求的 m 的值为-3 或 2. 如果把本题中的“已知直线”改为“一次函数的图像”,还是 应考虑 m+3≠0 这个限制条件的,要予以区分.
解析 ∵直线不经过第二象限,∴m-2<0,m<2.
题型分类 题型二 待定系数法求一次函数的解析式
【例 2】 如图,直线 l1、l2 相交于点 A(2,3),直线 l1 与 x 轴的交点坐标为(-1,0),直线 l2 与 y 轴的交点坐标为 (0,-2),结合图象解答下列问题: (1)求直线 l1、l2 的解析式;
知能迁移 1 (1)衡阳) 如图,一次函数 y=kx+b 的图象与 x 轴的交点坐标为(2,0), 则下列说法:①y 随 x 的增大而减小;②b>0; ③关于 x 的方程 kx+b=0 的解为 x=2.其中 说法正确的有_①__②__③___.(把你认为说法确 的序号都填上)
(2)已知一次函数 y=3x+m-2 的图象不经过第二象限,则 m 的取值范围是___m_<_2___.
解 (1)设直线 AB 的函数解析式为 y=kx+b,依题意, 解得得∴直AA((线(111,,)A设B00))直的,,线函BB((数A00B,,解的22析))函,,式数∴∴为解0202y析=====式k0k0-++++为2bbbbx,,,,+y=解解2k.得得x+kbkbb====,-2-2依..22题,,意, ∴当直0≤线yA≤B2的时函,数自解变析量式x为的y取=值-范2x围+是2.0≤x≤1. 当 0≤y≤2 时,自变量 x 的取值范围是 0≤x≤1. (2)线段 BC 即为所求.y 随 x 的增大而增大. (2)线段 BC 即为所求.y 随 x 的增大而增大.

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数【知识梳理】一、平面直角坐标系1. 坐标平面上的点与 有序实数对 构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征.4. 点P (a ,b )关于x 轴对称的点的坐标为 ;关于y 轴对称的点的坐标为 ;关于原点对称的点的坐标为5.两点之间的距离二、函数的概念1.概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有 的值与它对应,那么就说x 是自变量,y 是x 的函数.2.自变量的取值范围: (1)使解析式 (2)实际问题具有 意义3.函数的表示方法; (1) (2) (3) 三、一次函数的概念、图象、性质1.正比例函数的一般形式是 ( ),一次函数的一般形式是 (k≠0). 2. 一次函数y kx b =+的图象是经过( , )和( , )两点的一条直线.4.若两个一次函数解析式中,k 相等,表示两直线 ;若两直线垂直,则 。

5.的大小决定直线的倾斜程度,越大,直线越 ;四、反比例函数的概念、图象、性质1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 或 (k 为常数,k≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质k >0,b >0k >0,b <0k <0,b >0k <0,21212211P P )0()0()2(y y y P y P -=, ,,,21212211P P )0()0()1(x x x P x P -=, , ,, 3.k 的几何含义:反比例函数y =k x(k≠0)中比例系数k 的几何意义,即过双曲线y =k x(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 。

【例题精讲】 例1.函数22y x =-中自变量x 的取值范围是 ;函数y =x 的取值范围是 .例2.已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = . 例3.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的 坐标为(8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,点C 的坐标为例4.一次函数y=(3a+2)x -(4-b),求满足下列条件的a 、b 的取值范围。

沪科版八年级数学上册12.2.2 一次函数的图象与性质(课件)【新版】

沪科版八年级数学上册12.2.2 一次函数的图象与性质(课件)【新版】

总结
知3-讲
(2)判断b值符号的方法:与y轴交点法,即若直线y =kx+b与y轴交于正半轴,则b>0;与y轴交于 负半轴,则b<0;与y轴交于原点,则b=0.
知3-练
1 (中考·海南)点(-1,y1),(2,y2)是直线y=2x+1 上的两点,则y1____<____y2.(填“>”“=”或“<”)
4 3

此时2k-1=
5 3
≠-5,
所以,当k= 4 时, 3
已知直线与直线 y=-3x-5平行.
例5 如果一次函数y=kx+b的图象不经过第二象限,
则k,b的取值范围分别是( D )
A.k>0,b>0
B.k>0,b<0
C.k>0,b≥0
D.k>0,b≤0
导引:一次函数图象不经过第二象限,应分两种情
k的符号
k>0
k<0
b的符号 b>0 b=0 b<0 b>0 b=0 b<0
(续表)
知2-讲
图象经过 一、二、一、三 一、三、一、二、二、四 二、三、
的象限 三



一次函数 y=kx+b 的图象
例4 已知直线y=(1-3k)x+2k-1.
知2-讲
(1)k为何值时,直线与y轴交点的纵坐标是-2?
知1-练
1 (中考·湘西州)已知k>0,b<0,则一次函数y=kx-b 的大致图象为( A )
知1-练
2 (中考·成都)一次函数y=2x+1的图象不经过( D )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
知2-讲
知识点 2 系数相等的一次函数图象的位置关系
直线y=kx+b的位置是由k和b的符号决定的,它们 的关系如下表:

第12讲_一次函数

第12讲_一次函数

2.一次函数的图象
a. 正比例函数y=kx(k≠0)的图象是过点(_____),(______) 0,0 1,k 一条直线 的_________。 b b b.一次函数y=kx+b(k≠0)的图象是过点(0,___),(____, 一条直线 0)的__________。 k c.一次函数y=kx+b(k≠0)的图象与k,b符号的关系:
5.(2010·黔南州中考)已知正比例函数 y=kx(k≠0)的图象如图所示,则在下列选 项中k值可能是( (A)1 (C)3 ) (B)2 (D)4
3
【解析】选B.若正比例函数y= kx经过(3,5),此时k= 5 ;若 经过(2,6)此时k=3,由图象可知 5 <k<3,故选B.
3
二、填空题(每小题6分,共24分) 6.已知y是x的一次函数,下表给出了部分对应值,则m的值 是_____.
> k___0,b___0 >
> < k___0,b___0
< > k___0,b___0
< < k___0,b___0
3.一次函数的性质
一次函数y=kx+b(k ≠ 0)的性质: 增大 ⑴当k>0时,y随x的增大而_________。 减小 ⑵当k<0时,y随x的增大而_________。
例:点A(5,y1)和B(2,y2)都在直线y= -x+1上,则y1与 y2的关系是( ) C A、y1≥ y2 B、y1= y2 C、y1<y2 D、y1>y2
11.(12分)如图,已知一次函数y=kx+b的图象经过A(-2, -1),B(1,3)两点,并且交x轴于点C,交y轴于点D,
(1)求该一次函数的解析式;

第12讲一次函数

第12讲一次函数

考点知识精讲
考点三 一次函数图象的性质
一次函数y=kx+b,当k>0时,y随x的增大而 增大 ,图象一定经 过第 一、三 象限;当k<0时,y随x的 增大 而减小,图象一定经过第 二、四 __________象限. 考点四 一次函数的应用
用一次函数解决实际问题的一般步骤为:①设定实际问题中的变量 ;②建立一次函数关系式;③确定自变量的取值范围;④利用函数性质解 决问题;⑤答.
第12讲 一次函数
考点知识精讲
考点一 一次函数的定义
一般地,如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.
特别地,当b= 0 时,一次函数y=kx+b就成为 y=kx(k是常数,
正比例函数. k≠0),这时,y叫做x的______________. 1.由定义知:y是x的一次函数⇔它的解析式是 y=kx+b ,其中k 、b是常数,且k≠0. 2.一次函数解析式y=kx+b(k≠0)的结构特征: (1)k ≠ 0;(2)x的次数是1;(3)常数项b可为任意实数. 3.正比例函数解析式y=kx(k≠0)的结构特征: (1)k ≠ 0;(2)x的次数是 1 ;(3)没有常数项或者说常数项为 0 .
6.如右图所示,直线l过A、B两点,A(0,-1),
B(1,0),则直线l的解析式为
y=x-1 .




