经典平行四边形压轴题
中考数学与平行四边形有关的压轴题含答案解析
本题考查四边形综合题、等腰直角三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.
7.(1)问题发现:
如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为;
6.问题情境
在四边形ABCD中,BA=BC,DC⊥AC,过点D作DE∥AB交BC的延长线于点E,M是边AD的中点,连接MB,ME.
特例探究
(1)如图1,当∠ABC=90°时,写出线段MB与ME的数量关系,位置关系;
(2)如图2,当∠ABC=120°时,试探究线段MB与ME的数量关系,并证明你的结论;
∴∠DEC=90°,
∴∠DCE=∠CDE=45°,
∴EC=ED,∵MC=MD,
∴EM垂直平分线段CD,EM平分∠DEC,
∴∠MEC=45°,
∴△BME是等腰直角三角形,
∴BM=ME,BM⊥EM.
故答案为BM=ME,BM⊥EM.
(2)ME= MB.
证明如下:连接CM,如解图所示.
∵DC⊥AC,M是边AD的中点,
∴ AB•CF= AC•PE﹣ AB•PD.
∵AB=AC,
∴CF=PD﹣PE;
结论运用:过点E作EQ⊥BC,垂足为Q,如图④,
∵四边形ABCD是长方形,
∴AD=BC,∠C=∠ADC=90°.
∵AD=16,CF=6,
∴BF=BC﹣CF=AD﹣CF=5,
由折叠可得:DF=BF,∠BEF=∠DEF.
∴DF=5.
∴PG+PH的值为8;
迁移拓展:如图,
由题意得:A(0,8),B(6,0),C(﹣4,0)
中考数学平行四边形-经典压轴题及答案
一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t 秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.【答案】(1)见解析;(2)能,t=10;(3)t=152或12.【解析】【分析】(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;(3)△DEF为直角三角形,分∠EDF=90°和∠DEF=90°两种情况讨论.【详解】解:(1)证明:∵在Rt△ABC中,∠C=90°﹣∠A=30°,∴AB=12AC=12×60=30cm,∵CD=4t,AE=2t,又∵在Rt△CDF中,∠C=30°,∴DF=12CD=2t,∴DF=AE;(2)能,∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,∴当t=10时,AEFD是菱形;(3)若△DEF为直角三角形,有两种情况:①如图1,∠EDF=90°,DE∥BC,则AD=2AE,即60﹣4t=2×2t,解得:t=152,②如图2,∠DEF=90°,DE⊥AC,则AE=2AD,即2t2(604t)=-,解得:t=12,综上所述,当t=152或12时,△DEF为直角三角形.2.已知AD是△ABC的中线P是线段AD上的一点(不与点A、D重合),连接PB、PC,E、F、G、H分别是AB、AC、PB、PC的中点,AD与EF交于点M;(1)如图1,当AB=AC时,求证:四边形EGHF是矩形;(2)如图2,当点P与点M重合时,在不添加任何辅助线的条件下,写出所有与△BPE面积相等的三角形(不包括△BPE本身).【答案】(1)见解析;(2)△APE、△APF、△CPF、△PGH.【解析】【分析】(1)由三角形中位线定理得出EG∥AP,EF∥BC,EF=12BC,GH∥BC,GH=12BC,推出EF∥GH,EF=GH,证得四边形EGHF是平行四边形,证得EF⊥AP,推出EF⊥EG,即可得出结论;(2)由△APE与△BPE的底AE=BE,又等高,得出S△APE=S△BPE,由△APE与△APF的底EP=FP,又等高,得出S△APE=S△APF,由△APF与△CPF的底AF=CF,又等高,得出S△APF=S△CPF,证得△PGH底边GH上的高等于△AEF底边EF上高的一半,推出S△PGH=12S△AEF=S△APF,即可得出结果.【详解】(1)证明:∵E、F、G、H分别是AB、AC、PB、PC的中点,∴EG∥AP,EF∥BC,EF=12BC,GH∥BC,GH=12BC,∴EF∥GH,EF=GH,∴四边形EGHF是平行四边形,∵AB=AC,∴AD⊥BC,∴EF⊥AP,∵EG∥AP,∴EF⊥EG,∴平行四边形EGHF是矩形;(2)∵PE是△APB的中线,∴△APE与△BPE的底AE=BE,又等高,∴S△APE=S△BPE,∵AP是△AEF的中线,∴△APE与△APF的底EP=FP,又等高,∴S△APE=S△APF,∴S△APF=S△BPE,∵PF是△APC的中线,∴△APF与△CPF的底AF=CF,又等高,∴S△APF=S△CPF,∴S△CPF=S△BPE,∵EF∥GH∥BC,E、F、G、H分别是AB、AC、PB、PC的中点,∴△AEF底边EF上的高等于△ABC底边BC上高的一半,△PGH底边GH上的高等于△PBC 底边BC上高的一半,∴△PGH底边GH上的高等于△AEF底边EF上高的一半,∵GH=EF,∴S△PGH=12S△AEF=S△APF,综上所述,与△BPE面积相等的三角形为:△APE、△APF、△CPF、△PGH.【点睛】本题考查了矩形的判定与性质、平行四边形的判定、三角形中位线定理、平行线的性质、三角形面积的计算等知识,熟练掌握三角形中位线定理是解决问题的关键.3.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)(变式探究)(1)当点P在CB延长线上时,其余条件不变(如图3),试探索PD、PE、CF之间的数量关系并说明理由;请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)(2)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD =16,CF=6,求PG+PH的值.(迁移拓展)(3)在直角坐标系中,直线l1:y=-43x+8与直线l2:y=﹣2x+8相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为2.求点P的坐标.【答案】【变式探究】证明见解析【结论运用】8【迁移拓展】(﹣1,6),(1,10)【解析】【变式探究】连接AP,同理利用△ABP与△ACP面积之差等于△ABC的面积可以证得;【结论运用】过点E作EQ⊥BC,垂足为Q,根据勾股定理和矩形的性质解答即可;【迁移拓展】分两种情况,利用结论,求得点P到x轴的距离,再利用待定系数法可求出P的坐标.【详解】变式探究:连接AP,如图3:∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP,∴12AB•CF=12AC•PE﹣12AB•PD.∵AB=AC,∴CF=PD﹣PE;结论运用:过点E作EQ⊥BC,垂足为Q,如图④,∵四边形ABCD是长方形,∴AD=BC,∠C=∠ADC=90°.∵AD=16,CF=6,∴BF=BC﹣CF=AD﹣CF=5,由折叠可得:DF=BF,∠BEF=∠DEF.∴DF=5.∵∠C=90°,∴DC2222106DF CF-=-8.∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC.∴四边形EQCD是长方形.∴EQ=DC=4.∵AD∥BC,∴∠DEF=∠EFB.∵∠BEF=∠DEF,∴∠BEF=∠EFB.∴BE=BF,由问题情境中的结论可得:PG+PH=EQ.∴PG+PH=8.∴PG+PH的值为8;迁移拓展:如图,由题意得:A(0,8),B(6,0),C(﹣4,0)∴AB2210,BC=10.68∴AB=BC,(1)由结论得:P1D1+P1E1=OA=8∵P1D1=1=2,∴P1E1=6 即点P1的纵坐标为6又点P1在直线l2上,∴y=2x+8=6,∴x=﹣1,即点P1的坐标为(﹣1,6);(2)由结论得:P2E2﹣P2D2=OA=8∵P2D2=2,∴P2E2=10 即点P1的纵坐标为10又点P1在直线l2上,∴y=2x+8=10,∴x=1,即点P1的坐标为(1,10)【点睛】本题考查了矩形的性质与判定、等腰三角形的性质与判定及勾股定理等知识点,利用面积法列出等式是解决问题的关键.4.(1)(问题发现)如图1,在Rt △ABC 中,AB =AC =2,∠BAC =90°,点D 为BC 的中点,以CD 为一边作正方形CDEF ,点E 恰好与点A 重合,则线段BE 与AF 的数量关系为(2)(拓展研究)在(1)的条件下,如果正方形CDEF 绕点C 旋转,连接BE ,CE ,AF ,线段BE 与AF 的数量关系有无变化?请仅就图2的情形给出证明;(3)(问题发现)当正方形CDEF 旋转到B ,E ,F 三点共线时候,直接写出线段AF 的长.【答案】(1)2AF ;(2)无变化;(3)AF 313.【解析】试题分析:(1)先利用等腰直角三角形的性质得出2 ,再得出BE=AB=2,即可得出结论;(2)先利用三角函数得出22CA CB =,同理得出22CF CE =,夹角相等即可得出△ACF ∽△BCE ,进而得出结论;(3)分两种情况计算,当点E 在线段BF 上时,如图2,先利用勾股定理求出2,6,即可得出62,借助(2)得出的结论,当点E 在线段BF 的延长线上,同前一种情况一样即可得出结论.试题解析:(1)在Rt △ABC 中,AB=AC=2,根据勾股定理得,22,点D 为BC 的中点,∴AD=122, ∵四边形CDEF 是正方形,∴2,∵BE=AB=2,∴2AF ,故答案为2AF ;(2)无变化;如图2,在Rt △ABC 中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin ∠ABC=22CA CB =, 在正方形CDEF 中,∠FEC=12∠FED=45°,在Rt△CEF中,sin∠FEC=22 CFCE=,∴CF CACE CB=,∵∠FCE=∠ACB=45°,∴∠FCE﹣∠ACE=∠ACB﹣∠ACE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴BE CBAF CA= =2,∴BE=2AF,∴线段BE与AF的数量关系无变化;(3)当点E在线段AF上时,如图2,由(1)知,CF=EF=CD=2,在Rt△BCF中,CF=2,BC=22,根据勾股定理得,BF=6,∴BE=BF﹣EF=6﹣2,由(2)知,BE=2AF,∴AF=3﹣1,当点E在线段BF的延长线上时,如图3,在Rt△ABC中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin∠ABC=22 CACB=,在正方形CDEF中,∠FEC=12∠FED=45°,在Rt△CEF中,sin∠FEC=22CFCE=,∴CF CACE CB=,∵∠FCE=∠ACB=45°,∴∠FCB+∠ACB=∠FCB+∠FCE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴BE CBAF CA= =2,∴BE=2AF,由(1)知,CF=EF=CD=2,在Rt△BCF中,CF=2,BC=22,根据勾股定理得,BF=6,∴BE=BF+EF=6+2,由(2)知,BE=2AF,∴AF=3+1.即:当正方形CDEF旋转到B,E,F三点共线时候,线段AF的长为3﹣1或3+1.5.如图,点O是正方形ABCD两条对角线的交点,分别延长CO到点G,OC到点E,使OG=2OD、OE=2OC,然后以OG、OE为邻边作正方形OEFG.(1)如图1,若正方形OEFG的对角线交点为M,求证:四边形CDME是平行四边形.(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转,得到正方形OE′F′G′,如图2,连接AG′,DE′,求证:AG′=DE′,AG′⊥DE′;(3)在(2)的条件下,正方形OE′F′G′的边OG′与正方形ABCD的边相交于点N,如图3,设旋转角为α(0°<α<180°),若△AON是等腰三角形,请直接写出α的值.【答案】(1)证明见解析;(2)证明见解析;(3)α的值是22.5°或45°或112.5°或135°或157.5°.【解析】【分析】(1)由四边形OEFG是正方形,得到ME=12GE,根据三角形的中位线的性质得到CD∥GE,CD=12GE,求得CD=GE,即可得到结论;(2)如图2,延长E′D交AG′于H,由四边形ABCD是正方形,得到AO=OD,∠AOD=∠COD=90°,由四边形OEFG是正方形,得到OG′=OE′,∠E′OG′=90°,由旋转的性质得到∠G′OD=∠E′OC,求得∠AOG′=∠COE′,根据全等三角形的性质得到AG′=DE′,∠AG′O=∠DE′O,即可得到结论;(3)分类讨论,根据三角形的外角的性质和等腰三角形的性质即可得到结论.【详解】(1)证明:∵四边形OEFG是正方形,∴ME=12GE,∵OG=2OD、OE=2OC,∴CD∥GE,CD=12GE,∴CD=GE,∴四边形CDME是平行四边形;(2)证明:如图2,延长E′D交AG′于H,∵四边形ABCD 是正方形,∴AO=OD ,∠AOD=∠COD=90°,∵四边形OEFG 是正方形,∴OG′=OE′,∠E′OG′=90°,∵将正方形OEFG 绕点O 逆时针旋转,得到正方形OE′F′G′,∴∠G′OD=∠E′OC ,∴∠AOG′=∠COE′,在△AG′O 与△ODE′中,OA OD AOG DOE OG OE ⎧⎪∠'∠'⎨⎪''⎩===,∴△AG′O ≌△ODE′∴AG′=DE′,∠AG′O=∠DE′O ,∵∠1=∠2,∴∠G′HD=∠G′OE′=90°,∴AG′⊥DE′;(3)①正方形OE′F′G′的边OG′与正方形ABCD 的边AD 相交于点N ,如图3,Ⅰ、当AN=AO 时,∵∠OAN=45°,∴∠ANO=∠AON=67.5°,∵∠ADO=45°,∴α=∠ANO-∠ADO=22.5°;Ⅱ、当AN=ON 时,∴∠NAO=∠AON=45°,∴∠ANO=90°,∴α=90°-45°=45°;②正方形OE′F′G′的边OG′与正方形ABCD 的边AB 相交于点N ,如图4,Ⅰ、当AN=AO时,∵∠OAN=45°,∴∠ANO=∠AON=67.5°,∵∠ADO=45°,∴α=∠ANO+90°=112.5°;Ⅱ、当AN=ON时,∴∠NAO=∠AON=45°,∴∠ANO=90°,∴α=90°+45°=135°,Ⅲ、当AN=AO时,旋转角a=∠ANO+90°=67.5+90=157.5°,综上所述:若△AON是等腰三角形时,α的值是22.5°或45°或112.5°或135°或157.5°.【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质、锐角三角函数、旋转变换的性质的综合运用,有一定的综合性,分类讨论当△AON是等腰三角形时,求α的度数是本题的难点.6.如图1,在正方形ABCD中,AD=6,点P是对角线BD上任意一点,连接PA,PC过点P 作PE⊥PC交直线AB于E.(1)求证:PC=PE;(2)延长AP交直线CD于点F.①如图2,若点F是CD的中点,求△APE的面积;②若ΔAPE的面积是21625,则DF的长为(3)如图3,点E在边AB上,连接EC交BD于点M,作点E关于BD的对称点Q,连接PQ,MQ,过点P作PN∥CD交EC于点N,连接QN,若PQ=5,MN=23,则△MNQ的面积是【答案】(1)略;(2)①8,②4或9;(3)5 6【解析】【分析】(1)利用正方形每个角都是90°,对角线平分对角的性质,三角形外角等于和它不相邻的两个内角的和,等角对等边等性质容易得证;(2)作出△ADP和△DFP的高,由面积法容易求出这个高的值.从而得到△PAE的底和高,并求出面积.第2小问思路一样,通过面积法列出方程求解即可;(3)根据已经条件证出△MNQ是直角三角形,计算直角边乘积的一半可得其面积.【详解】(1) 证明:∵点P在对角线BD上,∴△ADP≌△CDP,∴AP=CP, ∠DAP =∠DCP,∵PE⊥PC,∴∠EPC=∠EPB+∠BPC=90°,∵∠PEA=∠EBP+∠EPB=45°+90°-∠BPC=135°-∠BPC,∵∠PAE=90°-∠DAP=90°-∠DCP,∠DCP=∠BPC-∠PDC=∠BPC-45°,∴∠PAE=90°-(∠BPC-45°)= 135°-∠BPC,∴∠PEA=∠PAE,∴PC=PE;(2)①如图2,过点P分别作PH⊥AD,PG⊥CD,垂足分别为H、G.延长GP交AB于点M.∵四边形ABCD是正方形,P在对角线上,∴四边形HPGD是正方形,∴PH=PG,PM ⊥AB, 设PH=PG=a,∵F 是CD 中点,AD =6,则FD=3,ADFS =9,∵ADF S =ADP DFP SS+=1122AD PH DF PG ⨯+⨯, ∴1163922a a ⨯+⨯=,解得a=2, ∴AM=HP=2,MP=MG-PG=6-2=4, 又∵PA=PE, ∴AM=EM,AE=4,∵APE S =1144822EA MP ⨯=⨯⨯=,②设HP =b,由①可得AE=2b,MP=6-b,∴APE S=()121626225b b ⨯⨯-=, 解得b=2.4 3.6或, ∵ADF S =ADP DFP SS+=1122AD PH DF PG ⨯+⨯, ∴11166222b DF b DF ⨯⨯+⨯=⨯, ∴当b=2.4时,DF=4;当b =3.6时,DF =9, 即DF 的长为4或9; (3)如图,∵E 、Q 关于BP 对称,PN ∥CD, ∴∠1=∠2,∠2+∠3=∠BDC=45°, ∴∠1+∠4=45°, ∴∠3=∠4,易证△PEM ≌△PQM, △PNQ ≌△PNC, ∴∠5=∠6, ∠7=∠8 ,EM=QM,NQ=NC, ∴∠6+∠7=90°, ∴△MNQ 是直角三角形,设EM=a,NC=b 列方程组2227252372 3a b a b ⎧+=-⎪⎪⎨⎛⎫⎪+= ⎪ ⎪⎪⎝⎭⎩, 可得12ab=56, ∴MNQ56S=, 【点睛】本题是四边形综合题目,考查了正方形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质等知识;本题综合性强,有一定难度,熟练掌握正方形的性质,证明三角形全等是解决问题的关键.要注意运用数形结合思想.7.在矩形纸片ABCD 中,AB=6,BC=8,现将纸片折叠,使点D 与点B 重合,折痕为EF ,连接DF .(1)说明△BEF 是等腰三角形; (2)求折痕EF 的长.【答案】(1)见解析;(2).【解析】 【分析】(1)根据折叠得出∠DEF =∠BEF ,根据矩形的性质得出AD ∥BC ,求出∠DEF =∠BFE ,求出∠BEF =∠BFE 即可;(2)过E 作EM ⊥BC 于M ,则四边形ABME 是矩形,根据矩形的性质得出EM =AB =6,AE =BM ,根据折叠得出DE =BE ,根据勾股定理求出DE 、在Rt △EMF 中,由勾股定理求出即可. 【详解】(1)∵现将纸片折叠,使点D 与点B 重合,折痕为EF ,∴∠DEF =∠BEF .∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠DEF =∠BFE ,∴∠BEF =∠BFE ,∴BE =BF ,即△BEF 是等腰三角形;(2)过E 作EM ⊥BC 于M ,则四边形ABME 是矩形,所以EM =AB =6,AE =BM .∵现将纸片折叠,使点D与点B重合,折痕为EF,∴DE=BE,DO=BO,BD⊥EF.∵四边形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°.在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.在Rt△EMF中,由勾股定理得:EF==.故答案为:.【点睛】本题考查了折叠的性质和矩形性质、勾股定理等知识点,能熟记折叠的性质是解答此题的关键.8.已知:在矩形ABCD中,AB=10,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD边AB、BC、DA上,AE=2.(1)如图①,当四边形EFGH为正方形时,求△GFC的面积;(2)如图②,当四边形EFGH为菱形,且BF=a时,求△GFC的面积(用a表示);(3)在(2)的条件下,△GFC的面积能否等于2?请说明理由.【答案】(1)10;(2)12-a;(3)不能【解析】解:(1)过点G作GM⊥BC于M.在正方形EFGH中,∠HEF=90°,EH=EF,∴∠AEH+∠BEF=90°.∵∠AEH+∠AHE=90°,∴∠AHE=∠BEF.又∵∠A=∠B=90°,∴△AHE≌△BEF.同理可证△MFG≌△BEF.∴GM=BF=AE=2.∴FC=BC-BF=10.∴.(2)过点G作GM⊥BC交BC的延长线于M,连接HF.∵AD∥BC,∴∠AHF=∠MFH.∵EH∥FG,∴∠EHF=∠GFH.∴∠AHE=∠MFG.又∵∠A=∠GMF=90°,EH=GF,∴△AHE≌△MFG.∴GM=AE=2.∴.(3)△GFC的面积不能等于2.说明一:∵若S△GFC=2,则12-a=2,∴a=10.此时,在△BEF中,.在△AHE中,,∴AH>AD,即点H已经不在边AD上,故不可能有S△GFC=2.说明二:△GFC的面积不能等于2.∵点H在AD上,∴菱形边EH的最大值为,∴BF的最大值为.又∵函数S△GFC=12-a的值随着a的增大而减小,∴S△GFC的最小值为.又∵,∴△GFC的面积不能等于2.9.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,求证:△PDH的周长是定值;(3)当BE+CF的长取最小值时,求AP的长.【答案】(1)证明见解析.(2)证明见解析.(3)2.【解析】试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值.试题解析:(1)解:如图1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.(2)证明:如图2,过B作BQ⊥PH,垂足为Q.由(1)知∠APB=∠BPH,又∵∠A=∠BQP=90°,BP=BP,在△ABP和△QBP中,,∴△ABP≌△QBP(AAS),∴AP=QP,AB=BQ,又∵AB=BC,∴BC=BQ.又∠C=∠BQH=90°,BH=BH,在△BCH和△BQH中,,∴△BCH≌△BQH(SAS),∴CH=QH.∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.∴△PDH的周长是定值.(3)解:如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.又∵EF为折痕,∴EF⊥BP.∴∠EFM+∠MEF=∠ABP+∠BEF=90°,∴∠EFM=∠ABP.又∵∠A=∠EMF=90°,在△EFM和△BPA中,,∴△EFM≌△BPA(AAS).∴EM=AP.设AP=x在Rt△APE中,(4-BE)2+x2=BE2.解得BE=2+,∴CF=BE-EM=2+-x,∴BE+CF=-x+4=(x-2)2+3.当x=2时,BE+CF取最小值,∴AP=2.考点:几何变换综合题.10.(本题满分10分)如图1,已知矩形纸片ABCD中,AB=6cm,若将该纸片沿着过点B的直线折叠(折痕为BM),点A恰好落在CD边的中点P处.(1)求矩形ABCD的边AD的长.(2)若P为CD边上的一个动点,折叠纸片,使得A与P重合,折痕为MN,其中M在边AD上,N在边BC上,如图2所示.设DP=x cm,DM=y cm,试求y与x的函数关系式,并指出自变量x的取值范围.(3)①当折痕MN的端点N在AB上时,求当△PCN为等腰三角形时x的值;②当折痕MN的端点M在CD上时,设折叠后重叠部分的面积为S,试求S与x之间的函数关系式【答案】(1)AD=3;(2)y=-其中,0<x<3;(3)x=;(4)S=.【解析】试题分析:(1)根据折叠图形的性质和勾股定理求出AD的长度;(2)根据折叠图形的性质以及Rt△MPD的勾股定理求出函数关系式;(3)过点N作NQ⊥CD,根据Rt△NPQ 的勾股定理进行求解;(4)根据Rt△ADM的勾股定理求出MP与x的函数关系式,然后得出函数关系式.试题解析:(1)根据折叠可得BP=AB=6cm CP=3cm 根据Rt△PBC的勾股定理可得:AD=3.(2)由折叠可知AM=MP,在Rt△MPD中,∴∴y=-其中,0<x<3.(3)当点N在AB上,x≥3,∴PC≤3,而PN≥3,N C≥3.∴△PCN为等腰三角形,只可能NC=NP.过N点作NQ⊥CD,垂足为Q,在Rt△NPQ中,∴解得x=.(4)当点M在CD上时,N在AB上,可得四边形ANPM为菱形.设MP=y,在Rt△ADM中,,即∴ y=.∴ S=考点:函数的性质、勾股定理.。
专题03 平行四边形 压轴题(七大题型)(解析版)
(1)直接写出C点坐标;(2)如图2,线段BC的垂直平分线交y轴于点E,F为AD的中点,试判断(3)如图3,点16,03E⎛⎫⎪⎝⎭,F为x轴上的一点,45ECF∠=︒,求F点的坐标.【答案】(1)()4,4∵四边形ABCD是平行四边形,∴=,∥AD BC AD∴∠=∠,DAO CBEAOD CEB∠=∠=(AASCBE DAO∴≌∵线段BC 的中垂线交CE BE ∴=,∵F 为AD 的中点,22,1F ⎛⎫∴- ⎪⎝⎭,222DE DC EC ∴+=①当F 在点E 的左侧时,如图3,过 45ECF ∠=︒,FH CE ⊥,CFH ∴ 是等腰直角三角形,FH CH ∴=,(1)若4OD =,求OG 的长.(2)若2OAE GOE GED ∠=∠-∠,求OD 的长.(3)①连接DF ,问直线DF 是否经过一定点,若经过,请求出该定点;若不经过,请说明理由;②连接FB ,BD ,若30DFB ∠=︒,求OD 的长.∵2OAE GOE GED ∠=∠-∠,GED ∠∴2GOE OAE OEF ∠=∠+∠,∵IOE OAE OEF ∠=∠+∠,∴2IOE GOE ∠=∠,∴30FBF '∠=︒,设FM n =,则2FF n '=,∵226BF BF n '==+,∴22162FN n =+,∵FN BF BM FF ''⋅=⋅,(BFF ' 的两组底和高相乘)(1)求直线2l 的函数关系式;(2)若点C 的横坐标是2,求△(3)若存在点P ,使以A C 、、试求.出点P 的坐标.【答案】(1)4y x =-+则1402m ⨯+=,解得2m =-,∴直线AP 的解析式为122y x =-;DP AC ∥,且过(20),D -,设直线DP 的解析式为y x n =-+,则20n +=,解得2n =-,(1)求点C 的坐标及直线BC 的解析式;(2)如图1,设点F 为线段AB 中点,点G 为y 轴上一动点,其中90FGQ ∠=︒,在G 点的运动过程中,当顶点Q 落在直线(3)如图2,若M 为线段BC 上一点,且满足AMB S S =△△D ,使以点D ,E ,B ,C 为顶点的四边形为平行四边形?若存在,请求出点明理由.4∵FGQ 是等腰直角三角形,易证∴1MG NQ ==,FM GN ==∴()2,1Q n n -+-,∵点Q 在443y x =+图象上,同理:()2,1Q n n -+,∵点Q 在直线443y x =+图象上,∴()41243n n -=-+,解得:n ∴点()0,1G -,此时与点C 重合;23⎛⎫∵AMB AOB S S =△△,∴ABC AMC AOB S S S -=△△△,∴141105424232m ⎛⎫-⨯+=⨯⨯ ⎪⎝⎭,解得:∴点612,55M ⎛⎫- ⎪⎝⎭,(1)求a和k的值;(2)作直线l平行于A C''且与A B'',B C''分别交于M,N 直线l的函数表达式;(3)在(2)问的条件下,是否存在x轴上的点P和直线l则A B T B GM '''、均为等腰直角三角形,∵GM A T '∥,则23B G GT B M A M '''==:::,设2B G GM x '==,则3,GT x BT =则6245BT x =-==,的值;在双曲线kyx=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,直接写出满足要求的所有点Q的坐标;AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M∵()1,0A -,(0,B -解得1x =,此时()11,8P ,(10,8Q 如图2所示,若ABPQ ∵()1,0A -,(0,4B -解得=1x -,此时()21,8P --,2Q ②如图3所示,当∵()1,0A -,(0,4B -∴1122x -=,∵MN 是线段HT 的垂直平分线,∴NT NH =,∵四边形AFBH 是正方形,∴ABF ABH ∠=∠,在BFN 与BHN △中,BF BH(1)求k的值;(2)点P在双曲线kyx=上,点Q在y轴上,若以点A B P Q、、、为顶点的四边形是平行四边形;试求满足要求的所有点P的位置.(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HTAB于N,当T在AF上运动时,MNHT的值是否发生改变?若改变,求出其范围;若不改变,求出其值并给出你的证明.【答案】(1)8∵()()1,0,04A B --,,则12解得1x =,此时()118P ,;如图2所示,若ABQP 为平行四边形,∵()()1,0,04A B --,,则12-解得=1x -,此时()218P --,;②如图3所示,当AB 为对角线时:∵()()1,0,04A B --,,∴1122x -=-,解得=1x -,∴()318P --,;故点P 的坐标为:()18,或(-(3)如图4,连接NH NT 、∵MN 是线段HT 的垂直平分线,∴NT NH =,∵四边形AFBH 是正方形,∴ABF ABH ∠=∠,在BFN 与BHN △中,BF BH =⎧(1)用等式表示CP '与BP 的数量关系,并证明;(2)当135BPC ∠=︒时,①直接写出P CP '∠的度数为________②若M 为BC 的中点,连接PM 【答案】(1)BP CP '=',证明见解析证明:∵90BAC ∠=︒,AB AC =∴2390∠+∠=︒,∵将线段AP 绕点A 逆时针旋转90∴AP AP '=,90PAP '∠=︒,∴1290∠+∠=︒,∴13∠=∠,(1)如图1,求CBE ∠的度数;(2)如图2,过点A 作AF DE ∥分别交BC CD ,于点F ,G ,连接AE 平分;(3)如图3,在(2)的条件下,若N 是CE 的中点连接FN ,求证:【答案】(1)60CBE ∠=︒(2)见解析∴DCE ACB ∠=∠,∴BCE ACD ∠=∠,∵CE CD =,BCE ACD ∠=∠,BC AC =,∴()SAS BCE ACD V V ≌,∴60CBE A Ð=Ð=°;(2)证明:如图1,连接EF ,∵ABC 是等边三角形,∴60CBD ACF ∠=∠=︒,∵//AF DE ,∴60AGD CDE ∠=∠=︒,∵60AGD CAF ACG BCD ACG ∠=∠+∠=︒=∠+∠,∴BCD CAF ∠=∠,∵BCD CAF ∠=∠,BC AC =,CBD ACF ∠=∠,∴()ASA BCD CAF ≌,∴AF CD DE ==,又∵//AF DE ,∴四边形ADEF 是平行四边形,∴AE 与DF 相互平分;(3)证明:如图2,延长FN 至点H ,使HN FN =,∵N 是CE 的中点,∴EN CN =,∵EN CN =,ENH CNF ∠=∠,HN FN =,∴()SAS ENH CNF ≌,∴HEN FCN ∠=∠,EH CF =,∴BC EH ∥,∵()ASA BCD CAF ≌,∴BD CF =,∴EH BD =,∵四边形ADEF 是平行四边形,∴AD EF ,∴60BFE ABC ∠=∠=︒,∵60BEF BFE EBF ∠=∠=∠=︒,∴BEF △是等边三角形,∴EF BF =,∵BC EH ∥,∴60HEF BFE ∠=∠=︒,∴HEF DBF ∠=∠,∵EH BD =,HEF DBF ∠=∠,EF BF =,∴()SAS EHF BDF ≌,∴HF DF =,(1)当QP PM ⊥时,求t 的值.