高中二年级数学 第二章 圆锥曲线与方程(A)

合集下载

高中数学 第二章 圆锥曲线与方程本章归纳整合课件 新人教A版选修21

高中数学 第二章 圆锥曲线与方程本章归纳整合课件 新人教A版选修21

(3)求轨迹方程的几种常用方法: ①直接法:建立适当的坐标系,设动点为(x,y),根据几 何条件直接寻求x,y之间的关系式. ②代入法:利用所求曲线上的动点与某一已知曲线上的动 点的关系,把所求动点转换为已知动点.具体地说,就是用所 求动点的坐标x,y来表示已知动点的坐标并代入已知动点满足 的曲线的方程,由此即可求得所求动点坐标x,y之间的关系 式.
已知椭圆上的两点 P(3,4),Q

5,43

10.

(1)求椭圆的标准方程;
(2)若椭圆的两焦点为 F1,F2,M 为椭圆上一点,且∠
F1MF2=90°,求△F1MF2 的面积. 思维点击: (1)用待定系数法求椭圆方程.(2MF2 的面积.
(1)设椭圆方程为 Ax2+By2=1(A>0,B>0,
另外,在求双曲线的标准方程的过程中,根据不同的已 知条件采取相应方法设方程,常常可以简化解题过程,避免 出错.如与已知双曲线ax22-by22=1(a>0,b>0)共渐近线的双曲 线方程可设为ax22-by22=λ(λ≠0);已知所求双曲线为等轴双曲 线,其方程可设为 x2-y2=λ(λ≠0).
(2)抛物线的标准方程 求抛物线的标准方程时,先确定抛物线的方程类型,再 由条件求出参数 p 的大小.当焦点位置不确定时,要分情况 讨论,也可将焦点在 x 轴或 y 轴上的抛物线方程设为一般形 式 y2=2px(p≠0)或 x2=2py(p≠0),然后建立方程求出参数 p 的值.
知能整合提升
1.归纳三种圆锥曲线定义、标准方程、几何性质
椭圆
双曲线
抛物线
平面内与两个定 平面内与两个定点 平面内与一个定
定义
点 F1,F2 的距离 F1,F2 的距离的差的 点 F 和一条定直

高中数学第二章圆锥曲线与方程2.2.2.2双曲线方程及性质的应用新人教A版选修

高中数学第二章圆锥曲线与方程2.2.2.2双曲线方程及性质的应用新人教A版选修

[提示] 如图所示,取 AB 所在直线为 x 轴,线段 AB 的垂直 平分线为 y 轴,建立平面直角坐标系 xOy,易知 A(3,0),B(-3,0), C(-5,2 3),设动物所在位置为 P,由于 B,C 同时发现动物信 号,则有|PC|=|PB|,因此 P 在线段 BC 的垂直平分线上,由 B, C 两点坐标可得线段 BC 的垂直平分线方程为 3x-3y+7 3=0. 由 A,B 两舰发现动物信号时间差为 4 秒,动物信号的传播速度 是 1 千米/秒,知|PB|-|PA|=4,
解析: (1)联立方程组yx=2-kyx2-=14,, 消去 y 得方程(1-k2)x2+2kx-5=0, 由题意得,此方程有两个不等的正根,
4k2+201-k2>0, ∴-1-2kk2>0,
1--5k2>0,
即- k>12或5<-k<1<25k,<0, k>1或k<-1,
解得1<k<源自5 2.(2)由yx=2-kyx2-=14, 得(1-k2)x2+2kx-5=0, 由题意知此方程无解.
3.等轴双曲线x2-y2=a2与直线y=ax(a>0)没有公共点, 则a的取值范围为________.
解析:由yx= 2-ayx2,=a2 得(1-a2)x2-a2=0. ①1Δ-=a02-≠40,1-a2·-a2<0, ∴a>1. ②1-a2=0 时,方程无解, 综上:a≥1.
答案: a≥1
4.过双曲线 x2-y32=1 的左焦点 F1,作倾斜角为π6的弦 AB,
第2课时 双曲线方程及性质的应用
自主学习 新知突破
1.进一步掌握双曲线的标准方程和几何性质,能解决与 双曲线有关的综合问题.

高中数学第二章圆锥曲线与方程2.3.2双曲线的简单几何性质课件新人教A版选修2

高中数学第二章圆锥曲线与方程2.3.2双曲线的简单几何性质课件新人教A版选修2
学习课件
高中数学第二章圆锥曲线与方程2.3.2双曲线的简单几何性质课件新人教A 版选修2
2.线的草图,首先在坐标系中画出渐近线 y=±32x,顶 点-23,0,23,0,然后算出双曲线在第一象限内一点的坐标, 比如取 y=1,算出 x=232≈0.94,可知点(0.94,1),(0.94,-1) 在双曲线上,将三点(0.94,-1),(23,0),(0.94,1)依次连成光滑 曲线并让它随 x 的增大逐步接近渐近线,画出位于第一、四象限 内双曲线的一支.最后由对称性可画出位于第二、三象限内双曲 线的另一支,得双曲线的草图如图所示.
(2a,- 3b),代入直线方程得- 3b=ba(2a-c),化简可得离心 率 e=ac=2+ 3.
【答案】 2+ 3
法二:∵渐近线 y=12x 过点(4,2),而 3<2, ∴点(4, 3)在渐近线 y=12x 的下方, 在 y=-12x 的上方(如图). ∴双曲线的焦点在 x 轴上,
休息时间到啦
同学们,下课休息十分钟。现在是休息时间,你 们休息一下眼睛,
看看远处,要保护好眼睛哦~站起来动一动,久坐 对身体不好哦~
结束语
同学们,你们要相信梦想是价值的源泉,相信成 功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念, 考试加油!奥利给~
【解析】 如图所示,不妨设与渐近线平行的直线 l 的斜率
为ba,又直线 l 过右焦点 F(c,0),则直线 l 的方程为 y=ba(x-c).因 为点 P 的横坐标为 2a,代入双曲线方程得4aa22-by22=1,化简得 y =- 3b 或 y= 3b(点 P 在 x 轴下方,故舍去),故点 P 的坐标为

高中数学第二章圆锥曲线与方程2.2.1双曲线及其标准方程新人教A版选修

高中数学第二章圆锥曲线与方程2.2.1双曲线及其标准方程新人教A版选修

() A.x42-1y22 =1 C.x42-1y62 =1
B.1x22 -y42=1 D.1x62 -y42=1
解析: b2=c2-a2=42-22=12, ∴双曲线方程为x42-1y22 =1. 答案: A
2.椭圆x42+ay22=1 与双曲线xa2-y22=1 有相同的焦点,则 a
的值是( )
(2)由已知得 c=6,且焦点在 y 轴上,因为点 A(-5,6)在双 曲线上,所以点 A 与两焦点的距离的差的绝对值是常数 2a,即 2a=| -5-02+6+62- -5-02+6-62|
=|13-5|=8, 则 a=4,b2=c2-a2=62-42=20. 因此,所求双曲线的标准方程为1y62 -2x02 =1.
2.2 双曲线
2.2.1 双曲线及其标准方程
自主学习 新知突破
1.了解双曲线的定义、几何图形和标准方程的推导过 程.
2.掌握双曲线的标准方程. 3.会利用双曲线的定义和标准方程解决简单的应用问 题.
我海军“马鞍山”舰和“千岛湖”舰组成第四批护航编队 远赴亚丁湾,在索马里流域执行护航任务.
某日“马鞍山”舰哨兵监听到附近海域有快艇的马达声,与 “马鞍山”舰相距1 600 m的“千岛湖”舰,3 s后也监听到了 该马达声(声速为340 m/s).
4.求适合下列条件的双曲线的标准方程: (1)a=3,c=4,焦点在x轴上; (2)焦点为(0,-6),(0,6),经过点A(-5,6).
解析: (1)由题设知,a=3,c=4, 由 c2=a2+b2 得,b2=c2-a2=42-32=7. 因为双曲线的焦点在 x 轴上, 所以所求双曲线的标准方程为x92-y72=1.
1.若一个动点P(x,y)到两个定点F1(-1,0),F2(1,0)的距 离的差的绝对值为定值a(a≥0),试讨论点P的轨迹方程.