7.小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山 顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路
长的2倍.小颖在小亮出发后50 min才乘上缆车,缆车的平均速度为180
b =5 , 2 解得 k=1, 4
1 5 所以 y 乙= x+ . 4 2

专题12 一次函数的图象和性质(原卷版)2021年中考数学二轮复习之难点突破热点解题方法

专题12 一次函数的图象和性质(原卷版)2021年中考数学二轮复习之难点突破热点解题方法

专题12 一次函数的图象和性质一、单选题1.如图,点C 、B 分别在两条直线y =﹣3x 和y =kx 上,点A 、D 是x 轴上两点,若四边形ABCD 是正方形,则k 的值为( )A .3B .2C .23D .32二、解答题 2.如图,在平面直角坐标系中,点O 为坐标原点,直线AB 与x 轴、y 轴分别交于B 、A 两点,OA OB =,AOB 的面积是8.(1)求点A 坐标;(2)点P 是第二象限直线AB 上一动点,连接OP ,把线段OP 绕点O 逆时针旋转90°得到线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求出m 与t 的关系式,(不要求写出t 的取值范围); (3)在(2)的条件下,且2t =-时,过点P 作PH x ⊥轴于H ,在PH 上取点K ,连接BK ,过点H 作HI BK ⊥于I ,延长HI 交PB 于点J ,连接KJ ,若PKJ HKB ∠=∠,求K 点坐标. 3.如图1,在平面直角坐标系中,直线1:3l y kx =+与直线2:6l y x =--交于点A ,已知点A 的横坐标为185-,直线1l 与x 轴交于点B ,与y 轴交于点C ,直线2l 与x 轴交于点F ,与y 轴交于点D .(1)求直线1l 的解析式;(2)将直线2l 向上平移92个单位得到直线3l ,直线3l 与y 轴交于点E ,过点E 作y 轴的垂线4l ,若点M 为垂线4l 上的一个动点,点N 为2l 上的一个动点,求DM MN +的最小值;(3)已知点P Q 、分别是直线12l l 、上的两个动点,连接EP EQ PQ 、、,是否存在点P Q 、,使得EPQ △是以点Q 为直角顶点的等腰直角三角形,若存在,求点Q 的坐标若不存在,说明理由.4.如图,已知一次函数y =3x +3与y 轴交于点A ,与x 轴交于点B ,直线AC 与x 正半轴交于点C ,且AC =BC .(1)求直线AC 的解析式;(2)点D 为线段AC 上一点,点E 为线段CD 的中点,过点E 作x 轴的平行线交直线AB 于点F ,连接DF 交x 轴于点G ,求证:AD =BG ;(3)在(2)的条件下,线段EF 、DG 分别与y 轴交于点M 、N ,若∠AFD =2∠BAO ,求线段MN 的长.5.如图1,在△ABC 中,BC=5,tan ∠ABC=2,tan ∠ACB=12,以边BC 所在直线为x 轴,建立直角坐标系,使得y 轴经过点A ,过点C 作AB 的平行线,交y 轴于点D .(1)求直线CD 的解析式;(2)如图2,点P 是直线CD 上一个动点,①连接AP 、BP ,直线AP 把四边形ABPC 的面积分成2:3的两部分,求点P 的坐标;②当∠PBC=2∠BAO 时,直接写出此时点P 的坐标.6.如图,直线y =43x+4与x 轴、y 轴分别交于点A 和点B . (1)求A ,B 两点的坐标;(2)过B 点作直线与x 轴交于点P ,若△ABP 的面积为8,试求点P 的坐标.(3)点M 是OB 上的一点,若将△ABM 沿AM 折叠,点B 恰好落在x 轴上的点B 1处,求出点M 的坐标. (4)点C 在y 轴上,连接AC ,若△ABC 是以AB 为腰的等腰三角形,请直接写出点C 的坐标.7.如图1,一次函数22y x =-+的图象与y 轴交于点A ,与x 轴交于点B ,过点B 作线段BC AB ⊥且BC AB =,直线AC 交x 轴于点D .(1)点A 的坐标为______,点B 的坐标为______;(2)直接写出点C 的坐标______,并求出直线AC 的函数关系式;(3)若点P 是图1中直线AC 上的一点,连接OP ,得到图2.当点P 在第二象限,且到x 轴,y 轴的距离相等时,求出AOP 的面积;(4)若点Q 是图1中坐标平面内不同于点B 、点C 的一点,当以点C ,D ,Q 为顶点的三角形与BCD △全等时,直接写出点Q 的坐标.8.如图,直线6y kx =+与x 轴、y 轴分别相交于点E 、F ,点E 的坐标为()8,0-,点A 的坐标为()6,0-,点(),P x y 是第二象限内的直线上的一个动点.(1)求k 的值.(2)在点P 的运动过程中,写出OPA 的面积S 与x 的函数表达式,并写出自变量x 的取值范围. (3)已知()0,2Q -,当点P 运动到什么位置时,直线PQ 将四边形EPOQ 分成两部分,面积比为1:2,请直接写出P 点坐标.9.如图,在平面直角坐标系中,(,0)A m 、(0,)B n ,m 、n 满足2()|4|0m n m -+-=.点D 是x 轴正半轴上一动点.(1)OB 的长度为__________;(2)若点P 是线段AB 上一动点,且PO PD =,DE AB ⊥于E .①如图,当点D 在线段OA 上时,PE 与AB 的数量关系为__________;②如图,当点D 在线段OA 的延长线上时,①中结论是否还成立?若成立,请证明;若不成立,说明理由; (3)如图,当点D 在线段OA 的延长线上时,连接BD ,以BD 为腰在其右侧作等腰Rt BDF ,90BDF ∠=,连接FA 并延长交y 轴于G 点,请问线段BG 的长度是否发生改变?