(2)如图2,连接MC ,是否存在t 值,使得PCM △的面积是平行四边形ABCD 面积的38若存在,求出对应的t ;若不存在,请说明理由.(3)如图3,过点M 作∥MN AB 交于点N ,是否存在t 的值,使得点P 在线段MN 的垂直平分线上?若存在,求出对应的t 的值;若不存在,请说明理由.【答案】(1)4t =(2)不存在t 值(3)409t =【分析】(1)由题意得2BQ t =,3DP t =,由平行四边形的性质得出AB CD ,AD BC ∥60D ABC ∠=∠=︒,证出四边形BCPQ 是平行四边形,得出BQ CP =,得出方程220t =-(2)作AE BC ⊥于E ,延长MP 交BC 延长线于F ,由直角三角形的性质得出12BE AB =3103AE BE ==,求出平行四边形ABCD 的面积3003BC AE =⨯=,由直角三角形的性质得出则9030BAE ABC ∠=︒-∠=︒1102BE AB ∴==,3AE =∴平行四边形ABCD 的面积=∥ AB CD ,,MN AB,AB CD∴ ,MN CDAD BC,∴四边形CDMN是平行四边形,(1)用含t的代数式表示PB的长.(2)当点P在边AB上运动时,求证:△内部时,求(3)当点E在ABD在ABCDY中,O为对角线=,∴经过点O,OA OCAC四边形ABCD为平行四边形,∴∥,AB CD由题意得:PQE V 为等边三角形,60PQE QPE ∴∠=∠=︒,AB CE ∥ ,60QPB PQE ∴∠=∠=︒,60A QPB ∴∠=∠=︒,AD PQ ∴∥,∴四边形APQD 为平行四边形,4PQ AD ∴==,4DQ PQ AP ∴===,24t \=,2t ∴=,②当点E 落在AB 边上时,如图,由题意得:PQE V 为等边三角形,60PEQ ∴∠=︒,60A PEQ ∴∠=∠=︒,AD EQ \∥,∴四边形AEQD 为平行四边形,4EQ AD ∴==,AE DQ =,4PE ∴=.24AE AP PE t ∴=-=-.在DOQ △和BOP △中,DOQ BOP OD OB QDO PBO ∠=∠⎧⎪=⎨⎪∠=∠⎩,(AAS)DOQ BOP ≌∴ ,DQ PB ∴=,OD OQ ∴=,30ODQ OQD ∴∠=∠=︒,60QPE ∠=︒ ,90PDQ ∴∠=︒,1232BP BO BD ∴===,2823t ∴-=,(1)若设AP 的长为x ,则PC =,(2)当30BQD ∠=︒时,求AP 的长;(3)过点Q 作QF AB ⊥交AB 延长线于点(4)点P Q ,在运动过程中,线段说明理由.,PE AB QF AB ⊥⊥ ,∴90AEP BFQ ∠=∠=︒,又60,QBF ABC A ∠=∠=∠=︒ ∴()AAS BFQ AEP ≌,∴EP FQ =;AEP BFQ△≌△∴=,AE BF+=+∴BE AE BF BE∴6==AB EF⊥⊥,PE AB QF AB(1)如图1,求证:四边形ABCD是平行四边形、,若AB (2)如图2,点E在BC,点F在CD上,连接AE EF-=2AC CF CE⊥分别交(3)如图3,在(2)的条件下,连接AF,过点C作CH BCCE=,PK 的延长线于点P,交AC的延长线于点K,若22(3)解:如图,以C为原点,BC 交于点T,DK与x轴交于点S 四边形ABCD是平行四边形,3【点睛】本题是四边形综合题,考查了平行线的判定和性质,等腰直角三角形的判定和性质,平行四边形的判定和性质,全等三角形的判定和性质,坐标与图形,坐标两点距离公式,待定系数法求一次函数解析式,一次函数的交点问题等知识,利用数形结合的思想,正确建立直角坐标系,求出相关点坐标是解题关键.14.在ABCD Y 中,BD 是对角线,(1)求证:AD BD=(2)当45A ∠=︒时,1DE =,2BE =,3CE =,求CDE 的面积.(3)在(1)的条件下,当BD 平分ADE ∠,DBE CDE ∠=∠,10CD =【答案】(1)见解析为等腰直角三角形,∴EBK∵ADB BDK ∠=∠,AD DK ADB KDB BD BD =⎧⎪∠=∠⎨⎪=⎩,∴ADB BDK △≌△,(1)如图1,若45BAD PCD ∠-∠=︒,求证:2AD PB =;(2)如图2,在(1)的条件下,若ABP 的面积与PCD 的面积的比是3:4的面积;(3)如图3,在(1)的条件下,若7514PAB PD ∠=︒=,,求PA 的长.【答案】(1)见解析(2)1542∵四边形ABCD 是平行四边形,∴AB CD AB CD ∥,=.∵MN AB ⊥,∴MN CD ⊥.∵:3:4ABP PCD S S = ,。
(完整版)特殊的平行四边形(压轴题)
特殊平行四边形1、如图,四边形OABC 与四边形ODEF 都是正方形。
(1)当正方形ODEF 绕点O 在平面内旋转时,AD 与CF 有怎样的数量和位置关系?证明你的结论;(2)若ODEF 绕点O 旋转,当点D 转到直线OA 上时,DCO 恰好是30°,当点D 转到直线OA或直线OC 上时,求AD 的长。
(本小题只写出结论,不必写出过程)FEDCBAO2、如图,在正方形ABCD 中,点P 是射线BC 上的任意一点(点B 与点C 除外),连接DP ,分别过点C 、A 作直线DP 的垂线,垂足为点E 、F.(1)当点P 在BC 的延长线上时,那么线段AF 、CE 、EF 之间有怎样的数量关系?请证明你的结论; (2)当点P 在BC 边上时,正方形的边长为2,AF 、CE 之间有怎样的数量关系?请证明你的结论; (3)在(2)的条件下,当CE=1时,求EF 的长.P FEDCB A DCBA3、菱形ABCD 中,点E 、F 分别在BC 、CD 边上,且B EAF ∠=∠。
(1)如果B ∠=60°,求证:AE=AF ; (2)如果)(︒<<︒=∠900ααB ,(1)中的结论:AE=AF 是否依然成立,请说明理由。
(3)如果AB 长为5,菱形ABCD 面积为20,BE=a ,求AF 的长。
(用含a 的式子表示)FED CBA4、如图,在正方形ABCD 中,点E 在边AB 上(点E 与点A 、B 不重合).过点E 作FG ⊥DE ,FG 与边BC 相交于点F ,与边DA 的延长线相交于点G 。
(1)BF 、AG 、AE 的数量之间具有怎样的关系?证明你的结论.(2)连接DF ,如果正方形的边长为2,设AE=a ,求△DFG 的面积。
(用含a 的式子表示)(3)如果正方形的边长为2,FG 的长为25,求点C 到直线DE 的距离。
GFEDCBA5、已知,在矩形ABCD 中,AB=10,BC=20,四边形EFGH 的三个顶点E 、F 、H 分别在矩形ABCD 边AB 、BC 、DA 上,AE=2。
八年级平行四边形压轴题
八年级平行四边形压轴题一、选择题(每题3分,共15分)1. 在平行四边形ABCD中,对角线AC与BD相交于点O,若AC = 8,BD = 10,AB = 6,则△OAB的周长为()- A. 12.- B. 15.- C. 20.- D. 16.- 解析:- 因为平行四边形对角线互相平分,所以OA = 1/2AC = 4,OB = 1/2BD = 5。
- 又已知AB = 6,所以△OAB的周长为OA+OB + AB=4 + 5+6 = 15。
答案为B。
2. 平行四边形ABCD中,∠A:∠B = 2:1,则∠C的度数为()- A. 60°.- B. 120°.- C. 45°.- D. 30°.- 解析:- 因为平行四边形邻角互补,即∠A+∠B = 180°,又∠A:∠B = 2:1,设∠B=x,则∠A = 2x,所以2x+x=180°,解得x = 60°。
- ∠A = 120°,平行四边形对角相等,所以∠C=∠A = 120°。
答案为B。
3. 下列条件中,不能判定四边形ABCD是平行四边形的是()- A. AB = CD,AD = BC.- B. AB∥CD,AB = CD.- C. AB = CD,AD∥BC.- D. AB∥CD,AD∥BC.- 解析:- 根据平行四边形的判定定理,A选项两组对边分别相等可判定是平行四边形;B 选项一组对边平行且相等可判定是平行四边形;D选项两组对边分别平行可判定是平行四边形。
- C选项一组对边相等,另一组对边平行,不能判定是平行四边形,答案为C。
4. 平行四边形ABCD的周长为36cm,AB = 8cm,则BC的长为()- A. 10cm.- B. 16cm.- C. 14cm.- D. 28cm.- 解析:- 平行四边形的周长等于两组对边之和,即2(AB + BC)=36,已知AB = 8cm,代入可得2(8 + BC)=36,16+2BC = 36,2BC = 20,BC = 10cm。
经典平行四边形压轴题
1.如图,已知以△ABC 的三边为边在BC 的同侧作等边△ABD 、△BCE 、△ACF ,请回答下列问题: (1)四边形ADEF 是什么四边形?写出理由。
(2)当△ABC 满足什么条件时,四边形ADEF 是菱形?(3)当△ABC 满足什么条件时,以A 、D 、E 、F 为顶点的四边形不存在?2.(2009临沂)数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=o,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.ADFCGE B图1ADF C GE B 图2 ADFC GE B图3A G D BFE 图ADCBFEG图3.(2009年铁岭市)ABC △是等边三角形,点D 是射线BC 上的一个动点(点D 不与点B C 、重合),ADE △是以AD 为边的等边三角形,过点E 作BC 的平行线,分别交射线AB AC 、于点F G 、,连接BE . (1)如图(a )所示,当点D 在线段BC 上时. ①求证:AEB ADC △≌△;②探究四边形BCGE 是怎样特殊的四边形?并说明理由;(2)如图(b )所示,当点D 在BC 的延长线上时,直接写出(1)中的两个结论是否成立? (3)在(2)的情况下,当点D 运动到什么位置时,四边形BCGE 是菱形?并说明理由.4.(2009年日照市)已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG . (1)求证:EG =CG ;(2)将图①中△BEF 绕B 点逆时针旋转45º,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)D 第24题图① DDE第24题图②E第24题图③5(2009江西)如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠. (1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由6.如图1,△ABC 是等腰直角三角形,四边形ADEF 是正方形,D 、F 分别在AB 、AC 边上,此时BD =CF ,BD ⊥CF 成立.(1)当正方形ADEF 绕点A 逆时针旋转θ(0°<θ<90°)时,如图2,BD =CF 成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF 绕点A 逆时针旋转45°时,如图3,延长BD 交CF 于点G . ①求证:BD ⊥CF ; ②当AB =4,AD =时,求线段BG 的长.A D EBF C图4(备AD E BF C图5(备ADE BF C图1 图2A D EB FC PNM 图3AD E BFCP N M321GEFD CBA(第25题)E FDCBA(第25题)EFD CBA(第25题)7.探究问题:⑴方法感悟: 如图①,在正方形ABCD 中,点E ,F 分别为DC ,BC 边上的点,且满足∠EAF=45°,连接EF ,求证DE+BF=EF .感悟解题方法,并完成下列填空:将△ADE 绕点A 顺时针旋转90°得到△ABG ,此时AB 与AD 重合,由旋转可得: AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°, ∴∠ABG+∠ABF=90°+90°=180°, 因此,点G ,B ,F 在同一条直线上.∵∠EAF=45° ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°. ∵∠1=∠2, ∴∠1+∠3=45°. 即∠GAF=∠_________. 又AG=AE ,AF=AF ∴△GAF ≌_______.∴_________=EF ,故DE+BF=EF .⑵方法迁移: 如图②,将ABC Rt ∆沿斜边翻折得到△ADC ,点E ,F 分别为DC ,BC 边上的点,且∠EAF=21∠DAB .试猜想DE ,BF ,EF 之间有何数量关系,并证明你的猜想. ⑶问题拓展:如图③,在四边形ABCD 中,AB=AD ,E ,F 分别为DC,BC 上的点,满足DAB EAF ∠=∠21,试猜想当∠B 与∠D 满足什么关系时,可使得DE+BF=EF .请直接写出你的猜想(不必说明理由).。
备战中考数学平行四边形-经典压轴题及详细答案
备战中考数学平行四边形-经典压轴题及详细答案一、平行四边形1.如图①,在等腰Rt ABC V 中,90BAC ∠=o ,点E 在AC 上(且不与点A 、C 重合),在ABC △的外部作等腰Rt CED △,使90CED ∠=o ,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .()1请直接写出线段AF ,AE 的数量关系;()2①将CED V 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论;②若25AB =,2CE =,在图②的基础上将CED V 绕点C 继续逆时针旋转一周的过程中,当平行四边形ABFD 为菱形时,直接写出线段AE 的长度.【答案】(1)证明见解析;(2)①AF 2AE =②42或22.【解析】【分析】 ()1如图①中,结论:AF 2AE =,只要证明AEF V 是等腰直角三角形即可; ()2①如图②中,结论:AF 2AE =,连接EF ,DF 交BC 于K ,先证明EKF V ≌EDA V 再证明AEF V 是等腰直角三角形即可;②分两种情形a 、如图③中,当AD AC =时,四边形ABFD 是菱形.b 、如图④中当AD AC =时,四边形ABFD 是菱形.分别求解即可.【详解】()1如图①中,结论:AF 2AE =.理由:Q 四边形ABFD 是平行四边形,AB DF ∴=,AB AC =Q ,AC DF ∴=,DE EC =Q ,AE EF ∴=,DEC AEF 90∠∠==o Q , AEF ∴V是等腰直角三角形,AF 2AE ∴=.故答案为AF 2AE =.()2①如图②中,结论:AF 2AE =.理由:连接EF ,DF 交BC 于K .Q 四边形ABFD 是平行四边形,AB//DF ∴,DKE ABC 45∠∠∴==o ,EKF 180DKE 135∠∠∴=-=o o ,EK ED =,ADE 180EDC 18045135∠∠=-=-=o o o o Q ,EKF ADE ∠∠∴=,DKC C ∠∠=Q ,DK DC ∴=,DF AB AC ==Q ,KF AD ∴=,在EKF V 和EDA V 中,EK ED EKF ADE KF AD =⎧⎪∠=∠⎨⎪=⎩,EKF ∴V ≌EDA V ,EF EA ∴=,KEF AED ∠∠=,FEA BED 90∠∠∴==o ,∴V是等腰直角三角形,AEF∴=.AF2AE=时,四边形ABFD是菱形,设AE交CD于H,易知②如图③中,当AD AC=+=,EH DH CH2===,22=-=,AE AH EH42AH(25)(2)32=时,四边形ABFD是菱形,易知如图④中当AD AC=-=-=,AE AH EH32222综上所述,满足条件的AE的长为4222【点睛】本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点,属于中考常考题型.2.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(1)如图①,当点D落在BC边上时,求点D的坐标;(2)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证△ADB≌△AOB;②求点H的坐标.(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).【答案】(1)D(1,3);(2)①详见解析;②H(175,3);(3)30334-≤S≤30334+.【解析】【分析】(1)如图①,在Rt△ACD中求出CD即可解决问题;(2)①根据HL证明即可;②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题;(3)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题;【详解】(1)如图①中,∵A(5,0),B(0,3),∴OA=5,OB=3,∵四边形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,∵矩形ADEF是由矩形AOBC旋转得到,∴AD=AO=5,在Rt△ADC中,CD22AD AC-,∴BD=BC-CD=1,∴D(1,3).(2)①如图②中,由四边形ADEF是矩形,得到∠ADE=90°,∵点D在线段BE上,∴∠ADB=90°,由(1)可知,AD=AO,又AB=AB,∠AOB=90°,∴Rt△ADB≌Rt△AOB(HL).②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5-m)2,∴m=175,∴BH=175,∴H(175,3).(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=12•DE•DK=12×3×(5-342)=303344,当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=12×D′E′×KD′=12×3×(5+342)=303344+.综上所述,303344-≤S≤303344+.【点睛】本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.3.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t 秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.【答案】(1)见解析;(2)能,t=10;(3)t=152或12.【解析】【分析】(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;(3)△DEF为直角三角形,分∠EDF=90°和∠DEF=90°两种情况讨论.【详解】解:(1)证明:∵在Rt△ABC中,∠C=90°﹣∠A=30°,∴AB=12AC=12×60=30cm,∵CD=4t,AE=2t,又∵在Rt△CDF中,∠C=30°,∴DF=12CD=2t,∴DF=AE;(2)能,∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,∴当t=10时,AEFD是菱形;(3)若△DEF为直角三角形,有两种情况:①如图1,∠EDF=90°,DE∥BC,则AD=2AE,即60﹣4t=2×2t,解得:t=152,②如图2,∠DEF=90°,DE⊥AC,则AE=2AD,即2t2(604t)=-,解得:t=12,综上所述,当t=152或12时,△DEF 为直角三角形.4.已知矩形纸片OBCD 的边OB 在x 轴上,OD 在y 轴上,点C 在第一象限,且86OB OD ==,.现将纸片折叠,折痕为EF (点E ,F 是折痕与矩形的边的交点),点P 为点D 的对应点,再将纸片还原。
初中八年级 平行四边形 拔高题 综合题 压轴题(含答案)
初中八年级平行四边形拔高题综合题压轴题(含答案)题目一已知平行四边形ABCD中,AB = 6cm,BC = 8cm,过点B作平行于AD的直线与AC交于点E,连接DE交BC的延长线于点F。
求EF的长度。
答案一连接DE并延长交BC于点G,根据平行四边形的性质,我们知道AG || DE。
所以AG || BF。
由此可得∆BFG与∆BCD为三角形对应边平行,则根据平行线截断比定理可知:$\frac{{BE}}{{BD}} = \frac{{FG}}{{GC}}$又已知$BE = BC + CE$,$CE = BD$,$BC = 8$,代入得:$\frac{{8+BD}}{{BD}} = \frac{{FG}}{{GC}}$整理可得:$\frac{{BD}}{{FG}} = \frac{{GC}}{{8+BD}}$ 由于$FG = GD$,所以:$\frac{{BD}}{{FG}} = \frac{{BD}}{{GD}} = 1$ 代入可得:$\frac{{1}}{{1}} = \frac{{GC}}{{8+BD}}$整理得:$BD = GC - 8$题目中已知BC=8,所以GC=16。
代入可得:$BD = 16 - 8 = 8$所以EF的长度等于BD,即EF=8cm。
题目二平行四边形PQRS中,已知PR = 5cm,PQ = 6cm,PS = 7cm。
点A在PS上,且PA的长度是PS的一半。
连接AQ并延长交QR 的延长线于点B,连接RP交QA的延长线于点C。
求BC的长度。
答案二设PS的长度为2x,则PA = x。
由平行四边形的性质可知AQ || RB,所以根据平行线截断比定理:$\frac{{RP}}{{PC}} = \frac{{AQ}}{{CQ}}$代入已知条件,得:$\frac{{2x + 6}}{{PC}} = \frac{{4}}{{2x - 6}}$ 整理可得:$(2x + 6)(2x - 6) = 4PC$解方程得:$x = 3$所以PA = 3cm。
厦门中考数学平行四边形-经典压轴题
厦门中考数学平行四边形-经典压轴题一、平行四边形1.(问题情景)利用三角形的面积相等来求解的方法是一种常见的等积法,此方法是我们解决几何问题的途径之一.例如:张老师给小聪提出这样一个问题:如图1,在△ABC中,AB=3,AD=6,问△ABC的高AD与CE的比是多少?小聪的计算思路是:根据题意得:S△ABC=12BC•AD=12AB•CE.从而得2AD=CE,∴12 AD CE请运用上述材料中所积累的经验和方法解决下列问题:(1)(类比探究)如图2,在▱ABCD中,点E、F分别在AD,CD上,且AF=CE,并相交于点O,连接BE、BF,求证:BO平分角AOC.(2)(探究延伸)如图3,已知直线m∥n,点A、C是直线m上两点,点B、D是直线n上两点,点P是线段CD中点,且∠APB=90°,两平行线m、n间的距离为4.求证:PA•PB=2AB.(3)(迁移应用)如图4,E为AB边上一点,ED⊥AD,CE⊥CB,垂足分别为D,C,∠DAB=∠B,AB=34,BC=2,AC=26,又已知M、N分别为AE、BE的中点,连接DM、CN.求△DEM与△CEN的周长之和.【答案】(1)见解析;(2)见解析;(3)34【解析】分析:(1)、根据平行四边形的性质得出△ABF和△BCE的面积相等,过点B作OG⊥AF于G,OH⊥CE于H,从而得出AF=CE,然后证明△BOG和△BOH全等,从而得出∠BOG=∠BOH,即角平分线;(2)、过点P作PG⊥n于G,交m于F,根据平行线的性质得出△CPF和△DPG全等,延长BP交AC于E,证明△CPE和△DPB全等,根据等积法得出AB=AP×PB,从而得出答案;(3)、,延长AD,BC交于点G,过点A作AF⊥BC于F,设CF=x,根据Rt△ABF和Rt△ACF的勾股定理得出x的值,根据等积法得出AE=2DM=2EM,BE=2CN=2EN, DM+CN=AB,从而得出两个三角形的周长之和.同理:EM+EN=AB详解:证明:(1)如图2,∵四边形ABCD是平行四边形,∴S△ABF=S▱ABCD,S△BCE=S▱ABCD,∴S△ABF=S△BCE,过点B作OG⊥AF于G,OH⊥CE于H,∴S△ABF=AF×BG,S△BCE=CE×BH,∴AF×BG=CE×BH,即:AF×BG=CE×BH,∵AF=CE,∴BG=BH,在Rt△BOG和Rt△BOH中,,∴Rt△BOG≌Rt△BOH,∴∠BOG=∠BOH,∴OB平分∠AOC,(2)如图3,过点P作PG⊥n于G,交m于F,∵m∥n,∴PF⊥AC,∴∠CFP=∠BGP=90°,∵点P是CD中点,在△CPF和△DPG中,,∴△CPF≌△DPG,∴PF=PG=FG=2,延长BP交AC于E,∵m∥n,∴∠ECP=∠BDP,∴CP=DP,在△CPE和△DPB中,,∴△CPE≌△DPB,∴PE=PB,∵∠APB=90°,∴AE=AB,∴S△APE=S△APB,∵S△APE=AE×PF=AE=AB,S△APB=AP×PB,∴AB=AP×PB,即:PA•PB=2AB;(3)如图4,延长AD,BC交于点G,∵∠BAD=∠B,∴AG=BG,过点A作AF⊥BC于F,设CF=x(x>0),∴BF=BC+CF=x+2,在Rt△ABF中,AB=,根据勾股定理得,AF2=AB2﹣BF2=34﹣(x+2)2,在Rt△ACF中,AC=,根据勾股定理得,AF2=AC2﹣CF2=26﹣x2,∴34﹣(x+2)2=26﹣x2,∴x=﹣1(舍)或x=1,∴AF==5,连接EG,∵S△ABG=BG×AF=S△AEG+S△BEG=AG×DE+BG×CE=BG(DE+CE),∴DE+CE=AF=5,在Rt△ADE中,点M是AE的中点,∴AE=2DM=2EM,同理:BE=2CN=2EN,∵AB=AE+BE,∴2DM+2CN=AB,∴DM+CN=AB,同理:EM+EN=AB ∴△DEM与△CEN的周长之和=DE+DM+EM+CE+CN+EN=(DE+CE)+[(DM+CN)+(EM+EN)]=(DE+CN)+AB=5+.点睛:本题主要考查的就是三角形全等的判定与性质以及三角形的等积法,综合性非常强,难度较大.在解决这个问题的关键就是作出辅助线,然后根据勾股定理和三角形全等得出各个线段之间的关系.2.如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M 沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒.(1)P点的坐标为多少(用含x的代数式表示);(2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值;(3)当x为何值时,△NPC是一个等腰三角形?简要说明理由.【答案】(1)P点坐标为(x,3﹣x).(2)S的最大值为,此时x=2.(3)x=,或x=,或x=.【解析】试题分析:(1)求P点的坐标,也就是求OM和PM的长,已知了OM的长为x,关键是求出PM的长,方法不唯一,①可通过PM∥OC得出的对应成比例线段来求;②也可延长MP交BC于Q,先在直角三角形CPQ中根据CQ的长和∠ACB的正切值求出PQ的长,然后根据PM=AB﹣PQ来求出PM的长.得出OM和PM的长,即可求出P点的坐标.(2)可按(1)②中的方法经求出PQ的长,而CN的长可根据CN=BC﹣BN来求得,因此根据三角形的面积计算公式即可得出S,x的函数关系式.(3)本题要分类讨论:①当CP=CN时,可在直角三角形CPQ中,用CQ的长即x和∠ABC的余弦值求出CP的表达式,然后联立CN的表达式即可求出x的值;②当CP=PN时,那么CQ=QN,先在直角三角形CPQ中求出CQ的长,然后根据QN=CN﹣CQ求出QN的表达式,根据题设的等量条件即可得出x的值.③当CN=PN时,先求出QP和QN的长,然后在直角三角形PNQ中,用勾股定理求出PN 的长,联立CN的表达式即可求出x的值.试题解析:(1)过点P作PQ⊥BC于点Q,有题意可得:PQ∥AB,∴△CQP∽△CBA,∴∴解得:QP=x,∴PM=3﹣x,由题意可知,C(0,3),M(x,0),N(4﹣x,3),P点坐标为(x,3﹣x).(2)设△NPC的面积为S,在△NPC中,NC=4﹣x,NC边上的高为,其中,0≤x≤4.∴S=(4﹣x)×x=(﹣x2+4x)=﹣(x﹣2)2+.∴S的最大值为,此时x=2.(3)延长MP交CB于Q,则有PQ⊥BC.①若NP=CP,∵PQ⊥BC,∴NQ=CQ=x.∴3x=4,∴x=.②若CP=CN,则CN=4﹣x,PQ=x,CP=x,4﹣x=x,∴x=;③若CN=NP,则CN=4﹣x.∵PQ=x,NQ=4﹣2x,∵在Rt△PNQ中,PN2=NQ2+PQ2,∴(4﹣x)2=(4﹣2x)2+(x)2,∴x=.综上所述,x=,或x=,或x=.考点:二次函数综合题.3.(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数;(2)把(1)中菱形BFDE进行分离研究,如图②,点G、I分别在BF、BE边上,且BG=BI,连接GD,H为GD的中点,连接FH并延长,交ED于点J,连接IJ、IH、IF、IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图③,当矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE、EF、DF,使△DEF是等腰直角三角形,DF交AC于点G.请直接写出线段AG、GE、EC三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH =3FH ;(3)EG 2=AG 2+CE 2.【解析】【分析】(1)①由△DOE ≌△BOF ,推出EO =OF ,∵OB =OD ,推出四边形EBFD 是平行四边形,再证明EB =ED 即可.②先证明∠ABD =2∠ADB ,推出∠ADB =30°,延长即可解决问题.(2)IH =3FH .只要证明△IJF 是等边三角形即可.(3)结论:EG 2=AG 2+CE 2.