高二数学课本《选修11第二章圆锥曲线与方程》

高二数学课本《选修11第二章圆锥曲线与方程》

高二数学课本《选修1-1第二章圆锥曲线与方程》高二数学课本《选修1-1》第二章圆锥曲线与方程在本章中,我们将探索圆锥曲线与方程之间的关系。

圆锥曲线是平面几何中的重要主题,而通过引入方程,我们可以更精确地描述这些曲线的性质。

一、引言圆锥曲线是平面几何中的一个基本主题。

椭圆、双曲线和抛物线等圆锥曲线都是平面上的点满足某种条件的轨迹。

通过引入方程,我们可以对这些曲线进行精确的描述和分类。

二、基本概念1.圆锥曲线的定义:圆锥曲线是指在平面直角坐标系中,一个动点在满足某种条件的限制下,沿着一条具有特殊形状的轨迹运动所形成的图形。

2.圆锥曲线的方程:对于每种圆锥曲线,我们可以使用一个二元二次方程来表示。

例如,椭圆方程可以表示为(x-a)^2/b^2 + (y-c)^2/d^2 = 1,其中a、b、c、d是椭圆的主要参数。

三、主要内容1.椭圆的定义和方程:椭圆是一种常见的圆锥曲线,它描述了一个动点在两个固定点(焦点)之间移动的轨迹。

椭圆的方程可以写为(x-a)^2/b^2 + (y-c)^2/d^2 = 1,其中(a, c)是焦点位置,b和d是半轴长度。

2.双曲线的定义和方程:双曲线也是一种圆锥曲线,描述了一个动点在一个固定点(焦点)和无穷远点之间的轨迹。

双曲线的方程可以写为(x-a)^2/b^2 - (y-c)^2/d^2 = 1,其中(a, c)是焦点位置,b和d是半轴长度。

3.抛物线的定义和方程:抛物线是一种圆锥曲线,描述了一个动点在一个固定点(焦点)和一条直线(准线)之间的轨迹。

抛物线的方程可以写为y^2 = 2px或x^2 = 2py,其中p是抛物线的焦参数。

4.圆锥曲线的性质:通过观察圆锥曲线的方程,我们可以得出一些重要的性质,例如范围、对称性和离心率等。

这些性质有助于我们更好地理解和应用圆锥曲线。

四、方法与技巧1.代数方法:通过代入坐标到圆锥曲线的方程中,我们可以得到点的位置,从而通过代数方法解决问题。

高中数学选修2-1《圆锥曲线》教案

高中数学选修2-1《圆锥曲线》教案

4. 待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求. 例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程.分析:因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方ax2-4b2x+a2b2=0•••抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b 2x+a2b2=0 应有等根.•••△ =1664-4Q4b2=0,即卩a2=2b.(以下由学生完成)由弦长公式得:即a2b2=4b2-a 2.(三)巩固练习用十多分钟时间作一个小测验,检查一下教学效果•练习题用一小黑板给出.1 .△ ABC-边的两个端点是B(0 , 6)和C(0 , -6),另两边斜率的2. 点P与一定点F(2 , 0)的距离和它到一定直线x=8的距离的比是1 : 2,求点P的轨迹方程,并说明轨迹是什么图形?3. 求抛物线y2=2px(p >0)上各点与焦点连线的中点的轨迹方程. 答案:义法)由中点坐标公式得:(四)小结求曲线的轨迹方程一般地有直接法、定义法、相关点法、待定系数法,还有参数法、复数法也是求曲线的轨迹方程的常见方法,这等到讲了参数方程、复数以后再作介绍.五、布置作业1. 两定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹方程.2. 动点P到点F1(1 , 0)的距离比它到F2(3 , 0)的距离少2,求P点的轨迹.3. 已知圆x2+y2=4上有定点A(2 , 0),过定点A作弦AB,并延长到点P,使3|AB|=2|AB|,求动点P的轨迹方程.作业答案:1. 以两定点A、B所在直线为x轴,线段AB的垂直平分线为y轴建立直角坐标系,得点M的轨迹方程x2+y2=4 2. v |PF2|-|PF|=2 ,且|F1F2| • P点只能在x轴上且x V 1,轨迹是一条射线六、板书设计教学反思:4斜率之积为4,9程.分析:由椭圆的标准方程的定义及给出的条件,容易求出a,b,c .引导学生用其他方法来解.另解:设椭圆的标准方程为2 25 31 a b 0,因点一,一在椭圆上,a b2 225 9 则 4a 2 4b 22 2a b 4;10<6例2如图,在圆x 24上任取一点P ,过点P 作x 轴的垂线段 PD , D 为垂足•当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?分析: 点P 在圆x 2 y 2 4上运动,由点 P 移动引起点 M 的运动,则称点 M 是点P 的伴随点,因点M 为线段 PD 的中点,则点 M 的坐标可由点P 来表示,从而能求点 M 的轨迹方程.引申: 设定点2xA 6,2 , P 是椭圆x252y1上动点,求线段 AP 中点M 的轨迹方程.9解法剖析:①(代入法求伴随轨迹)设M x, y , P x 1,y 1 :②(点与伴随点的关系): M为线段AP 的中点,X i y i2x 6;③(代入已知轨迹求出伴随轨迹)2y 22..X 1 '252y11 , •••点M9x的轨迹方程为一25④伴随轨迹表示的范围.例3如图,设A , B 的坐标分别为 5,0 , 5,0 .直线 AM , BM 相交于点M ,且它们的分析:若设点x, y ,则直线AM,BM 的斜率就可以用含 x, y 的式子表示,由于直线AM ,BM 的斜率之积是4 ,因此,可以求出9x, y 之间的关系式,即得到点M 的轨迹方程.解法剖析:设点M x, y ,则 k AM-^― x 5 , k BMx 5 ;x 5x 5代入点M 的集合有4-,化简即可得点 M 的轨迹方程. 9引申:如图,设△ ABC 的两个顶点 A a,0 , B a,0,顶点C 在移动,且k AC k BC k , 且k 0,试求动点C 的轨迹方程.引申目的有两点:①让学生明白题目涉及问题的一般情形;②当 色也是从椭圆的长轴T 圆的直径T 椭圆的短轴.练习:第45页1、2、3、4、 作业:第53页2、3、k 值在变化时,线段 AB 的角求点M 的轨迹方程.分析与解决问题的能力:通过学生的积极参与和积极探究,培养学生的分析问题和解决 问题的能力.思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问 题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能 力.实践能力:培养学生实际动手能力,综合利用已有的知识能力.创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的 一般的思想、方法和途径.♦过程与方法目标(1 )复习与引入过程引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对 椭圆的标准方程的讨论, 研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先 定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过 题,探究椭圆的扁平程度量椭圆的离心率. 〖板书〗§ 2. 1. 2椭圆的简单几何性质.(2) 新课讲授过程(i )通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质. 提问:研究曲线的几何特征有什么意义?从哪些方面来研究?通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、 从范围、对称性、顶点及其他特征性质来研究曲线的几何性质.(ii )椭圆的简单几何性质2x一2 0,进一步得:a xax 代x ,且以 y 代y 这三个方面来研究椭圆的标准 y 轴为对称轴,原点为对称中心;即圆锥曲线的对称轴与圆锥曲线的交点叫做圆 锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较 短的叫做短轴;c④离心率: 椭圆的焦距与长轴长的比e 叫做椭圆的离心率(0 e 1 ),a当 e1 时,c a ,,b0.; 椭圆图形越扁(iii )例题讲解与引申、扩展400的长轴和短轴的长、离心率、焦点和顶点的坐标.分析:由椭圆的方程化为标准方程,容易求出a,b,c •弓I 导学生用椭圆的长轴、短轴、离心率、 焦点和顶点的定义即可求相关量.确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并掌握利用信息技术探 究点的轨迹问题,培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.♦能力目标(1)(3) (4)大小和位置.要巳8的思考冋①范围:由椭圆的标准方程可得,y 2 b 2b y b ,即椭圆位于直线x② 对称性:由以 x 代x ,以 方程发生变化没有,从而得到椭圆是以③ 顶点:先给出圆锥曲线的顶点的统一定义,y 代y 和 x 轴和 a ,同理可得:b 所围成的矩当 e 0 时,c 0,b a 椭圆越接近于圆例4求椭圆I6x 225y 2/Tn扩展:已知椭圆血5y2 5m m 0的离心率为e—,求m的值.解法剖析:依题意,m0,m 5,但椭圆的焦点位置没有确定, 应分类讨论: ①当焦点在x轴上,即0 m 5时,有a品 b 丽,c 75 ~m,二_—:得m 3;②当焦点在y轴上,即m例5如图,応b 岳c J m 5 , ••• J:5V m一种电影放映灯的反射镜面是旋转椭圆面的一部分.过对对称的截口5时,有a105253BAC是椭圆的一部分,灯丝位于椭圆的一个焦点F1上,片门位于另一个焦点F2上, 由椭圆一个焦点F1发出的光线,经过旋转椭圆面反射后集中到另一个焦点F2.已知BC F1F2,RB 2.8cm,F1F24.5cm .建立适当的坐标系,求截口BAC所在椭圆的方程.解法剖析:建立适当的直角坐标系,设椭圆的标准方程为1,算出a,b,c的值;此题应注意两点:①注意建立直角坐标系的两个原则;②关于a,b,c的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,“神舟”截人飞船发射升空,进入预定轨道开始巡天飞行,其轨道是以地球的中心F2为一个焦点的椭圆,近地点A距地面200km,远地点B距地面350km,已知地球的半径R 6371km •建立适当的直角坐标系,求出椭圆的轨迹方程.例6如图,设M x, y与定点F 4,0的距离和它到直线I : 兰的距离的比是常数4点M的轨迹方程./ 2 2 「亠「■25匚亠2MF(x 4 y ,到直线I:x 的距离d x44分析:若设点M x, y,则则容易得点M的轨迹方程.