若改变,请求出它的变化范围;若不变,求出它的长度.10.如图,已知直线113y x =+与x 轴交于点A ,与y 轴交于点B ,将△AOB 绕点O 顺时针旋转90︒后得到COD △.(1)点C 的坐标为_________,线段AD =_________;(2)点M 在CD 上,且CM OM =,抛物线2y x bx c =++经过点C M ,,求抛物线的解析式;(3)如果点E 在y 轴上,且位于点C 的下方,点F 在直线AC 上,那么在(2)中的抛物线上是否存在点P ,使得以C E F P ,,,为顶点的四边形是菱形?若存在,请求出该菱形的周长l ;若不存在,请说明理由.11.如图所示,在平面直角坐标系中,点A 坐标为(2, 0),点B 坐标为(3, 1),将直线AB 沿x 轴向左平移经过点C (1,1).(1)求平移后直线L 的解析式;(2)若点P 从点C 出发,沿(1)中的直线L 以每秒1个单位长度的速度向直线L 与x 轴的交点运动,点Q 从原点O 出发沿x 轴以每秒2个单位长度的速度向点A 运动,两点中有任意一点到达终点运动即停止,设运动时间为t .是否存在t ,使得△OPQ 为等腰三角形?若存在,直接写出此时t 的值:若不存在,请说明理由,12.如图1,在平面直角坐标系xOy 中,矩形ABCD 的边8AB =,20BC =,若不改变矩形ABCD 的形状和大小.(1)当矩形顶点C 在x 轴的正半轴上左右移动时,矩形的另一个顶点B 始终在y 轴的正半轴上随之上下移动.当30OCB ∠=︒时,求点A 的坐标.(2)如图2、3,长方形ABCD 中,BC 在x 轴上,且O 与B 重合.将矩形折叠,折痕GF 的一个端点F在边AD 上,另一个端点G 在边BC 上,且()100G ,,顶点B 的对应点为E ,连接BF . ①如图2,当顶点B 的对应点E 落在边AD 上时,求折痕FG 的长.②如图3,当顶点B 的对应点E 落在长方形内部,E 的纵坐标为6,求AF 的长.13.如图,矩形AOBC 的两条边OA ,OB 的长是方程318800x x -+=的两根,其中OA OB <,沿直线AD 将矩形折叠,使点C 与y 轴上的点E 重合,(1)求A ,B 两点的坐标;(2)求直线AD 的解析式;(3)若点P 在y 轴上,平面内是否存在点Q ,使以A ,D ,P ,Q 为顶点的四边形为矩形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.14.如图,在平面直角坐标系中,已知矩形AOBC 的顶点C 的坐标是,动点P 从点A 出发,沿线段AO 向终点O 运动,同时动点Q 从点B 出发,沿线段BC 向终点C 运动.点P Q 、的运动速度均为每秒1个单位,运动时间为(06)t t <<秒,过点P 作PE AO ⊥交AB 于点E .(1)求直线AB 的解析式;(2)设PEQ 的面积为S ,求当03t <<时,S 与t 时间的函数关系;(3)在动点P Q 、运动的过程中,点H 是矩形AOBC 内(包括边界)一点,且以B Q E H 、、、为顶点的四边形是菱形,直接写出t 值和与其对应的点H 的坐标.15.综合与探究: 如图,在平面直角坐标系中,直线33:42l y x =+与x 轴交于点A ,与直线BC 交于点()2,B m , 直线BC与x 轴交于点()3,0C .(1)求直线BC 的函数表达式;(2)在线段BC 上找一点D ,使得ABO ∆与ABD ∆的面积相等,求出点D 的坐标;(3)y 轴上有一动点P ,直线BC 上有一动点M ,若APM ∆是以线段AM 为斜边的等腰直角三角形,求出点M 的坐标.16.如图,在平面直角坐标系中,直线24y x =+与x 轴交于点A ,与y 轴交于点B ,过点B 的直线交x 轴于C ,且ABC ∆面积为10.(1)求点C 的坐标及直线BC 的解析式.(2)如图1设点F 为线段AB 中点,点G 为y 轴上一动点,连接FG ,以FG 为边向FG 右侧作以G 为直角顶点的等腰Rt FGQ ∆,在G 点运动过程中,当点Q 落在直线BC 上时,求点G 的坐标. (3)如图2,若M 为线段BC 上一点,且满足AMB AOB S S ∆∆=,点E 为直线AM 上一动点,在x 轴上是否存在点D ,使以点D ,E ,B ,C 为顶点的四边形为平行四边形?若存在,请直接写出点D 的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为()3,4-,点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H ,连接BM .(1)菱形ABCO 的边长是_______;(2)求直线AC 的解析式;(3)动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设PMB △的面积为()0S S ≠,点P 的运动时间为t 秒,当点P 在AB 边上运动时,求S 与t 之间的函数关系式.18.综合与探究如图,在平面直角坐标系中,点A 、B 分别在x 轴y 轴的正半轴上,线段OA 的长是不等式()5432x x -<+的最大整数解,线段OB 的长是一元二次方程2230x x --=的一个根,将Rt ABO ∆沿BE 折叠,使AB 边落在OB 边所在的y 轴上,点A 与点D 重合.(1)求OA 、OB 的长;(2)求直线BE 的解析式;(3)在平面内是否存在点M ,使B 、O 、E 、M 为顶点的四边形为平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.。