如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,先证明△DEG ≌△DEM ,再证明△ECM 是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD 是矩形,∴AD ∥BC ,OB =OD ,∴∠EDO =∠FBO ,在△DOE 和△BOF 中,EDO FBO OD OBEOD BOF ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DOE ≌△BOF ,∴EO =OF ,∵OB =OD ,∴四边形EBFD 是平行四边形,∵EF ⊥BD ,OB =OD ,∴EB =ED ,∴四边形EBFD 是菱形.②∵BE 平分∠ABD ,∴∠ABE =∠EBD ,∵EB =ED ,∴∠EBD =∠EDB ,∴∠ABD =2∠ADB ,∵∠ABD +∠ADB =90°,∴∠ADB =30°,∠ABD =60°,∴∠ABE =∠EBO =∠OBF =30°,∴∠EBF =60°.(2)结论:IH=3FH .理由:如图2中,延长BE 到M ,使得EM =EJ ,连接MJ .∵四边形EBFD 是菱形,∠B =60°,∴EB =BF =ED ,DE ∥BF ,∴∠JDH =∠FGH ,在△DHJ 和△GHF 中,DHG GHF DH GHJDH FGH ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DHJ ≌△GHF ,∴DJ =FG ,JH =HF ,∴EJ =BG =EM =BI ,∴BE =IM =BF ,∵∠MEJ =∠B =60°,∴△MEJ 是等边三角形,∴MJ =EM =NI ,∠M =∠B =60°在△BIF 和△MJI 中,BI MJ B M BF IM ⎧⎪∠∠⎨⎪⎩===,∴△BIF ≌△MJI ,∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF ,∴IH ⊥JF ,∵∠BFI +∠BIF =120°,∴∠MIJ +∠BIF =120°,∴∠JIF =60°,∴△JIF 是等边三角形,在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°,∴∠FIH =30°,∴IH =3FH .(3)结论:EG 2=AG 2+CE 2.理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,∵∠FAD +∠DEF =90°,∴AFED 四点共圆,∴∠EDF =∠DAE =45°,∠ADC =90°,∴∠ADF +∠EDC =45°,∵∠ADF =∠CDM ,∴∠CDM +∠CDE =45°=∠EDG ,在△DEM 和△DEG 中,DE DE EDG EDM DG DM ⎧⎪∠∠⎨⎪⎩=== , ∴△DEG ≌△DEM ,∴GE =EM ,∵∠DCM =∠DAG =∠ACD =45°,AG =CM ,∴∠ECM =90°∴EC 2+CM 2=EM 2,∵EG =EM ,AG =CM ,∴GE 2=AG 2+CE 2.【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.4.如图1,已知正方形ABCD 的边CD 在正方形DEFG 的边DE 上,连接AE ,GC .(1)试猜想AE 与GC 有怎样的关系(直接写出结论即可);(2)将正方形DEFG 绕点D 按顺时针方向旋转,使点E 落在BC 边上,如图2,连接AE 和CG .你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.(3)在(2)中,若E 是BC 的中点,且BC =2,则C ,F 两点间的距离为 .【答案】(1) AE=CG,AE⊥GC;(2)成立,证明见解析; (3)2.【解析】【分析】(1)观察图形,AE、CG的位置关系可能是垂直,下面着手证明.由于四边形ABCD、DEFG都是正方形,易证得△ADE≌△CDG,则∠1=∠2,由于∠2、∠3互余,所以∠1、∠3互余,由此可得AE⊥GC.(2)题(1)的结论仍然成立,参照(1)题的解题方法,可证△ADE≌△CDG,得∠5=∠4,由于∠4、∠7互余,而∠5、∠6互余,那么∠6=∠7;由图知∠AEB=∠CEH=90°﹣∠6,即∠7+∠CEH=90°,由此得证.(3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.想办法求出CH,HF,再利用勾股定理即可解决问题.【详解】(1)AE=CG,AE⊥GC;证明:延长GC交AE于点H,在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG(SAS),∴AE,CG,∠1=∠2∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°﹣(∠1+∠3)=180°﹣90°=90°,∴AE⊥GC.(2)答:成立;证明:延长AE和GC相交于点H,在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°﹣∠3;∴△ADE≌△CDG(SAS),∴AE=CG,∠5=∠4;又∵∠5+∠6=90°,∠4+∠7=180°﹣∠DCE=180°﹣90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.(3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.∵BE=CE=1,AB=CD=2,∴AE=DE=CG═DG=FG5∵DE=DG,∠DCE=∠GND,∠EDC=∠DGN,∴△DCE≌△GND(AAS),∴GCD=2,∵S△DCG=12•CD•NG=12•DG•CM,∴2×25,∴CM=GH45,∴MG=CH22CG CM355,∴FH =FG ﹣FG =5, ∴CF =22FH CH +=22535()()55+=2. 故答案为2.【点睛】 本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.5.(问题情境)在△ABC 中,AB =AC ,点P 为BC 所在直线上的任一点,过点P 作PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,过点C 作CF ⊥AB ,垂足为F .当P 在BC 边上时(如图1),求证:PD+PE =CF .证明思路是:如图2,连接AP ,由△ABP 与△ACP 面积之和等于△ABC 的面积可以证得:PD+PE =CF .(不要证明)(变式探究)(1)当点P 在CB 延长线上时,其余条件不变(如图3),试探索PD 、PE 、CF 之间的数量关系并说明理由;请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)(2)如图4,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C′处,点P 为折痕EF 上的任一点,过点P 作PG ⊥BE 、PH ⊥BC ,垂足分别为G 、H ,若AD =16,CF =6,求PG+PH 的值.(迁移拓展)(3)在直角坐标系中,直线l 1:y =-43x+8与直线l 2:y =﹣2x+8相交于点A ,直线l 1、l 2与x 轴分别交于点B 、点C .点P 是直线l 2上一个动点,若点P 到直线l 1的距离为2.求点P 的坐标.【答案】【变式探究】证明见解析【结论运用】8【迁移拓展】(﹣1,6),(1,10)【解析】【变式探究】连接AP,同理利用△ABP与△ACP面积之差等于△ABC的面积可以证得;【结论运用】过点E作EQ⊥BC,垂足为Q,根据勾股定理和矩形的性质解答即可;【迁移拓展】分两种情况,利用结论,求得点P到x轴的距离,再利用待定系数法可求出P的坐标.【详解】变式探究:连接AP,如图3:∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP,∴12AB•CF=12AC•PE﹣12AB•PD.∵AB=AC,∴CF=PD﹣PE;结论运用:过点E作EQ⊥BC,垂足为Q,如图④,∵四边形ABCD是长方形,∴AD=BC,∠C=∠ADC=90°.∵AD=16,CF=6,∴BF=BC﹣CF=AD﹣CF=5,由折叠可得:DF=BF,∠BEF=∠DEF.∴DF=5.∵∠C=90°,∴DC2222106DF CF-=-8.∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC.∴四边形EQCD是长方形.∴EQ=DC=4.∵AD∥BC,∴∠DEF=∠EFB.∵∠BEF=∠DEF,∴∠BEF=∠EFB.∴BE=BF,由问题情境中的结论可得:PG+PH=EQ.∴PG+PH=8.∴PG+PH的值为8;迁移拓展:如图,由题意得:A(0,8),B(6,0),C(﹣4,0)∴AB2210,BC=10.68∴AB=BC,(1)由结论得:P1D1+P1E1=OA=8∵P1D1=1=2,∴P1E1=6 即点P1的纵坐标为6又点P1在直线l2上,∴y=2x+8=6,∴x=﹣1,即点P1的坐标为(﹣1,6);(2)由结论得:P2E2﹣P2D2=OA=8∵P2D2=2,∴P2E2=10 即点P1的纵坐标为10又点P1在直线l2上,∴y=2x+8=10,∴x=1,即点P1的坐标为(1,10)【点睛】本题考查了矩形的性质与判定、等腰三角形的性质与判定及勾股定理等知识点,利用面积法列出等式是解决问题的关键.6.(1)(问题发现)如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为(2)(拓展研究)在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;(3)(问题发现)当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.【答案】(1)2AF;(2)无变化;(3)AF313.【解析】试题分析:(1)先利用等腰直角三角形的性质得出2,再得出BE=AB=2,即可得出结论;(2)先利用三角函数得出22CACB=,同理得出22CFCE=,夹角相等即可得出△ACF∽△BCE,进而得出结论;(3)分两种情况计算,当点E在线段BF上时,如图2,先利用勾股定理求出2,6,即可得出62,借助(2)得出的结论,当点E在线段BF的延长线上,同前一种情况一样即可得出结论.试题解析:(1)在Rt△ABC中,AB=AC=2,根据勾股定理得,22,点D为BC的中点,∴AD=122,∵四边形CDEF是正方形,∴2,∵BE=AB=2,∴2AF,故答案为2AF;(2)无变化;如图2,在Rt△ABC中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin ∠ABC=2CA CB =, 在正方形CDEF 中,∠FEC=12∠FED=45°,在Rt △CEF 中,sin ∠FEC=2CF CE =, ∴CF CA CE CB=, ∵∠FCE=∠ACB=45°,∴∠FCE ﹣∠ACE=∠ACB ﹣∠ACE ,∴∠FCA=∠ECB ,∴△ACF ∽△BCE ,∴BE CBAF CA=∴AF , ∴线段BE 与AF 的数量关系无变化;(3)当点E 在线段AF 上时,如图2,由(1)知,,在Rt △BCF 中,,,根据勾股定理得,,∴BE=BF ﹣,由(2)知,,∴﹣1,当点E 在线段BF 的延长线上时,如图3,在Rt △ABC 中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin ∠ABC=CA CB =, 在正方形CDEF 中,∠FEC=12∠FED=45°,在Rt △CEF 中,sin ∠FEC=CF CE =,∴CF CA CE CB = , ∵∠FCE=∠ACB=45°,∴∠FCB+∠ACB=∠FCB+∠FCE ,∴∠FCA=∠ECB ,∴△ACF ∽△BCE ,∴BE CBAF CA=∴AF ,由(1)知,,在Rt △BCF 中,,,根据勾股定理得,,∴由(2)知,,∴+1.即:当正方形CDEF 旋转到B ,E ,F 三点共线时候,线段AF 1+1.7.如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连接AE,点F是AE的中点,连接BF、DF,求证:BF⊥DF.【答案】见解析.【解析】【分析】延长BF,交DA的延长线于点M,连接BD,进而求证△AFM≌△EFB,得AM=BE,FB=FM,即可求得BC+BE=AD+AM,进而求得BD=BM,根据等腰三角形三线合一的性质即可求证BF⊥DF.【详解】延长BF,交DA的延长线于点M,连接BD.∵四边形ABCD是矩形,∴MD∥BC,∴∠AMF=∠EBF,∠E=∠MAF,又FA=FE,∴△AFM≌△EFB,∴AM=BE,FB=FM.∵矩形ABCD中,∴AC=BD,AD=BC,∴BC+BE=AD+AM,即CE=MD.∵CE=AC,∴AC=CE= BD =DM.∵FB=FM,∴BF⊥DF.【点睛】本题考查了矩形的性质,全等三角形的判定和对应边相等的性质,等腰三角形三线合一的性质,本题中求证DB=DM是解题的关键.8.猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF 的中点,试证明(1)中的结论仍然成立.【答案】猜想:DM=ME,证明见解析;(2)成立,证明见解析.【解析】试题分析:延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形的性质得出∠FCE=45°,∠FCA=45°,根据RT△ADF中AM=MF得出DM=AM=MF,根据RT△AEF中AM=MF得出AM=MF=ME,从而说明DM=ME.试题解析:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=DE,∴DM=HM=ME,∴DM=ME.(1)、如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM∴DM=HM=ME,∴DM=ME,(2)、如图2,连接AE,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.考点:(1)、三角形全等的性质;(2)、矩形的性质.9.如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.【答案】(1)AG2=GE2+GF2(2)【解析】试题分析:(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可证明;(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.易证AM=BM=2x,MN=x,在Rt△ABN中,根据AB2=AN2+BN2,可得1=x2+(2x+x)2,解得x=,推出BN=,再根据BG=BN÷cos30°即可解决问题.试题解析:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,∴∠AMN=30°,∴AM=BM=2x,MN=x,在Rt△ABN中,∵AB2=AN2+BN2,∴1=x2+(2x+x)2,解得x=,∴BN=,∴BG=BN÷cos30°=.考点:1、正方形的性质,2、矩形的判定和性质,3、勾股定理,4、直角三角形30度的性质10.在矩形纸片ABCD中,AB=6,BC=8,现将纸片折叠,使点D与点B重合,折痕为EF,连接DF.(1)说明△BEF是等腰三角形;(2)求折痕EF的长.【答案】(1)见解析;(2).【解析】【分析】(1)根据折叠得出∠DEF=∠BEF,根据矩形的性质得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可;(2)过E作EM⊥BC于M,则四边形ABME是矩形,根据矩形的性质得出EM=AB=6,AE=BM,根据折叠得出DE=BE,根据勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可.【详解】(1)∵现将纸片折叠,使点D与点B重合,折痕为EF,∴∠DEF=∠BEF.∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF是等腰三角形;(2)过E作EM⊥BC于M,则四边形ABME是矩形,所以EM=AB=6,AE=BM.∵现将纸片折叠,使点D与点B重合,折痕为EF,∴DE=BE,DO=BO,BD⊥EF.∵四边形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°.在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.在Rt△EMF中,由勾股定理得:EF==.故答案为:.【点睛】本题考查了折叠的性质和矩形性质、勾股定理等知识点,能熟记折叠的性质是解答此题的关键.11.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不须证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F 的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP 的最小值.【答案】(1)AE=DF,AE⊥DF;(2)是;(3)成立,理由见解析;(4)CP=QC﹣QP=.【解析】试题分析:(1)AE=DF,AE⊥DF.先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)是.四边形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因为∠CDF+∠ADF=90°,∠DAE+∠ADF=90°,所以AE⊥DF;(3)成立.由(1)同理可证AE=DF,∠DAE=∠CDF,延长FD交AE于点G,再由等角的余角相等可得AE⊥DF;(4)由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD 的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.试题解析:(1)AE=DF,AE⊥DF.理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.在△ADE和△DCF中,,∴△ADE≌△DCF(SAS).∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是;(3)成立.理由:由(1)同理可证AE=DF,∠DAE=∠CDF延长FD交AE于点G,则∠CDF+∠ADG=90°,∴∠ADG+∠DAE=90°.∴AE⊥DF;(4)如图:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在Rt△QDC中,QC=,∴CP=QC﹣QP=.考点:四边形的综合知识.12.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,求证:△PDH的周长是定值;(3)当BE+CF的长取最小值时,求AP的长.【答案】(1)证明见解析.(2)证明见解析.(3)2.【解析】试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值.试题解析:(1)解:如图1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.(2)证明:如图2,过B作BQ⊥PH,垂足为Q.由(1)知∠APB=∠BPH,又∵∠A=∠BQP=90°,BP=BP,在△ABP和△QBP中,,∴△ABP≌△QBP(AAS),∴AP=QP,AB=BQ,又∵AB=BC,∴BC=BQ.又∠C=∠BQH=90°,BH=BH,在△BCH和△BQH中,,∴△BCH≌△BQH(SAS),∴CH=QH.∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.∴△PDH的周长是定值.(3)解:如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.又∵EF为折痕,∴EF⊥BP.∴∠EFM+∠MEF=∠ABP+∠BEF=90°,∴∠EFM=∠ABP.又∵∠A=∠EMF=90°,在△EFM和△BPA中,,∴△EFM≌△BPA(AAS).∴EM=AP.设AP=x在Rt△APE中,(4-BE)2+x2=BE2.解得BE=2+,∴CF=BE-EM=2+-x,∴BE+CF=-x+4=(x-2)2+3.当x=2时,BE+CF取最小值,∴AP=2.考点:几何变换综合题.13.倡导研究性学习方式,着力教材研究,习题研究,是学生跳出题海,提高学习能力和创新能力的有效途径.下面是一案例,请同学们认真阅读、研究,完成“类比猜想”的问题.习题如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,说明理由.解答:∵正方形ABCD中,AB=AD,∠BAD=∠ADC=∠B=90°,∴把△ABE绕点A逆时针旋转90°至△ADE′,点F、D、E′在一条直线上.∴∠E′AF=90°-45°=45°=∠EAF,又∵AE′=AE,AF=AF∴△AE′F≌△AEF(SAS)∴EF=E′F=DE′+DF=BE+DF.类比猜想:(1)请同学们研究:如图(2),在菱形ABCD中,点E、F分别在BC、CD上,当∠BAD=120°,∠EAF=60°时,还有EF=BE+DF吗?请说明理由.(2)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF吗?请说明理由.【答案】证明见解析.【解析】试题分析:(1)把△ABE绕点A逆时针旋转120°至△ADE′,如图(2),连结E′F,根据菱形和旋转的性质得到AE=AE′,∠EAF=∠E′AF,利用“SAS”证明△AEF≌△AE′F,得到EF=E′F;由于∠ADE′+∠ADC=120°,则点F、D、E′不共线,所以DE′+DF>EF,即由BE+DF>EF;(2)把△ABE绕点A逆时针旋转∠BAD的度数至△ADE′,如图(3),根据旋转的性质得到AE′=AE,∠EAF=∠E′AF,然后利用“SAS”证明△AEF≌△AE′F,得到EF=E′F,由于∠ADE′+∠ADC=180°,知F、D、E′共线,因此有EF=DE′+DF=BE+DF;根据前面的条件和结论可归纳出结论.试题解析:(1)当∠BAD=120°,∠EAF=60°时,EF=BE+DF不成立,EF<BE+DF.理由如下:∵在菱形ABCD中,∠BAD=120°,∠EAF=60°,∴AB=AD,∠1+∠2=60°,∠B=∠ADC=60°,∴把△ABE绕点A逆时针旋转120°至△ADE′,如图(2),连结E′F,∴∠EAE′=120°,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B=60°,∴∠2+∠3=60°,∴∠EAF=∠E′AF,在△AEF和△AE′F中,∴△AEF≌△AE′F(SAS),∴EF=E′F,∵∠ADE′+∠ADC=120°,即点F、D、E′不共线,∴DE′+DF>EF∴BE+DF>EF;(2)当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF成立.理由如下:如图(3),∵AB=AD,∴把△ABE绕点A逆时针旋转∠BAD的度数至△ADE′,如图(3),∴∠EAE′=∠BAD,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B,∵∠B+∠D=180°,∴∠ADE′+∠D=180°,∴点F、D、E′共线,∵∠EAF=∠BAD,∴∠1+∠2=∠BAD,∴∠2+∠3=∠BAD,∴∠EAF=∠E′AF,在△AEF和△AE′F中,∴△AEF≌△AE′F(SAS),∴EF=E′F,∴EF=DE′+DF=BE+DF;归纳:在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF.考点:四边形综合题.14.如图1,在菱形ABCD中,ABC=60°,若点E在AB的延长线上,EF∥AD,EF=BE,点P是DE的中点,连接FP并延长交AD于点G.(1)过D作DH AB,垂足为H,若DH=,BE=AB,求DG的长;(2)连接CP,求证:CP FP;(3)如图2,在菱形ABCD中,ABC=60°,若点E在CB的延长线上运动,点F在AB的延长线上运动,且BE=BF,连接DE,点P为DE的中点,连接FP、CP,那么第(2)问的结论成立吗?若成立,求出的值;若不成立,请说明理由.【答案】(1)1;(2)见解析;(3).【解析】试题分析:(1)根据菱形得出DA∥BC,CD=CB,∠CDG=∠CBA=60°,则∠DAH=∠ABC=60°,根据DH⊥AB得出∠DHA=90°,根据Rt△ADH的正弦值得出AD的长度,然后得出BE的长度,然后证明△PDG≌△PEF,得出DG=EF,根据EF∥AD,AD∥BC 得出EF∥BC,则说明△BEF为正三角形,从而得出DG的长度;(2)连接CG、CF,根据△PDG≌△PEF得出PG=PF,然后证明△CDG≌△CBF,从而得到CG=CF,根据PG=PF得出垂直;(3)过D作EF的平行线,交FP延长于点G,连接CG、CF证△PEF≌△PDG,然后证明△CDG≌△CBF,从而得出∠GCE=120°,根据Rt△CPF求出比值.试题解析:(1)解:∵四边形ABCD为菱形∴DA∥BC CD="CB" ∠CDG=∠CBA=60°∴∠DAH=∠ABC=60°∵DH⊥AB ∴∠DHA=90°在Rt△ADH中 sin∠DAH=∴AD=∴BE=AB=×4=1 ∵EF∥AD ∴∠PDG=∠PEB ∵P为DE的中点∴PD=PE∵∠DPG=∠EPF ∴△PDG≌△PEF ∴DG=EF ∵EF∥AD AD∥BC ∴EF∥BC∴∠FEB=∠CBA=60°∵BE=EF ∴△BEF为正三角形∴EF=BE=1 ∴DG=EF=1、证明:连接CG、CF由(1)知△PDG≌△PEF ∴PG=PF在△CDG与△CBF中易证:∠CDG=∠CBF=60° CD=CB BF=EF=DG ∴△CDG≌△CBF∴CG=CF ∵PG=PF ∴CP⊥GF(3)如图:CP⊥GF仍成立理由如下:过D作EF的平行线,交FP延长于点G连接CG、CF证△PEF≌△PDG ∴DG=EF=BF ∵DG∥EF ∴∠GDP=∠EFP ∵DA∥BC∴∠ADP=∠PEC∴∠GDP-∠ADP=∠EFP-∠PEC ∴∠GDA=∠BEF=60°∴∠CDG=∠ADC+∠GDA=120°∵∠CBF=180°-∠EBF=120°∴∠CBF=∠CDG ∵CD=BC DG=BF ∴△CDG≌△CBF∴CG=CF ∠DCG=∠FCE ∵PG=PF ∴CP⊥PF ∠GCP=∠FCP∵∠DCP=180-∠ABC=120°∴∠DCG+∠GCE=120°∴∠FCE+∠GCE=120°即∠GCE=120°∴∠FCP=∠GCE=60°在Rt△CPF中 tan∠FCP=tan60°==考点:三角形全等的证明与性质.15.(本题满分10分)如图1,已知矩形纸片ABCD中,AB=6cm,若将该纸片沿着过点B的直线折叠(折痕为BM),点A恰好落在CD边的中点P处.(1)求矩形ABCD的边AD的长.(2)若P为CD边上的一个动点,折叠纸片,使得A与P重合,折痕为MN,其中M在边AD上,N在边BC上,如图2所示.设DP=x cm,DM=y cm,试求y与x的函数关系式,并指出自变量x的取值范围.(3)①当折痕MN的端点N在AB上时,求当△PCN为等腰三角形时x的值;②当折痕MN的端点M在CD上时,设折叠后重叠部分的面积为S,试求S与x之间的函数关系式【答案】(1)AD=3;(2)y=-其中,0<x<3;(3)x=;(4)S=.【解析】试题分析:(1)根据折叠图形的性质和勾股定理求出AD的长度;(2)根据折叠图形的性质以及Rt△MPD的勾股定理求出函数关系式;(3)过点N作NQ⊥CD,根据Rt△NPQ 的勾股定理进行求解;(4)根据Rt△ADM的勾股定理求出MP与x的函数关系式,然后得出函数关系式.试题解析:(1)根据折叠可得BP=AB=6cm CP=3cm 根据Rt△PBC的勾股定理可得:AD=3.(2)由折叠可知AM=MP,在Rt△MPD中,∴∴y=-其中,0<x<3.(3)当点N在AB上,x≥3,∴PC≤3,而PN≥3,NC≥3.∴△PCN为等腰三角形,只可能NC=NP.过N点作NQ⊥CD,垂足为Q,在Rt△NPQ中,∴解得x=.(4)当点M在CD上时,N在AB上,可得四边形ANPM为菱形.设MP=y,在Rt△ADM中,,即∴ y=.∴ S=考点:函数的性质、勾股定理.。
中考数学与平行四边形有关的压轴题附答案解析