引申:(用《几何画板》探究)若点M x, y与定点F c,0的距离和它到定直线l :c距离比是常数e aac 0 ,则点M 的轨迹方程是椭圆.其中定点F c,0是焦点,2x —相应于F的准线;c由椭圆的对称性, 另一焦点F c,0 ,相应于F的准线l :练习:第52页1、作业:第53页4、教学反思:2、3、4、5、6、75ac4,求52a的c定直线l :类比椭圆:设参量b的意义:第一、便于写出双曲线的标准方程;第二、的几何意义.2 类比:写出焦点在y轴上,中心在原点的双曲线的标准方程召b (iii )例题讲解、引申与补充例1已知双曲线两个焦点分别为F15,0 , F25,0,双曲线上一点绝对值等于6,求双曲线的标准方程.分析:由双曲线的标准方程的定义及给出的条件,容易求出a,b,c的关系有明显P到R , F2距离差的2x2a1 a 0,b 0 . a,b, c.补充:求下列动圆的圆心M 的轨迹方程:① 与O C :2 22 y 2内切,且过点 A 2,0 :②与O C 1 : x 2 y 12 21 和O C2 : x y 4都外切;③与O C i :2 y 9外切,且与O C 2: x 223 y 1内切.解题剖析 半径为r :这表面上看是圆与圆相切的问题, 实际上是双曲线的定义问题•具体解: 设动圆•/ O C 与O M 内切,点A 在O C 外,• MC| r /2 MA,因此有MA 2x 2 •••点 MC 2,•点M 的轨迹是以C 、 A 为焦点的双曲线的左支,即M 的轨迹方程是MC i •••O M 与O c 1、O C 2 均外切,•••|MC 1| r 1, MC 2 r 2,因此有的轨迹是以C 2、C i 为焦点的双曲线的上支,• M 的轨迹方程是4y••• e M MC 2MC 24x 2 3MC i 1 ,与eG 外切,且e M 与e C 2内切,•- MC j4,•点M 的轨迹是以C i 、C 2为焦点的双曲线的右支,• MC 2r 1,因此M 的轨迹方程是例2已知A , B 两地相距800m ,在A 地听到炮弹爆炸声比在 B 地晚2s ,且声速为340m / s ,求炮弹爆炸点的轨迹方程. 分析:首先要判断轨迹的形状,由声学原理:由声速及 A , B 两地听到爆炸声的时间差,即可知A , B 两地与爆炸点的距离差为定值•由双曲线的定义可求出炮弹爆炸点的轨迹方程. 扩展:某中心接到其正东、正西、正北方向三个观察点的报告:正西、正北两个观察点同时听 到了一声巨响,正东观察点听到该巨响的时间比其他两个观察点晚 4s .已知各观察点到该中心的 距离都是1020m •试确定该巨响发生的位置(假定当时声音传播的速度为 340m/s ;相关点均在 同一平面内)• 解法剖析:因正西、正北同时听到巨响,则巨响应发生在西北方向或东南方向,以因正东比正西晚 4s ,则巨响应在以这两个观察点为焦点的双曲线上. 如图,以接报中心为原点 0,正东、正北方向分别为 x 轴、y 轴方向,建立直角坐标系,设 B 、C 分别是西、东、北观察点,则 A 1020,0 , B 1020,0 , C 0,1020 • 设P x,y 为巨响发生点,•/ A 、C 同时听到巨响,•OP 所在直线为y x ……①,又因B 点比A 点晚4s 听到巨响声,• PB PA 4 340 1360 m •由双曲线定义知,a 680 ,2 2c 1020 ,••• b 340^5 ,••• P点在双曲线方程为X 2y2 1 x 680……②.联立680 5 340①、②求出P点坐标为P 680 ;5,680 ,'5 •即巨响在正西北方向680、、10m处.探究:如图,设A,B的坐标分别为5,0,5,0 •直线AM,BM相交于点M,且它们4的斜率之积为,求点M的轨迹方程,并与§ 2. 1.例3比较,有什么发现?9探究方法:若设点M x,y,则直线AM , BM的斜率就可以用含x, y的式子表示,由于直线AM , BM的斜率之积是4,因此,可以求出x, y之间的关系式,即得到点M的轨迹方程.9练习:第60页1、2、3、作业:第66页1、2、2 . 3. 2双曲线的简单几何性质♦知识与技能目标了解平面解析几何研究的主要问题:(1)根据条件,求出表示曲线的方程;(2 )通过方程,研究曲线的性质.理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念;掌握双曲线的标准方程、会用双曲线的定义解决实际问题;通过例题和探究了解双曲线的第二定义,准线及焦半径的概念,利用信息技术进一步见识圆锥曲线的统一定义♦过程与方法目标(1 )复习与引入过程引导学生复习得到椭圆的简单的几何性质的方法,在本节课中不仅要注意通过对双曲线的标准方程的讨论,研究双曲线的几何性质的理解和应用,而且还注意对这种研究方法的进一步地培养.①由双曲线的标准方程和非负实数的概念能得到双曲线的范围;②由方程的性质得到双曲线的对称性;③由圆锥曲线顶点的统一定义,容易得出双曲线的顶点的坐标及实轴、虚轴的概念;④应用信息技术的《几何画板》探究双曲线的渐近线问题;⑤类比椭圆通过F56的思考问题,探究双曲线的扁平程度量椭圆的离心率. 〖板书〗§ 2. 2. 2双曲线的简单几何性质.(2) 新课讲授过程(i )通过复习和预习,对双曲线的标准方程的讨论来研究双曲线的几何性质.提问:研究双曲线的几何特征有什么意义?从哪些方面来研究?通过对双曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点、渐近线及其他特征性质来研究曲线的几何性质.(ii )双曲线的简单几何性质2 2①范围:由双曲线的标准方程得, 1 0,进一步得:x a ,或xa .这说b a明双曲线在不等式 x a ,或x a 所表示的区域;② 对称性:由以 x 代x ,以y 代y 和 x 代x ,且以 y 代y 这三个方面来研究双曲线的标准方程发生变化没有,从而得到双曲线是以x 轴和y 轴为对称轴,原点为对称中心;③ 顶点:圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线 的顶点.因此双曲线有两个顶点,由于双曲线的对称轴有实虚之分,焦点所在的对称轴叫做实轴, 焦点不在的对称轴叫做虚轴;c⑤ 离心率:双曲线的焦距与实轴长的比 e —叫做双曲线的离心率(e 1).a④渐近线:直线ybx 2x 叫做双曲线一 aa 2yb 2 1的渐近线;y 轴上的渐近线是扩展:求与双曲线x 2 162y —1共渐近线,2. 3, 3点的双曲线的标准方及离心率.解法剖析 :双曲线2x16291的渐近4x .①焦点在x 轴上时,设所求的双曲2线为X 216k 2 2 y 9k 2A 2;3, 3点在双曲线上,••• k 21,无解;4②焦点在y 轴上时,设所求的双曲线2x 16k 229:2 1,―A2 3, 3点在双曲线上,• k21,因此,所求双曲线42的标准方程为y9 41,离心率e5.这个要进行分类讨论,但只有一种情形有解,事实上, 3可直接设所求的双曲线的方程为2x162y一 mm R,m 0 .9(iii )例题讲解与引申、扩展例3求双曲线9y2 16x2 144的实半轴长和虚半轴长、焦点的坐标、离心率、渐近线方程.分析:由双曲线的方程化为标准方程,容易求出a,b,c.引导学生用双曲线的实半轴长、虚半轴长、离心率、焦点和渐近线的定义即可求相关量或式子,但要注意焦点在例4双曲线型冷却塔的外形,半径为12m,上口半径为13m,下口半径为25m,高为55m .试选择适当的坐标系,求出双曲线的方程(各长度量精确到1m).是双曲线的一部分绕其虚轴旋转所成的曲面如图(1),它的最小解法剖析:建立适当的直角坐标系,设双曲线的标准方程为2 2七七 1,算出a,b,c的值;a b此题应注意两点:①注意建立直角坐标系的两个原则;②关于 精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,在 P 处堆放着刚购买的草皮,现要把这些草皮沿着道路 PA 或PB 送到呈矩形的足球场 ABCD 中去铺垫,已知|Ap 150m ,|Bp 100m,| BC| 60m , APB 60o •能否在足球场上画一条 “等距离”线,在“等距离”线的两侧的区域应该选择怎样的线路?说明理由.解题剖析:设M 为“等距离”线上任意一点,则|PA |AM点M 的轨迹方程.♦情感、态度与价值观目标在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教 学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生 创新.必须让学生认同和掌握:双曲线的简单几何性质,能由双曲线的标准方程能直接得到双曲线 的范围、对称性、顶点、渐近线和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系 的两个原则,①充分利用图形对称性,②注意图形的特殊性和一般性;必须让学生认同与熟悉:取 近似值的两个原则:①实际问题可以近似计算,也可以不近似计算,②要求近似计算的一定要按要 求进行计算,并按精确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并 掌握利用信息技术探究点的轨迹问题, 培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.♦能力目标(1) 分析与解决问题的能力:通过学生的积极参与和积极探究 ,培养学生的分析问题和解决 问题的能力.(2)思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问 题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能MF I 1 ^2 2 .16 ,16 J X 5y ,到直线l:x 一的距离dx — 15 5分析:若设点M x, y ,则a,b,c 的近似值,原则上在没有注意PB BM ,即BM | |AM | |Ap |Bp 50 (定值),“等距离”线是以A 、B 为焦点的双曲线的左支上的2部分,容易“等距离”线方程为x y1 35 x 625 375025,0 y 60 .理由略.例5如图,设M x, y 与定点F 5,0的距离和它到直线 15的距离的比是常数5,求4则容易得点M 的轨迹方程. 引申:《几何画板》探究点的轨迹:双曲线x, y 与定点 F c,0 的距离和它到定直线2a——的距离 c比是常数0,则点M 的轨迹方程是双曲线. 其中定点F c,02是焦点,定直线l : x —相c应于F 的准线; 另一焦点 F c,0,相应于F 的准线I : xx2力.(3) 实践能力:培养学生实际动手能力,综合利用已有的知识能力.(4)创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的 一般的思想、方法和途径.练习:第66页1、2、3、4、5 作业:第3、4、6补充:3.课题:双曲线第二定义教学目标:1•知识目标:掌握双曲线第二定义与准线的概念,并会简单的应用。