中考数学重难点专题12 一次函数与几何综合问题(学生版)

中考数学重难点专题12 一次函数与几何综合问题(学生版)

中考数学复习重难点与压轴题型专项突围训练(全国通用版)专题12一次函数与几何综合问题【典型例题】1.(2022·四川成都·九年级期末)如图,在平面直角坐标系中,点A,B分别在x轴,y轴正半轴上,AO=2BO,点C(3,0)(A点在C点的左侧),连接AB,过点A作AB的垂线,过点C作x轴的垂线,两条垂线交于点D,已知△ABO△△DAC,直线BD交x轴于点E.(1)求直线AD的解析式;(2)直线AD有一点F,设点F的横坐标为t,若△ACF与△ADE相似,求t的值;(3)如图2,在直线AD上找一点G,直线BD上找一点P,直线CD上找一点Q,使得四边形AQPG是菱形,求出G点的坐标.【专题训练】一、选择题1.(2022·山东龙口·七年级期末)对于函数y=-3x+1,下列结论正确的是()A.它的图象必经过点(1,3)B.y的值随x值的增大而增大C.当x>0时,y<0D.它的图象与x轴的交点坐标为(13,0)2.(2022·江苏溧阳·八年级期末)如图,直线122y x=-+与x轴、y轴交于A、B两点,在y轴上有一点C(0,4),动点M从A点发以每秒1个单位的速度沿x轴向左移动.当动到△COM与△AOB全等时,移的时间t是()A.2B.4C.2或4D.2或63.(2022·陕西·辋川乡初级中学八年级期末)数学课上,老师提出问题:“一次函数的图象经过点A(3,2),B(-1,-6),由此可求得哪些结论?”小明思考后求得下列4个结论:①该函数表达式为y=2x-4;②该一次函数的函数值随自变量的增大而增大:③点P(2a,4a-4)在该函数图象上;④直线AB与坐标轴围成的三角形的面积为8.其中错误的结论是()A.1个B.2个C.3个D.4个4.(2022·江苏启东·八年级期末)如图,在平面直角坐标系中,O为原点,点A,C,E的坐标分别为(0,4),(8,0),(8,2),点P,Q是OC边上的两个动点,且PQ=2,要使四边形APQE的周长最小,则点P的坐标为()A.(2,0)B.(3,0)C.(4,0)D.(5,0)二、填空题5.(2022·江苏滨湖·八年级期末)如图,直线y=﹣43x+8与坐标轴分别交于A、B两点,P是AB的中点,则OP的长为_____.6.(2021·山东济阳·八年级期中)如图,一次函数y =x +2的图像与坐标轴分别交于A ,B 两点,点P ,C 分别是线段AB ,OB 上的点,且△OPC =45°,PC =PO ,则点P 的坐标为______.7.(2021·湖北阳新·模拟预测)如图,直线AB 的解析式为y =﹣x +b 分别与x ,y 轴交于A ,B 两点,点A的坐标为(3,0),过点B 的直线交x 轴负半轴于点C ,且31OB OC ::,在x 轴上方存在点D ,使以点A ,B ,D 为顶点的三角形与△ABC 全等,则点D 的坐标为_____.8.(2022·山东龙口·七年级期末)正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示放置,点A 1,A 2,A 3,和点C 1,C 2,C 3,…,分别在直线y =kx +b (k >0)和x 轴上,已知点B 1,B 2,B 3,B 4的坐标分别为(1,1),(3,2),(7,4),(15,8),则Bn 的坐标为_____三、解答题9.(2022·江苏海州·八年级期末)已知直线l 1经过点A (3,2)和点B (0,5),直线l 2:y =2x ﹣4经过点A 且与y 轴相交于点C .(1)求直线l 1的函数表达式;(2)已知点M 在直线l 1上,过点M 作MN //y 轴,交直线l 2于点N .若MN =6,请求出点M 的横坐标.10.(2022·广西·桂林市雁山中学九年级期末)如图,已知一次函数y=kx+b的图象与x轴,y轴分别相交于A,B两点,且与反比例函数y=mx在第一象限的图象交于点C,CD垂直于x轴,垂足为D.如果OA=OB=OD=1,求:(1)点A、B、C的坐标;(2)这个反比例函数的表达式;(3)这个一次函数的表达式.11.(2022·江苏溧阳·八年级期末)如图,在平面直角坐标系中长方形AOBC的顶点A、B坐标分别为(0,8)、(10,0),点D是BC上一点,将△ACD沿直线AD翻折,使得点C落在OB上的点E处,点F是直线AD 与x轴的交点,连接CF.(1)点C坐标为____________;(2)求直线AD的函数表达式_______________________;(3)点P是直线AD上的一点,当△CFP是直角三角形时,请你直接写出点P的坐标.。

中考数学复习专项知识总结—一次函数(中考必备)

中考数学复习专项知识总结—一次函数(中考必备)

中考数学复习专项知识总结—一次函数(中考必备)知识要点1、定义定义1:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数。

定义2:一般地,形如y=kx+b(k,b是常数,k≠0)的函数叫做一次函数。

当b=0时,y=kx+b即y=kx,是正比例函数。

所以说正比例函数是一种特殊的一次函数。

2、一次函数的图象及其性质正比例函数的图象及性质:正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线,称为直线y=kx。

y=kx经过象限升降趋势增减性k>0三、一从左向右上升y随着x的增大而增大k<0二、四从左向右下降y随着x的增大而减小一次函数的图象及性质:一次函数y=kx+b(k、b是常数,k≠0)的图象是一条直线,称为直线y=kx+b。

当k>0时,直线y=kx+b从左向右上升,即y随着x 的增大而增大;当k<0时,直线y=kx+b从左向右下降,即y随着x的增大而减小。

y=kx+b经过象限升降趋势增减性k>0,b>0三、二、一从左向右上升y随着x的增大而增大k>0,b<0三、四、一k<0,b>0二、一、四从左向右下降y随着x的增大而减小k<0,b<0二、三、四3、待定系数法定义:先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫做待定系数法。

函数解析式y=kx+b 满足条件的两定点(x1,y1)与(x2,y2)一次函数的图象直线l4、一次函数与方程(组)及不等式(组)方程(组)的解与相应函数的交点坐标是相对应的。

找到函数的交点坐标,也就找到了对应方程(组)的解,反之一样。

对于不等式(组)的解集也可以通过其对应的函数图象来解决。

5、函数与实际问题(适用于一次函数、二次函数、反比例函数)在研究有关函数的实际问题时,要遵循一审、二设、三列、四解的方法:第1步:审题。

认真读题,分析题中各个量之间的关系;第2步:设自变量。

根据各个量之间的关系设满足题意的自变量;第3步:列函数。

人教版九年级中考数学总复习课件第12课时 平面直角坐标系(共23张PPT)

人教版九年级中考数学总复习课件第12课时 平面直角坐标系(共23张PPT)

14.[变式]如图,动点 P 从(0,3)出发,沿所示的方向
运动,每当碰到矩形的边时反弹,反弹时反射角
等于入射角,当点 P 第 2018 次碰到矩形的边时,
点 P 的坐标为( C )
A.(1,4)
y
B.(5,0)
4P 3
C.(6,4)
2
D.(8,3)
1
O 1 2 3 4 5 6 7 8x
15.[变式]如图,在平面直角坐标系中,每个最小方格
移 (或( x a, y));
规 将点 (x, y) 向上(或向下)平移 b 个单位长度,可
律 以得到对应点坐标为 ( x, y b) (或( x, y b)).
关于 x 轴对称
P(a,b)关于 x 轴对称的点的坐标为 (a, b);
关于 y 轴对称
P(a,b)关于 y 轴对称的点的坐标为(a, b);
坐 各 象 点 P(x,y) 在第一象限 x 0,y 0;
标 平 面
限 内 点 P(x,y) 在第二象限 x 0,y 0;
点 坐
的 标
点 P(x,y) 在第三象限 x 0,y 0;
内 特征 点 P(x,y) 在第四象限 x 0,y 0.
点 的
坐 标 点 P(x,y) 在 x 轴上 y 0
的边长均为 1 个单位长度, P1 , P2 , P3 ,…,均在格
点上,其顺序按图中“→”方向排列,如:
P1 (0,0), P2 (0,1), P14
y
P15
P3 (1,1), P4 (1,1), P5 (1,1), P6 (1,2),
P10 P6
P2
P11 P7
P3
…,根据这个规律,
O P1

(名师整理)最新中考数学专题复习《一次函数的图象与性质》精品教案

(名师整理)最新中考数学专题复习《一次函数的图象与性质》精品教案

中考数学人教版专题复习:一次函数的图象与性质考点考纲要求分值考向预测一次函数的图象与性质1. 理解函数、变量,正比例函数、一次函数定义;2. 掌握函数图象的性质,能够画出相应的函数图象;3. 掌握图象的运动变化规律,并能应用性质解决问题5~15分主要考查方向是自变量的取值范围,函数图象的性质,动点变化形成的图象,应用函数图象性质解决问题。