一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=12,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.【解析】分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.详解:(1)①BG⊥DE,BG=DE;②∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC CG b==,DC CE a又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)连接BE、DG.根据题意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.2.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.413【答案】(1)证明见解析;(2【解析】分析:(1)根据平行四边形ABCD 的性质,判定△BOE ≌△DOF (ASA ),得出四边形BEDF 的对角线互相平分,进而得出结论;(2)在Rt △ADE 中,由勾股定理得出方程,解方程求出BE ,由勾股定理求出BD ,得出OB ,再由勾股定理求出EO ,即可得出EF 的长.详解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴∠A=90°,AD=BC=4,AB ∥DC ,OB=OD ,∴∠OBE=∠ODF ,在△BOE 和△DOF 中,OBE ODF OB ODBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOE ≌△DOF (ASA ),∴EO=FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF ,设BE=x ,则 DE=x ,AE=6-x ,在Rt △ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得:x=133, ∵∴OB=12∵BD ⊥EF ,∴∴EF=2EO=3. 点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键3.在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,且∠EAF=∠CEF=45°.(1)将△ADF 绕着点A 顺时针旋转90°,得到△ABG(如图①),求证:△AEG ≌△AEF ;(2)若直线EF 与AB ,AD 的延长线分别交于点M ,N(如图②),求证:EF 2=ME 2+NF 2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF ,BE ,DF 之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF ,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题4.如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上.(1)证明:BE=CF.(2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.【答案】(1)见解析;(2)43;(3)见解析【解析】试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF;(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;(3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.试题解析:(1)证明:连接AC,∵∠1+∠2=60°,∠3+∠2=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=∠ADC=60°∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴△ABC、△ACD为等边三角形∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF.(ASA)∴BE=CF.(2)解:由(1)得△ABE≌△ACF,则S△ABE=S△ACF.故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值.作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC===; (3)解:由“垂线段最短”可知,当正三角形AEF 的边AE 与BC 垂直时,边AE 最短.故△AEF 的面积会随着AE 的变化而变化,且当AE 最短时,正三角形AEF 的面积会最小,又S △CEF =S 四边形AECF ﹣S △AEF ,则△CEF 的面积就会最大.由(2)得,S △CEF =S 四边形AECF ﹣S △AEF =﹣=.点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE ≌△ACF 是解题的关键.5.问题情境在四边形ABCD 中,BA =BC ,DC ⊥AC ,过点D 作DE ∥AB 交BC 的延长线于点E ,M 是边AD 的中点,连接MB ,ME.特例探究(1)如图1,当∠ABC =90°时,写出线段MB 与ME 的数量关系,位置关系;(2)如图2,当∠ABC =120°时,试探究线段MB 与ME 的数量关系,并证明你的结论; 拓展延伸(3)如图3,当∠ABC =α时,请直接用含α的式子表示线段MB 与ME 之间的数量关系.【答案】(1)MB =ME ,MB ⊥ME ;(2)ME 3.证明见解析;(3)ME =MB·tan 2 .【解析】【分析】(1)如图1中,连接CM .只要证明△MBE 是等腰直角三角形即可;(2)结论:EM=3MB .只要证明△EBM 是直角三角形,且∠MEB=30°即可; (3)结论:EM=BM•tan2 .证明方法类似;【详解】(1) 如图1中,连接CM .∵∠ACD=90°,AM=MD ,∴MC=MA=MD ,∵BA=BC ,∴BM 垂直平分AC ,∵∠ABC=90°,BA=BC ,∴∠MBE=12∠ABC=45°,∠ACB=∠DCE=45°, ∵AB ∥DE ,∴∠ABE+∠DEC=180°,∴∠DEC=90°,∴∠DCE=∠CDE=45°,∴EC=ED ,∵MC=MD ,∴EM 垂直平分线段CD ,EM 平分∠DEC ,∴∠MEC=45°,∴△BME 是等腰直角三角形,∴BM=ME ,BM ⊥EM .故答案为BM=ME ,BM ⊥EM . (2)ME =3MB .证明如下:连接CM ,如解图所示.∵DC ⊥AC ,M 是边AD 的中点,∴MC =MA =MD .∵BA =BC ,∴BM 垂直平分AC .∵∠ABC =120°,BA =BC ,∴∠MBE =12∠ABC =60°,∠BAC =∠BCA =30°,∠DCE =60°. ∵AB ∥DE ,∴∠ABE +∠DEC =180°,∴∠DEC =60°,∴∠DCE =∠DEC =60°,∴△CDE 是等边三角形,∴EC =ED .∵MC =MD ,∴EM 垂直平分CD ,EM 平分∠DEC , ∴∠MEC =12∠DEC =30°, ∴∠MBE +∠MEB =90°,即∠BME =90°.在Rt △BME 中,∵∠MEB =30°,∴ME =3MB .(3) 如图3中,结论:EM=BM•tan 2α.理由:同法可证:BM ⊥EM ,BM 平分∠ABC ,所以EM=BM•tan2α. 【点睛】本题考查四边形综合题、等腰直角三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.6.如图,抛物线y=mx 2+2mx+n 经过A (﹣3,0),C (0,﹣32)两点,与x 轴交于另一点B .(1)求经过A ,B ,C 三点的抛物线的解析式;(2)过点C 作CE ∥x 轴交抛物线于点E ,写出点E 的坐标,并求AC 、BE 的交点F 的坐标 (3)若抛物线的顶点为D ,连结DC 、DE ,四边形CDEF 是否为菱形?若是,请证明;若不是,请说明理由.【答案】(1)y=12x2+x﹣32;(2)F点坐标为(﹣1,﹣1);(3)四边形CDEF是菱形.证明见解析【解析】【分析】将A、C点的坐标代入抛物线的解析式中,通过联立方程组求得该抛物线的解析式;根据(1)题所得的抛物线的解析式,可确定抛物线的对称轴方程以及B、C点的坐标,由CE∥x轴,可知C、E关于对称轴对称。
中考数学平行四边形-经典压轴题附答案
一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图1,正方形ABCD的一边AB在直尺一边所在直线MN上,点O是对角线AC、BD 的交点,过点O作OE⊥MN于点E.(1)如图1,线段AB与OE之间的数量关系为.(请直接填结论)(2)保证点A始终在直线MN上,正方形ABCD绕点A旋转θ(0<θ<90°),过点 B作BF⊥MN于点F.①如图2,当点O、B两点均在直线MN右侧时,试猜想线段AF、BF与OE之间存在怎样的数量关系?请说明理由.②如图3,当点O、B两点分别在直线MN两侧时,此时①中结论是否依然成立呢?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明.③当正方形ABCD绕点A旋转到如图4的位置时,线段AF、BF与OE之间的数量关系为.(请直接填结论)【答案】(1)AB=2OE;(2)①AF+BF=2OE,证明见解析;②AF﹣BF=2OE 证明见解析;③BF ﹣AF=2OE,【解析】试题分析:(1)利用直角三角形斜边的中线等于斜边的一半即可得出结论;(2)①过点B作BH⊥OE于H,可得四边形BHEF是矩形,根据矩形的对边相等可得EF=BH,BF=HE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBH,然后利用“角角边”证明△AOE和△OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证;②过点B作BH⊥OE交OE的延长线于H,可得四边形BHEF是矩形,根据矩形的对边相等可得EF=BH,BF=HE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBH,然后利用“角角边”证明△AOE和△OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证;③同②的方法可证.试题解析:(1)∵AC,BD是正方形的对角线,∴OA=OC=OB,∠BAD=∠ABC=90°,∵OE⊥AB,∴OE=12 AB,∴AB=2OE,(2)①AF+BF=2OE证明:如图2,过点B作BH⊥OE于点H∴∠BHE=∠BHO=90°∵OE⊥MN,BF⊥MN∴∠BFE=∠OEF=90°∴四边形EFBH为矩形∴BF=EH,EF=BH∵四边形ABCD为正方形∴OA=OB,∠AOB=90°∴∠AOE+∠HOB=∠OBH+∠HOB=90°∴∠AOE=∠OBH∴△AEO≌△OHB(AAS)∴AE=OH,OE=BH∴AF+BF=AE+EF+BF=OH+BH+EH=OE+OE=2OE.②AF﹣BF=2OE证明:如图3,延长OE,过点B作BH⊥OE于点H ∴∠EHB=90°∵OE⊥MN,BF⊥MN∴∠AEO=∠HEF=∠BFE=90°∴四边形HBFE为矩形∴BF=HE,EF=BH∵四边形ABCD是正方形∴OA=OB,∠AOB=90°∴∠AOE+∠BOH=∠OBH+∠BOH∴∠AOE=∠OBH∴△AOE≌△OBH(AAS)∴AE=OH,OE=BH,∴AF﹣BF=AE+EF﹣HE=OH﹣HE+OE=OE+OE=2OE③BF﹣AF=2OE,如图4,作OG⊥BF于G,则四边形EFGO是矩形,∴EF=GO,GF=EO,∠GOE=90°,∴∠AOE+∠AOG=90°.在正方形ABCD中,OA=OB,∠AOB=90°,∴∠AOG+∠BOG=90°,∴∠AOE=∠BOG.∵OG⊥BF,OE⊥AE,∴∠AEO=∠BGO=90°.∴△AOE≌△BOG(AAS),∴OE=OG,AE=BG,∵AE﹣EF=AF,EF=OG=OE,AE=BG=AF+EF=OE+AF,∴BF﹣AF=BG+GF﹣(AE﹣EF)=AE+OE﹣AE+EF=OE+OE=2OE,∴BF﹣AF=2OE.2.如图,在正方形ABCD中,E是边BC上的一动点(不与点B、C重合),连接DE、点C 关于直线DE的对称点为C′,连接AC′并延长交直线DE于点P,F是AC′的中点,连接DF.(1)求∠FDP的度数;(2)连接BP,请用等式表示AP、BP、DP三条线段之间的数量关系,并证明;(3)连接AC,若正方形的边长为2,请直接写出△ACC′的面积最大值.【答案】(1)45°;(2)BP+DP=2AP,证明详见解析;(3)2﹣1.【解析】【分析】(1)证明∠CDE=∠C'DE和∠ADF=∠C'DF,可得∠FDP'=12∠ADC=45°;(2)作辅助线,构建全等三角形,证明△BAP≌△DAP'(SAS),得BP=DP',从而得△PAP'是等腰直角三角形,可得结论;(3)先作高线C'G,确定△ACC′的面积中底边AC为定值2,根据高的大小确定面积的大小,当C'在BD上时,C'G最大,其△ACC′的面积最大,并求此时的面积.【详解】(1)由对称得:CD=C'D,∠CDE=∠C'DE,在正方形ABCD中,AD=CD,∠ADC=90°,∴AD=C'D,∵F是AC'的中点,∴DF⊥AC',∠ADF=∠C'DF,∴∠FDP=∠FDC'+∠EDC'=12∠ADC=45°;(2)结论:BP+DP=2AP,理由是:如图,作AP'⊥AP交PD的延长线于P',∴∠PAP'=90°,在正方形ABCD中,DA=BA,∠BAD=90°,∴∠DAP'=∠BAP,由(1)可知:∠FDP =45°∵∠DFP =90°∴∠APD =45°,∴∠P '=45°,∴AP =AP ',在△BAP 和△DAP '中,∵BA DA BAP DAP AP AP '=⎧⎪∠=∠⎨='⎪⎩,∴△BAP ≌△DAP '(SAS ),∴BP =DP ',∴DP +BP =PP '=2AP ;(3)如图,过C '作C 'G ⊥AC 于G ,则S △AC 'C =12AC •C 'G ,Rt △ABC 中,AB =BC 2,∴AC 22(2)(2)2+=,即AC 为定值,当C 'G 最大值,△AC 'C 的面积最大,连接BD ,交AC 于O ,当C '在BD 上时,C 'G 最大,此时G 与O 重合,∵CD =C 'D 2OD =12AC =1, ∴C 'G 2﹣1,∴S △AC 'C =112(21)2122AC C G '•=⨯=. 【点睛】本题考查四边形综合题、正方形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.3.如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =CO ,BO =DO ,且∠ABC +∠ADC =180°.(1)求证:四边形ABCD 是矩形.(2)若∠ADF :∠FDC =3:2,DF ⊥AC ,求∠BDF 的度数.【答案】(1)见解析;(2)18°.【解析】【分析】(1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出∠ABC=90°,根据矩形的判定得出即可;(2)求出∠FDC的度数,根据三角形内角和定理求出∠DCO,根据矩形的性质得出OD=OC,求出∠CDO,即可求出答案.【详解】(1)证明:∵AO=CO,BO=DO∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴OC=OD,∴∠ODC=54°∴∠BDF=∠ODC﹣∠FDC=18°.【点睛】本题考查了平行四边形的性质和判定,矩形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题5.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)(变式探究)(1)当点P在CB延长线上时,其余条件不变(如图3),试探索PD、PE、CF之间的数量关系并说明理由;请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)(2)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD =16,CF=6,求PG+PH的值.(迁移拓展)(3)在直角坐标系中,直线l1:y=-43x+8与直线l2:y=﹣2x+8相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为2.求点P的坐标.【答案】【变式探究】证明见解析【结论运用】8【迁移拓展】(﹣1,6),(1,10)【解析】【变式探究】连接AP,同理利用△ABP与△ACP面积之差等于△ABC的面积可以证得;【结论运用】过点E作EQ⊥BC,垂足为Q,根据勾股定理和矩形的性质解答即可;【迁移拓展】分两种情况,利用结论,求得点P到x轴的距离,再利用待定系数法可求出P的坐标.【详解】变式探究:连接AP,如图3:∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP,∴12AB•CF=12AC•PE﹣12AB•PD.∵AB=AC,∴CF=PD﹣PE;结论运用:过点E作EQ⊥BC,垂足为Q,如图④,∵四边形ABCD是长方形,∴AD=BC,∠C=∠ADC=90°.∵AD=16,CF=6,∴BF=BC﹣CF=AD﹣CF=5,由折叠可得:DF=BF,∠BEF=∠DEF.∴DF=5.∵∠C=90°,∴DC2222106DF CF-=-8.∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC.∴四边形EQCD是长方形.∴EQ=DC=4.∵AD∥BC,∴∠DEF=∠EFB.∵∠BEF=∠DEF,∴∠BEF=∠EFB.∴BE=BF,由问题情境中的结论可得:PG+PH=EQ.∴PG+PH=8.∴PG+PH的值为8;迁移拓展:如图,由题意得:A (0,8),B (6,0),C (﹣4,0)∴AB 2268+10,BC =10.∴AB =BC ,(1)由结论得:P 1D 1+P 1E 1=OA =8∵P 1D 1=1=2,∴P 1E 1=6 即点P 1的纵坐标为6又点P 1在直线l 2上,∴y =2x+8=6,∴x =﹣1,即点P 1的坐标为(﹣1,6);(2)由结论得:P 2E 2﹣P 2D 2=OA =8∵P 2D 2=2,∴P 2E 2=10 即点P 1的纵坐标为10又点P 1在直线l 2上,∴y =2x+8=10,∴x =1,即点P 1的坐标为(1,10)【点睛】本题考查了矩形的性质与判定、等腰三角形的性质与判定及勾股定理等知识点,利用面积法列出等式是解决问题的关键.6.△ABC 为等边三角形,AF AB =.BCD BDC AEC ∠=∠=∠.(1)求证:四边形ABDF 是菱形.(2)若BD 是ABC ∠的角平分线,连接AD ,找出图中所有的等腰三角形.【答案】(1)证明见解析;(2)图中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.【解析】【分析】(1)先求证BD∥AF,证明四边形ABDF是平行四边形,再利用有一组邻边相等的平行四边形是菱形即可证明;(2)先利用BD平分∠ABC,得到BD垂直平分线段AC,进而证明△DAC是等腰三角形,根据BD⊥AC,AF⊥AC,找到角度之间的关系,证明△DAE是等腰三角形,进而得到BC=BD=BA=AF=DF,即可解题,见详解.【详解】(1)如图1中,∵∠BCD=∠BDC,∴BC=BD,∵△ABC是等边三角形,∴AB=BC,∵AB=AF,∴BD=AF,∵∠BDC=∠AEC,∴BD∥AF,∴四边形ABDF是平行四边形,∵AB=AF,∴四边形ABDF是菱形.(2)解:如图2中,∵BA=BC,BD平分∠ABC,∴BD垂直平分线段AC,∴DA=DC,∴△DAC是等腰三角形,∵AF∥BD,BD⊥AC∴AF⊥AC,∴∠EAC=90°,∵∠DAC=∠DCA,∠DAC+∠DAE=90°,∠DCA+∠AEC=90°,∴∠DAE=∠DEA,∴DA=DE,∴△DAE是等腰三角形,∵BC=BD=BA=AF=DF,∴△BCD ,△ABD ,△ADF 都是等腰三角形,综上所述,图中等腰三角形有△ABC ,△BDC ,△ABD ,△ADF ,△ADC ,△ADE .【点睛】本题考查菱形的判定,等边三角形的性质,等腰三角形的判定等知识,属于中考常考题型,熟练掌握等腰三角形的性质是解题的关键.7.在平面直角坐标系中,O 为原点,点A (﹣6,0)、点C (0,6),若正方形OABC 绕点O 顺时针旋转,得正方形OA′B′C′,记旋转角为α:(1)如图①,当α=45°时,求BC 与A′B′的交点D 的坐标;(2)如图②,当α=60°时,求点B′的坐标;(3)若P 为线段BC′的中点,求AP 长的取值范围(直接写出结果即可).【答案】(1)(62,6)-;(2)(333,333)+;(3)323323AP +.【解析】【分析】(1)当α=45°时,延长OA′经过点B ,在Rt △BA′D 中,∠OBC =45°,A′B =626,可求得BD 的长,进而求得CD 的长,即可得出点D 的坐标;(2)过点C′作x 轴垂线MN ,交x 轴于点M ,过点B′作MN 的垂线,垂足为N ,证明△OMC′≌△C′NB′,可得C′N =OM =33,B′N =C′M =3,即可得出点B′的坐标;(3)连接OB ,AC 相交于点K ,则K 是OB 的中点,因为P 为线段BC′的中点,所以PK =12OC′=3,即点P 在以K 为圆心,3为半径的圆上运动,即可得出AP 长的取值范围. 【详解】解:(1)∵A(﹣6,0)、C(0,6),O(0,0),∴四边形OABC是边长为6的正方形,当α=45°时,如图①,延长OA′经过点B,∵OB=62,OA′=OA=6,∠OBC=45°,∴A′B=626-,∴BD=(626=-,-)×21262∴CD=6﹣(1262-)=626-,∴BC与A′B′的交点D的坐标为(662-,6);(2)如图②,过点C′作x轴垂线MN,交x轴于点M,过点B′作MN的垂线,垂足为N,∵∠OC′B′=90°,∴∠OC′M=90°﹣∠B′C′N=∠C′B′N,∵OC′=B′C′,∠OMC′=∠C′NB′=90°,∴△OMC′≌△C′NB′(AAS),当α=60°时,∵∠A′OC′=90°,OC′=6,∴∠C′OM=30°,∴C′N=OM=33,B′N=C′M=3,∴点B′的坐标为()-+;333,333(3)如图③,连接OB,AC相交于点K,则K是OB的中点,∵P 为线段BC′的中点,∴PK =12OC′=3, ∴P 在以K 为圆心,3为半径的圆上运动,∵AK =32,∴AP 最大值为323+,AP 的最小值为323-,∴AP 长的取值范围为323323AP -+.【点睛】本题考查正方形性质,全等三角形判定与性质,三角形中位线定理.(3)问解题的关键是利用中位线定理得出点P 的轨迹.8.如图,在正方形ABCD 中,点E 在CD 上,AF ⊥AE 交CB 的延长线于F .求证:AE=AF .【答案】见解析【解析】【分析】根据同角的余角相等证得∠BAF=∠DAE ,再利用正方形的性质可得AB=AD ,∠ABF=∠ADE=90°,根据ASA 判定△ABF ≌△ADE ,根据全等三角形的性质即可证得AF=AE .【详解】∵AF ⊥AE ,∴∠BAF+∠BAE=90°,又∵∠DAE+∠BAE=90°,∴∠BAF=∠DAE ,∵四边形ABCD 是正方形,∴AB=AD ,∠ABF=∠ADE=90°,在△ABF 和△ADE 中,,∴△ABF≌△ADE(ASA),∴AF=AE.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质等知识点,证明△ABF≌△ADE是解决本题的关键.9.正方形ABCD的边长为1,对角线AC与BD相交于点O,点E是AB边上的一个动点(点E不与点A、B重合),CE与BD相交于点F,设线段BE的长度为x.(1)如图1,当AD=2OF时,求出x的值;(2)如图2,把线段CE绕点E顺时针旋转90°,使点C落在点P处,连接AP,设△APE的面积为S,试求S与x的函数关系式并求出S的最大值.【答案】(1)x=﹣1;(2)S=﹣(x﹣)2+(0<x<1),当x=时,S的值最大,最大值为,.【解析】试题分析:(1)过O作OM∥AB交CE于点M,如图1,由平行线等分线段定理得到CM=ME,根据三角形的中位线定理得到AE=2OM=2OF,得到OM=OF,于是得到BF=BE=x,求得OF=OM=解方程,即可得到结果;(2)过P作PG⊥AB交AB的延长线于G,如图2,根据已知条件得到∠ECB=∠PEG,根据全等三角形的性质得到EB=PG=x,由三角形的面积公式得到S=(1﹣x)•x,根据二次函数的性质即可得到结论.试题解析:(1)过O作OM∥AB交CE于点M,如图1,∵OA=OC,∴CM=ME,∴AE=2OM=2OF,∴OM=OF,∴,∴BF=BE=x,∴OF=OM=,∵AB=1,∴OB=,∴,∴x=﹣1;(2)过P作PG⊥AB交AB的延长线于G,如图2,∵∠CEP=∠EBC=90°,∴∠ECB=∠PEG,∵PE=EC,∠EGP=∠CBE=90°,在△EPG与△CEB中,,∴△EPG≌△CEB,∴EB=PG=x,∴AE=1﹣x,∴S=(1﹣x)•x=﹣x2+x=﹣(x﹣)2+,(0<x<1),∵﹣<0,∴当x=时,S的值最大,最大值为,.考点:四边形综合题10.如图①,在△ABC中,AB=7,tanA=,∠B=45°.点P从点A出发,沿AB方向以每秒1个单位长度的速度向终点B运动(不与点A、B重合),过点P作PQ⊥AB.交折线AC-CB于点Q,以PQ为边向右作正方形PQMN,设点P的运动时间为t(秒),正方形PQMN 与△ABC重叠部分图形的面积为S(平方单位).(1)直接写出正方形PQMN的边PQ的长(用含t的代数式表示).(2)当点M落在边BC上时,求t的值.(3)求S与t之间的函数关系式.(4)如图②,点P运动的同时,点H从点B出发,沿B-A-B的方向做一次往返运动,在B-A上的速度为每秒2个单位长度,在A-B上的速度为每秒4个单位长度,当点H停止运动时,点P也随之停止,连结MH.设MH将正方形PQMN分成的两部分图形面积分别为S1、S2(平方单位)(0<S1<S2),直接写出当S2≥3S1时t的取值范围.【答案】(1) PQ=7-t.(2) t=.(3) 当0<t≤时,S=.当<t≤4,.当4<t<7时,.(4)或或.【解析】试题分析:(1)分两种情况讨论:当点Q在线段AC上时,当点Q在线段BC上时.(2)根据AP+PN+NB=AB,列出关于t的方程即可解答;(3)当0<t≤时,当<t≤4,当4<t<7时;(4)或或.试题解析:(1)当点Q在线段AC上时,PQ=tanAAP=t.当点Q在线段BC上时,PQ=7-t.(2)当点M落在边BC上时,如图③,由题意得:t+t+t=7,解得:t=.∴当点M落在边BC上时,求t的值为.(3)当0<t≤时,如图④,S=.当<t≤4,如图⑤,.当4<t<7时,如图⑥,.(4)或或..考点:四边形综合题.。
专题04 特殊的平行四边形压轴题型汇总(解析版)
专题04 特殊的平行四边形压轴题型汇总一、单选题1.(2021·临沂第九中学)如图,在□ABCD中,对角线BD⊥AD,AB=10,AD=6,O为BD的中点,E为边AB上一点,直线EO交CD于点F,连接DE、BF,下列结论不成立的是()A.四边形DEBF为平行四边形B.若AE=3.6,则四边形DEBF为矩形C.若AE=5,则四边形DEBF为菱形D.若AE=4.8,则四边形DEBF为正方形【答案】D【分析】根据平行四边形的判定方法,矩形的判定方法,菱形的判定方法,正方形的判定方法解答即可.【详解】解:∵O为BD的中点,∵OB=OD,∵四边形ABCD为平行四边形,∵DC//AB,∵∵CDO=∵EBO,∵DFO=∵OEB,∵∵FDO∵∵EBO(AAS),∵OE=OF,∵四边形DEBF为平行四边形,故A选项不符合题意,若AE=3.6,AD=6,∵3.6365AEAD==,又∵63105ADAB==,∵AE ADAD AB=,∵∵DAE=∵BAD,∵∵DAE∵∵BAD,压轴题型汇总1∵∵AED=∵ADB=90°.∵四边形DEBF为矩形.故B选项不符合题意,∵AB=10,AE=5,∵BE=5,又∵∵ADB=90°,AB=5,∵DE=12∵DE=BE,∵四边形DEBF为菱形.故C选项不符合题意,∵AE=3.6时,四边形DEBF为矩形,AE=5时,四边形DEBF为菱形,∵AE=4.8时,四边形DEBF不可能是正方形.故选项D符合题意.故选:D.【点睛】本题考查了矩形的判定、菱形的判定、平行四边形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质、正方形的判定等知识;熟练掌握矩形的判定和菱形的判定,证明三角形全等是解题的关键.2.(2021·河南八年级期末)如图,菱形ABCD的边长是8,对角线交于点O,⊥ABC=120°,若点E是AB的中点,点M是线段AC上的一个动点,则BM+EM的最小值为()A.4B.C.8D.16【答案】B【分析】连接DE交AC于M,由菱形的对角线互相垂直平分,可得B和D关于AC对称,则MD = MB,ME十MB=ME+MD≥DE,即DE就是ME十M B的最小值.【详解】解:连接DE交AC于M,由菱形的对角线互相垂直平分,可得B、D关于AC对称,则MD = MB,ME 十MB =ME +MD ≥DE ,即DE 就是ME 十MB 的最小值,∵∵ABC =120°,∵BAD = 60°,AD = AB =8,∵ABD 是等边三角形,∵点E 是AB 的中点,∵AE = BE =4,DE ∵AB (等腰三角形三线合一的性质),在Rt ∵ADE 中,由勾股定理可得: DE =,故选:B .【点睛】本题考查菱形的性质,轴对称-最短路线问题,勾股定理的应用,解题的关键确定M 的位置. 3.(2021·连云港市新海实验中学)如图,在Rt ABC 中,⊥ACB =90°,BC =2,⊥BAC =30°,将ABC 绕顶点C 逆时针旋转得到⊥A 'B 'C ', M 是BC 的中点,P 是A 'B '的中点, 连接PM ,则线段PM 的最大值是( )A .4B .2C .3D .【答案】C【分析】连接PC ,分别求出PC ,CM 的长,然后根据PM MC PC ≤+即可得到答案.【详解】解:如图所示,连接PC ,∵∵ACB =90°,BC =2,∵BAC =30°,∵AB =2BC =4,由旋转的性质可知:=90A CB ACB ''=∠∠,4A B AB ''==,∵P 、M 分别是A B ''、BC 的中点, ∵122PC A B ''==,112CM BC ==, ∵3PM MC PC ≤+=,∵PM 的最大值为3,且此时P 、C 、M 三点共线,故选C .【点睛】本题主要考查了旋转的性质,直角三角形斜边的中线,三角形三边的关系,解题的关键在于能够熟练掌握相关知识进行求解.4.(2021·山东济宁学院附属中学九年级)如图,矩形纸片ABCD ,6cm AB =,8cm BC =,E 为边D 上一点,将BCE 沿BE 所在的直线折叠,点C 恰好落在AD 边上的点F 处,过点F 作FM BE ⊥,垂足为点M ,取AF 的中点N ,连接MN ,则MN =( )cm .A .5B .6C .245D .【答案】A【分析】 连接AC ,MC ,可求得M 为CF 的中点,根据中位线的性质可得12MN AC =,勾股定理求得AC 即可.【详解】解:连接AC ,MC由折叠的性质可得CF EB ⊥,CE EF =又∵FM BE ⊥∵点M 在线段FC 上,90EMF EMC ∠=∠=︒又∵ME ME =∵()EMF EMC HL △≌△∵FM MC =又∵AF 的中点N∵MN 为ACF 的中位线 ∵12MN AC =在Rt ACB 中,10cm AC =∵5cm MN =故选A【点睛】此题考查了折叠的性质,矩形的性质以及三角形中位线的性质,熟练掌握相关基本性质是解题的关键.5.(2021·珠海市九洲中学)如图所示,矩形ABCD 中,AE 平分BAD ∠交BC 于E ,15CAE ∠=︒,则下面的结论:①ODC △是等边三角形;②2BC AB =;③AOB BOC S S =△△;④AOE COE S S =,其中正确的有( )A .①②③B .①②④C .①③④D .②③④【答案】C【分析】 由矩形的性质得OA =OD =OC =OB ,再证∵ACD =60°,得∵ODC 是等边三角形,故①正确;然后由含30°角的直角三角形的性质得AC =2AB ,则2AB >BC ,故②错误;然后由OA =OC得AOB BOC S S =△△,AOE COE SS =,故③④正确.【详解】 解:∵四边形ABCD 是矩形,∵AD //BC ,∵BAD =∵ABC =∵ADC =90°,OA =OC ,OD =OB ,AC =BD ,∵OA =OD =OC =OB ,∵AE 平分∵BAD ,∵∵DAE =45°,∵∵CAE =15°,∵∵DAC =45°−15°=30°,∵∵ACD =90°−∵DAC =90°−30°=60°,∵OD =OC ,∵∵ODC 是等边三角形,故①正确;∵AD //BC ,∵∵ACB =∵DAC =30°,∵∵ABC =90°,∵AC =2AB ,∵2AB >BC ,故②错误;∵OA =OC ,∵AOB BOC S S =△△,AOE COE SS =,故③④正确;故答案为:C.