高中数学选修2-1第二章第13课时同步练习 第二章 圆锥曲线与方程(复习)(A)

高中数学选修2-1第二章第13课时同步练习 第二章 圆锥曲线与方程(复习)(A)

第二章 圆锥曲线与方程(复习A )1、过点(2,4)作直线,与抛物线y 2=8x 只有一个公共点的直线有( ) A 、1条 B 、2条 C 、3条 D 、4条2、双曲线x 2-y 2=1的左焦点为F ,点P 为左支下半支上任一点(异于顶点),则直线PF 的斜率的变化范围是( )A 、)0,(-∞B 、(1,+∞)C 、),1()0,(+∞⋃-∞D 、),1()1,(+∞⋃--∞3、已知(4,2)是直线l 被椭圆193622=+y x 截得的线段的中点,则l 的方程是( ) A 、x-2y=0 B 、x+2y-4=0 C 、2x+3y+4=0 D 、x+2y-8=0 4、抛物线x y 412=关于直线x-y=0对称的抛物线的焦点坐标是( )A 、(1,0)B 、(0,1)C 、(0,161)D 、(0,161)5、对于抛物线C :y 2=4x ,我们称满足0204x y <的点M (00,y x )在抛物线的内部。

若M (00,y x )在抛物线的内部,则直线)(2:00x x y y l +=与C ( ) A 、恰有一个公共点 B 、恰有两个公共点C 、可能有一个公共点,也可能有两个公共点D 、没有公共点6、直线y=x+3与曲线14||92=-y y x 的交点个数为( ) A 、0 B 、1 C 、2 D 、37、与直线2x-y+4=0平行的抛物线y= x 2的切线方程是 ( )A 、2x -y+3=0B 、2x -y -3=0C 、2x-y+1=0D 、2x-y-1=08、如果过两点)0,(a A 和),0(a B 的直线与抛物线322--=x x y 没有交点,那么实数a 的取值范围是( ) A 、(134, +∞) B 、(- ∞,134) C 、(- ∞,-134) D 、(-134 ,134) 9、若焦点是(0,25±)的椭圆截直线3x-y-2=0所得弦的中点的横坐标为1/2,则椭圆的方程是 . 10、设圆05422=--+x y x 的弦AB 的中点为P (3,1),则直线AB 的方程是 .11、如图,抛物线关于x 轴对称,它的顶点在坐标原点, 点P(1,2), A(x 1, y 1), B(x 2,y 2)均在直线上. (Ⅰ)写出该抛物线的方程及其准线方程;(Ⅱ)当PA 与PB 的斜率存在且倾角互补时,求21y y +的值及直线AB 的斜率.12、设椭圆方程为1422=+y x ,过点M (0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足)(21OB OA OP +=,点N 的坐标为)21,21(,当l 绕点M 旋转时,求:(Ⅰ)动点P 的轨迹方程; (Ⅱ)||的最小值与最大值.参考答案1、B (注意点在曲线上)2、C (利用数形结合)3、D (利用“点差法”求斜率)4、C5、D (直线l 过定点(0,0x -),斜率为2)6、B (先分类讨论去掉绝对值,再利用数形结合)7、D8、C9、利用“点差法”可求得1752522=+y x 10、x+y-4=0 11、解(Ⅰ)由已知条件,可设抛物线的方程为.22px y = ∵点P(1,2)在抛物线上,∴,1222⋅=p 得p =2.故所求抛物线的方程是,42x y =准线方程是x=--1. (Ⅱ) 设直线PA 的斜率为k PA ,直线PB 的斜率为k PB , ∵PA 与PB 的斜率存在且倾斜角互补,∴.PB PA k k -= 由A(x 1,y 1), B(x 2,y 2)在抛物线上,得,4121x y = ①,4222x y = ② ∴,14121412222211--=--y y y y∴ ),2(221+-=+y y ∴.421-=+y y由①-②得直线AB 的斜率).(144421211212x x y y x x y y k AB ≠-=-=+=--=12、(Ⅰ)解法一:直线l 过点M (0,1)设其斜率为k ,则l 的方程为.1+=kx y 记),(11y x A 、),,(22y x B 由题设可得点A 、B 的坐标),(11y x 、),(22y x 是方程组⎪⎩⎪⎨⎧=++=14122y x kx y 的解.将①代入②并化简得,032)4(22=-++kx x k ,所以 ⎪⎪⎩⎪⎪⎨⎧+=++-=+.48,42221221k y y k k x x 于是).44,4()2,2()(21222121k k k y y x x OB OA OP ++-=++=+= 设点P 的坐标为),,(y x 则⎪⎪⎩⎪⎪⎨⎧+=+-=.44,422k y k k x 消去参数k 得0422=-+y y x ③ 当k 不存在时,A 、B 中点为坐标原点(0,0),也满足方程③,所以点P 的轨迹方程为.0422=-+y y x解法二:设点P 的坐标为),(y x ,因),(11y x A 、),(22y x B 在椭圆上,所以,142121=+y x ④①②.142222=+y x ⑤. ④—⑤得0)(4122212221=-+-y y x x ,所以 .0))((41))((21212121=+-++-y y y y x x x x 当21x x ≠时,有.0)(4121212121=--⋅+++x x y y y y x x ⑥并且⎪⎪⎪⎩⎪⎪⎪⎨⎧--=-+=+=.1,2,221212121x x y y x y y y y x x x ⑦ 将⑦代入⑥并整理得 .0422=-+y y x ⑧. 当21x x =时,点A 、B 的坐标为(0,2)、(0,-2),这时点P 的坐标为(0,0)也满足⑧,所以点P 的轨迹方程为.141)21(16122=-+y x (Ⅱ)解:由点P 的轨迹方程知.4141,1612≤≤-≤x x 即所以 127)61(3441)21()21()21(||222222++-=-+-=-+-=x x x y x故当41=x ,||取得最小值,最小值为61;41-=x 当时,||取得最大值,最大值为.621。

高中数学第二章圆锥曲线与方程2.3.1双曲线及其标准方程课件新人教A版选修

高中数学第二章圆锥曲线与方程2.3.1双曲线及其标准方程课件新人教A版选修

梳理
(1)两种形式的标准方程
焦点所在的坐标 轴
标准方程
x轴
y轴
ax22-by22=1(a>0,b>0) ay22-bx22=1(a>0,b>0)
__________________ __________________
图形 焦点坐标
F1(-c,0),F2(c,0) F1(0,-c),F2(0,c) _______________a_2+__b2_=__c_2______________
当|PF1|-|PF2|=±3时,||PF1|-|PF2||=3<|F1F2|=4,满足双曲线定义,
P点的轨迹是双曲线.
(2)已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆 C1及圆C2相外切,则动圆圆心M的轨迹方程为_x_2_-__y8_2=__1_(_x_≤__-__1_) _.
(2)焦点F1,F2的位置是双曲线定位的条件,它决定了双曲线标准方程的 类型.“焦点跟着正项走”,若x2项的系数为正,则焦点在 x轴 上;若y2 项的系数为正,那么焦点在 y轴 上. (3)双曲线的焦点位置不确定时可设其标准方程为Ax2+By2=1(AB<0). (4)标准方程中的两个参数a和b,确定了双曲线的形状和大小,是双曲线 的定形条件,这里的b2= c2-a2 与椭圆中的b2= a2-c2 相区别.
答案 解析
反思与感悟
双曲线定义的两种应用 (1)根据双曲线的定义判断动点轨迹时,一定要注意双曲线定义中的各个 条件,不要一看到动点到两个定点的距离之差的绝对值是常数,就认为 其轨迹是双曲线,还要看该常数是否小于两个已知定点之间的距离且大 于零,否则就不是双曲线.
(2)巧妙利用双曲线的定义求曲线的轨迹方程,可以使运算量大大减小, 同时提高解题速度和质量. 其基本步骤为 ①寻求动点M 与定点F1,F2 之间的关系. ②根据题目的条件计算是否满足||MF1|-|MF2||=2a(常数,a>0). ③判断:若2a<2c=|F1F2|,满足定义,则动点M 的轨迹就是双曲线,且 2c=|F1F2|,b2=c2-a2,进而求出相应a,b,c. ④根据F1,F2所在的坐标轴写出双曲线的标准方程.思考1

人教新课标版(A)高二选修1-1 第二章圆锥曲线与方程单元测试

人教新课标版(A)高二选修1-1 第二章圆锥曲线与方程单元测试

人教新课标版(A )高二选修1-1 第二章 圆锥曲线与方程单元测试(时间:120分钟 分值:150分)一、选择题(每小题5分,共60分)1. 以112y 4x 22-=-的焦点为顶点,顶点为焦点的椭圆方程是A. 14y 16x 22=+B. 116y 4x 22=+C. 112y 16x 22=+D. 116y 12x 22=+2. 动圆的圆心在抛物线x 8y 2=上,且动圆恒与直线02x =+相切,则动圆必过点A. (4,0)B. (2,0)C. (0,2)D. (0,-2)3. AB 是抛物线x 18y 2=的一条过焦点的弦,20|AB |=,AD 、BC 垂直于y 轴,D 、C 分别为垂足,则梯形ABCD 的中位线长为A. 5B.211 C.29 D. 104. 方程2sin y 3sin 2x 22-θ++θ=1所表示的曲线是 A. 焦点在x 轴上的椭圆B. 焦点在y 轴上的椭圆C. 焦点在x 轴上的双曲线D. 焦点在y 轴上的双曲线5. 设P 为椭圆1by a x 2222=+上一点,1F 、2F 为焦点,如果∠75F PF 21=°,∠=12F PF 15°,则椭圆的离心率为A. 22B. 23C. 32D. 36 6. 以椭圆1144y 169x 22=+的右焦点为圆心,且与双曲线116y 9x 22=-的渐近线相切的圆的方程为A. 09x 10y x 22=+-+B. 09x 10y x 22=--+C. 09x 10y x 22=-++D. 09x 10y x 22=+++7. 椭圆11a 4y a 5x 222=++的焦点在x 轴上,而它的离心率的取值范围是A. ⎪⎭⎫ ⎝⎛51,0B. ⎪⎭⎫⎢⎣⎡1,51C. ⎥⎥⎦⎤ ⎝⎛55,0D. ⎪⎪⎭⎫⎢⎢⎣⎡1,55 8. 设双曲线1b y a x 2222=-与1by a x 2222=+-(0a >,0b >)的离心率分别为1e 、2e ,当a 、b 变化时,21e e +的最小值是A. 4B. 24C.2 D. 229. 设椭圆12y 6x 22=+和双曲线1y 3x 22=-的公共焦点分别为1F 、2F ,P 是两曲线的一个交点,则cos ∠21PF F 的值为A.41 B.31 C.32 D. 31-10. 过抛物线x 4y 2=的顶点O 作互相垂直的两弦OM 、ON ,则M 的横坐标1x 与N 的横坐标2x 之积为A. 64B. 32C. 16D. 411. 抛物线x y 2=和圆()1y 3x 22=+-上最近的两点之间的距离是A. 1B. 2C.1210- D.1211- 12. 已知圆的方程为4y x 22=+,若抛物线过点A (-1,0)、B (1,0),且以圆的切线为准线,则抛物线的焦点F 的轨迹方程是A. 14y 3x 22=+(0y ≠) B. 13y 4x 22=+(0y ≠) C. 14y 3x 22=+(0x ≠) D.13y 4x 22=+(0x ≠)二、填空题(每小题4分,共16分)13. (2004·湖南)1F 、2F 是椭圆C :14y 8x 22=+的焦点,在C 上满足1PF ⊥2PF 的点P的个数为__________。