其中动点与图象问题难度较大一次函数1. 函数概念:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y 称为因变量,y是x的函数。

用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式。

提示:判断y是否为x的函数,只要看x取值确定的时候,y是否有唯一确定的值与之对应。

【方法指导】自变量的取值范围:(1)关系式为整式时,自变量的取值范围为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开方数大于等于零;1(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,自变量的取值范围还要和实际情况相符合,使之有意义。

【随堂练习】x中的自变量x的取值范围是()(济宁)函数y=x1A. x≥0B. x≠﹣1C. x>0D. x≥0且x≠﹣1答案:解:根据题意得:x≥0且x+1≠0,解得x≥0,故选:A。

2. 一次函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数。

【重要提示】(1)一次函数的自变量的取值范围是一切实数,实际问题中要根据函数的实际意义来确定。

(2)一次函数y=kx+b(k,b为常数,k≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数。

2023中考一轮复习:一次函数的图象和性质

2023中考一轮复习:一次函数的图象和性质

考点08一次函数的图象和性质【命题趋势】一次函数的图象与性质在浙江中考中占比不大,但是确实和各个几何知识点结合较为紧密的一个考点,所以虽然中考中不会直接单独考察一次函数的图象与性质,或者较少考察,但是学习一次函数图象与性质的作用并不会减弱,所以,考生在复习这块知识点时,依然需要以熟记对应考点的方法规律为学习目标。

【中考考查重点】一、一次函数的图象与平移二、一次函数的性质三、待定系数法求解一次函数的表达式四、一次函数与方程、不等式的关系五、一次函数与三角形面积考向一:一次函数的图象与平移一.一次函数的图象二.一次函数图象的画法一次函数)0(≠+=k b kx y 的图象是经过点)0(b ,和点)0-(,kb 的一条直线图象所在象限0>,>b k 00<,>b k 00>,<b k 00<,<b k 经过第一、二、三象限经过第一、三、四象限经过第一、二、四象限经过第二、三、四象限平移口诀“左加右减(x ),上加下减(整体)”步骤一次函数正比例函数找点找任意两个点,一般为“整点”或与坐标轴的交点找除原点外的任意一个点描点在平面直角坐标系中描出所找的点的位置连线过这两个点画一条直线过原点和这个点画一条直线【同步练习】1.已知(k ,b )为第四象限内的点,则一次函数y =kx ﹣b 的图象大致是()A .B .C .D .2.用描点法画一次函数图象,某同学在列如下表格时有一组数据是错误的,这组错误的数据是()x ﹣2﹣112y 121084A .(2,4)B .(1,8)C .(﹣1,10)D .(﹣2,12)3.在平面直角坐标系中,把直线y =﹣2x+3沿x 轴向右平移两个单位长度后.得到直线的函数关系式为()A .y =﹣2x+5B .y =﹣2x ﹣5C .y =﹣2x+1D .y =﹣2x+74.直线y =3x ﹣2不经过第象限.考向二:一次函数的性质对于任意一次函数y=kx+b(k≠0),点A (x 1,y 1)B(x 2,y 2)在其图象上【方法技巧】【同步练习】1.已知点(x 1,2),(x 2,﹣4)都在直线y =﹣x+3上,则x 1与x 2的大小关系是()A .x 1>x 2B .x 1=x 2C .x 1<x 2D .不能比较2.若点A(x1,y1)和B(x2,y2)都在一次函数y=(k﹣1)x+2(k为常数)的图象上,且当x1<x2时,y1>y2,则k的值可能是()A.k=0B.k=1C.k=2D.k=33.在正比例函数y=kx中,y的值随着x值的增大而减小,则一次函数y=kx+k在平面直角坐标系中的图象大致是()A .B .C.D.4.关于一次函数y=﹣3x+1,下列说法正确的是()A.它的图象经过点(1,﹣2)B.y的值随着x的增大而增大C.它的图象经过第二、三、四象限D.它的图象与x轴的交点是(0,1)【同步练习】1.已知一次函数的图象经过A(2,﹣3)、B(﹣1,3)两点.(1)求这个函数的解析式;(2)判断点P(3,﹣5)是否在该函数图象上.2.如图所示,直线AB与x轴交于A,与y轴交于B.(1)请直接写出A,B两点的坐标:A,B;(2)求直线AB的函数表达式;(3)当x=5时,求y的值.考向四:一次函数与方程不等式间的关系一次函数y=kx+b 作用具体应用与一元一次方程的关系求与x 轴交点坐标方程kx+b=0的解是直线y=kx+b 与x 轴的交点横坐标与二元一次方程组的关系求两直线交点坐标方程组⎩⎨⎧+=+=2211b x k y b x k y 的解是直线11b x k y +=与直线22b x k y +=的交点坐标与一元一次不等式(组)的关系一元一次不等(如kx+b>0)的解可以由函数图象观察得出由函数图象直接写出不等式解集的方法归纳:①根据图象找出交点横坐标,②不等式中不等号开口朝向的一方,图象在上方,对应交点的左右,则x 取其中一边的范围。

中考 函数专题12 一次函数-面积问题(学生版)

中考 函数专题12 一次函数-面积问题(学生版)