【点睛】本题考查了矩形的性质、等边三角形的判定与性质、含30°角的直角三角形的性质以及三角形面积等知识;熟练掌握矩形的性质,证出OA =OD =OC 是解题的关键.6.(2021·西安市铁一中学九年级开学考试)如图,在平面直角坐标系xoy 中,()4,4P ,A 、B 分别是x 轴正半轴、y 轴正半轴上的动点,且ABO 的周长是8,则P 到直线AB 的距离是( )A .4B .3C .2.5D .2【答案】A【分析】 构造正方形DPCO ,将∵PA 'C 沿PA'折叠得到∵PA 'E ,再证明∵PB 'D ∵∵PB 'E ,得到''A B O 的周长等于8,于是∵A 'B'O 即∵ABO ,故可得到P 到直线AB 的距离为PE =4,即可求解.【详解】如图,∵()4,4P∵构造正方形DPCO ,边长等于4,故PD =PC =4将∵PA 'C 沿PA'折叠得到∵PA 'E ,延长A'E 交y 轴于点B',∵PC =PE ,A 'C =A 'E ,∵PCA'=∵PEA'=90°,∵PD =PE又∵PDB'=∵PEB'=90°,PB'=PB'∵∵PB 'D ∵∵PB'E (HL )∵B 'D =B'E∵''A B O 的周长等于A 'O +OB'+A 'B'=A'O +B'O +B'E +A'E = A 'O +B'O +B'D +A 'C =OC +DO =8故∵A 'B 'O 符合题意中的∵ABO ,∵P 到直线AB 的距离为PE =4故选A .【点睛】此题主要考查正方形的判定与性质,解题的关键是根据题意构造正方形,利用全等三角形的性质求解.7.(2021·浦江县教育研究和教师培训中心)如图,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上,AE BF ⊥,交点为G ,CH BF ⊥,交BF 于点H .若CH HG =,1CFH S =△,那么正方形的面积为( )A .15B .20C .22D .24【答案】B【分析】 根据AE BF ⊥,利用同角的余角相等得出EAB FBC ∠=∠,再根据AAS 即可证出ABG BCH ≌△△,得BG CH =,设CH x =,算出BC ,设FH 为y ,分别在CFH △和CFB 中使用勾股定理得12y x =,再由1CFH S =△得2x =,即可求出正方形的面积.【详解】 解:四边形ABCD 是正方形,AB BC ∴=,90ABE BCF ∠=∠=︒, AE BF ⊥,90ABC ∠=︒,90BAE GBA ∴∠+∠=︒,90FBC GBA ∠+∠=︒,BAE CBF ∴∠=∠,CH BF ⊥,90BHC AGB ∴∠=︒=∠,在ABG 与BCH 中,BGA BHC BAE CBF AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABG BCH AAS ∴△≌△,BG CH ∴=,设CH x =,则HG BG x ==,2BH x ∴=,BC ∴,设FH 为y ,CH BF ⊥,在CFH △中,22222CF FH CH x y =+=+,在CFB 中,22222(2)5CF BF BC x y x =-=+-,2222(2)5x y x y x ∴+=+-, 解得:12y x =, ∴211124CFH S FH CH x =⋅==△,2x ∴=(舍负),∴正方形的面积为2220BC ==.故选:B .【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质、勾股定理,分别在CFH △和CFB 中使用勾股定理是本题的关键.8.(2021·四川绵阳市·中考真题)如图,在等腰直角ABC 中,90C ∠=︒,M 、N 分别为BC 、AC 上的点,50CNM ∠=︒,P 为MN 上的点,且12PC MN =,117BPC ∠=︒,则ABP ∠=( )A .22︒B .23︒C .25︒D .27︒【答案】A【分析】作辅助线,构建矩形,得P 是MN 的中点,则MP =NP =CP ,根据等腰三角形的性质和三角形外角的性质可解答.【详解】解:如图,过点M 作MG ∵BC 于M ,过点N 作NG ∵AC 于N ,连接CG 交MN 于H ,∵∵GMC=∵ACB=∵CNG=90°,∵四边形CMGN是矩形,∵CH=12CG=12MN,∵PC=12MN,存在两种情况:如图,CP=CP1=12MN,①P是MN中点时,∵MP=NP=CP,∵∵CNM=∵PCN=50°,∵PMN=∵PCM=90°−50°=40°,∵∵CPM=180°−40°−40°=100°,∵∵ABC是等腰直角三角形,∵∵ABC=45°,∵∵CPB=117°,∵∵BPM=117°−100°=17°,∵∵PMC=∵PBM+∵BPM,∵∵PBM=40°−17°=23°,∵∵ABP =45°−23°=22°.②CP 1=12MN ,∵CP =CP 1,∵∵CPP 1=∵CP 1P =80°,∵∵BP 1C =117°,∵∵BP 1M =117°−80°=37°,∵∵MBP 1=40°−37°=3°,而图中∵MBP 1>∵MBP ,所以此种情况不符合题意.故选:A .【点睛】此题主要考查了等腰直角三角形的性质,矩形的性质和判定,等腰三角形的性质等知识,作出辅助线构建矩形CNGM 证明P 是MN 的中点是解本题的关键.9.(2021·四川绵阳市·中考真题)如图,在边长为3的正方形ABCD 中,30∠=︒CDE ,DE CF ⊥,则BF 的长是( )A .1B C D .2【答案】C【分析】 由正方形的性质得出DC CB =,90DCE CBF ∠=∠=︒,由ASA 证得DCE CBF △≌△,即可得出答案.【详解】 解:四边形ABCD 是正方形,90FBC DCE ∴∠=∠=︒,3CD BC ==,∵在Rt DCE 中,30∠=︒CDE ,12CE DE ∴=, 设CE x =,则2DE x =,根据勾股定理得:222DC CE DE +=,即2223(2)x x +=,解得:x =, 3CE ,DE CF ⊥,90DOC ∴∠=︒,60DCO ∴∠=︒,906030BCF CDE ∴∠=︒-︒=︒=∠,DCE CBF ∠=∠,CD BC =,()DCE CBF ASA ∴△≌△,BF CE ∴=故选:C .【点睛】 本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,含30角的直角三角形的性质等知识,证明DCE CBF △≌△是解题的关键.10.(2021·河南濮阳县·八年级期中)如图,AD 是ABC 的中线,过点A 作//AM BC ,在AM 上截取AE DC =,连接CE ,则下列命题中,假命题是( )A .若AB AC =,则四边形ADCE 是矩形B .若AD 平分BAC ∠,则四边形ADCE 是矩形C .若ABC ∠与ACB ∠互余,则四边形ADCE 是菱形D .若222AB BC AC +=,则四边形ADCE 是菱形【答案】D【分析】先推出四边形ADCE 是平行四边形,结合等腰三角形的性质,可得AD ∵BC ,进而即可判断A ;过点D 作DG ∵AB ,DH ∵AC ,推出ABC 是等腰三角形,进而可判断B ,根据直角三角形的性质,可判断C ;先推出ABC 是直角三角形且∵B =90°,进而判断D .【详解】解:∵//AM CD ,AE DC =,∵四边形ADCE 是平行四边形,∵当AB AC =时,AD 是ABC 的中线,∵AD ∵BC ,即∵ADC =90°,∵四边形ADCE 是矩形,故A 是真命题;∵当AD 平分BAC ∠,过点D 作DG ∵AB ,DH ∵AC ,∵DG =DH ,∵AD 是ABC 的中线,∵BD =CD ,∵BDG CDH ≌(HL ),∵∵ABC =∵ACB ,∵ABC 是等腰三角形,∵AD ∵BC ,即:∵ADC =90°,∵平行四边形ADCE 是矩形,故B 是真命题;∵ABC ∠与ACB ∠互余,即ABC ∠+ACB ∠=90°,∵ABC 是直角三角形,∵AD 是ABC 的中线,∵AD =12BC =DC ,∵平行四边形ABCD 是菱形,故C 是真命题;∵当222AB BC AC +=时,∵ABC 是直角三角形且∵B =90°,∵AD 是ABC 的中线,∵AD ≠12BC =DC ,∵四边形ABCD 不是菱形,故D 是假命题【点睛】本题主要考查平行四边形的判定和性质,矩形,菱形的判定定理,直角三角形的性质,等腰三角形的性质,熟练掌握平行四边形的判定和性质,矩形,菱形的判定定理是解题的关键.11.(2021·诸暨市开放双语实验学校八年级期中)如图,正方形ABCD的面积为s,ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A B.C D.s【答案】A【分析】由于点B与D关于AC对称,所以连接BD,BE与AC的交点即为P点.此时PD+PE=BE最小,而BE是等边∵ABE的边,BE=AB,由正方形ABCD的面积为s,可求出AB的长,从而得出结果.【详解】解:连接BD,设BE与AC交于点F,连接PD∵点B与D关于AC对称,∵PD=PB,∵PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为s,∵AB又∵∵ABE是等边三角形,∵BE=AB∵故选:A.此题主要考查了轴对称--最短路线问题,难点主要是确定点P 的位置.注意充分运用正方形的性质:正方形的对角线互相垂直平分.再根据对称性确定点P 的位置即可.要灵活运用对称性解决此类问题.二、填空题12.(2021·哈尔滨市第四十七中学八年级月考)ABCD 的对角线AC 、BD 相交于点O ,若5AB =,8AC =,6BD =,则DCO 的周长为________.【答案】12【分析】首先由勾股定理的逆定理证明∵AOB 为直角三角形,从而得到AC ∵BD ,然后根据对角线相互垂直的平行四边形是菱形判定进而解答即可.【详解】解:∵四边形ABCD 是平行四边形,且AC =8,BD =6,∵AO =4,BO =3,∵AB =5,∵AB 2=AO 2+BO 2.∵∵OAB 是直角三角形.∵AC ∵BD .又∵四边形ABCD 为平行四边形,∵四边形ABCD 为菱形.∵∵DCO 的周长=CD +OC +OD =5+4+3=12,故答案为:12【点睛】 本题主要考查的是菱形的判定、平行四边形的性质等知识,掌握勾股定理的逆定理的应用、菱形的判定是解题的关键.13.(2021·哈尔滨德强学校八年级月考)在矩形ABCD 中,12AB =,7BC =,点E 在CD 边上,点F 在AB 边上,连接EF 、DF ,若3CE DE =,EF =DF 的长为_______.【分析】根据矩形的性质及勾股定理的应用对该问题进行分类讨论,分点E 在点G 的左边和点E 在点G 的右边讨论.【详解】解:如图所示,作FG DC ⊥于点G ,则90FGC ∠=︒,四边形ABCD 为矩形,12,90DC AB B C ∴==∠=∠=︒,∴四边形FGCB 为矩形,7FG BC ∴==, 5EF =1EG ∴==, 3CE DE =,1112344DE DC ∴==⨯=, 314DG DE EG ∴=+=+=,DF ∴==如图,作FG DC ⊥于点G ,则90FGC ∠=︒,四边形ABCD 为矩形,12,90DC AB B C ∴==∠=∠=︒,∴四边形FGCB 为矩形,7FG BC ∴==, 5EF =1EG ∴==, 3CE DE =,1112344DE DC ∴==⨯=, 312DG DE EG ∴=-=-=,DF ∴【点睛】本题考查了矩形的性质、勾股定理的应用,解题的关键是掌握相关的性质定理,利用分类讨论的思想进行求解.14.(2021·哈尔滨德强学校八年级月考)如图,四边形ABCD 是正方形,以CD 为边向外作等边CDE △,BE 与AC 相交于点M ,则AMB ∠的度数是________°.【答案】60【分析】易得ABM ∆与ADM ∆全等,AMD AMB ∠=∠,因此只要求出15CBE ∠=︒的度数即可.【详解】解:连接DM ,四边形ABCD 是正方形.AB AD ∴=,BAM DAM ∠=∠.又AM=AMABM ∴∆与ADM ∆全等.AMD AMB ∴∠=∠.CB CE =,CBE CEB ∴∠=∠.9060150BCE BCD DCE ∠=∠+∠=︒+︒=︒,15CBE ∴∠=︒.45ACB =︒∠,60AMB ACB CBE ∴∠=∠+∠=︒.故答案为:60.【点睛】此题考查正方形的性质,三角形的外角的性质、三角形全等,解题的关键是熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化.15.(2021·江苏姑苏区·苏州市振华中学校)如图,矩形ABCD 中,2AC AB =,将矩形ABCD 绕点A 旋转得到矩形AB C D ''',使点B 的对应点B '落在AC 上,在'B C '上取点F ,使'B F AB =.则'FBB ∠的度数为_________°.【答案】15【分析】连接BB ',根据矩形的性质及旋转的性质得到90ABC AB C ''∠=∠=︒,AB AB '=,由已知条件及直角三角形的性质得到BB AB B C AB '''===,可证ABB '是等边三角形,再由已知证明B F BB ''=,最后由等腰三角形的性质求解即可.【详解】如图,连接BB ',∵四边形ABCD 是矩形,∵∵ABC =90°,由旋转的性质可知:90ABC AB C ''∠=∠=︒,AB AB '=,∵AC =2AB ,∵2AC AB AB B C '''==+,∵AB B C ''=,∵∵ABC =90°,∵BB AB B C AB '''===,∵ABB '是等边三角形,∵60AB B '∠=︒,∵150BB F '∠=︒,∵B F AB '=,∵B F BB ''=,∵15B BF B FB ''∠=∠=︒.故答案为:15.【点睛】本题考查了矩形的性质,旋转的性质,等边三角形的判定和性质,等腰三角形的判定与性质,熟练运用各性质及判定定理进行推理是解题的关键.16.(2021·重庆实验外国语学校)如图,在矩形ABCD 中,点E 是线段AB 上的一点,AE AB <,DE CE ⊥,将BCE 沿CE 翻折,得到FCE △,连接DF ,若3AD =,10AB =,则线段DF 的长度为______.【分析】过点F 作FH CD ⊥,根据矩形和折叠的性质得到FEC BEC GCE ∠=∠=∠,从而得到G 为CD 的中点,求得EG 、FG 的长度,勾股定理求得GC ,等面积法求得FH ,勾股定理即可求得DF .【详解】解:过点F 作FH CD ⊥,如下图:在矩形ABCD 中,10CD AB ==,3AD BC ==,//CD AB ,90B ∠=︒ ∵BEC GCE ∠=∠由折叠的性质可得:3CF BC ==,FEC BEC ∠=∠,90GFC B ∠=∠=︒ ∵FEC BEC GCE ∠=∠=∠∵=EG CG又∵DE CE ⊥∵90DEC ∠=︒∵90,90GEC DEG GDE DCE ∠+∠=︒∠+∠=︒∵GDE DEG ∠=∠ ∵152DG GE GC CD ====,即G 为CD 的中点在Rt GFC 中,由勾股定理得4FG = 1122GFC S FC FG GC FH =⨯=⨯△得125FC FG FH GC ⨯==由勾股定理得165GH =415DH DG GH =+=由勾股定理得DF【点睛】此题考查了矩形的性质,折叠的性质,直角三角形的性质,勾股定理,等腰三角形的性质,熟练掌握相关基本性质是解题的关键.17.(2021·哈尔滨市虹桥初级中学校八年级期中)如图,在正方形ABCD 中,E 为BC 边上一点,AF AE ⊥交CD 延长线于点F ,2BE =,EFD BAE ∠=∠,则BG =_________.【答案】2+【分析】先证明∵EAF 是等腰直角三角形,过点E 作EH ∵BC 于点E ,交BD 于点H ,证明∵AEH =∵HEG =12∵AEF =22.5°,得到EG =HG =BE =2,即可求解.【详解】解:∵正方形ABCD 中,AF ∵AE ,∵∵BAD =∵EAF =90°,AB =AD ,∵∵BAE+∵EAD =∵DAF+∵EAD =90°,∵∵BAE =∵DAF ,又∵∵ABE =∵ADF =90°,∵∵BAE ∵∵DAF (ASA ),∵AE =AF ,∵∵EAF 是等腰直角三角形,∵∵AEF =∵AFE =45°,过点E 作EH ∵BC 于点E ,交BD 于点H ,如图:∵四边形ABCD 是正方形,∵∵HBE =45°,∵∵HBE 是等腰直角三角形,且BE =EG =2,∵HB BE∵EH ∵BC ,∵EFD =∵BAE ,∵∵FEC =∵AEB ,∵∵AEH =∵HEG =12∵AEF =22.5°,∵∵BHE =∵HEG +∵HGE =45°,∵∵HEG =∵HGE =22.5°,∵HG =HE =BE =2,∵BG故答案为:【点睛】本题考查了正方形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是证明∵AEH =∵HEG =12∵AEF =22.5°.18.(2021·苏州高新区实验初级中学八年级月考)如图,在Rt ABC △中,90BAC ∠=︒,5AB =,12AC =,P 为边BC 上一动点(P 不与B 、C 重合),PE AB ⊥于E ,PF AC ⊥于F ,M 为EF 中点,则AM 的取值范围是______.【答案】30613AM < 【分析】首先连接AP ,由在Rt ABC ∆中,90BAC ∠=︒,PE AB ⊥于E ,PF AC ⊥于F ,可证得四边形AEPF 是矩形,即可得AP EF =,即2=AP AM ,然后由当⊥AP BC 时,AP 最小,可求得AM 的最小值,又由AP AC <,即可求得AM 的取值范围.【详解】解:连接AP ,PE AB ⊥,PF AC ⊥,90AEP AFP ∴∠=∠=︒,90BAC ∠=︒,∴四边形AEPF 是矩形,AP EF ∴=,90BAC ∠=︒,M 为EF 中点,1122AM EF AP ∴==, 在Rt ABC ∆中,90BAC ∠=︒,5AB =,12AC =,13BC ∴=,当⊥AP BC 时,AP 值最小, 此时115121322BAC S AP ∆=⨯⨯=⨯⨯,6013AP ∴=, 即AP 的范围是6013AP, 60213AM ∴, AM ∴的范围是3013AM ,AP AC <,即12AP <,6AM ∴<, ∴30613AM <. 故答案为:30613AM <. 【点睛】此题考查了矩形的判定与性质、勾股定理以及直角三角形的面积问题.注意掌握辅助线的作法,注意当⊥AP BC 时,AP 最小,且AP AC <.三、解答题19.(2021·吉林德惠市·七年级期末)如图,点E 是正方形ABCD 的边AB 上一点,4AB =, 1.5AE =,DAE △逆时针旋转后能够与DCF 重合.(1)旋转中心是哪一点,旋转角为多少度?(2)请你判断DFE △的形状,并说明理由;(3)求四边形ABFD 的面积.【答案】(1)点D ,90°;(2)等腰直角三角形,理由见解析;(3)19【分析】(1)依据DAE △逆时针旋转后能够与DCF 重合,即可得到旋转中心以及旋转角的度数;(2)根据旋转可得DE DF =,90EDF ADC ∠=∠=︒,即可得到DFE △是等腰直角三角形; (3)根据旋转的性质可得ADE CDF ≌,再由CDF ABCD ABFD S S S =+△正方形四边形即可得到答案.【详解】解:(1)DAE △旋转后能与DCF 重合,∴旋转中心是点D ,四边形ABCD 是正方形,90ADC ∴∠=︒,∴旋转角为90︒;(2)DFE △是等腰直角三角形.理由如下:根据旋转可得DE DF =,90EDF ADC ∠=∠=︒,所以DFE △是等腰直角三角形.(3)四边形ABCD 是正方形,90A BCD ∴∠=∠=︒,4AD AB ==,4416ABCD S =⨯=正方形,根据旋转可得:ADE CDF ≌,90DCF DAE ∴∠=∠=︒,180DCF BCD ∴∠+∠=︒,114 1.5322CDF ADE S S AD AE ∴==⋅=⨯⨯=△△, 16319CDF ABCD ABFD S S S ∴=+=+=△正方形四边形.【点睛】本题是四边形综合题,主要考查了旋转的性质,正方形的性质,等腰直角三角形的判定,掌握“旋转不改变图形的形状与大小,只改变图形的位置,旋转前后两个图形全等”是解题的关键.20.(2021·海南海口市·)如图1,在正方形ABCD 中,点P 是线段BC 上一个动点(与点B 、C 不重合),将线段AP 绕着点P 顺时针旋转90°得到线段PE ,连接DE ,过点D 作//DF EP ,交AB 于点F ,交AP 于点G ,连接FP .(1)求证:①ABP DAF ≅△△;②四边形PEDF 是平行四边形;(2)如图2,点M 是BC 延长线上一点,当点P 在线段BC 上运动时,求证:点E 始终在DCM ∠的角平分线上.【答案】(1)①见解析;②见解析;(2)点E 始终在DCM ∠的角平分线上,见解析.【分析】(1)由正方形的性质得出AB DA =,90B DAF ∠=∠=︒,推出//DF EP ,证得BAP ADF ∠=∠,根据ASA 即可证得答案;(2)由全等三角形的性质可得AP DF =,等量代换可得DF PE =,再根据平行四边形的判定定理即可证得答案;(3)过点E 作EH DC ⊥于点H ,EI BM ⊥于点I ,先证明四边形CIEH 是矩形,根据AAS 证ABP PIE ≅,得到AB PI =,BP IE =,再通过证四边形CIEH 是正方形.即可证得答案.【详解】(1)①证明:∵四边形ABCD 是正方形,∵AB DA =,90B DAF ∠=∠=︒.∵90APE ∠=︒,//DF EP ,∵90AGD ∠=︒,∵ADF DAP BAP DAP ∠+∠=∠+∠,∵BAP ADF ∠=∠,∵()ASA ABP DAF ≅.②由ABP DAF ≅△△,可知AP DF =.∵AP PE =,∵DF PE =.∵//DF EP ,∵四边形PEDF 是平行四边形.(2)如图,过点E 作EH DC ⊥于点H ,EI BM ⊥于点I ,则90EHC CIE ∠=∠=︒,∵90HCI ∠=︒,∵四边形CIEH 是矩形.∵90APE ∠=︒,∵90APB EPI ∠+∠=︒,∵90PEI EPI ∠+∠=︒,∵APB PEI ∠=∠.∵90B PIE ∠=∠=︒,AP PE =,∵()AAS ABP PIE ≅.∵AB PI =,BP IE =.∵AB BC =,∵BC PI =,即BP PC CI PC +=+,∵BP CI =,∵IE CI =,∵四边形CIEH 是正方形.∵点E 始终在DCM ∠的角平分线上.【点睛】本题考查了四边形的综合题:熟练掌握三角形全等的判定和性质,正方形的判定与性质以及平行四边形、矩形的判定是解题的关键.21.(2021·新余市第一中学九年级)如图,在正方形ABCD 中,点E 、F 分别在边BC 和CD 上,且BE CF =,连接AE 、BF ,其相交于点G ,将BCF △沿BF 翻折得到BC F '△,延长FC '交BA 延长线于点H .(1)求证:AE BF =;(2)若3AB =,2EC BE =,求BH 的长.【答案】(1)见解析;(2)5.【分析】(1)根据正方形的性质得到BA BC =,90ABC BCD ∠=∠=︒,利用SAS 定理证明ABE BCF △△≌,根据全等三角形的性质证明结论;(2)根据折叠的性质得到C BF CBF ∠'=∠,90BC F BCF ∠'=∠=︒,证明HB HF =,根据勾股定理列式计算即可.【详解】(1)证明:四边形ABCD 是正方形,BA BC ∴=,90ABC BCD ∠=∠=︒,在ABE △和BCF △中,AB BC ABE BCF BE CF =⎧⎪∠=∠⎨⎪=⎩,()ABE BCF SAS ∴△≌△,AE BF ∴=;(2)解:3BC AB ==,2EC BE =,2EC ∴=,1BE =,1C F CF ∴'==,由折叠的性质可知,C BF CBF ∠'=∠,90BC F BCF ∠'=∠=︒,90C FB C BF ∠'+∠'=︒,90HBF FBC ∠+∠=︒,C FB HBF ∴∠'=∠,HB HF ∴=,312HC HF C F HB C F AH AH ∴'=-'=-'=+-=+,在Rt HBC '△中,222HB C B C H ='+',即222(3)3(2)AH AH +=++,解得:2AH =,5BH AH AB ∴=+=.【点睛】本题考查的是正方形的性质、全等三角形的判定和性质、折叠的性质、勾股定理的应用,掌握全等三角形的判定定理和性质定理、正方形的性质定理是解题的关键.22.(湖北省黄冈市2020-2021学年八年级下学期期末数学试题)我们给出如下定义:顺次连接任意一个四边形各边中所得的四边形叫中点四边形.(1)如图1,在四边形ABCD 中,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点,中点四边形EFGH 是 .(2)如图2,点P 是四边形ABCD 内一点,且满足PA =PB ,PC =PD ,⊥APB =⊥CPD ,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点.猜想中点四边形EFGH 的形状,并证明你的猜想.(3)若改变(2)中的条件,使⊥APB =⊥CPD =90°,其他条件不变,直接写出中点四边形EFGH 的形状(不必证明).【答案】(1)平行四边形;(2)菱形,见解析;(3)正方形【分析】(1)连接BD ,根据三角形中位线定理证明EH ∵FG ,EH =FG ,根据平行四边形的判定定理证明即可;(2)证明∵APC∵∵BPD,根据全等三角形的性质得到AC=BD,再证明EF=FG,根据菱形的判定定理证明结论;(3)证明∵EHG=90°,利用∵APC∵∵BPD,得到∵ACP=∵BDP,即可证明∵COD=∵CPD=90°,再根据平行线的性质证明∵EHG=90°,根据正方形的判定定理证明即可.【详解】解:(1)如图1,连接BD,∵点E,H分别为边AB,DA的中点,∵EH∵BD,EH=12 BD,∵点F,G分别为边BC,CD的中点,∵FG∵BD,FG=12 BD,∵EH∵FG,EH=GF,∵中点四边形EFGH是平行四边形,故答案为:平行四边形;(2)结论:四边形EFGH是菱形,理由:如图2,连接AC,BD.∵∵APB=∵CPD,∵∵APB+∵APD=∵CPD+∵APD,即∵APC=∵BPD,在∵APC和∵BPD中,AP BP APC BPD PC PD =⎧⎪∠=∠⎨⎪=⎩,∵∵APC ∵∵BPD (SAS ),∵AC =BD ,∵点E ,F ,G 分别为边AB ,BC ,CD 的中点,∵EF =12AC ,FG =12BD , ∵EF =FG ,由(1)知中点四边形EFGH 是平行四边形,∵平行四边形EFGH 是菱形;(3)结论:四边形EFGH 是正方形,理由:如图2,设AC 与BD 交于点O .AC 与PD 交于点M ,∵∵APC ∵∵BPD ,∵∵ACP =∵BDP ,∵∵DMO =∵CMP ,∵∵COD =∵CPD =90°,∵EH ∵BD ,AC ∵HG ,∵∵EHG =∵DOC =90°,由(2)知中点四边形EFGH 是菱形,∵菱形EFGH 是正方形.【点睛】本题考查的是平行四边形的判定和性质、全等三角形的判定和性质、菱形的判定和性质、正方形的判定和性质,解题的关键是灵活应用三角形中位线定理,学会添加常用辅助线. 23.(2021·吉林梅河口市·八年级期末)如图,在矩形ABCD 中,E 是边AD 上的点,ABE △沿BE 折叠,点A 的对应点为点G .(1)如图1,当点G 恰好在BC 边上时,四边形ABGE 的形状是_______;(2)如图2,当E是AD的中点,G在矩形ABCD内部时,延长BG交DC边于点F.①求证:BF AB DF=+;②若AD=,试探索线段DF与FC的数量关系.【答案】(1)正方形;(2)①见解析;②CF=DF,理由见解析【分析】(1)先根据有三个角是直角得四边形ABGE是矩形,根据折叠的性质和矩形的性质可以得到AE=BG=AB,从而得四边形ABGE是正方形;(2)①连接EF,在矩形ABCD中,AB=CD,AD=BC,∵A=∵C=∵D=90°,由∵ABE沿BE折叠得到∵GBE,可得BG=AB,EG=AE=ED,∵A=∵BGE=90°,进而可证∵EGF∵∵EDF,由此求解即可;②设AB=DC=a,则DF=b,在Rt∵BCF中,由勾股定理可得4ab=2a²,进而可得2=,CD DF =.则DF FC【详解】解:(1)正方形,理由如下:∵四边形ABCD是矩形,∵∵A=∵ABC=90°,由折叠得:∵BGE=∵A=90°,∵ABE=∵EBG=45°,AB=BG∵四边形ABGE是矩形,∵AE=BG=AB,∵矩形ABGE是正方形;故答案为:正方形;(2)①证明:如图,连接EF,在矩形ABCD 中,AB =CD ,AD =BC ,∵A =∵C =∵D =90°,∵E 是AD 的中点,∵ AE = DE ,∵∵ABE 沿BE 折叠得到∵GBE ,∵BG = AB , EG = AE = ED ,∵A =∵BGE =90°,∵∵EGF =∵D =90°,在Rt ∵EGF 和Rt ∵EDF 中,∵EG =ED ,EF =EF ,∵∵EGF ∵∵EDF (HL )∵GF =DF ,∵BF =BG +GF =AB +DF ;②DF FC =,理由如下设AB =DC =a ,DF =b ,∵AD =BC ,由①得:BF =AB +DF ,∵BF =a +b ,CF =a -b ,在Rt ∵BCF 中,由勾股定理得:222BC B F F C =+,∵())()222a b a b +=+-,∵4ab =2a ²,∵a ≠0,∵2b =a ,∵2DF=CD ,∵CF CD DF DF =-=.【点睛】此题属于四边形综合题,涉及的知识有:矩形的性质与判定,折叠的性质,正方形的判定,全等三角形的判定与性质,勾股定理,熟练掌握判定与性质是解本题的关键.1.如图,正方形ABCD 中,2AB =,E 为BC 中点,两个动点M 和N 分别在边CD 和AD 上运动,且1MN =,若ABE △与以D 、M 、N 为顶点的三角形相似,则DM =( )A .13BC .13或23D 【答案】D【分析】根据条件求出AE ,再根据相似三角形的性质求解即可;【详解】∵E 为BC 中点,∵1BE =.由勾股定理得,AE =当ABE MDN ∽时,AB AE DM MN =,即21DM =,解得5DM =;∽时,DM=同理,当ABE NDM∵DM.故选D.【点睛】本题主要考查了相似三角形的判定与性质、勾股定理、正方形的性质,准确计算是解题的关键.2.如图,正方形ABCD的边长为4cm,点E是边AD的中点,P为对角线BD上一动点,则+的最小值为()AP PEA B.C.D.【答案】B【分析】连接EC,PC,由AP+PE=PC+PE≥EC得EC就是AP+PE的最小值,求出EC即可.【详解】解:如图,连接EC,PC,∵AP+PE=PC+PE≥EC,∵EC就是AP+PE的最小值,∵正方形ABCD的边长为4cm,点E是边AD的中点,∵CD=4cm,ED=2cm,∵CE=2225+=,ED CD cm∵AP+PE的最小值是25cm.