高中数学 第二章 圆锥曲线与方程 2.3 双曲线 2.3.1 双曲线及其标准方程讲义 新人教A版选修

高中数学 第二章 圆锥曲线与方程 2.3 双曲线 2.3.1 双曲线及其标准方程讲义 新人教A版选修

2.3.1 双曲线及其标准方程1.双曲线 (1)定义□01平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|且大于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. (2)双曲线的集合描述设点M 是双曲线上任意一点,点F 1,F 2是双曲线的焦点,则由双曲线的定义可知,双曲线就是集合□02P ={M |||MF 1|-|MF 2||=2a,0<2a <|F 1F 2|}. 2.双曲线的标准方程1.判一判(正确的打“√”,错误的打“×”)(1)平面内到两定点的距离的差等于非零常数(小于两定点间距离)的点的轨迹是双曲线.( )(2)在双曲线标准方程x 2a 2-y 2b2=1中,a >0,b >0且a ≠b .( )(3)双曲线的标准方程可以统一为Ax 2+By 2=1(其中AB <0).( ) 答案 (1)× (2)× (3)√2.做一做(请把正确的答案写在横线上)(1)若双曲线x 24-y 216=1上一点M 到左焦点的距离为8,则点M 到右焦点的距离为________.(2)双曲线x 2-4y 2=1的焦距为________.(3)(教材改编P 55T 1)已知双曲线a =5,c =7,则该双曲线的标准方程为________. (4)下列方程表示焦点在y 轴上的双曲线的有________(把序号填在横线上).①x 2-y 22=1;②x 2a +y 22=1(a <0);③y 2-3x 2=1;④x 2cos α+y 2sin α=1⎝ ⎛⎭⎪⎫π2<α<π.答案 (1)4或12 (2) 5 (3)x 225-y 224=1或y 225-x 224=1(4)②③④解析 (3)∵a =5,c =7,∴b =c 2-a 2=24=2 6. 当焦点在x 轴上时,双曲线方程为x 225-y 224=1; 当焦点在y 轴上时,双曲线方程为y 225-x 224=1.探究1 双曲线标准方程的认识例1 若θ是第三象限角,则方程x 2+y 2sin θ=cos θ表示的曲线是( ) A .焦点在y 轴上的双曲线 B .焦点在x 轴上的双曲线 C .焦点在y 轴上的椭圆 D .焦点在x 轴上的椭圆[解析] 曲线方程可化为x 2cos θ+y 2cos θsin θ=1,θ是第三象限角,则cos θ<0,cos θsin θ>0,所以该曲线是焦点在y 轴上的双曲线.故选A.[答案] A 拓展提升双曲线方程的认识方法将双曲线的方程化为标准方程的形式,假如双曲线的方程为x 2m +y 2n=1,则当mn <0时,方程表示双曲线.若⎩⎪⎨⎪⎧m >0,n <0,则方程表示焦点在x 轴上的双曲线;若⎩⎪⎨⎪⎧m <0,n >0,则方程表示焦点在y 轴上的双曲线.【跟踪训练1】 若k >1,则关于x ,y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是( ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在y 轴上的双曲线 D .焦点在x 轴上的双曲线 答案 C 解析 原方程化为y 2k 2-1-x 2k +1=1,∵k >1,∴k 2-1>0,k +1>0.∴方程所表示的曲线为焦点在y 轴上的双曲线.探究2 双曲线的标准方程例2 求满足下列条件的双曲线的标准方程.(1)焦点在坐标轴上,且过M ⎝ ⎛⎭⎪⎫-2,352,N ⎝ ⎛⎭⎪⎫473,4两点;(2)两焦点F 1(-5,0),F 2(5,0),且过P ⎝⎛⎭⎪⎫352,2. [解] (1)当双曲线的焦点在x 轴上时,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).∵M ,N 在双曲线上,∴⎩⎪⎨⎪⎧(-2)2a 2-⎝ ⎛⎭⎪⎫3522b 2=1,⎝ ⎛⎭⎪⎫4732a 2-42b 2=1,解得⎩⎪⎨⎪⎧1a 2=-116,1b 2=-19(不符合题意,舍去).当双曲线的焦点在y 轴上时,设双曲线的方程为y 2a 2-x 2b 2=1(a >0,b >0). ∵M ,N 在双曲线上,∴⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫3522a 2-4b 2=1,42a 2-⎝ ⎛⎭⎪⎫4732b 2=1,解得⎩⎪⎨⎪⎧1a 2=19,1b 2=116,即a 2=9,b 2=16.∴所求双曲线方程为y 29-x 216=1.(2)由已知可设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),代入点P ⎝⎛⎭⎪⎫352,2可得454a 2-4b 2=1,①又a 2+b 2=25,②由①②联立可得a 2=9,b 2=16, ∴双曲线方程为x 29-y 216=1. [解法探究] 例2(1)有没有其他解法呢? 解 ∵双曲线的焦点位置不确定,∴设双曲线方程为mx 2+ny 2=1(mn <0). ∵M ,N 在双曲线上,则有 ⎩⎪⎨⎪⎧4m +454n =1,169×7m +16n =1,解得⎩⎪⎨⎪⎧m =-116,n =19,∴所求双曲线方程为-x 216+y 29=1,即y 29-x 216=1.拓展提升利用待定系数法求双曲线标准方程的步骤(1)定位置:根据条件确定双曲线的焦点在哪条坐标轴上,还是两种都有可能.(2)设方程:根据焦点位置,设方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b2=1(a >0,b >0),焦点不定时,亦可设为mx 2+ny 2=1(m ·n <0).(3)寻关系:根据已知条件列出关于a ,b ,c (m ,n )的方程组. (4)得方程:解方程组,将a ,b ,c (m ,n )代入所设方程即为所求.【跟踪训练2】 根据下列条件,求双曲线的标准方程. (1)与椭圆x 227+y 236=1有共同的焦点,且过点(15,4);(2)c =6,经过点(-5,2),焦点在x 轴上. 解 (1)椭圆x 227+y 236=1的焦点坐标为F 1(0,-3),F 2(0,3),故可设双曲线的方程为y 2a 2-x 2b 2=1.由题意,知⎩⎪⎨⎪⎧a 2+b 2=9,42a2-(15)2b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=5.故双曲线的方程为y 24-x 25=1.(2)∵焦点在x 轴上,c =6,∴设所求双曲线方程为x 2λ-y 26-λ=1(其中0<λ<6).∵双曲线经过点(-5,2), ∴25λ-46-λ=1,∴λ=5或λ=30(舍去).∴所求双曲线方程是x 25-y 2=1.探究3 双曲线定义的应用例3 如图,若F 1,F 2是双曲线x 29-y 216=1的两个焦点.(1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离; (2)若P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2的面积. [解] 双曲线的标准方程为x 29-y 216=1,故a =3,b =4,c =a 2+b 2=5.(1)由双曲线的定义得||MF 1|-|MF 2||=2a =6,又双曲线上一点M 到它的一个焦点的距离等于16,假设点M 到另一个焦点的距离等于x ,则|16-x |=6,解得x =10或x =22.由于c -a =5-3=2,10>2,22>2,故点M 到另一个焦点的距离为10或22. (2)将|PF 2|-|PF 1|=2a =6,两边平方得 |PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36,∴|PF 1|2+|PF 2|2=36+2|PF 1|·|PF 2|=36+2×32=100. 在△F 1PF 2中,由余弦定理得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=100-1002|PF 1|·|PF 2|=0,∴∠F 1PF 2=90°,∴S △F 1PF 2=12|PF 1|·|PF 2|=12×32=16.拓展提升双曲线定义的两种应用(1)求双曲线上一点到某一焦点的距离时,若已知该点的横、纵坐标,则根据两点间距离公式可求结果;若已知该点到另一焦点的距离,则根据||PF 1|-|PF 2||=2a 求解,注意对所求结果进行必要的验证(负数应该舍去,且所求距离应该不小于c -a ).(2)双曲线中的焦点三角形双曲线上的点P 与其两个焦点F 1,F 2连接而成的三角形PF 1F 2称为焦点三角形.令|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ,因|F 1F 2|=2c ,所以有①定义:|r 1-r 2|=2a .②余弦公式:4c 2=r 21+r 22-2r 1r 2cos θ. ③面积公式:S △PF 1F 2=12r 1r 2sin θ.一般地,在△PF 1F 2中,通过以上三个等式,所求问题就会顺利解决.【跟踪训练3】 (1)已知P 是双曲线x 264-y 236=1上一点,F 1,F 2是双曲线的左、右焦点,且|PF 1|=17,求|PF 2|的值.解 由双曲线方程x 264-y 236=1可得a =8,b =6,c =10,由双曲线的图象可得点P 到右焦点F 2的距离d ≥c -a =2,因为||PF 1|-|PF 2||=16,|PF 1|=17,所以|PF 2|=1(舍去)或|PF 2|=33.(2)已知双曲线x 29-y 216=1的左、右焦点分别是F 1,F 2,若双曲线上一点P 使得∠F 1PF 2=60°,求△F 1PF 2的面积.解 由x 29-y 216=1,得a =3,b =4,c =5.由定义和余弦定理得|PF 1|-|PF 2|=±6,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos60°, 所以102=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, 所以|PF 1|·|PF 2|=64,则S △F 1PF 2=12|PF 1|·|PF 2|sin ∠F 1PF 2=12×64×32=16 3.探究4 与双曲线有关的轨迹问题例4 如图,在△ABC 中,已知|AB |=42,且三内角A ,B ,C 满足2sin A +sin C =2sin B ,建立适当的坐标系,求顶点C 的轨迹方程.并指出表示什么曲线.[解] 如图,以AB 边所在的直线为x 轴,AB 的垂直平分线为y 轴,建立如图所示的平面直角坐标系,则A (-22,0),B (22,0). 由正弦定理得sin A =a 2R ,sin B =b 2R ,sin C =c2R .∵2sin A +sin C =2sin B , ∴2a +c =2b ,即b -a =c2.从而有|CA |-|CB |=12|AB |=22<AB .∴由双曲线的定义知,点C 的轨迹为双曲线的右支且不包括顶点. ∵a =2,c =22,∴b 2=c 2-a 2=6. ∴顶点C 的轨迹方程为x 22-y 26=1(x >2).故C 点的轨迹为双曲线右支且除去点(2,0). 拓展提升用定义法求轨迹方程的一般步骤(1)根据已知条件及曲线定义确定曲线的位置及形状(定形,定位). (2)根据已知条件确定参数a ,b 的值(定参). (3)写出标准方程并下结论(定论).【跟踪训练4】 如图所示,已知定圆F 1:x 2+y 2+10x +24=0,定圆F 2:(x -5)2+y 2=42,动圆M 与定圆F 1,F 2都外切,求动圆圆心M 的轨迹方程.解 圆F 1:(x +5)2+y 2=1, ∴圆心为F 1(-5,0),半径r 1=1. 圆F 2:(x -5)2+y 2=42, ∴圆心为F 2(5,0),半径r 2=4.设动圆M 的半径为R ,则有|MF 1|=R +1, |MF 2|=R +4,∴|MF 2|-|MF 1|=3<|F 1F 2|=10, ∴点M 的轨迹是以F 1,F 2为焦点的双曲线的左支, 且a =32,c =5,∴b =912,∴点M 的轨迹方程为49x 2-491y 2=1⎝ ⎛⎭⎪⎫x ≤-32.1.双曲线的定义中,一定要注意的几点(1)前提条件“平面内”不能丢掉,否则就成了空间曲面,不是平面曲线了;(2)不可漏掉定义中的常数小于|F 1F 2|,否则,当2a =|F 1F 2|时,||PF 1|-|PF 2||=2a 表示两条射线;当||PF 1|-|PF 2||>2a 时,不表示任何图形;(3)不能丢掉绝对值符号,若丢掉绝对值符号,其余条件不变,则点的轨迹为双曲线的一支. 2.求双曲线的标准方程时,应注意的两个问题 (1)正确判断焦点的位置;(2)设出标准方程后,再运用待定系数法求解.求双曲线的标准方程也是从“定形”“定式”和“定量”三个方面去考虑.“定形”是指对称中心在原点,以坐标轴为对称轴的情况下,焦点在哪条坐标轴上;“定式”是根据“形”设双曲线标准方程的具体形式;“定量”是指用定义法或待定系数法确定a ,b 的值.1.若方程y 24-x 2m +1=1表示双曲线,则实数m 的取值X 围是( )A .(-1,3)B .(-1,+∞)C .(3,+∞) D.(-∞,-1) 答案 B解析 依题意,应有m +1>0,即m >-1.2.已知双曲线x 216-y 29=1,则双曲线的焦点坐标为( )A .(-7,0),(7,0)B .(-5,0),(5,0)C .(0,-5),(0,5)D .(0,-7),(0,7) 答案 B解析 由双曲线的标准方程可知a 2=16,b 2=9,则c 2=a 2+b 2=16+9=25,故c =5.又焦点在x 轴上,所以焦点坐标为(-5,0),(5,0).3.已知双曲线的方程为x 2a 2-y 2b2=1,点A ,B 在双曲线的右支上,线段AB 经过双曲线的右焦点F 2,|AB |=m ,F 1为另一焦点,则△ABF 1的周长为( )A .2a +2mB .4a +2mC .a +mD .2a +4m 答案 B解析 ∵A ,B 在双曲线的右支上, ∴|BF 1|-|BF 2|=2a ,|AF 1|-|AF 2|=2a , ∴|BF 1|+|AF 1|-(|BF 2|+|AF 2|)=4a . ∴|BF 1|+|AF 1|=4a +m .∴△ABF 1的周长为4a +m +m =4a +2m .4.焦点在y 轴上,a =3,c =5的双曲线方程为________. 答案y 29-x 216=1 解析 ∵b 2=c 2-a 2=52-32=16,又焦点在y 轴上, ∴双曲线方程为y 29-x 216=1.5.已知双曲线的两个焦点F 1,F 2之间的距离为26,双曲线上一点到两焦点的距离之差的绝对值为24,求双曲线的方程.解 若以线段F 1F 2所在的直线为x 轴,线段F 1F 2的垂直平分线为y 轴建立直角坐标系,则word- 11 - / 11 双曲线的方程为标准形式x 2a 2-y 2b 2=1(a >0,b >0).由题意得2a =24,2c =26. ∴a =12,c =13,b 2=132-122=25. 双曲线的方程为x 2144-y 225=1; 若以线段F 1F 2所在直线为y 轴,线段F 1F 2的垂直平分线为x 轴,建立直角坐标系. 则双曲线的方程为y 2144-x 225=1.。