专题12 一次函数-面积问题函数的学习中,自然离不开点、线、面,如求点的坐标、直线、曲线解析式、图形的面积,并且点、线、面之间的相互转化,本专题以一次函数为背景下求多边形面积,即由点或线的条件下求图形的面积,反之,也可以由面积求点的坐标,由面积求直线或曲线的解析式等,本专题的面积问题的巩固,为后面学习函数综合题的面积问题有极大帮助!一、单选题1.(2020·广西博白·期末)如图,矩形ABCD 中,AB =4,BC =3,动点E 从B 点出发,沿B ﹣C ﹣D ﹣A 运动至A 点停止,设运动的路程为x ,△ABE 的面积为y ,则y 与x 的函数关系用图象表示正确的是( )A .B .C .D . 2.(2020·广西灵山·期末)一次函数24y x =-+的图象与x 轴、y 轴的交点分别为A B 、,则OAB ∆的面积是( )A .12B .1C .2D .43.(2020·广西大化·初二期末)若直线4y x b =-+与两坐标轴围成的三角形的面积是5,则b 的值为( )A .±B .±C .D .- 4.(2020·山东枣庄·初三其他)如图,一次函数y =2x +1的图象与坐标轴分别交于A ,B 两点,O 为坐标原点,则△AOB 的面积为( )A .14B .12C .2D .4二、填空题5 .(2020·甘肃省庆阳市第五中学初二期末)已知直线8y kx =+与轴和轴所围成的三角形的面积是4,则k 的值是________.6.(2020·湖南隆回·初三二模)一次函数24y x =-的图象与x 轴,y 轴所围成的三角形面积S =__________.7.(2020·湖北曾都·初二期末)若直线y=kx+b (k≠0)的图象经过点(0,2),且与坐标轴所围成的三角形面积是2,则k 的值为_______8.(2020·长沙市南雅中学初二期末)函数 y=2x+6 的图象与 x 、y 轴分别交于 A 、B 两点,坐标系原点为 O ,求△ABO 的面积___________.9.(2020·湖南渌口·初二期末)已知一次函数y =kx +4(k <0)的图象与两坐标轴所围成的三角形的面积等于8,则k 的值为_____.10.(2019·山西初二期末)如图所示,点A (﹣3,4)在一次函数y =﹣3x +b 的图象上,该一次函数的图象与y 轴的交点为B ,那么△AOB 的面积为_____.三、解答题11.(2020·福建宁化·期中)已知直线l 的表达式为y=﹣x+8,与x 轴交于点B ,点P (x ,y )在直线l 上,且x >0,y >0,点A 的坐标为(6,0).(1)求出B 点的坐标;(2)设△OPA 的面积为S ,求S 与x 的函数关系式(并写出自变量的取值范围).12.(2020·甘肃徽县·初二期末)如图,直线l 1的解析式为y =﹣x +2,l 1与x 轴交于点B ,直线l 2经过点D (0,5),与直线l 1交于点C (﹣1,m ),且与x 轴交于点A(1)求点C 的坐标及直线l 2的解析式;(2)求ABC 的面积.13.(2020·湖北下陆·初二期末)在平面直角坐标系中,原点为O ,已知一次函数的图象过点A (0,5),点B (-1,4)和点P (m ,n ).(1)求这个一次函数的解析式;(2)当n =2时,求直线 AB ,直线 OP 与 x 轴围成的图形的面积;(3)当OAP △的面积等于OAB 的面积的2倍时,求n 的值.14.(2020·昆明市官渡区第一中学初二月考)已知一次函数22y x =--.(1)画出函数图象;(2)求图象与x 轴、y 轴的交点A 、B 的坐标; (3)求图象与坐标轴围成的图形的面积.15.(2018·安徽初二期末)如图,直线PA 是一次函数1y x =+的图象,直线PB 是一次函数24y x =-+的图象.(1)求A 、B 、P 三点坐标;(2)求PAB △的面积;(3)已知过P 点的直线把PAB △分成面积相等的两部分,求该直线解析式.16.(2019·山东初一期末)如图,已知一次函数y =−x +2的图像与y 轴交于点A ,一次函数y =kx +b 的图像过点B(0,4),且与x 轴及y =−x +2的图像分别交于点C 、D ,D 点坐标为(−23,n). (1)求n 的值及一次函数y =kx +b 的解析式.(2)求四边形AOCD 的面积.17.(2019·内蒙古初二期中)如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C . (1)写出点A 、B 、C 的坐标;(2)求此一次函数的解析式;(3)求△AOC 的面积.18.(2019·内蒙古初三月考)一次函数CD :y kx b =-+与一次函数AB :22y kx b =+,都经过点B (-1,4).(1)求两条直线的解析式;(2)求四边形ABDO 的面积.19.(2017·山东省济南兴济中学初二单元测试)两个一次函数的图象如图所示,(1)分别求出两个一次函数的解析式;(2)求出两个一次函数图象的交点C 坐标;(3)求这两条直线与y 轴围成△ABC 的面积.20.(2020·安徽初二期末)在平面直角坐标系xOy 中,ABC ∆如图所示,点()()()3,2,1,1,0,4A B C -.(1)求直线AB 的解析式;(2)求ABC ∆的面积;(3)一次函数32y ax a =++(a 为常数).21.(2020·湖北房县·初二期末)如图1,直线l :y =12x +2与x 轴交于点A ,与y 轴交于点B .已知点C (﹣2,0).。

数学中考一轮复习专题13一次函数的图象及其性质课件

数学中考一轮复习专题13一次函数的图象及其性质课件

知识点2:一次函数的图象及其性质
典型例题
【例2】(3分)(202X•赤峰11/26)点P(a,b)在函数y =4x+3的图象上,则代数式
8a -2b +1的值等于( )
A.5
B.-5
C.7
D.-6
【分析】把点P的坐标代入一次函数解析式可以求得a、b间的数量关系,所以易求
代数式8a -2b +1的值.
地市以探究性问题的情 的近似解.
势考查.
思维导图
知识点1:一次函数的概念
知识点梳理
1. 一次函数的概念: 一般地,如果y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数. 结构特征:①k≠0;②x的次数是1;③常数项b可以是任意实数. 2. 正比例函数的概念: 特别地,当一次函数y=kx+b中的b为0时,y=kx(k为常数,k≠0).这时,y叫做x 的正比例函数. 结构特征:①k≠0;②x的次数是1;③常数项为0. 3. 一次函数与正比例函数的联系:正比例函数是一次函数的特殊情势.
关于x,y的二元一次方程组
kk12xx
b1 b2
y y
的解是直线y=k1x+b1和y=k2x+b2的交点坐标.
3. 一元一次不等式:
关于x的一元一次不等式kx+b>0(<0)的解集是以直线y=kx+b和x轴的交点为分界点,
x轴上(下)方的图象所对应的x的取值范围.
知识点3:一次函数与方程(组)、一元一次不等式
知识点2:一次函数的图象及其性质
典型例题
【例4】(3分)(202X•安徽7/23)已知一次函数y=kx+3的图象经过点A,且y随x的增
大而减小,则点A的坐标可以是( )

中考数学专题《一次函数》复习课件(共20张PPT)

中考数学专题《一次函数》复习课件(共20张PPT)

2D
S△COD=
1 2
OC
OD
C
x
O1
122 2 23 3
考点二:确定一次函数解析式及其相关问题
例2:已知:一次函数图象经过A(1,5), B(-2,-4)两点, 图象与x轴交于点C,与 y轴交于点D.
(5)若直线l:y= x-4与此一次函数图象相交 于点P,试求点P的坐标
【解析】:(5)由题意可得:
例1:已知直线解析式为y=(3m-2)x+(1-2m) ,其中m为常数:
(2)当m为何值时,y随x的增大而减小?
【解析】:
∵y随x的增大而减小
2
∴3m-2<0
∴m<
本题考查一次函数的性质,即:在y3=kx+b(k≠0)中,
当k>0时,y随x的增大而增大;
当k<0时,y随x的增大而减小;
考点一:一次函数定义、图象、性质的相关知识
例1:已知直线解析式为y=(3m-2)x+(1-2m) , 其中m为常数:
(3)当m为何值时,图象经过第二、三、四象 限?
【解析】:∵图象经过第二、、四象限∴ 3m 2 0 1 2m 0
∴ 1m 2
2
3
本题考查一次函数的图象及其性质
例题分析
考点一:一次函数定义、图象、性质的相关知识 例1:已知直线解析式为y=(3m-2)x+(1-2m) ,其中m为
④直线AB上有一点C,
y
且点C的横坐标为1, 求点C的坐标及S△BOC的面积
B
C
解:在y=-2x+4中,
当x=1时,y=2
∴C:(1,2)
S△BOC= 1 OB×|1|=2
2