故选:B.【点睛】本题考查正方形的性质、最短路径问题,解决此题的关键是将AP+PE转化为PC+PE.3.如图是将正方形ABCD 和正方形CEFG 拼在一起的图形,点B ,C ,E 在同一条直线上,连结BD ,BF .若阴影部分BDF ∆的面积为8,则正方形ABCD 的边长为( )A .2B .3C .4D .6【答案】C【分析】 连接CF ,根据题意可得DB //CF ,再利用平行线之间的距离都相等可得:S ∵BDF =S ∵BDC =8,进而可得出边长.【详解】如图,连接CF ,∵四边形ABCD 和四边形CGFE 都是正方形,∵∵BDC =45°,∵GCF =45°,∵∵BDC =∵GCF ,∵BD ∵CF ,∵S ∵BDF =S ∵BCD =8,∵S ∵BDF =BC ×BC ÷2=8.∵BC =4,故选:C .【点睛】本题考查了正方形的性质、平行线、等腰三角形的性质,三角形面积公式等知识,能根据平行线之间的距离相等进而得出三角形面积相等是解题的关键.4.如图,在矩形AOBC 中,()()4,0,0,2A B -,若正比例函数y kx =的图象经过点C ,则k 的值为( )A.2-B.12-C.52D.5【答案】B【分析】根据矩形的性质得出点C的坐标,再将点C坐标代入解析式求解可得.【详解】解:∵A(−4,0),B(0,2).∵OA=4、OB=2,∵四边形AOBC是矩形,∵AC=OB=2、BC=OA=4,则点C的坐标为(−4,2),将点C(−4,2)代入y=kx,得:2=−4k,解得:k=12 -,故选:B.【点睛】本题主要考查一次函数图象上点的坐标特征,解题的关键是掌握矩形的性质和待定系数法求函数解析式.5.在正方形ABCD中,AD=6,点M在边DC上,连接AM,⊥ADM沿直线AM翻折后点D 落到点N,过点N作NE⊥CD,垂足为点E.如图,如果ED=2EC,则DM=()A.B.C.9﹣D.6﹣【答案】C【分析】过点N 作NH ∵AD 于H ,先证明四边形NEDH 为矩形,得到HD =NE ,NH =DE ,根据ED =2EC ,ED +EC =CD =6,可以得到ED =HN =4,再利用勾股定理求出AH ,即可得到NE 的值,最后再直角三角形MNE 中用勾股定理求解即可.【详解】解:如图所示,过点N 作NH ∵AD 于H ,∵四边形ABCD 是正方形,AD =6∵AD =CD =6,∵D =90°,∵NE ∵CD ,NH ∵AD ,∵∵NED =∵NHD =∵NHA =90°,∵四边形NEDH 为矩形,∵HD =NE ,NH =DE ,∵ED =2EC ,ED +EC =CD =6,∵ED =HN =4,由翻折的性质可得AD =AN =6,DM =MN∵AH ==∵6NE DH ==-设DM =MN =x ,则ME =4-x ,则222MN NE ME =+,∵(()22264x x =-+-, 解得9x =-∵9DM =-故选C.【点睛】本题主要考查了矩形的性质与判定,正方形的性质,折叠的性质,勾股定理,解题的关键在于能够熟练掌握相关知识进行求解.6.在正方形ABCD 中,90AEB CFD ∠=∠=︒,3AE CF ==,8BE DF ==,则点E 、F 之间的距离是( )A.B.C .5 D .6【答案】A【分析】 由正方形的性质得出90BAD ABC BCD ADC ∠=∠=∠=∠=︒,AB BC CD AD ===,由SSS 证明ABE CDF ∆≅∆,得出ABE CDF ∠=∠,证出ABE DAG CDF BCH ∠=∠=∠=∠,由AAS 证明ABE ADG ∆≅∆,得出AE DG =,BE AG =,同理:3AE DG CF BH ====,8BE AG DF CH ====,得出EG GF FH EF ===,证出四边形EGFH 是正方形,即可得出结果.【详解】解:如图所示:四边形ABCD 是正方形,90BAD ABC BCD ADC ∴∠=∠=∠=∠=︒,AB BC CD AD ===,90BAE DAG ∴∠+∠=︒,在ABE ∆和CDF ∆中,AB CD AE CF BE DF =⎧⎪=⎨⎪=⎩, ()ABE CDF SSS ∴∆≅∆,ABE CDF ∴∠=∠,90AEB CFD ∠=∠=︒,90ABE BAE ∴∠+∠=︒,ABE DAG CDF ∴∠=∠=∠,同理:ABE DAG CDF BCH ∠=∠=∠=∠,90DAG ADG CDF ADG ∴∠+∠=∠+∠=︒,即90DGA ∠=︒,同理:90CHB ∠=︒,在ABE ∆和ADG ∆中,90ABE DAG AEB DGA AB DA ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ()ABE ADG AAS ∴∆≅∆,AE DG ∴=,BE AG =,同理:3AE DG CF BH ====,8BE AG DF CH ====,835EG GF FH EF ∴====-=,1809090GEH ∠=︒-︒=︒,∴四边形EGFH 是正方形,EF ∴=故选:A .【点评】本题考查了正方形的判定与性质、全等三角形的判定与性质;解题的关键是熟练掌握正方形的判定与性质,证明三角形全等.7.如图,矩形ABCD 中,AE BD ⊥垂足为E ,若4DAE BAE ∠=∠,则EAC ∠的度数为( )A .54°B .45°C .36°D .18°【答案】A【分析】 由矩形的性质和已知条件得出OA =OB ,∵OAB =∵OBA ,∵BAE =15∵BAD =18°,再求出∵OAB ,即可得出∵EAC 的度数.【详解】解:∵四边形ABCD 是矩形,∵∵BAD =90°,OA =12AC ,OB =12BD ,AC =BD ,。
备战中考数学平行四边形-经典压轴题含答案
备战中考数学平行四边形-经典压轴题含答案一、平行四边形1.四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H.(1)如图1,当点E、F在线段AD上时,①求证:∠DAG=∠DCG;②猜想AG与BE的位置关系,并加以证明;(2)如图2,在(1)条件下,连接HO,试说明HO平分∠BHG;(3)当点E、F运动到如图3所示的位置时,其它条件不变,请将图形补充完整,并直接写出∠BHO的度数.【答案】(1)①证明见解析;②AG⊥BE.理由见解析;(2)证明见解析;(3)∠BHO=45°.【解析】试题分析:(1)①根据正方形的性质得DA=DC,∠ADB=∠CDB=45°,则可根据“SAS”证明△ADG≌△CDG,所以∠DAG=∠DCG;②根据正方形的性质得AB=DC,∠BAD=∠CDA=90°,根据“SAS”证明△ABE≌△DCF,则∠ABE=∠DCF,由于∠DAG=∠DCG,所以∠DAG=∠ABE,然后利用∠DAG+∠BAG=90°得到∠ABE+∠BAG=90°,于是可判断AG⊥BE;(2)如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,证明△AON≌△BOM,可得四边形OMHN为正方形,因此HO平分∠BHG结论成立;(3)如答图2所示,与(1)同理,可以证明AG⊥BE;过点O作OM⊥BE于点M,ON⊥AG于点N,构造全等三角形△AON≌△BOM,从而证明OMHN为正方形,所以HO 平分∠BHG,即∠BHO=45°.试题解析:(1)①∵四边形ABCD为正方形,∴DA=DC,∠ADB=∠CDB=45°,在△ADG和△CDG中,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCG;②AG⊥BE.理由如下:∵四边形ABCD为正方形,∴AB=DC,∠BAD=∠CDA=90°,在△ABE和△DCF中,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,∵∠DAG=∠DCG,∴∠DAG=∠ABE,∵∠DAG+∠BAG=90°,∴∠ABE+∠BAG=90°,∴∠AHB=90°,∴AG⊥BE;(2)由(1)可知AG⊥BE.如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,则四边形OMHN为矩形.∴∠MON=90°,又∵OA⊥OB,∴∠AON=∠BOM.∵∠AON+∠OAN=90°,∠BOM+∠OBM=90°,∴∠OAN=∠OBM.在△AON与△BOM中,∴△AON≌△BOM(AAS).∴OM=ON,∴矩形OMHN为正方形,∴HO平分∠BHG.(3)将图形补充完整,如答图2示,∠BHO=45°.与(1)同理,可以证明AG⊥BE.过点O作OM⊥BE于点M,ON⊥AG于点N,与(2)同理,可以证明△AON≌△BOM,可得OMHN为正方形,所以HO平分∠BHG,∴∠BHO=45°.考点:1、四边形综合题;2、全等三角形的判定与性质;3、正方形的性质2.操作:如图,边长为2的正方形ABCD,点P在射线BC上,将△ABP沿AP向右翻折,得到△AEP,DE所在直线与AP所在直线交于点F.探究:(1)如图1,当点P在线段BC上时,①若∠BAP=30°,求∠AFE的度数;②若点E 恰为线段DF的中点时,请通过运算说明点P会在线段BC的什么位置?并求出此时∠AFD 的度数.归纳:(2)若点P是线段BC上任意一点时(不与B,C重合),∠AFD的度数是否会发生变化?试证明你的结论;猜想:(3)如图2,若点P在BC边的延长线上时,∠AFD的度数是否会发生变化?试在图中画出图形,并直接写出结论.【答案】(1)①45°;②BC的中点,45°;(2)不会发生变化,证明参见解析;(3)不会发生变化,作图参见解析.【解析】试题分析:(1)当点P在线段BC上时,①由折叠得到一对角相等,再利用正方形性质求出∠DAE度数,在三角形AFD中,利用内角和定理求出所求角度数即可;②由E为DF中点,得到P为BC中点,如图1,连接BE交AF于点O,作EG∥AD,得EG∥BC,得到AF 垂直平分BE,进而得到三角形BOP与三角形EOG全等,利用全等三角形对应边相等得到BP=EG=1,得到P为BC中点,进而求出所求角度数即可;(2)若点P是线段BC上任意一点时(不与B,C重合),∠AFD的度数不会发生变化,作AG⊥DF于点G,如图1(a)所示,利用折叠的性质及三线合一性质,根据等式的性质求出∠1+∠2的度数,即为∠FAG 度数,即可求出∠F度数;(3)作出相应图形,如图2所示,若点P在BC边的延长线上时,∠AFD的度数不会发生变化,理由为:作AG⊥DE于G,得∠DAG=∠EAG,设∠DAG=∠EAG=α,根据∠FAE为∠BAE一半求出所求角度数即可.试题解析:(1)①当点P在线段BC上时,∵∠EAP=∠BAP=30°,∴∠DAE=90°﹣30°×2=30°,在△ADE中,AD=AE,∠DAE=30°,∴∠ADE=∠AED=(180°﹣30°)÷2=75°,在△AFD中,∠FAD=30°+30°=60°,∠ADF=75°,∴∠AFE=180°﹣60°﹣75°=45°;②点E为DF 的中点时,P也为BC的中点,理由如下:如图1,连接BE交AF于点O,作EG∥AD,得EG∥BC,∵EG∥AD,DE=EF,∴EG=AD=1,∵AB=AE,∴点A在线段BE的垂直平分线上,同理可得点P在线段BE的垂直平分线上,∴AF垂直平分线段BE,∴OB=OE,∵GE∥BP,∴∠OBP=∠OEG,∠OPB=∠OGE,∴△BOP≌△EOG,∴BP=EG=1,即P为BC的中点,∴∠DAF=90°﹣∠BAF,∠ADF=45°+∠BAF,∴∠AFD=180°﹣∠DAF﹣∠ADF=45°;(2)∠AFD的度数不会发生变化,作AG⊥DF于点G,如图1(a)所示,在△ADE中,AD=AE,AG⊥DE,∵AG平分∠DAE,即∠2=∠DAG,且∠1=∠BAP,∴∠1+∠2=×90°=45°,即∠FAG=45°,则∠AFD=90°﹣45°=45°;(3)如图2所示,∠AFE的大小不会发生变化,∠AFE=45°,作AG⊥DE于G,得∠DAG=∠EAG,设∠DAG=∠EAG=α,∴∠BAE=90°+2α,∴∠FAE=∠BAE=45°+α,∴∠FAG=∠FAE﹣∠EAG=45°,在Rt△AFG中,∠AFE=90°﹣45°=45°.考点:1.正方形的性质;2.折叠性质;3.全等三角形的判定与性质.3.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t 秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.【答案】(1)见解析;(2)能,t=10;(3)t=152或12.【解析】【分析】(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;(3)△DEF为直角三角形,分∠EDF=90°和∠DEF=90°两种情况讨论.【详解】解:(1)证明:∵在Rt△ABC中,∠C=90°﹣∠A=30°,∴AB=12AC=12×60=30cm,∵CD=4t,AE=2t,又∵在Rt△CDF中,∠C=30°,∴DF=12CD=2t,∴DF=AE;(2)能,∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,∴当t=10时,AEFD是菱形;(3)若△DEF为直角三角形,有两种情况:①如图1,∠EDF=90°,DE∥BC,则AD=2AE,即60﹣4t=2×2t,解得:t=152,②如图2,∠DEF=90°,DE⊥AC,则AE=2AD,即2t2(604t)=-,解得:t=12,综上所述,当t=152或12时,△DEF为直角三角形.4.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.【答案】(1)、5;(2)、622+;(3)、3212++.【解析】【分析】试题分析:(1)、如图1中,连接OD,在Rt△ODC中,根据OD=22OC CD+计算即可.(2)、如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.在Rt△OCE中,根据OC=22OE CE+计算即可.(3)、如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.分别求出MH、OM、FH即可解决问题.【详解】试题解析:(1)、如图1中,连接OD,∵四边形ABCD是正方形,∴AB=BC=CD=AD=1,∠C=90°在Rt△ODC中,∵∠C=90°,OC=2,CD=1,∴OD=2222215OC CD+=+=(2)、如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.∵∠FBE=∠E=∠CFB=90°,∴四边形BECF是矩形,∴BF=CF=12,CF=BE=3,在Rt△OCE中,OC=222231122OE CE⎛⎫⎛⎫+=++⎪ ⎪⎪⎝⎭⎝⎭=62+.(3)、如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.∵FD=FE=DE=1,OF ⊥DE , ∴DH=HE ,OD=OE ,∠DOH=12∠DOE=22.5°, ∵OM=DM , ∴∠MOD=∠MDO=22.5°, ∴∠DMH=∠MDH=45°, ∴DH=HM=12, ∴DM=OM=22, ∵FH=2232DF DH -=, ∴OF=OM+MH+FH=213222++=3212++. ∴OF 的最大值为321++. 考点:四边形综合题.5.如图,△ABC 中,AD 是边BC 上的中线,过点A 作AE ∥BC ,过点D 作DE ∥AB ,DE 与AC 、AE 分别交于点O 、点E ,连接EC .(1)求证:AD=EC ;(2)当∠BAC=Rt ∠时,求证:四边形ADCE 是菱形.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)先证四边形ABDE 是平行四边形,再证四边形ADCE 是平行四边形即可;(2)由∠BAC =90°,AD 是边BC 上的中线,得AD =BD =CD ,即可证明.【详解】(1)证明:∵AE ∥BC ,DE ∥AB ,∴四边形ABDE 是平行四边形,∴AE =BD ,∵AD 是边BC 上的中线,∴BD =DC ,∴AE =DC ,又∵AE ∥BC ,∴四边形ADCE 是平行四边形.(2) 证明:∵∠BAC =90°,AD 是边BC 上的中线.∴AD =CD∵四边形ADCE 是平行四边形,∴四边形ADCE 是菱形.【点睛】本题考查了平行四边形的判定、菱形的判定、直角三角形斜边中线定理.根据图形与已知条件灵活应用平行四边形的判定方法是证明的关键.6.如图(1)在正方形ABCD中,点E是CD边上一动点,连接AE,作BF⊥AE,垂足为G 交AD于F(1)求证:AF=DE;(2)连接DG,若DG平分∠EGF,如图(2),求证:点E是CD中点;(3)在(2)的条件下,连接CG,如图(3),求证:CG=CD.【答案】(1)见解析;(2)见解析;(3)CG=CD,见解析.【解析】【分析】(1)证明△BAF≌△ADE(ASA)即可解决问题.(2)过点D作DM⊥GF,DN⊥GE,垂足分别为点M,N.想办法证明AF=DF,即可解决问题.(3)延长AE,BC交于点P,由(2)知DE=CD,利用直角三角形斜边中线的性质,只要证明BC=CP即可.【详解】(1)证明:如图1中,在正方形ABCD中,AB=AD,∠BAD=∠D=90o,∴∠2+∠3=90°又∵BF⊥AE,∴∠AGB=90°∴∠1+∠2=90°,∴∠1=∠3在△BAF与△ADE中,∠1=∠3 BA=AD ∠BAF=∠D,∴△BAF≌△ADE(ASA)∴AF=DE.(2)证明:过点D作DM⊥GF,DN⊥GE,垂足分别为点M,N.由(1)得∠1=∠3,∠BGA=∠AND=90°,AB=AD∴△BAG≌△ADN(AAS)∴AG=DN,又DG平分∠EGF,DM⊥GF,DN⊥GE,∴DM=DN,∴DM=AG,又∠AFG=∠DFM,∠AGF=∠DMF∴△AFG≌△DFM(AAS),∴AF=DF=DE=12AD=12CD,即点E是CD的中点.(3)延长AE,BC交于点P,由(2)知DE=CD,∠ADE=∠ECP=90°,∠DEA=∠CEP,∴△ADE≌△PCE(ASA)∴AE=PE,又CE∥AB,∴BC=PC,在Rt△BGP中,∵BC=PC,∴CG=12BP=BC,∴CG=CD.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,角平分线的性质定理,直角三角形斜边中线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.7.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E 是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形ADBC的面积.【答案】(1)见解析;(2)S平行四边形ADBC=32.【解析】【分析】(1)在Rt△ABC中,E为AB的中点,则CE=12AB,BE=12AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD//BC,则四边形BCFD是平行四边形.(2)在Rt△ABC中,求出BC,AC即可解决问题;【详解】解:(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°,在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°,∵E为AB的中点,∴AE=BE,又∵∠AEF=∠BEC,∴△AEF≌△BEC,在△ABC中,∠ACB=90°,E为AB的中点,∴CE=12AB,BE=12AB,∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°,又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°,又∵∠D=60°,∴∠AFE=∠D=60°,∴FC∥BD,又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC,∴四边形BCFD是平行四边形;(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AF=3,AC=33∴S平行四边形BCFD=3×3393,S△ACF=12×3×3332,S平行四边形ADBC=32.【点睛】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.8.如图1,在△ABC中,AB=AC,AD⊥BC于D,分别延长AC至E,BC至F,且CE=EF,延长FE交AD的延长线于G.(1)求证:AE=EG;(2)如图2,分别连接BG,BE,若BG=BF,求证:BE=EG;(3)如图3,取GF的中点M,若AB=5,求EM的长.【答案】(1)证明见解析(2)证明见解析(3)5 2【解析】【分析】(1)根据平行线的性质和等腰三角形的三线合一的性质得:∠CAD=∠G,可得AE=EG;(2)作辅助线,证明△BEF≌△GEC(SAS),可得结论;(3)如图3,作辅助线,构建平行线,证明四边形DMEN是平行四边形,得EM=DN=12AC,计算可得结论.【详解】证明:(1)如图1,过E作EH⊥CF于H,∵AD⊥BC,∴EH∥AD,∴∠CEH=∠CAD,∠HEF=∠G,∵CE=EF,∴∠CEH=∠HEF,∴∠CAD=∠G,∴AE=EG;(2)如图2,连接GC,∵AC =BC ,AD ⊥BC ,∴BD =CD ,∴AG 是BC 的垂直平分线,∴GC =GB ,∴∠GBF =∠BCG ,∵BG =BF ,∴GC =BE ,∵CE =EF ,∴∠CEF =180°﹣2∠F ,∵BG =BF ,∴∠GBF =180°﹣2∠F ,∴∠GBF =∠CEF ,∴∠CEF =∠BCG ,∵∠BCE =∠CEF+∠F ,∠BCE =∠BCG+∠GCE ,∴∠GCE =∠F ,在△BEF 和△GCE 中,CE GCE F CG BF EF =⎧⎪∠=∠⎨⎪=⎩Q , ∴△BEF ≌△GEC (SAS ),∴BE =EG ;(3)如图3,连接DM ,取AC 的中点N ,连接DN ,由(1)得AE=EG,∴∠GAE=∠AGE,在Rt△ACD中,N为AC的中点,∴DN=12AC=AN,∠DAN=∠ADN,∴∠ADN=∠AGE,∴DN∥GF,在Rt△GDF中,M是FG的中点,∴DM=12FG=GM,∠GDM=∠AGE,∴∠GDM=∠DAN,∴DM∥AE,∴四边形DMEN是平行四边形,∴EM=DN=12AC,∵AC=AB=5,∴EM=52.【点睛】本题是三角形的综合题,主要考查了全等三角形的判定与性质,直角三角形斜边中线的性质,等腰三角形的性质和判定,平行四边形的性质和判定等知识,解题的关键是作辅助线,并熟练掌握全等三角形的判定方法,特别是第三问,辅助线的作法是关键.9.现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B′,过E作EF垂直B′C,交B′C于F.(1)求AE、EF的位置关系;(2)求线段B′C的长,并求△B′EC的面积.【答案】(1)见解析;(2)S△B′EC=108 25.【解析】【分析】(1)由折线法及点E是BC的中点,可证得△B'EC是等腰三角形,再有条件证明∠AEF=90°即可得到AE ⊥EF ;(2)连接BB′,通过折叠,可知∠EBB′=∠EB′B ,由E 是BC 的中点,可得EB′=EC ,∠ECB′=∠EB′C ,从而可证△BB′C 为直角三角形,在Rt △AOB 和Rt △BOE 中,可将OB ,BB′的长求出,在Rt △BB′C 中,根据勾股定理可将B′C 的值求出.【详解】(1)由折线法及点E 是BC 的中点,∴EB =EB ′=EC ,∠AEB =∠AEB ′,∴△B 'EC 是等腰三角形,又∵EF ⊥B ′C∴EF 为∠B 'EC 的角平分线,即∠B ′EF =∠FEC ,∴∠AEF =180°﹣(∠AEB +∠CEF )=90°,即∠AEF =90°,即AE ⊥EF ;(2)连接BB '交AE 于点O ,由折线法及点E 是BC 的中点,∴EB =EB ′=EC ,∴∠EBB ′=∠EB ′B ,∠ECB ′=∠EB ′C ;又∵△BB 'C 三内角之和为180°,∴∠BB 'C =90°;∵点B ′是点B 关于直线AE 的对称点,∴AE 垂直平分BB ′;在Rt △AOB 和Rt △BOE 中,BO 2=AB 2﹣AO 2=BE 2﹣(AE ﹣AO )2将AB =4cm ,BE =3cm ,AE =5cm ,∴AO =165 cm ,∴BO 125cm , ∴BB ′=2BO =245cm ,∴在Rt △BB 'C 中,B ′C 518cm , 由题意可知四边形OEFB ′是矩形,∴EF =OB ′=125, ∴S △B ′EC =*111812108225525B C EF '⨯=⨯⨯=.【点睛】考查图形的折叠变化及三角形的内角和定理勾股定理的和矩形的性质综合运用.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.10.在平面直角坐标系中,O 为原点,点A (﹣6,0)、点C (0,6),若正方形OABC 绕点O 顺时针旋转,得正方形OA′B′C′,记旋转角为α:(1)如图①,当α=45°时,求BC 与A′B′的交点D 的坐标;(2)如图②,当α=60°时,求点B′的坐标;(3)若P 为线段BC′的中点,求AP 长的取值范围(直接写出结果即可).【答案】(1)(62,6)-;(2)(333,333)+;(3)323323AP 剟.【解析】【分析】(1)当α=45°时,延长OA′经过点B ,在Rt △BA′D 中,∠OBC =45°,A′B =626,可求得BD 的长,进而求得CD 的长,即可得出点D 的坐标;(2)过点C′作x 轴垂线MN ,交x 轴于点M ,过点B′作MN 的垂线,垂足为N ,证明△OMC ′≌△C′NB′,可得C′N =OM =33,B′N =C′M =3,即可得出点B′的坐标;(3)连接OB ,AC 相交于点K ,则K 是OB 的中点,因为P 为线段BC′的中点,所以PK =12OC′=3,即点P 在以K 为圆心,3为半径的圆上运动,即可得出AP 长的取值范围. 【详解】解:(1)∵A (﹣6,0)、C (0,6),O (0,0),∴四边形OABC 是边长为6的正方形,当α=45°时,如图①,延长OA′经过点B,∵OB=62,OA′=OA=6,∠OBC=45°,∴A′B=626-,∴BD=(626=-,-)×21262∴CD=6﹣(1262-)=626-,∴BC与A′B′的交点D的坐标为(662-,6);(2)如图②,过点C′作x轴垂线MN,交x轴于点M,过点B′作MN的垂线,垂足为N,∵∠OC′B′=90°,∴∠OC′M=90°﹣∠B′C′N=∠C′B′N,∵OC′=B′C′,∠OMC′=∠C′NB′=90°,∴△OMC′≌△C′NB′(AAS),当α=60°时,∵∠A′OC′=90°,OC′=6,∴∠C′OM=30°,∴C′N=OM=33,B′N=C′M=3,∴点B′的坐标为)-+;333,333(3)如图③,连接OB,AC相交于点K,则K是OB的中点,∵P为线段BC′的中点,∴PK=1OC′=3,2∴P 在以K 为圆心,3为半径的圆上运动,∵AK =32, ∴AP 最大值为323+,AP 的最小值为323-,∴AP 长的取值范围为323323AP -+剟.【点睛】本题考查正方形性质,全等三角形判定与性质,三角形中位线定理.(3)问解题的关键是利用中位线定理得出点P 的轨迹.11.如图,现将平行四边形ABCD 沿其对角线AC 折叠,使点B 落在点B ′处.AB ′与CD 交于点E .(1)求证:△AED ≌△CEB ′;(2)过点E 作EF ⊥AC 交AB 于点F ,连接CF ,判断四边形AECF 的形状并给予证明.【答案】(1)见解析(2)见解析【解析】【分析】(1)由题意可得AD=BC=B'C ,∠B=∠D=∠B',且∠AED=∠CEB',利用AAS 证明全等,则结论可得;(2)由△AED ≌△CEB′可得AE=CE ,且EF ⊥AC ,根据等腰三角形的性质可得EF 垂直平分AC ,∠AEF=∠CEF .即AF=CF ,∠CEF=∠AFE=∠AEF ,可得AE=AF ,则可证四边形AECF 是菱形.【详解】证明:(1)∵四边形ABCD 是平行四边形∴AD =BC ,CD ∥AB ,∠B =∠D∵平行四边形ABCD 沿其对角线AC 折叠∴BC =B'C ,∠B =∠B'∴∠D =∠B',AD =B'C 且∠DEA =∠B'EC∴△ADE ≌△B'EC(2)四边形AECF是菱形∵△ADE≌△B'EC∴AE=CE∵AE=CE,EF⊥AC∴EF垂直平分AC,∠AEF=∠CEF∴AF=CF∵CD∥AB∴∠CEF=∠EFA且∠AEF=∠CEF∴∠AEF=∠EFA∴AF=AE∴AF=AE=CE=CF∴四边形AECF是菱形【点睛】本题考查了折叠问题,全等三角形的判定和性质,平行四边形的性质,菱形的判定,熟练掌握这些性质和判定是解决问题的关键.12.猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF 的中点,试证明(1)中的结论仍然成立.【答案】猜想:DM=ME,证明见解析;(2)成立,证明见解析.【解析】试题分析:延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形的性质得出∠FCE=45°,∠FCA=45°,根据RT△ADF中AM=MF得出DM=AM=MF,根据RT△AEF中AM=MF得出AM=MF=ME,从而说明DM=ME.试题解析:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=DE,∴DM=HM=ME,∴DM=ME.(1)、如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM∴DM=HM=ME,∴DM=ME,(2)、如图2,连接AE,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.考点:(1)、三角形全等的性质;(2)、矩形的性质.13.如图,抛物线y=mx2+2mx+n经过A(﹣3,0),C(0,﹣32)两点,与x轴交于另一点B.(1)求经过A,B,C三点的抛物线的解析式;(2)过点C作CE∥x轴交抛物线于点E,写出点E的坐标,并求AC、BE的交点F的坐标(3)若抛物线的顶点为D,连结DC、DE,四边形CDEF是否为菱形?若是,请证明;若不是,请说明理由.【答案】(1)y=12x2+x﹣32;(2)F点坐标为(﹣1,﹣1);(3)四边形CDEF是菱形.证明见解析【解析】【分析】将A、C点的坐标代入抛物线的解析式中,通过联立方程组求得该抛物线的解析式;根据(1)题所得的抛物线的解析式,可确定抛物线的对称轴方程以及B、C点的坐标,由CE∥x轴,可知C、E关于对称轴对称。
中考数学平行四边形-经典压轴题及详细答案
1.已知:在菱形 ABCD 中,E,F 是 BD 上的两点,且 AE∥ CF. 求证:四边形 AECF 是菱形.