人教A版高中数学选修2-1第二章 圆锥曲线与方程-圆锥曲线基本题型总结习题

人教A版高中数学选修2-1第二章 圆锥曲线与方程-圆锥曲线基本题型总结习题

圆锥曲线基本题型总结:提纲:一、定义的应用:1、定义法求标准方程:2、涉及到曲线上的点到焦点距离的问题:3、焦点三角形问题:二、圆锥曲线的标准方程:1、对方程的理解2、求圆锥曲线方程(已经性质求方程)3、各种圆锥曲线系的应用:三、圆锥曲线的性质:1、已知方程求性质:2、求离心率的取值或取值范围3、涉及性质的问题:四、直线与圆锥曲线的关系:1、位置关系的判定:2、弦长公式的应用:3、弦的中点问题:4、韦达定理的应用:一、定义的应用:1.定义法求标准方程:(1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处理)1.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是()A.椭圆B.直线C.圆D.线段【注:2a>|F1 F2|是椭圆,2a=|F1 F2|是线段】A.x 225+y 29=1 (y ≠0) B.y 225+x 29=1 (y ≠0) C.x 216+y 216=1 (y ≠0) D.y 216+x 29=1 (y ≠0) 【注:检验去点】3.已知A (0,-5)、B (0,5),|P A |-|PB |=2a ,当a =3或5时,P 点的轨迹为( ) A.双曲线或一条直线 B.双曲线或两条直线 C.双曲线一支或一条直线D.双曲线一支或一条射线 【注:2a<|F 1 F 2|是双曲线,2a=|F 1 F 2|是射线,注意一支与两支的判断】4.已知两定点F 1(-3,0),F 2(3,0),在满足下列条件的平面内动点P 的轨迹中,是双曲线的是( ) A.||PF 1|-|PF 2||=5 B.||PF 1|-|PF 2||=6 C.||PF 1|-|PF 2||=7D.||PF 1|-|PF 2||=0 【注:2a<|F 1 F 2|是双曲线】5.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足|PF 1|-|PF 2|=6,则动点P 的轨迹方程是( ) A.x 216-y 29=1(x ≤-4)B.x 29-y 216=1(x ≤-3) C.x 216-y 29=1(x ≥4)D.x 29-y 216=1(x ≥3) 【注:双曲线的一支】 6.如图,P 为圆B :(x +2)2+y 2=36上一动点,点A 坐标为(2,0),线段AP 的垂直平分线交直线BP 于点Q ,求点Q 的轨迹方程.7.已知点A(0,3)和圆O 1:x 2+(y +3)2=16,点M 在圆O 1上运动,点P 在半径O 1M 上,且|PM|=|PA|,求动点P 的轨迹方程.(2)涉及圆的相切问题中的圆锥曲线:8.已知圆A :(x +3)2+y 2=100,圆A 内一定点B (3,0),圆P 过B 且与圆A 内切,求圆心P 的轨迹方程. 已知动圆M 过定点B (-4,0),且和定圆(x -4)2+y 2=16相切,则动圆圆心M 的轨迹方程为( ) A.x 24-y 212=1 (x >0)B.x 24-y 212=1 (x <0) C.x 24-y 212=1D.y 24-x 212=1 【注:由题目判断是双曲线的一支还是两支】 9.若动圆P 过点N (-2,0),且与另一圆M :(x -2)2+y 2=8相外切,求动圆P 的圆心的轨迹方程. 【注:双曲线的一支,注意与上题区分】10.如图,已知定圆F 1:x 2+y 2+10x +24=0,定圆F 2:x 2+y 2-10x +9=0,动圆M 与定圆F 1、F 2都外切,求动圆圆心M 的轨迹方程.11.若动圆与圆(x -2)2+y 2=1相外切,又与直线x +1=0相切,则动圆圆心的轨迹是( ) A.椭圆 B.双曲线 C.双曲线的一支 D.抛物线12.已知动圆M 经过点A (3,0),且与直线l :x =-3相切,求动圆圆心M 的轨迹方程. 【注:同上题做比较,说法不一样,本质相同】13.已知点A (3,2),点M 到F ⎝⎛⎭⎫12,0的距离比它到y 轴的距离大12.(M 的横坐标非负) (1)求点M 的轨迹方程; 【注:体现抛物线定义的灵活应用】(2)是否存在M ,使|MA |+|MF |取得最小值?若存在,求此时点M 的坐标;若不存在,请说明理由. 【注:抛物线定义的应用,涉及抛物线上的点到焦点的距离转化成到准线的距离】(3)其他问题中的圆锥曲线:14.已知A ,B 两地相距2 000 m ,在A 地听到炮弹爆炸声比在B 地晚4 s ,且声速为340 m/s ,求炮弹爆炸点的轨迹方程. 【注:双曲线的一支】2.15.如图所示,在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是( )A .直线B .圆C . 双曲线D .抛物线【注:体现抛物线定义的灵活应用】2.涉及到曲线上的点到焦点距离的问题:16.设椭圆x 2m 2+y 2m 2-1=1 (m >1)上一点P 到其左焦点的距离为3,到右焦点的距离为1,则椭圆的离心率为( )A.22 B.12 C.2-12 D.3417.椭圆x 216+y 27=1的左右焦点为F 1,F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为( )A .32B .16C .8D .418.已知双曲线的方程为x 2a 2-y 2b2=1,点A ,B 在双曲线的右支上,线段AB 经过双曲线的右焦点F 2,|AB |=m ,F 1为另一焦点,则△ABF 1的周长为( )A .2a +2mB .4a +2mC .a +mD .2a +4m19.若双曲线x 2-4y 2=4的左、右焦点分别是F 1、F 2,过F 2的直线交右支于A 、B 两点,若|AB |=5,则△AF 1B 的周长为________.20.设F 1、F 2是椭圆x 216+y 212=1的两个焦点,P 是椭圆上一点,且P 到两个焦点的距离之差为2,则△PF 1F 2是( )A .钝角三角形B .锐角三角形C .斜三角形D .直角三角形21.椭圆x 29+y 22=1的焦点为F 1、F 2,点P 在椭圆上.若|PF 1|=4,则|PF 2|=________,∠F 1PF 2的大小为________.【注:椭圆上的点到焦点的距离,最小是a -c ,最大是a+c 】22.已知P 是双曲线x 264-y 236=1上一点,F 1,F 2是双曲线的两个焦点,若|PF 1|=17,则|PF 2|的值为________.【注:注意结果的取舍,双曲线上的点到焦点的距离最小为c -a 】23.已知双曲线的方程是x 216-y 28=1,点P 在双曲线上,且到其中一个焦点F 1的距离为10,点N 是PF 1的中点,求|ON |的大小(O 为坐标原点). 【注:O 是两焦点的中点,注意中位线的体现】24.设F 1、F 2分别是双曲线x 25-y 24=1的左、右焦点.若点P 在双曲线上,且1PF u u u u r ·2PF u u u u r =0,则|1PF u u u u r +2PF u u u u r |等于( ) A .3 B .6 C .1 D .225.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值是( ) A.172B.3C. 5D.92【注:抛物线定义的应用,将抛物线上的点到焦点的距离转化成到准线的距离】26.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的距离为d 2,则d 1+d 2的最小值是( ) A.125 B.65 C .2 D.55【注:抛物线定义的应用,将抛物线上的点到准线的距离转化成到焦点的距离】27.设点A 为抛物线y2=4x 上一点,点B(1,0),且|AB|=1,则A 的横坐标的值为( )A .-2B .0C .-2或0D .-2或2 【注:抛物线的焦半径,即定义的应用】3.焦点三角形问题:椭圆的焦点三角形周长2c 2a 2C PF PF C 21F PF 21+∆=++= 椭圆的焦点三角形面积:推导过程:2tan sin cos 121sin 21cos 1 -)cos (12 (1)-(2)(2)2a (1)COS 2-2 1 b 2b PFPF S 2bPFPF 4c 4a PFPF PF PF 4c PF PF PF PF 2221F PF 22122212212212221θθθθθθθ=+==+==+⎪⎩⎪⎨⎧=+=+∆得双曲线的焦点三角形面积:2tanbS 2F PF 21θ=∆28.设P 为椭圆x 2100+y 264=1上一点,F 1、F 2是其焦点,若∠F 1PF 2=π3,求△F 1PF 2的面积.【注:小题中可以直接套用公式。