2023年中考数学一轮复习课件:一次函数的图象与性质

2023年中考数学一轮复习课件:一次函数的图象与性质

(4)若一次函数满足自变量x每增加1,函数值就增加2.①该一次函数的表
达式为_y_=__2_x_-__1___;②该一次函数图象与x轴的交点坐标为__( _1_,__0_)___,
2
与y轴的交点坐标为_(_0_,__-__1_)__;③点C是该一次函数图象上一点,其横
坐标为-
1 2
,若点
D与点C关于y轴对称,则点D的坐标为__(_12__,__-__2_) __;
的解⇔一次函数y=k1x+b1与y=k2x+
b2图象的交点为A(m,n)
3. 与不等式的关系:(1)如图①,不等式kx+b>0的解集⇔一次函数y=kx+b图象位 于x轴上方部分对应x的取值范围;不等式kx+b<0的解集⇔一次函数y=kx+b图象 位于x轴下方部分对应x的取值范围;
(2)如图②,设交点C的坐标为(m,n),那么不等式k1x+b1≤k2x+b2的解集是 x≥m _______.
思维导图
解析式
增减性 图象(草图) 经过的象限
正比例函数 的图象与性质
图象与性质
一次函数图象与坐标轴 围成的三角形的面积
一次函数的 图象与性质
一次函数的 图象与性质
一次函数解 析式的确定
常用方法 一般步骤
一次函数 图象的 平移
平移前 平移方式 平移后
简记
一次函数与方程(组)、 一元一次不等式的关系
考点5 一次函数与方程(组)、一元一次不等式的关系
1. 与一次方程的关系方程ax+b=0(a≠0)的解是一次函数y=ax+b(a≠0)的函数值为0 时自变量的取值,也是直线y=ax+b(a≠0)与x轴交点的横坐标 2. 与二元一次方程组的关系
x y
m n
是二元一次方程组

(中考复习)第12讲 一次函数及其图象

(中考复习)第12讲 一次函数及其图象

基础知识 · 自主学习
题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考 6.如图12-3所示,直线y=kx+b经过点A(-1,-2)和点B(- 2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为 -2<x<-1 . _______________
图12-3
基础知识 · 自主学习
不能为0,且x>0,y>0,图象位于第一象限,所以选A.
基础知识 · 自主学习
题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考 题组二 【例3】 一次函数解析式的确定 (2013· 芜湖)已知直线y=kx+b经过点(k,3)和(3,
3或-1 . k),则k=__________
[变式训练]
(2011· 无锡)若一次函数y=kx+b,当x的值减
增加4 . 小1,y的值就减小2,则当x的值增加2时,y的值________ 解析:由y=kx+b,y-2=k(x-1)+b,两式相减得k=2, 由y=2x+b,y+a=2(x+2)+b,两式相减得a=4,所以y 增加4.
基础知识 · 自主学习
题组分类 · 深度剖析
A.第一象限
C.第三象限
B.第二象限
D.第四象限
基础知识 · 自主学习
题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考 【例2】 (2013· 武汉)设甲、乙两车在同一直线公路上匀速行
驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下
来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原 地返回.设x秒后两车间的距离为y千米,关于y的函数关系 20 米/秒. 如图12-4所示,甲车的速度是______
基础知识 · 自主· 巩固提升

2024年中考第一轮复习 一次函数的图象与性质 课件

2024年中考第一轮复习 一次函数的图象与性质 课件
1
画图可知当 x>3 时,一次函数 y=3x 的
图象在 y=kx+b 的图象上方,即 kx+b
图10-6
1
3
< x.
考向三
两条直线的位置关系
4
3
4
3
例 3 一次函数 y= x-b 与 y= x-1 的图象之间的距离等于 3,则 b 的值为 (
A.-2 或 4
B.2 或-4
C.4 或-6
D.-4 或 6
1.[2020·天门]对于一次函数y=x+2,下列说法不正确的是( D )
A.图象经过点(1,3)
B.图象与x轴交于点(-2,0)
C.图象不经过第四象限
右移n个单位
注:直线y=kx+b可由直线y=kx平移|b|个单位得到
考点二
一次函数的性质
3.[2018·绍兴]如图10-3,一个函数的图象由射线BA、线段BC、射线CD组成,其中
点A(-1,2),B(1,3),C(2,1),D(6,5),则此函数
A
(
)
A.当x<1时,y随x的增大而增大
B.当x<1时,y随x的增大而减小
点 P,并分别与 x 轴相交于点 A,B.
(1)求交点 P 的坐标;
(2)求△ PAB 的面积;
(3)请把图象中直线 y=-2x+2 在直线
1
y=- x-1 上方的部分
2
描黑加粗,并写出此时自变量 x 的取值范围.
1
- -1,
2
= 2,
解:(1)解