【答案】见解析 【解析】 【分析】 由菱形的性质可得 AB∥ CD,AB=CD,∠ ADF=∠ CDF,由“SAS”可证△ ADF≌ △ CDF,可得 AF=CF,由△ ABE≌ △ CDF,可得 AE=CF,由平行四边形的判定和菱形的判定可得四边形 AECF 是菱形. 【详解】 证明:∵ 四边形 ABCD 是菱形 ∴ AB∥ CD,AB=CD,∠ ADF=∠ CDF, ∵ AB=CD,∠ ADF=∠ CDF,DF=DF ∴ △ ADF≌ △ CDF(SAS) ∴ AF=CF, ∵ AB∥ CD,AE∥ CF ∴ ∠ ABE=∠ CDF,∠ AEF=∠ CFE ∴ ∠ AEB=∠ CFD,∠ ABE=∠ CDF,AB=CD ∴ △ ABE≌ △ CDF(AAS) ∴ AE=CF,且 AE∥ CF ∴ 四边形 AECF 是平行四边形 又∵ AF=CF, ∴ 四边形 AECF 是菱形 【点睛】 本题主要考查菱形的判定定理,首先要判定其为平行四边形,这是菱形判定的基本判定.
【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2. 【解析】 试题分析:(1)根据旋转的性质可知 AF=AG,∠ EAF=∠ GAE=45°,故可证△ AEG≌ △ AEF; (2)将△ ADF 绕着点 A 顺时针旋转 90°,得到△ ABG,连结 GM.由(1)知 △ AEG≌ △ AEF,则 EG=EF.再由△ BME、△ DNF、△ CEF 均为等腰直角三角形,得出 CE=CF,BE=BM,NF= DF,然后证明∠ GME=90°,MG=NF,利用勾股定理得出 EG2=ME2+MG2,等量代换即可证明 EF2=ME2+NF2; (3)将△ ADF 绕着点 A 顺时针旋转 90°,得到△ ABG,根据旋转的性质可以得到 △ ADF≌ △ ABG,则 DF=BG,再证明△ AEG≌ △ AEF,得出 EG=EF,由 EG=BG+BE,等量代换 得到 EF=BE+DF. 试题解析:(1)∵ △ ADF 绕着点 A 顺时针旋转 90°,得到△ ABG, ∴ AF=AG,∠ FAG=90°, ∵ ∠ EAF=45°, ∴ ∠ GAE=45°, 在△ AGE 与△ AFE 中,
中考数学平行四边形-经典压轴题及答案
一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t 秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.【答案】(1)见解析;(2)能,t=10;(3)t=152或12.【解析】【分析】(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;(3)△DEF为直角三角形,分∠EDF=90°和∠DEF=90°两种情况讨论.【详解】解:(1)证明:∵在Rt△ABC中,∠C=90°﹣∠A=30°,∴AB=12AC=12×60=30cm,∵CD=4t,AE=2t,又∵在Rt△CDF中,∠C=30°,∴DF=12CD=2t,∴DF=AE;(2)能,∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,∴当t=10时,AEFD是菱形;(3)若△DEF为直角三角形,有两种情况:①如图1,∠EDF=90°,DE∥BC,则AD=2AE,即60﹣4t=2×2t,解得:t=152,②如图2,∠DEF=90°,DE⊥AC,则AE=2AD,即2t2(604t)=-,解得:t=12,综上所述,当t=152或12时,△DEF为直角三角形.2.已知AD是△ABC的中线P是线段AD上的一点(不与点A、D重合),连接PB、PC,E、F、G、H分别是AB、AC、PB、PC的中点,AD与EF交于点M;(1)如图1,当AB=AC时,求证:四边形EGHF是矩形;(2)如图2,当点P与点M重合时,在不添加任何辅助线的条件下,写出所有与△BPE面积相等的三角形(不包括△BPE本身).【答案】(1)见解析;(2)△APE、△APF、△CPF、△PGH.【解析】【分析】(1)由三角形中位线定理得出EG∥AP,EF∥BC,EF=12BC,GH∥BC,GH=12BC,推出EF∥GH,EF=GH,证得四边形EGHF是平行四边形,证得EF⊥AP,推出EF⊥EG,即可得出结论;(2)由△APE与△BPE的底AE=BE,又等高,得出S△APE=S△BPE,由△APE与△APF的底EP=FP,又等高,得出S△APE=S△APF,由△APF与△CPF的底AF=CF,又等高,得出S△APF=S△CPF,证得△PGH底边GH上的高等于△AEF底边EF上高的一半,推出S△PGH=12S△AEF=S△APF,即可得出结果.【详解】(1)证明:∵E、F、G、H分别是AB、AC、PB、PC的中点,∴EG∥AP,EF∥BC,EF=12BC,GH∥BC,GH=12BC,∴EF∥GH,EF=GH,∴四边形EGHF是平行四边形,∵AB=AC,∴AD⊥BC,∴EF⊥AP,∵EG∥AP,∴EF⊥EG,∴平行四边形EGHF是矩形;(2)∵PE是△APB的中线,∴△APE与△BPE的底AE=BE,又等高,∴S△APE=S△BPE,∵AP是△AEF的中线,∴△APE与△APF的底EP=FP,又等高,∴S△APE=S△APF,∴S△APF=S△BPE,∵PF是△APC的中线,∴△APF与△CPF的底AF=CF,又等高,∴S△APF=S△CPF,∴S△CPF=S△BPE,∵EF∥GH∥BC,E、F、G、H分别是AB、AC、PB、PC的中点,∴△AEF底边EF上的高等于△ABC底边BC上高的一半,△PGH底边GH上的高等于△PBC 底边BC上高的一半,∴△PGH底边GH上的高等于△AEF底边EF上高的一半,∵GH=EF,∴S△PGH=12S△AEF=S△APF,综上所述,与△BPE面积相等的三角形为:△APE、△APF、△CPF、△PGH.【点睛】本题考查了矩形的判定与性质、平行四边形的判定、三角形中位线定理、平行线的性质、三角形面积的计算等知识,熟练掌握三角形中位线定理是解决问题的关键.3.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)(变式探究)(1)当点P在CB延长线上时,其余条件不变(如图3),试探索PD、PE、CF之间的数量关系并说明理由;请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)(2)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD =16,CF=6,求PG+PH的值.(迁移拓展)(3)在直角坐标系中,直线l1:y=-43x+8与直线l2:y=﹣2x+8相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为2.求点P的坐标.【答案】【变式探究】证明见解析【结论运用】8【迁移拓展】(﹣1,6),(1,10)【解析】【变式探究】连接AP,同理利用△ABP与△ACP面积之差等于△ABC的面积可以证得;【结论运用】过点E作EQ⊥BC,垂足为Q,根据勾股定理和矩形的性质解答即可;【迁移拓展】分两种情况,利用结论,求得点P到x轴的距离,再利用待定系数法可求出P的坐标.【详解】变式探究:连接AP,如图3:∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP,∴12AB•CF=12AC•PE﹣12AB•PD.∵AB=AC,∴CF=PD﹣PE;结论运用:过点E作EQ⊥BC,垂足为Q,如图④,∵四边形ABCD是长方形,∴AD=BC,∠C=∠ADC=90°.∵AD=16,CF=6,∴BF=BC﹣CF=AD﹣CF=5,由折叠可得:DF=BF,∠BEF=∠DEF.∴DF=5.∵∠C=90°,∴DC2222106DF CF-=-8.∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC.∴四边形EQCD是长方形.∴EQ=DC=4.∵AD∥BC,∴∠DEF=∠EFB.∵∠BEF=∠DEF,∴∠BEF=∠EFB.∴BE=BF,由问题情境中的结论可得:PG+PH=EQ.∴PG+PH=8.∴PG+PH的值为8;迁移拓展:如图,由题意得:A(0,8),B(6,0),C(﹣4,0)∴AB2210,BC=10.68∴AB=BC,(1)由结论得:P1D1+P1E1=OA=8∵P1D1=1=2,∴P1E1=6 即点P1的纵坐标为6又点P1在直线l2上,∴y=2x+8=6,∴x=﹣1,即点P1的坐标为(﹣1,6);(2)由结论得:P2E2﹣P2D2=OA=8∵P2D2=2,∴P2E2=10 即点P1的纵坐标为10又点P1在直线l2上,∴y=2x+8=10,∴x=1,即点P1的坐标为(1,10)【点睛】本题考查了矩形的性质与判定、等腰三角形的性质与判定及勾股定理等知识点,利用面积法列出等式是解决问题的关键.4.(1)(问题发现)如图1,在Rt △ABC 中,AB =AC =2,∠BAC =90°,点D 为BC 的中点,以CD 为一边作正方形CDEF ,点E 恰好与点A 重合,则线段BE 与AF 的数量关系为(2)(拓展研究)在(1)的条件下,如果正方形CDEF 绕点C 旋转,连接BE ,CE ,AF ,线段BE 与AF 的数量关系有无变化?请仅就图2的情形给出证明;(3)(问题发现)当正方形CDEF 旋转到B ,E ,F 三点共线时候,直接写出线段AF 的长.【答案】(1)2AF ;(2)无变化;(3)AF 313.【解析】试题分析:(1)先利用等腰直角三角形的性质得出2 ,再得出BE=AB=2,即可得出结论;(2)先利用三角函数得出22CA CB =,同理得出22CF CE =,夹角相等即可得出△ACF ∽△BCE ,进而得出结论;(3)分两种情况计算,当点E 在线段BF 上时,如图2,先利用勾股定理求出2,6,即可得出62,借助(2)得出的结论,当点E 在线段BF 的延长线上,同前一种情况一样即可得出结论.试题解析:(1)在Rt △ABC 中,AB=AC=2,根据勾股定理得,22,点D 为BC 的中点,∴AD=122, ∵四边形CDEF 是正方形,∴2,∵BE=AB=2,∴2AF ,故答案为2AF ;(2)无变化;如图2,在Rt △ABC 中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin ∠ABC=22CA CB =, 在正方形CDEF 中,∠FEC=12∠FED=45°,在Rt△CEF中,sin∠FEC=22 CFCE=,∴CF CACE CB=,∵∠FCE=∠ACB=45°,∴∠FCE﹣∠ACE=∠ACB﹣∠ACE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴BE CBAF CA= =2,∴BE=2AF,∴线段BE与AF的数量关系无变化;(3)当点E在线段AF上时,如图2,由(1)知,CF=EF=CD=2,在Rt△BCF中,CF=2,BC=22,根据勾股定理得,BF=6,∴BE=BF﹣EF=6﹣2,由(2)知,BE=2AF,∴AF=3﹣1,当点E在线段BF的延长线上时,如图3,在Rt△ABC中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin∠ABC=22 CACB=,在正方形CDEF中,∠FEC=12∠FED=45°,在Rt△CEF中,sin∠FEC=22CFCE=,∴CF CACE CB=,∵∠FCE=∠ACB=45°,∴∠FCB+∠ACB=∠FCB+∠FCE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴BE CBAF CA= =2,∴BE=2AF,由(1)知,CF=EF=CD=2,在Rt△BCF中,CF=2,BC=22,根据勾股定理得,BF=6,∴BE=BF+EF=6+2,由(2)知,BE=2AF,∴AF=3+1.即:当正方形CDEF旋转到B,E,F三点共线时候,线段AF的长为3﹣1或3+1.5.如图,点O是正方形ABCD两条对角线的交点,分别延长CO到点G,OC到点E,使OG=2OD、OE=2OC,然后以OG、OE为邻边作正方形OEFG.(1)如图1,若正方形OEFG的对角线交点为M,求证:四边形CDME是平行四边形.(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转,得到正方形OE′F′G′,如图2,连接AG′,DE′,求证:AG′=DE′,AG′⊥DE′;(3)在(2)的条件下,正方形OE′F′G′的边OG′与正方形ABCD的边相交于点N,如图3,设旋转角为α(0°<α<180°),若△AON是等腰三角形,请直接写出α的值.【答案】(1)证明见解析;(2)证明见解析;(3)α的值是22.5°或45°或112.5°或135°或157.5°.【解析】【分析】(1)由四边形OEFG是正方形,得到ME=12GE,根据三角形的中位线的性质得到CD∥GE,CD=12GE,求得CD=GE,即可得到结论;(2)如图2,延长E′D交AG′于H,由四边形ABCD是正方形,得到AO=OD,∠AOD=∠COD=90°,由四边形OEFG是正方形,得到OG′=OE′,∠E′OG′=90°,由旋转的性质得到∠G′OD=∠E′OC,求得∠AOG′=∠COE′,根据全等三角形的性质得到AG′=DE′,∠AG′O=∠DE′O,即可得到结论;(3)分类讨论,根据三角形的外角的性质和等腰三角形的性质即可得到结论.【详解】(1)证明:∵四边形OEFG是正方形,∴ME=12GE,∵OG=2OD、OE=2OC,∴CD∥GE,CD=12GE,∴CD=GE,∴四边形CDME是平行四边形;(2)证明:如图2,延长E′D交AG′于H,∵四边形ABCD 是正方形,∴AO=OD ,∠AOD=∠COD=90°,∵四边形OEFG 是正方形,∴OG′=OE′,∠E′OG′=90°,∵将正方形OEFG 绕点O 逆时针旋转,得到正方形OE′F′G′,∴∠G′OD=∠E′OC ,∴∠AOG′=∠COE′,在△AG′O 与△ODE′中,OA OD AOG DOE OG OE ⎧⎪∠'∠'⎨⎪''⎩===,∴△AG′O ≌△ODE′∴AG′=DE′,∠AG′O=∠DE′O ,∵∠1=∠2,∴∠G′HD=∠G′OE′=90°,∴AG′⊥DE′;(3)①正方形OE′F′G′的边OG′与正方形ABCD 的边AD 相交于点N ,如图3,Ⅰ、当AN=AO 时,∵∠OAN=45°,∴∠ANO=∠AON=67.5°,∵∠ADO=45°,∴α=∠ANO-∠ADO=22.5°;Ⅱ、当AN=ON 时,∴∠NAO=∠AON=45°,∴∠ANO=90°,∴α=90°-45°=45°;②正方形OE′F′G′的边OG′与正方形ABCD 的边AB 相交于点N ,如图4,Ⅰ、当AN=AO时,∵∠OAN=45°,∴∠ANO=∠AON=67.5°,∵∠ADO=45°,∴α=∠ANO+90°=112.5°;Ⅱ、当AN=ON时,∴∠NAO=∠AON=45°,∴∠ANO=90°,∴α=90°+45°=135°,Ⅲ、当AN=AO时,旋转角a=∠ANO+90°=67.5+90=157.5°,综上所述:若△AON是等腰三角形时,α的值是22.5°或45°或112.5°或135°或157.5°.【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质、锐角三角函数、旋转变换的性质的综合运用,有一定的综合性,分类讨论当△AON是等腰三角形时,求α的度数是本题的难点.6.如图1,在正方形ABCD中,AD=6,点P是对角线BD上任意一点,连接PA,PC过点P 作PE⊥PC交直线AB于E.(1)求证:PC=PE;(2)延长AP交直线CD于点F.①如图2,若点F是CD的中点,求△APE的面积;②若ΔAPE的面积是21625,则DF的长为(3)如图3,点E在边AB上,连接EC交BD于点M,作点E关于BD的对称点Q,连接PQ,MQ,过点P作PN∥CD交EC于点N,连接QN,若PQ=5,MN=23,则△MNQ的面积是【答案】(1)略;(2)①8,②4或9;(3)5 6【解析】【分析】(1)利用正方形每个角都是90°,对角线平分对角的性质,三角形外角等于和它不相邻的两个内角的和,等角对等边等性质容易得证;(2)作出△ADP和△DFP的高,由面积法容易求出这个高的值.从而得到△PAE的底和高,并求出面积.第2小问思路一样,通过面积法列出方程求解即可;(3)根据已经条件证出△MNQ是直角三角形,计算直角边乘积的一半可得其面积.【详解】(1) 证明:∵点P在对角线BD上,∴△ADP≌△CDP,∴AP=CP, ∠DAP =∠DCP,∵PE⊥PC,∴∠EPC=∠EPB+∠BPC=90°,∵∠PEA=∠EBP+∠EPB=45°+90°-∠BPC=135°-∠BPC,∵∠PAE=90°-∠DAP=90°-∠DCP,∠DCP=∠BPC-∠PDC=∠BPC-45°,∴∠PAE=90°-(∠BPC-45°)= 135°-∠BPC,∴∠PEA=∠PAE,∴PC=PE;(2)①如图2,过点P分别作PH⊥AD,PG⊥CD,垂足分别为H、G.延长GP交AB于点M.∵四边形ABCD是正方形,P在对角线上,∴四边形HPGD是正方形,∴PH=PG,PM ⊥AB, 设PH=PG=a,∵F 是CD 中点,AD =6,则FD=3,ADFS =9,∵ADF S =ADP DFP SS+=1122AD PH DF PG ⨯+⨯, ∴1163922a a ⨯+⨯=,解得a=2, ∴AM=HP=2,MP=MG-PG=6-2=4, 又∵PA=PE, ∴AM=EM,AE=4,∵APE S =1144822EA MP ⨯=⨯⨯=,②设HP =b,由①可得AE=2b,MP=6-b,∴APE S=()121626225b b ⨯⨯-=, 解得b=2.4 3.6或, ∵ADF S =ADP DFP SS+=1122AD PH DF PG ⨯+⨯, ∴11166222b DF b DF ⨯⨯+⨯=⨯, ∴当b=2.4时,DF=4;当b =3.6时,DF =9, 即DF 的长为4或9; (3)如图,∵E 、Q 关于BP 对称,PN ∥CD, ∴∠1=∠2,∠2+∠3=∠BDC=45°, ∴∠1+∠4=45°, ∴∠3=∠4,易证△PEM ≌△PQM, △PNQ ≌△PNC, ∴∠5=∠6, ∠7=∠8 ,EM=QM,NQ=NC, ∴∠6+∠7=90°, ∴△MNQ 是直角三角形,设EM=a,NC=b 列方程组2227252372 3a b a b ⎧+=-⎪⎪⎨⎛⎫⎪+= ⎪ ⎪⎪⎝⎭⎩, 可得12ab=56, ∴MNQ56S=, 【点睛】本题是四边形综合题目,考查了正方形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质等知识;本题综合性强,有一定难度,熟练掌握正方形的性质,证明三角形全等是解决问题的关键.要注意运用数形结合思想.7.在矩形纸片ABCD 中,AB=6,BC=8,现将纸片折叠,使点D 与点B 重合,折痕为EF ,连接DF .(1)说明△BEF 是等腰三角形; (2)求折痕EF 的长.【答案】(1)见解析;(2).【解析】 【分析】(1)根据折叠得出∠DEF =∠BEF ,根据矩形的性质得出AD ∥BC ,求出∠DEF =∠BFE ,求出∠BEF =∠BFE 即可;(2)过E 作EM ⊥BC 于M ,则四边形ABME 是矩形,根据矩形的性质得出EM =AB =6,AE =BM ,根据折叠得出DE =BE ,根据勾股定理求出DE 、在Rt △EMF 中,由勾股定理求出即可. 【详解】(1)∵现将纸片折叠,使点D 与点B 重合,折痕为EF ,∴∠DEF =∠BEF .∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠DEF =∠BFE ,∴∠BEF =∠BFE ,∴BE =BF ,即△BEF 是等腰三角形;(2)过E 作EM ⊥BC 于M ,则四边形ABME 是矩形,所以EM =AB =6,AE =BM .∵现将纸片折叠,使点D与点B重合,折痕为EF,∴DE=BE,DO=BO,BD⊥EF.∵四边形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°.在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.在Rt△EMF中,由勾股定理得:EF==.故答案为:.【点睛】本题考查了折叠的性质和矩形性质、勾股定理等知识点,能熟记折叠的性质是解答此题的关键.8.已知:在矩形ABCD中,AB=10,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD边AB、BC、DA上,AE=2.(1)如图①,当四边形EFGH为正方形时,求△GFC的面积;(2)如图②,当四边形EFGH为菱形,且BF=a时,求△GFC的面积(用a表示);(3)在(2)的条件下,△GFC的面积能否等于2?请说明理由.【答案】(1)10;(2)12-a;(3)不能【解析】解:(1)过点G作GM⊥BC于M.在正方形EFGH中,∠HEF=90°,EH=EF,∴∠AEH+∠BEF=90°.∵∠AEH+∠AHE=90°,∴∠AHE=∠BEF.又∵∠A=∠B=90°,∴△AHE≌△BEF.同理可证△MFG≌△BEF.∴GM=BF=AE=2.∴FC=BC-BF=10.∴.(2)过点G作GM⊥BC交BC的延长线于M,连接HF.∵AD∥BC,∴∠AHF=∠MFH.∵EH∥FG,∴∠EHF=∠GFH.∴∠AHE=∠MFG.又∵∠A=∠GMF=90°,EH=GF,∴△AHE≌△MFG.∴GM=AE=2.∴.(3)△GFC的面积不能等于2.说明一:∵若S△GFC=2,则12-a=2,∴a=10.此时,在△BEF中,.在△AHE中,,∴AH>AD,即点H已经不在边AD上,故不可能有S△GFC=2.说明二:△GFC的面积不能等于2.∵点H在AD上,∴菱形边EH的最大值为,∴BF的最大值为.又∵函数S△GFC=12-a的值随着a的增大而减小,∴S△GFC的最小值为.又∵,∴△GFC的面积不能等于2.9.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,求证:△PDH的周长是定值;(3)当BE+CF的长取最小值时,求AP的长.【答案】(1)证明见解析.(2)证明见解析.(3)2.【解析】试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值.试题解析:(1)解:如图1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.(2)证明:如图2,过B作BQ⊥PH,垂足为Q.由(1)知∠APB=∠BPH,又∵∠A=∠BQP=90°,BP=BP,在△ABP和△QBP中,,∴△ABP≌△QBP(AAS),∴AP=QP,AB=BQ,又∵AB=BC,∴BC=BQ.又∠C=∠BQH=90°,BH=BH,在△BCH和△BQH中,,∴△BCH≌△BQH(SAS),∴CH=QH.∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.∴△PDH的周长是定值.(3)解:如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.又∵EF为折痕,∴EF⊥BP.∴∠EFM+∠MEF=∠ABP+∠BEF=90°,∴∠EFM=∠ABP.又∵∠A=∠EMF=90°,在△EFM和△BPA中,,∴△EFM≌△BPA(AAS).∴EM=AP.设AP=x在Rt△APE中,(4-BE)2+x2=BE2.解得BE=2+,∴CF=BE-EM=2+-x,∴BE+CF=-x+4=(x-2)2+3.当x=2时,BE+CF取最小值,∴AP=2.考点:几何变换综合题.10.(本题满分10分)如图1,已知矩形纸片ABCD中,AB=6cm,若将该纸片沿着过点B的直线折叠(折痕为BM),点A恰好落在CD边的中点P处.(1)求矩形ABCD的边AD的长.(2)若P为CD边上的一个动点,折叠纸片,使得A与P重合,折痕为MN,其中M在边AD上,N在边BC上,如图2所示.设DP=x cm,DM=y cm,试求y与x的函数关系式,并指出自变量x的取值范围.(3)①当折痕MN的端点N在AB上时,求当△PCN为等腰三角形时x的值;②当折痕MN的端点M在CD上时,设折叠后重叠部分的面积为S,试求S与x之间的函数关系式【答案】(1)AD=3;(2)y=-其中,0<x<3;(3)x=;(4)S=.【解析】试题分析:(1)根据折叠图形的性质和勾股定理求出AD的长度;(2)根据折叠图形的性质以及Rt△MPD的勾股定理求出函数关系式;(3)过点N作NQ⊥CD,根据Rt△NPQ 的勾股定理进行求解;(4)根据Rt△ADM的勾股定理求出MP与x的函数关系式,然后得出函数关系式.试题解析:(1)根据折叠可得BP=AB=6cm CP=3cm 根据Rt△PBC的勾股定理可得:AD=3.(2)由折叠可知AM=MP,在Rt△MPD中,∴∴y=-其中,0<x<3.(3)当点N在AB上,x≥3,∴PC≤3,而PN≥3,N C≥3.∴△PCN为等腰三角形,只可能NC=NP.过N点作NQ⊥CD,垂足为Q,在Rt△NPQ中,∴解得x=.(4)当点M在CD上时,N在AB上,可得四边形ANPM为菱形.设MP=y,在Rt△ADM中,,即∴ y=.∴ S=考点:函数的性质、勾股定理.。
八年级数学下册 中心对称图形-平行四边形综合压轴(50题12个考点)(解析版)