高二数学圆锥曲线(完整版)

高二数学圆锥曲线(完整版)

第二章:圆锥曲线知识点:1、求曲线的方程(点的轨迹方程)的步骤:建、设、限、代、化①建立适当的直角坐标系;),M x y 及其他的点; ③找出满足限制条件的等式; ④将点的坐标代入等式;⑤化简方程,并验证(查漏除杂)。

2、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F)的点的轨迹称为椭圆。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距。

()12222MF MF a a c +=> 3、椭圆的几何性质:焦点在x 轴上4、设M 是椭圆上任一点,点M 到F 对应准线的距离为1d ,点M 到F 对应准线的距离为2d ,则1212F F e d d M M ==。

5、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线。

这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距。

()12222MF MF a a c -=< 6、双曲线的几何性质:7、实轴和虚轴等长的双曲线称为等轴双曲线。

x129、平面内与一个定点F和一条定直线l的距离相等的点的轨迹称为抛物线.定点F称为抛物线的焦点,定直线l称为抛物线的准线.11、焦半径公式:若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02p F x P =+;、若点()00,x y P 在抛物线()220y px p =->上,焦点为F ,则02pF x P =-+;若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02p F y P =+;若点()00,x y P 在抛物线()220x py p =->上,焦点为F ,则02p F y P =-+.12、抛物线的几何性质:关于抛物线焦点弦的几个结论:设AB 为过抛物线22(0)y px p =>焦点的弦,1122(,)(,)A x y B x y 、,直线AB 的倾斜角为θ,则⑴ 221212,;4p x x y y p ==- ⑵ 22;sin p AB θ= ⑶ 以AB 为直径的圆与准线相切; ⑷ 焦点F 对A B 、在准线上射影的张角为2π;⑸112.||||FA FB P+= 知识储备1、 直线的方程形式:① 点斜式:已知直线过点(x0,y0),斜率为k,则直线方程为y -y0=k(x -x0),它不包括垂直于x 轴的直线;② 斜截式:已知直线在y 轴上的截距为b,斜率为k,则直线方程为y =kx +b,它不包括垂直于x 轴的直线;③ 两点式:已知直线经过P1(x1,y1),P2(x2,y2)两点,则直线方程为x-x1/x2-x1=y-y1/y2-y1,它不包括垂直于坐标轴的直线; ④ 截距式:已知直线在x 轴和y 轴上的截距为a,b,则直线方程为x/a +y/b =1,它不包括垂直于坐标轴的直线和过原点的直线;⑤ 一般式:任何直线均可写成Ax +By +C =0(A,B 不同时为0)的形式.2、 与直线相关的重要内容:① 倾斜角与斜率k :倾斜角与斜率k :② 点到直线的距离d : 夹角公式:③ 弦长公式:④ 两条直线的位置关系:。

高中数学第二章圆锥曲线与方程2.1.1曲线与方程a21a高二21数学

高中数学第二章圆锥曲线与方程2.1.1曲线与方程a21a高二21数学
A.在直线l上,但不在曲线C上 B.在直线l上,也在曲线C上 C.不在直线l上,也不在曲线C上 D.不在直线l上,但在曲线C上 【答案】A 【解析】把M(2,1)的坐标分别代入直线l和曲线C的方 程,得2+1-3=0,(2-3)2+(1-2)2≠4,∴点M(2,1)在直线l 上,但不在曲线C上.故选A.
(3)如图所示直线l上点的坐标都是方程|x|=2的解,然 而,坐标满足方程|x|=2的点不一定在直线l上,因此|x|=2不是 l的方程.
12/13/2021
判断方程是不是曲线的方程,要从两个方面着手,一是 检验点的坐标是否适合方程,二是检验以方程的解为坐标的点 是否在曲线上.
12/13/2021
1.判断下列命题是否正确. (1)以坐标原点为圆心,半径为 r 的圆的方程是 y= r2-x2; (2)方程(x+y-1)· x2+y2-4=0 表示的曲线是圆或直线. 【解析】(1)不对.设(x0,y0)是方程 y= r2-x2的解,则 y0 = r2-x20,即 x20+y20=r2.两边开平方取算术平方根,得 x20+y02 =r,即点(x0,y0)到原点的距离等于 r,点(x0,y0)是这个圆上的 点.因此满足以方程的解为坐标的点都是曲线上的点.
12/13/2021
4.曲线x2-4x-2y+1=0通过点A(a,3),则实数a的值 为______.
【答案】-1或5 【解析】将A(a,3)代入x2-4x-2y+1=0,得a2-4a-6 +1=0,∴a=-1或5.
12/13/2021
曲线与方程的概念
【例1】 分析下列曲线上的点与方程的关系. (1)求第一、三象限两轴夹角角平分线上点的坐标满足 的关系; (2)作出函数y=x2的图象,指出图象上的点与方程y=x2 的关系; (3)说明过点A(2,0)平行于y轴的直线与方程|x|=2之间的 关系. 【解题探究】利用点的坐标与方程的关系求解.