∴P(2,-2).
= -2 + 2, = -2,
(2)图象经过点(2,-1)且与直线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时跟踪训练12:一次函数及其图象
A组基础达标
一、选择题
1.(2013·重庆)已知正比例函数y=kx(k≠0)的图象经过点(1,-2),则正比例函数的解析式为(B) A.y=2x B.y=-2x
C.y=1
2x D.y=-
1
2x
2.(2013·徐州)下列函数中,y随x的增大而减少的函数是(C) A.y=2x+8 B.y=-2+4x
C.y=-2x+8 D.y=4x
3. 中国电信公司最近推出的无线市话小灵通的通话收费标准为:前3分钟(不足3
分钟按3分钟)为0.2元;3分钟后每分钟收0.1元,则一次通话实际那为x分钟(x>3)与这次通话的费用y(元)之间的函数关系是(C) A.y=0.2+0.1x B.y=0.1x
C.y=-0.1+0.1x D.y=0.5+0.1x
4. A,B两点在一次函数图象上的位置如图12-1所示,两点的坐标分别为A(x+
a,y+b),B(x,y),下列结论正确的是(B)
图12-1
A.a>0
B.a<0
C.b=0
D.ab<0
解析:∵根据函数的图象可知:y随x的增大而增大,∴y+b<y,x+a<x,∴b<0,a<0,∴选项A、C、D都不对,只有选项B正确.
二、填空题
5.(2013·永州)已知一次函数y=kx+b的图象经过A(1,-1),B(-1,3)两点,则k__<__0(填“>”或“<”).
6. 如果点(-2,m)和(1.5,n)都在直线y=4
3x+4上,则m、n的大小关系是__n>
m__.
7.(2013·黔东南州)直线y=-2x+m与直线y=2x-1的交点在第四象限,则m 的取值范围是__-1<m<1__.
8.(2013·威海)甲、乙两辆摩托车同时从相距20 km的A,B两地出发,相向而行.图12-2中的l1,l2分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是__③__.
图12-2
①乙摩托车的速度较快;②经过0.3小时甲摩托车行驶到A,B两地的中点;
③经过0.25小时两摩托车相遇;④当乙摩托车到达A地时,甲摩托车距离A
地__50
3__km.
三、解答题
9.(2012·湘潭)已知一次函数y=kx+b(k≠0)的图象过点(0,2),且与两坐标轴围成的三角形的面积为2,求此一次函数的解析式.
解:此函数的解析式为:y=x+2或y=-x+2
10.(2013·内江)某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120,具有一次函数的关系,如下表所示.
(1)求y 关于x 的函数解析式;
解:设y 与x 之间的函数关系式为y =kx +b , 由题意,得⎩⎨⎧40=50k +b ,38=60k +b ,解得:⎩⎪⎨
⎪⎧k =-15,b =50,
∴y 与x 之间的函数关系式为y =-1
5x +50(30≤x ≤120).
(2)后来在修建的过程中计划发生改变,政府决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费. 解:设原计划要m 天完成,则增加2 km 后用了(m +15)天,由题意,得6m =6+2m +15,
解得m =45.
∴原计划每天的修建费为-1
5×45+50=41(万元).
B 组 能力提升
11.点P 1(x 1,y 1)、点P 2(x 2,y 2)是一次函数y =-4x +3图象上的两个点,且x 1<x 2,则y 1与y 2的大小关系是
( A )
A .y 1>y 2
B .y 1>y 2>0
C .y 1<y 2
D .y 1=y 2
12.(2013·德州)函数y =x 2+bx +c 与y =x 的图象如图
2-3所示,有以下结论:①b 2-4c >0;②b +c +1=0;③3b +c +6=0;④当1<x <3时,x 2+(b -1)x +c <0.其中正确的个数是
( B )
A .1个
B .2个
C .3个
D .4个
图12-3
13.(2013·成都)已知点(3,5)在直线y =ax +b (a ,b 为常数,且a ≠0)上,则a b -5
的值为__-1
3__.
14.(2013·重庆)如图12-4所示,平面直角坐标系中,已知直线y =x 上一点P (1,1),C 为y 轴上一点,连接PC ,线段PC 绕点P 顺时针旋转90°至线段PD ,过点D 作直线AB ⊥x 轴,垂足为B ,直线AB 与直线y =x 交于点A ,且BD =2AD ,连接CD ,直线CD 与直线y =x 交于点Q ,则点Q 的坐标为__⎝ ⎛⎭
⎪⎫94,94__.
图12-4
解析:如图12-5,过P 作MN ⊥y 轴,交y 轴于M ,交AB 于N ,过D 作DH ⊥y 轴,交y 轴于H ,∠CMP =∠DNP =∠CPD =90°,∴∠MCP +∠CPM =90°,∠MPC +∠DPN =90°,∴∠MCP =∠DPN ,∵P (1,1),∴OM =BN =1,PM =1,在△MCP 和△NPD 中∠CMP =∠DNP ∠MCP =∠DPNPC =PD ,
∴△MCP ≌△NPD ,∴DN =PM ,PN =CM ,∵BD =2AD ,∴设AD =x ,BD =2x ,∵P (1,1),∴DN =2x -1,则2x -1=1,x =1,即BD =2,C 的坐标是(0,3),∵直线y =x ,∴AB =OB =3,在Rt △DNP 中,由勾股定理得PC =PD = 5,在Rt △MCP 中,由勾股定理得CM =2则C 的坐标是(0,3),设直线CD 的解析式是y =kx +3,把D (3,2)代入得k =-1
3即直线CD 的解析式是y =-x +3,联立方程y =-x +3和y =x ,解得x = 94,y =94,即Q 的坐标是⎝ ⎛⎭⎪⎫
94,94.
15.(2013·绥化)如图12-6所示,直线MN 与x 轴,y 轴分别相交于A ,C 两点,分别过A ,C 两点作x 轴,y 轴的垂线相交于B 点,且OA ,OC (OA >OC )
的长分别是一
图12-5
图12-6
元二次方程x 2-14x +48=0的两个实数根. (1)求C 点坐标;
解:解方程x 2-14x +48=0得x 1=6,x 2=8.
∵OA ,OC (OA >OC )的长分别是一元二次方程x 2-14x +48=0的两个实数根, ∴OC =6,OA =8.∴C (0,6); (2)求直线MN 的解析式;
解:设直线MN 的解析式是y =kx +b (k ≠0), 由(1)知,OA =8,则A (8,0). ∵点A 、C 都在直线MN 上, ∴⎩⎨⎧8k +b =0,b =6, 解得⎩⎪⎨⎪⎧k =-34,b =6. ∴直线MN 的解析式为y =-3
4x +6;
(3)在直线MN 上存在点P ,使以P ,B ,C 三点为顶点的三角形是等腰三角形,请直接写出P 点的坐标. 解:∵A (8,0),C (0,6), ∴根据题意知B (8,6). ∵点P 在直线y MN =-3
4x +6上, ∴设P ⎝ ⎛⎭
⎪⎫
a ,-34a +6
当以点P ,B ,C 三点为顶点的三角形是等腰三角形时,需要分类讨论: ①当PC =PB 时,点P 是线段BC 的中垂线与直线MN 的交点,则P 1(4,3); ②当PC =BC 时,a 2
+⎝ ⎛⎭
⎪⎫-34a +6-62
=64,
解得a =±325,则P 2⎝ ⎛⎭⎪⎫-325,545,P 3⎝ ⎛⎭⎪⎫
325,65;
③当PB =BC 时,(a -8)2
+⎝ ⎛⎭
⎪⎫-34a +6-62
=64,
解得a =25625,则-34a +6=-4225,∴P 4⎝ ⎛⎭⎪⎫256
25,-4225.
综上所述,符合条件的点P 有P 1(4,3),
P 2⎝ ⎛⎭⎪⎫-325,545,P 3⎝ ⎛⎭⎪⎫325,65,P 4⎝ ⎛⎭
⎪⎫256
25,-4225. 16.(2013·安徽)如图12-7所示,在平面直角坐标系中,点A 、B 分别在x 轴、y 轴上,线段OA 、OB 的长(0A <OB )是方程x 2-18x +72=0的两个根,点C 是线段AB 的中点,点D 在线段OC 上,OD =2C D. (1)求点C 的坐标;
解:解方程x 2-18x +72=0得x 1=6,x 2=12, ∴OA =6,OB =12,即A (6,0),B (0,12), 根据中点坐标公式,点C 的坐标为⎝ ⎛⎭⎪⎫6+02,0+122,
即C (3,6).
(2)求直线AD 的解析式; 解:∵OD =2CD ,C (3,6), ∴D ⎝ ⎛

⎪⎫3×23,6×23,即D (2,4). 设直线AD 的解析式为y =kx +b ,将A 、D 两点坐标代入,得⎩⎨⎧6k +b =0,2k +b =4,
解得⎩⎨⎧k =-1,
b =6,
∴直线AD 的解析式为y =-x +6.
(3)P 是直线AD 上的点,在平面内是否存在点Q ,使以O 、A 、P 、Q 为顶点的四边形是菱形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由. 解:Q 点坐标是(6,6)或(32,-32)或(-32,32)或(3,-3).
图12-7。

相关文档
最新文档