高中数学第二章圆锥曲线与方程本章整合课件新人教a选修2_1

高中数学第二章圆锥曲线与方程本章整合课件新人教a选修2_1

焦点在������轴上:
������2 ������2
+
������2 ������2
=
1(������
>
������
>
0)
椭圆
顶点:( ± ������,0),(0, ± ������)或(0, ± ������),( ± ������,0)
线
对称轴:������轴,������轴;长轴长 2������,短轴长 2������
解:(1)由
e=
������ ������
=
3 2
,
得3a2=4c2.
再由 c2=a2-b2,得 a=2b.
由题意可知
1 2
×
锥 双曲线 曲
渐近线方程������
=
±
������ ������
������或
������2 ������2
-
������2 ������2
=
0
线
焦点在������轴上:顶点(0, ± ������),焦点(0, ± ������)
性质
������ ������2 ������2
渐近线方程������ = ± ������ ������或 ������2 - ������2 = 0
专题一 专题二 专题三 专题四 专题五
应用1已知直线y=(a+1)x-1与y2=ax恰有一个公共点,求实数a的值. 提示:本题主要考查直线与抛物线的位置关系,应转化为直线方 程与曲线方程恰有一个公共解,同时注意分类讨论思想的运用.
解:联立方程,得
������ = (������ + 1)������-1, ������2 = ������������.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 圆锥曲线与方程(A)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值是( ) A.14 B.12 C .2 D .4 2.设椭圆x 2m 2+y 2n 2=1 (m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12,则此椭圆的方程为( )A.x 212+y 216=1B.x 216+y 212=1 C.x 248+y 264=1 D.x 264+y 248=1 3.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A.x 236-y 2108=1B.x 29-y 227=1 C.x 2108-y 236=1 D.x 227-y 29=1 4.P 是长轴在x 轴上的椭圆x 2a 2+y 2b2=1上的点,F 1、F 2分别为椭圆的两个焦点,椭圆的半焦距为c ,则|PF 1|·|PF 2|的最大值与最小值之差一定是( )A .1B .a 2C .b 2D .c 25.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )A.x 24-y 24=1B.y 24-x 24=1 C.y 24-x 28=1 D.x 28-y 24=1 6.设a >1,则双曲线x 2a 2-y 2(a +1)2=1的离心率e 的取值范围是( ) A .(2,2) B .(2,5)C .(2,5)D .(2,5)7.如图所示,在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC与到直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是( )A .直线B .圆C .双曲线D .抛物线8.设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若FA +FB +FC=0,则|FA |+|FB |+|FC |等于( )A .9B .6C .4D .39.已知双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .(1,2]B .(1,2)C .[2,+∞)D .(2,+∞)10.若动圆圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则动圆必过定点( )A .(4,0)B .(2,0)C .(0,2)D .(0,-2)11.抛物线y =x 2上到直线2x -y =4距离最近的点的坐标是( )A.⎝⎛⎭⎫32,54 B .(1,1)C.⎝⎛⎭⎫32,94 D .(2,4)12.已知椭圆x 2sin α-y 2cos α=1 (0≤α<2π)的焦点在y 轴上,则α的取值范围是( )A.⎝⎛⎭⎫34π,πB.⎝⎛⎭⎫π4,34π C.⎝⎛⎫π2,π D.⎝⎛⎫π2,34π 二、填空题(本大题共4小题,每小题5分,共20分)13.椭圆的两个焦点为F 1、F 2,短轴的一个端点为A ,且三角形F 1AF 2是顶角为120°的等腰三角形,则此椭圆的离心率为________.14.点P (8,1)平分双曲线x 2-4y 2=4的一条弦,则这条弦所在直线的方程是______________.15.设椭圆x 2a 2+y 2b2=1 (a >b >0)的左、右焦点分别是F 1、F 2,线段F 1F 2被点⎝⎛⎭⎫b 2,0分成3∶1的两段,则此椭圆的离心率为________.16.对于曲线C :x 24-k +y 2k -1=1,给出下面四个命题: ①曲线C 不可能表示椭圆;②当1<k <4时,曲线C 表示椭圆;③若曲线C 表示双曲线,则k <1或k >4;④若曲线C 表示焦点在x 轴上的椭圆,则1<k <52. 其中所有正确命题的序号为________.三、解答题(本大题共6小题,共70分)17.(10分)已知点M 在椭圆x 236+y 29=1上,MP ′垂直于椭圆焦点所在的直线,垂足为P ′,并且M 为线段PP ′的中点,求P 点的轨迹方程.18.(12分)双曲线C与椭圆x28+y24=1有相同的焦点,直线y=3x为C的一条渐近线.求双曲线C的方程.19.(12分)直线y=kx-2交抛物线y2=8x于A、B两点,若线段AB中点的横坐标等于2,求弦AB的长.20.(12分)已知点P(3,4)是椭圆x2a2+y2b2=1 (a>b>0)上的一点,F1、F2为椭圆的两焦点,若PF1⊥PF2,试求:(1)椭圆的方程;(2)△PF1F2的面积.21.(12分)已知过抛物线y2=2px(p>0)的焦点的直线交抛物线于A、B两点,且|AB|=52p,求AB所在的直线方程.22.(12分)在直角坐标系xOy中,点P到两点(0,-3)、(0,3)的距离之和等于4,设点P的轨迹为C,直线y=kx+1与C交于A、B两点.(1)写出C的方程;(2)若OA⊥OB,求k的值.第二章 圆锥曲线与方程(A)1.A [由题意可得21m =2×2,解得m =14.] 2.B [∵y 2=8x 的焦点为(2,0),∴x 2m 2+y 2n2=1的右焦点为(2,0),∴m >n 且c =2. 又e =12=2m,∴m =4. ∵c 2=m 2-n 2=4,∴n 2=12.∴椭圆方程为x 216+y 212=1.] 3.B [抛物线y 2=24x 的准线方程为x =-6,故双曲线中c =6.①由双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =3x ,知b a=3,② 且c 2=a 2+b 2.③由①②③解得a 2=9,b 2=27.故双曲线的方程为x 29-y 227=1,故选B.] 4.D [由椭圆的几何性质得|PF 1|∈[a -c ,a +c ],|PF 1|+|PF 2|=2a ,所以|PF 1|·|PF 2|≤⎝⎛⎭⎫|PF 1|+|PF 2|22=a 2,当且仅当|PF 1|=|PF 2|时取等号.|PF 1|·|PF 2|=|PF 1|(2a -|PF 1|)=-|PF 1|2+2a |PF 1|=-(|PF 1|-a )2+a 2≥-c 2+a 2=b 2,所以|PF 1|·|PF 2|的最大值与最小值之差为a 2-b 2=c 2.]5.B [由于双曲线的顶点坐标为(0,2),可知a =2,且双曲线的标准方程为y 24-x 2b2=1. 根据题意2a +2b =2·2c ,即a +b =2c .又a 2+b 2=c 2,且a =2,∴解上述两个方程,得b 2=4.∴符合题意的双曲线方程为y 24-x 24=1.] 6.B [∵双曲线方程为x 2a 2-y 2(a +1)2=1, ∴c = 2a 2+2a +1.∴e =c a = 2+1a 2+2a = ⎝⎛⎭⎫1a +12+1. 又∵a >1,∴0<1a <1.∴1<1a+1<2. ∴1<⎝⎛⎭⎫1+1a 2<4.∴2<e < 5.] 7.D [∵ABCD —A 1B 1C 1D 1是正方体,∴D 1C 1⊥侧面BCC 1B 1.∴D 1C 1⊥PC 1.∴PC 1为P 到直线D 1C 1的距离.∵P 到直线BC 与到直线C 1D 1的距离相等,∴PC 1等于P 到直线BC 的距离.由圆锥曲线的定义知,动点P 的轨迹所在的曲线是抛物线.]8.B [设A 、B 、C 三点的坐标分别为(x 1,y 1),(x 2,y 2),(x 3,y 3),F (1,0), ∵FA +FB +FC =0,∴x 1+x 2+x 3=3.又由抛物线定义知|FA |+|FB |+|FC |=x 1+1+x 2+1+x 3+1=6.]9.C [如图所示,要使过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则该直线的斜率小于等于渐近线的斜率b a, ∴b a ≥3,离心率e 2=c 2a 2=a 2+b 2a2≥4, ∴e ≥2.]10.B [根据抛物线的定义可得.]11.B [设与直线2x -y =4平行且与抛物线相切的直线为2x -y +c =0 (c ≠-4),由⎩⎪⎨⎪⎧2x -y +c =0y =x 2 得x 2-2x -c =0.①由Δ=4+4c =0得c =-1,代入①式得x =1.∴y =1,∴所求点的坐标为(1,1).]12.D [椭圆方程化为x 21sin α+y 2-1cos α=1. ∵椭圆焦点在y 轴上,∴-1cos α>1sin α>0. 又∵0≤α<2π,∴π2<α<3π4.] 13.32解析 由已知得∠AF 1F 2=30°,故cos 30°=c a ,从而e =32. 14.2x -y -15=0解析 设弦的两个端点分别为A (x 1,y 1),B (x 2,y 2),则x 21-4y 21=4,x 22-4y 22=4,两式相减得(x 1+x 2)(x 1-x 2)-4(y 1+y 2)(y 1-y 2)=0.因为线段AB 的中点为P (8,1),所以x 1+x 2=16,y 1+y 2=2.所以y 1-y 2x 1-x 2=x 1+x 24(y 1+y 2)=2. 所以直线AB 的方程为y -1=2(x -8),代入x 2-4y 2=4满足Δ>0.即2x -y -15=0. 15.22解析 由题意,得b 2+c c -b 2=3⇒b 2+c =3c -32b ⇒b =c , 因此e =c a = c 2a 2= c 2b 2+c 2= 12=22. 16.③④解析 ①错误,当k =2时,方程表示椭圆;②错误,因为k =52时,方程表示圆;验证可得③④正确.17.解 设P 点的坐标为(x ,y ),M 点的坐标为(x 0,y 0).∵点M 在椭圆x 236+y 29=1上,∴x 2036+y 209=1. ∵M 是线段PP ′的中点,∴⎩⎪⎨⎪⎧ x 0=x ,y 0=y 2, 把⎩⎪⎨⎪⎧ x 0=x y 0=y 2代入x 2036+y 209=1, 得x 236+y 236=1,即x 2+y 2=36. ∴P 点的轨迹方程为x 2+y 2=36.18.解 设双曲线方程为x 2a 2-y 2b2=1. 由椭圆x 28+y 24=1,求得两焦点为(-2,0),(2,0), ∴对于双曲线C :c =2.又y =3x 为双曲线C 的一条渐近线,∴b a=3,解得a 2=1,b 2=3, ∴双曲线C 的方程为x 2-y 23=1. 19.解 将y =kx -2代入y 2=8x 中变形整理得:k 2x 2-(4k +8)x +4=0,由⎩⎪⎨⎪⎧k ≠0(4k +8)2-16k 2>0,得k >-1且k ≠0. 设A (x 1,y 1),B (x 2,y 2),由题意得:x 1+x 2=4k +8k2=4⇒k 2=k +2⇒k 2-k -2=0. 解得:k =2或k =-1(舍去), 由弦长公式得:|AB |=1+k 2·64k +64k 2=5×1924=215. 20.解 (1)令F 1(-c,0),F 2(c,0),则b 2=a 2-c 2.因为PF 1⊥PF 2,所以kPF 1·kPF 2=-1,即43+c ·43-c=-1, 解得c =5,所以设椭圆方程为x 2a 2+y 2a 2-25=1. 因为点P (3,4)在椭圆上,所以9a 2+16a 2-25=1. 解得a 2=45或a 2=5.又因为a >c ,所以a 2=5舍去.故所求椭圆方程为x 245+y 220=1. (2)由椭圆定义知|PF 1|+|PF 2|=65,①又|PF 1|2+|PF 2|2=|F 1F 2|2=100,②①2-②得2|PF 1|·|PF 2|=80,所以S △PF 1F 2=12|PF 1|·|PF 2|=20. 21.解 焦点F (p 2,0),设A (x 1,y 1),B (x 2,y 2), 若AB ⊥Ox ,则|AB |=2p <52p ,不合题意. 所以直线AB 的斜率存在,设为k ,则直线AB 的方程为y =k (x -p 2),k ≠0. 由⎩⎪⎨⎪⎧y =k (x -p 2),y 2=2px 消去x , 整理得ky 2-2py -kp 2=0.由韦达定理得,y 1+y 2=2p k,y 1y 2=-p 2. ∴|AB |=(x 1-x 2)2+(y 1-y 2)2= (1+1k2)·(y 1-y 2)2 = 1+1k2·(y 1+y 2)2-4y 1y 2 =2p (1+1k 2)=52p . 解得k =±2.∴AB 所在的直线方程为y =2(x -p 2)或y =-2(x -p 2). 22.解 (1)设P (x ,y ),由椭圆定义可知,点P 的轨迹C 是以(0,-3)、(0,3)为焦点,长半轴为2的椭圆,它的短半轴b =22-(3)2=1,故曲线C 的方程为x 2+y 24=1. (2)设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧x 2+y 24=1,y =kx +1. 消去y 并整理得(k 2+4)x 2+2kx -3=0.其中Δ=4k 2+12(k 2+4)>0恒成立.故x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4. 若OA →⊥OB →,即x 1x 2+y 1y 2=0.而y 1y 2=k 2x 1x 2+k (x 1+x 2)+1,于是x 1x 2+y 1y 2=-3k 2+4-3k 2k 2+4-2k 2k 2+4+1=0, 化简得-4k 2+1=0,所以k =±12.。

相关文档
最新文档