专题05中心对称图形-平行四边形综合压轴(50题12个考点)一.三角形中位线定理(共1小题)1.(2022秋•东平县期末)如图,△ABC中,∠BAD=∠CAD,BE=CE,AD⊥BD,DE=,AB=4,则AC的值为()A.6B.C.7D.8【答案】C【解答】解:如图,延长BD,交AC于F,∵AD⊥BD,∴∠ADB=∠ADF=90°,在△ABD和△AFD中,,∴△ABD≌△AFD(ASA),∴BD=DF,AF=AB=4,∵BE=CE,∴CF=2DE=3,∴AC=AF+CF=4+3=7,故答案为:C.二.平行四边形的性质(共3小题)2.(2023春•辛集市期末)如图,▱ABCD中,AB=22cm,BC=8cm,∠A=45°,动点E从A出发,以2cm/s的速度沿AB向点B运动,动点F从点C出发,以1cm/s的速度沿着CD向D运动,当点E到达点B时,两个点同时停止.则EF的长为10cm时点E 的运动时间是()A.6s B.6s或10s C.8s D.8s或12s【答案】C【解答】解:在▱ABCD中,CD=AB=22cm,AD=BC=8cm,如图,过点D作DG⊥AB于点G,∵∠A=45°,∴△ADG是等腰直角三角形,∴AG=DG=AD=8,过点F作FH⊥AB于点H,得矩形DGHF,∴DG=FH=8cm,DF=GH,∵EF=10cm,∴EH==6cm,由题意可知:AE=2t cm,CF=t cm,∴GE=AE=AG=(2t﹣8)cm,DF=CD﹣CF=(22﹣t)cm,∴GH=GE+EH=(2t﹣8)+6=(2t﹣2)cm,∴2t﹣2=22﹣t,解得t=8,当F点在E点左侧时,由题意可知:AE=2t cm,CF=t cm,∴GE=AE﹣AG=(2t﹣8)cm,DF=CD﹣CF=(22﹣t)cm,∴GH=GE﹣EH=(2t﹣8)﹣6=(2t﹣14)cm,∴2t﹣14=22﹣t,解得t=12,∵点E到达点B时,两点同时停止运动,∴2t≤22,解得t≤11.∴t=12不符合题意,舍去,∴EF的长为10cm时点E的运动时间是8s,故选:C.3.(2023•六安模拟)如图,▱ABCD的对角线AC,BD交于点O,AE平分∠BAD,交BC于点E,且∠ADC=60°,AB=BC,连接OE,下列结论:①∠CAD=30°;②OD =AB;③S▱ABCD=AC•CD;④S四边形OECD=S△AOD,其中成立的个数为()A.1个B.2个C.3个D.4个【答案】见试题解答内容【解答】解:∵四边形ABCD为平行四边形,∠ADC=60°,∴AD∥BC,∠ABC=∠ADC=60°,OB=OD,∴∠DAE=∠AEB,∠BAD=∠BCD=120°,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB∴△ABE为等边三角形,∴∠BAE=∠AEB=60°,AB=BE=AE,∵AB=BC,∴EC=AE,∴∠EAC=∠ECA=30°,∴∠CAD=30°,故①正确;∵∠BAD=120°,∠CAD=30°,∴∠BAC=90°,∴BO>AB,∴OD>AB,故②错误;∴S▱ABCD=AB•AC=AC•CD,故③正确;∵∠BAC=90°,BC=2AB,∴E是BC的中点,:S△BCD=1:4,∴S△BEO:S△BCD=3:4,∴S四边形OECD:S▱ABCD=3:8,∴S四边形OECD:S▱ABCD=1:4,∵S△AOD=S△AOD,故④正确.∴S四边形OECD故选:C.4.(2023春•叙州区期末)如图,矩形ABCD的面积为20cm2,对角线交于点O,以AB、A O为邻边作平行四边形AOC1B,对角线交于点O1,以AB,AO1为邻边作平行四边形AO1C2B……依此类推,则平行四边形AO2022C2023B的面积为cm2.【答案】.【解答】解:∵四边形ABCD是矩形,∴AO=CO,BO=DO,DC∥AB,DC=AB,=S△ABC=S矩形ABCD=×20=10(cm2),∴S△ADC=S△BCO=S△ABC=×10=5(cm2),∴S△AOB=×5=(cm2),∴=S△AOB∴==(cm2),==(cm2),==(cm2),……∴平行四边形AO n C n+1B的面积为,∴平行四边形AO2022C2023B的面积为(cm2),故答案为:.三.平行四边形的判定与性质(共2小题)5.(2023•莆田模拟)如图,在△ABD中,AD<AB,点D在直线AB上方,将△ABD绕点A逆时针旋转90°得到△ACE,点B,D的对应点分别是C,E,将线段BD绕着点B顺时针旋转90°得到线段BF,点D的对应点是F,连接BE,CF.当∠DAB的度数从0°逐渐增大到180°的过程中.四边形BFCE的形状依次是:平行四边形→______→平行四边形.画线处应填入()A.菱形→矩形→正方形B.矩形→菱形→正方形C.菱形→平行四边形→矩形D.矩形→平行四边形→菱形【答案】D【解答】解:∵△ABD绕点A逆时针旋转90°得到△ACE,∴△ABD≌△ACE,BD=BF,∠CAB=∠DAE=90°,∠DBF=90°,∴CE=BD=BF,AE=AD,∠ACE=∠ABD,①当∠DAB逐渐变大,B、D、E三点共线之前时,如图,∵∠COE=∠AOB,∴∠CEO+∠CEO=∠OAB+∠OBA=∠OAB+∠OBD+∠ABD,又∵∠ACE=∠ABD,∴∠CEO=∠OAB+∠OBD=90°+∠OBD,∴∠CEB+∠EBF=90°+∠OBD+90°+∠OBD=180°,∴BF∥CE,又∵BF=CE,∴四边形BFCE是平行四边形;②当B、D、E三点共线且D在B、E之间时,∵∠DAE=90°,AE=AD,∴∠ADE=∠AED=45°,∴∠ADB=135°=∠AEC,∴∠DEC=90°,又∵∠DBF=90°,∴BF∥CE,又∵BF=CE,∴四边形BFCE是平行四边形,又∵∠DEC=90°,∴四边形BFCE是矩形;③当∠DAB逐渐变大,B、D、E三点共线,∠DAB=135°之前时,∵∠CEB+∠EBF=∠CEA+∠AEB+∠ABE+∠ABD+∠DBF=∠ADB+(∠AEB+∠ABE)+∠ABD+∠DBF=(∠ADB+∠ABD)+(∠AEB+∠AE)+∠DBF=180°﹣∠ADB+180°﹣∠EAB+90°=180°×2+90°﹣(∠DAB+∠EAB)=180°×2+90°﹣(360°﹣∠DAE)=180°×2+90°﹣360°+∠DAE=90°+∠DAE=180°,∴BF∥CE,又∵BF=CE,∴四边形BFCE是平行四边形,④当∠DAB=135°时,∴∠EAB=360°﹣∠DAE﹣∠DAE=135°=∠DAB,又∵AD=AE,AB=AB,∴△ADB≌△AEB(SAS),∴BD=BE=CE,由③同理可证∠CEB+∠EBF=180°,∴BF∥CE,又∵BF=CE,∴四边形BFCE是平行四边形,又∵BE=CE,∴四边形BFCE是菱形;当∠DAB=135°后时,由③同理可证∠CEB+∠EBF=180°,∴BF∥CE,又∵BF﹣CE,∴四边形BFCE是平行四边形.当∠DAB的度数从0°逐渐增大到180°的过程中,四边形BFCE的形状依次是:平行四边形→矩形一平行四边形一菱形一平行四边形.故选:D.6.(2023春•尤溪县期末)如图,在△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等边三角形,下列结论中:①AB⊥AC;②四边形AEFD是平行四边形;③=1.正确的个数是()∠DFE=110°;④S四边形AEFDA.1个B.2个C.3个D.4个【答案】B【解答】解:∵AB=3,AC=4,BC=5,32+42=52,∴AB2+AC2=BC2,∴△ABC是直角三角形,∠BAC=90°,∴AB⊥AC,故①正确;∵△ABD,△ACE都是等边三角形,∴∠DAB=∠EAC=60°,∴∠DAE=150°,∵△ABD和△FBC都是等边三角形,∴BD=BA,BF=BC,∠DBF+∠FBA=∠ABC+∠ABF=60°,∴∠DBF=∠ABC,在△ABC与△DBF中,,∴△ABC≌△DBF(SAS),∴AC=DF=AE=4,同理可证:△ABC≌△EFC(SAS),∴AB=EF=AD=3,∴四边形AEFD是平行四边形,故②正确;∴∠DFE=∠DAE=150°,故③错误;过A作AG⊥DF于G,如图所示:则∠AGD=90°,∵四边形AEFD是平行四边形,∴∠FDA=180°﹣∠DFE=180°﹣150°=30°,∴AG=AD=,∴S▱AEFD=DF•AG=4×=6,故④错误;∴正确的个数是2个,故选:B.四.菱形的性质(共2小题)7.(2023•平房区二模)如图,在菱形ABCD中,对角线AC,BD交于点O,点E为AB的=中点,点F在OD上,DF=OF,连接EF交OA于点G,若OG=1,连接CE,S△BEC12,则线段CE的长为3.【答案】3.【解答】解:作EM⊥OA于M,∵四边形ABCD是菱形,∴BD⊥OA,OD=OB,OA=OC,∴EM∥OB,∴AM:MO=AE:EB,∵AE=BE,∴AM=OM,∴EM是△ABO的中位线,∴EM=,∵DF=OF,∴OF=OD,∴EM=OF,∵∠MEG=∠OFG,∠MGE=∠OGF,∴△EMG≌△FOG(AAS),∴MG=OG=1,∴OM=2OG=2,∴OA=2OM=4,∴AC=2OA=8,∵AE=BE,∴△BAC的面积=2×△BEC的面积=2×12=24,∴AC•OB=24,∴OB=6,∴EM=OB=3,∵CM=OM+OC=2+4=6,∴CE==3.故答案为:3.8.(2023春•泗水县期末)如图,在菱形ABCD中,∠ADB=60°,点E,F分别在AD,C D上,且∠EBF=60°.(1)求证:△ABE≌△DBF;(2)判断△BEF的形状,并说明理由.【答案】(1)见解答;(2)△BEF是等边三角形,理由见解答.【解答】(1)证明:∵四边形ABCD是菱形,∴AD=AB,∵∠ADB=60°∴△ADB是等边三角形,△BDC是等边三角形,∴AB=BD,∠ABD=∠A=∠BDC=60°,∵∠ABD=∠EBF=60°,∴∠ABE=∠DBF,在△ABE和△DBF中,,∴△ABE≌△DBF(ASA).(2)解:结论:△BEF是等边三角形.理由:∵△ABE≌△DBF,∴BE=BF,∵∠EBF=60°,∴△EBF是等边三角形.五.菱形的判定(共1小题)9.(2023春•桂林期末)如图,在四边形ABCD中,AB∥CD,∠ADC=90°,AD=12cm,AB=18cm,CD=23cm,动点P从点A出发,以1cm/s的速度向终点B运动,同时动点Q从点B出发,以2cm/s的速度沿折线B﹣C﹣D向终点D运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t秒.(1)用含t的式子表示PB.(2)当t为何值时,直线PQ把四边形ABCD分成两个部分,且其中的一部分是平行四(3)只改变点Q的运动速度,使运动过程中某一时刻四边形PBCQ为菱形,则点Q的运动速度应为多少?【答案】(1)PB=(18﹣t)cm;(2)当t=s或12s时,直线PQ把四边形ABCD分成两个部分,且其中的一部分是平行四边形;(3)当Q点的速度为5.2cm/s时,四边形PBCQ为菱形.【解答】解:(1)由于P从A点以1cm/s向B点运动,∴t s时,AP=t×1=t cm,∵AB=18cm,∴BP=AB﹣AP=(18﹣t)cm;(2)过B点作BN⊥CD于N点,∵AB∥CD,∠ADC=90°,∴四边形ACNB是矩形,∴BN=AD=12cm,AD=DN=18cm,∵CD=23cm,∴CN=CD﹣CN=5cm,∴Rt△BNC中,根据勾股定理可得:BC===13cm,则Q在BC上运动时间为13÷2=6.5s,∵BC+CD=23+13=36cm,∴Q运动时间最长为36÷2=18s,∴6.5s≤t≤18s时,Q在CD边上,此时,直线PQ把四边形ABCD分成两个部分,且其中的一部分是平行四边形,分两种①四边形PQCB是平行四边形,如图所示:∵AB∥CD即PB∥CQ,∴只需PB=CQ即可,由(1)知:PB=(18﹣t)cm,∵Q以2cm/s沿沿折线B﹣C﹣D向终点D运动,∴运动时间为t s时,CQ=2t﹣BC=(2t﹣13)cm,∴18﹣t=2t﹣13,解得:t=s;②四边形ADQP是平行四边形,如图所示:同理∵AP∥DQ,∴只需AP=DQ,四边形ADQP是平行四边形,由(1)知:AP=t cm,点DQ=CD+CB﹣2t=(36﹣2t)cm,∴36﹣2t=t,解得:t=12s,综上所述:当t=s或12s时,直线PQ把四边形ABCD分成两个部分,且其中的一部分是平行四边形;(3)设Q的速度为x cm/s,由(2)可知:Q在CD边上,此时四边形PBCQ可为菱形,∵PB∥CQ,∴只需满足PB=BC=CQ即可,由(1)知:PB=(18﹣t)cm,由(2)知:CQ=(xt﹣13)cm,BC=1cm,∴18﹣t=13,xt﹣13=13,解得:t=5s,x=5.2cm/s,∴当Q点的速度为5.2cm/s时,四边形PBCQ为菱形.六.菱形的判定与性质(共1小题)10.(2023•郧西县模拟)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.【答案】见试题解答内容【解答】(1)证明:如图,∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);∴AF=DB.∵DB=DC,∴AF=CD,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(2)解:连接DF,∵AF∥BC,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S=AC•DF=10.七.矩形的性质(共3小题)11.(2023春•定州市期中)如图,在矩形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,若AB=6,BC=10,则GH 的长度为()A.B.C.D.2【答案】C【解答】解:连接CH并延长交AD于P,连接PE,∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,∵E,F分别是边AB,BC的中点,AB=6,BC=10,∴AE=AB=×6=3,CF=BC=10=5,∵AD∥BC,∴∠DHP=∠FHC,在△PDH与△CFH中,,∴△PDH≌△CFH(AAS),∴PD=CF=5,CH=PH,∴AP=AD﹣PD=5,∴PE===,∵点G是EC的中点,∴GH=EP=,故选:C.12.(2023秋•锦江区校级期中)如图,长方形ABCD中,AD=2AB=8,点E、F分别为线段AD、BC上动点,且AE=CF,点G是线段BC上一点,且满足BG=2,四边形AEF B关于直线EF对称后得到四边形A′EFB′,连接GB′,当AE=3时,点B′与点D重合,在运动过程中,线段GB′长度的最大值是2+2.【答案】3;2+2.【解答】解:当B与点D合时,如图:由于对称:BF=B′F=DF FC=AE,设AE=x,则CF=x,DF=BF=8﹣x,在Rt△CDF中,由勾股定理得:x2+42=(8﹣x)2;∴x=3,则AE=3;如图:取EF中点O,∵AE=CF,由题意知,无论EF如何变动,EF经过点O,连接B′O、OG、OB,在△B′OG中B′G<OB′+OG,∵四边形AEFB关于EF对称得到四边形A′EFB′,∴OB=OB′,故只有当B′、O、G三点共线时、GB′长度最大,此时GB'=B′O+OG=OB+OG,过点O作OH⊥BC,AD=2AB=8,CD=AB=4,∴在Rt△OBH中,OH=CD=2,BH=BC=4,∴OB==2,∵在Rt△OGH中OH=2,GH=BH﹣BG=2,∴OG==2,∴GB'=2+2,故答案为:3;2+2.13.(2023秋•丰城市校级期中)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC边上运动,点Q是坐标平面内的任意一点.若以O,D,P,Q为顶点的四边形是边长为5的菱形时,则点Q的坐标为(﹣3,4)或(8,4)或(3,4).【答案】(﹣3,4)或(8,4)或(3,4).【解答】解:∵A(10,0),C(0,4),∴OC=AB=4,BC=OA=10,∵点D是OA的中点,∴OD=5,①如图1所示,以OP为对角线,点P在点D的左侧时,PD=OD=5,过点P作PE⊥x轴于点E,则PE=OC=4.在Rt△PDE中,由勾股定理得:,∴OE=OD﹣DE=5﹣3=2,∴点P的坐标为(2,4),此时,点Q的坐标为(﹣3,4);②如图2所示,以OQ为对角线,点P在点D的左侧时,OP=OD=5.过点P作PE⊥x轴于点E,则PE=4.在Rt△POE中,由勾股定理得:,∴点P的坐标为(3,4),此时,点Q的坐标为(8,4);③如图3所示,以OP为对角线,点P在点D的右侧时,PD=OD=5,过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:,∴OE=OD+DE=5+3=8,∴点P的坐标为(8,4),此时,点Q的坐标为(3,4);综上所述,点Q的坐标为(﹣3,4)或(8,4)或(3,4);故答案为:(﹣3,4)或(8,4)或(3,4).八.矩形的判定(共1小题)14.(2022春•泰山区校级期中)如图,在△ABC中,点O是AC边上的一动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当CE=12,CF=10时,求CO的长;(3)当O点运动到何处时,四边形AECF是矩形?并证明你的结论.【答案】见试题解答内容【解答】解:(1)证明:∵MN∥BC,CE平分∠ACB,CF平分∠ACD,∴∠BCE=∠ACE=∠OEC,∠OCF=∠FCD=∠OFC,∴OE=OC,OC=OF,∴OE=OF;(2)∵CE平分∠ACB,CF平分∠ACD,∴∠ECF=∠ACB+∠ACD=×180°=90°,∴Rt△CEF中,EF===2,又∵OE=OF,∴CO=EF=;(3)当O运动到AC中点时,四边形AECF是矩形,证明:∵AO=CO,OE=OF,∴四边形AECF是平行四边形,由(2)可得∠ECF=90°,∴四边形AECF是矩形.九.正方形的性质(共27小题)15.(2022秋•汝州市期末)如图,在正方形ABCD中,E、F分别是AB,BC的中点,CE,DF交于点G,连接AG,下列结论:①CE=DF;②CE⊥DF;③∠AGE=∠CDF;④∠EAG=30°,其中正确的结论是()A.①②B.①③C.①②④D.①②③【答案】D【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=90°,∵E,F分别是AB,BC的中点,∴BE=AB,CF=BC,∴BE=CF,在△CBE与△DCF中,,∴△CBE≌△DCF(SAS),∴∠ECB=∠CDF,CE=DF,故①正确;∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF,故②正确;∴∠EGD=90°,延长CE交DA的延长线于H,∵点E是AB的中点,∴AE=BE,∵∠AHE=∠BCE,∠AEH=∠CEB,AE=BE,∴△AEH≌△BEC(AAS),∴BC=AH=AD,∵AG是斜边的中线,∴AG=DH=AD,∴∠ADG=∠AGD,∵∠AGE+∠AGD=90°,∠CDF+∠ADG=90°,∴∠AGE=∠CDF.故③正确;∵CF=BC=CD,∴∠CDF≠30°,∴∠ADG≠60°,∵AD=AG,∴△ADG不是等边三角形,∴∠EAG≠30°,故④错误;故选:D.16.(2023秋•福田区期中)如图,正方形ABCD外取一点E,连接AE、BE、DE.过点A 作AE的垂线交DE于点P,若AE=AP=1,PB=.下列结论:①EB⊥ED;②点B+S△APB=;④S正方形ABCD=2.其中正到直线DE的距离为;③S△APD确结论的序号是()A.①③④B.①②③C.②③④D.①②③④【答案】A【解答】解:如图,∵四边形ABCD是正方形,∴AD=AB,∠BAD=ADC=90°,∵AE⊥AP,∴∠EAP=90°,∴∠BAE+∠BAP=∠BAP+∠DAP=90°,∴∠BAE=∠DAP,∵AE=AP=1,∴△ABE≌△ADP(SAS),∴∠AEB=∠APD,BE=DP,∵△AEP是等腰直角三角形,∴∠AEP=∠APE=45°,EP=AE=,∴∠APD=180°﹣∠APE=180°﹣45°=135°,∴∠AEB=135°,∴∠BED=∠AEB﹣∠AEP=135°﹣45°=90°,∴EB⊥ED,∴①正确;∴BE===1=AE,∴②不正确;∵△ABE≌△ADP,=S△ADP,∴S△ABE∵∠BAP=90°,AE=AP=1,PB=,∴EP=,∠AEP=45°,∵∠AEB=135°,∴∠BEP=135°﹣45°=90°,+S△APB=S△AEB+S△APB=S△AEP+S△EPB=AE×AP+EP×BE=×1×1+×∴S△APD×1=,∴③正确;如图,过点B作BO⊥AE,交AE的延长线于点O,则∠O=90°,∵∠BEO=180°﹣∠AEB=180°﹣135°=45°,∴△BOE是等腰直角三角形,∴OE=OB=BE=,∴AO=AE+OE=1+,在Rt△ABO中,∵AB2=AO2+OB2=(1+)2+()2=2+,=AB2=2+;∴S正方形ABCD∴④正确;故选:A.17.(2023秋•呈贡区期中)如图,正方形ABCD和长方形AEFG的面积相等,且四边形B EFH也是正方形,欧几里得在《几何原本》中利用该图得到了:BH2=CH×GH.设AB =a,CH=b.若ab=5,则图中阴影部分的周长是()A.6B.8C.10D.20【答案】C【解答】解:∵四边形ABCD,四边形BEFH为正方形,AB=a,CH=b,∴BC=AB=CD=a,BE=BH=EF=BC﹣CH=a﹣b,AE=AB+BE=a+a﹣b=2a﹣b,=AB2=a2,∴S正方形ABCDS长方形AEFG=AE•EF=(2a﹣b)(a﹣b)=2a2﹣3ab+b2,∵正方形ABCD和长方形AEFG的面积相等,∴a2=2a2﹣3ab+b2,整理得:a2+b2=3ab,∴(a+b)2=5ab,∵ab=5,∴(a+b)2=5×5,∴a+b=5,∴阴影部分的周长为:2(CD+CH)=2(a+b)=10.故选:C.18.(2023秋•深圳月考)如图,在正方形ABCD中,点P为BD延长线上任一点,连接PA.过点P作PE⊥PA,交BC的延长线于点E,过点E作EF⊥BP于点F.下列结论:①PA=PE;②BD=3PF;③CE=2PD;④若BP=BE,则PF=(+1)DF.其中正确的个数为()A.1B.2C.3D.4【答案】B【解答】解:如图1,在EF上取一点G,使FG=FP,连接BG、PG,∵EF⊥BP,∴∠BFE=90°,∵四边形ABCD是正方形,∴∠FBC=∠ABD=45°,∴BF=EF,在△BFG和△EFP中,,∴△BFG≌△EFP(SAS),∴BG=PE,∠PEF=∠GBF,∵∠ABD=∠FPG=45°,∴AB∥PG,∵AP⊥PE,∴∠APE=∠APF+∠FPE=∠FPE+∠PEF=90°,∴∠APF=∠PEF=∠GBF,∴AP∥BG,∴四边形ABGP是平行四边形,∴AP=BG,∴AP=PE;故①正确;连接CG,由(1)知:PG∥AB,PG=AB,∵AB=CD,AB∥CD,∴PG∥CD,PG=CD,∴四边形DCGP是平行四边形,∴CG=PD,CG∥PD,∵PD⊥EF,∴CG⊥EF,即∠CGE=90°,∵∠CEG=45°,∴CE=CG=PD;故③错误;连接AC交BD于O,如图3:∵四边形ABCD是正方形,∴∠AOP=90°=∠PFE,∵∠APO=90°﹣∠OPE=∠PEF,AP=PE,∴△AOP≌△PFE(AAS),∴OA=PF,∵OA=BD,∴PF=BD,即BD=2PF,故②错误;设PF=m,DF=n,则BD=2m,∴BF=BD+DF=2m+n,BP=BF+PF=3m+n,∵∠DBC=45°,∠BFE=90°,∴BE=BF=2m+n,若BP=BE,则3m+n=2m+n,∴m=n=(+1)n,即PF=(+1)DF,故④正确,故选:B.19.(2022秋•雁塔区校级期末)如图,在正方形ABCD中,AB=4,E,F分别为边AB,B C的中点,连接AF,DE,点G,H分别为DE,AF的中点,连接GH,则GH的长为()A.B.1C.D.2【答案】C【解答】解:连接AG并延长交CD于M,连接FM,∵四边形ABCD是正方形,∴AB=CD=BC=4,AB∥CD,∠C=90°,∴∠AEG=∠GDM,∠EAG=∠DMG,∵G为DE的中点,∴GE=GD,在△AGE和MGD中,,∴△AGE≌△MGD(AAS),∴AG=MG,AE=DM=AB=CD,∴CM=CD=2,∵点H为AF的中点,∴GH=FM,∵F为BC的中点,∴CF=BC=2,∴FM==2,∴GH=,故选:C.20.(2023•温州模拟)如图所示,在Rt△ABC中,∠ACB=90°,以其三边为边分别向外作正方形,连接EH,GH,连接EG交AB于点K,当∠EHG=90°时,则的值为()A.B.C.D.【答案】D【解答】解:以A为原点,以AB边所在直线为x轴建立如图所示坐标系:设AB=c,AC=b,BC=a,在Rt△ABC中,∠ACB=90°,∴a2+b2=c2,过E作EQ⊥x轴于Q,过H作HP⊥x轴于P,∵四边形ACDE与四边形BCMH都是正方形,∴∠EAC=∠CBH=90°,AC=AE=b,BC=BH=a,∴∠EAQ+∠BAC=90°,∠HBP+∠ABC=90°,∵∠BAC+∠ABC=90°,∴∠ABC=∠EAQ,∠BAC=∠HBP,∴Rt△EAQ∽Rt△ABC∽Rt△BHP,∴,,即,,∴AQ=,EQ=,HP=,BP=,∴AP=AB+BP=c+=,∴E(﹣,),H(,),∵四边形BABGF是正方形,∴AB=BG=FG,BG⊥x轴,∴G(c,﹣c),当∠EHG=90°时,在Rt△EHG中,由勾股定理可得:EH2+GH2=EG2,∴(+)2+(﹣)2+(﹣c)2+(+c)2=(+c)2+(﹣﹣c)2,整理可得:(a﹣b)(2a2+b2)=﹣ab(a+b),∴2a3+ab2﹣2a2b﹣b3=﹣a2b﹣ab2,∴(a2+b2)(2a﹣b)=0,∵a、b是三角形的边长,∴a>0,b>0,∴a2+b2≠0,∴2a﹣b=0,∴b=2a,∵a2+b2=c2,∴c2=5a2,∵EQ∥BC,∴,即,∴,故选:D.21.(2023春•新吴区期末)如图,在正方形ABCD中,E为对角线AC上一点,连接DE,过点E作EF⊥DE,交BC延长线于点F,以DE,EF为邻边作矩形DEFG,连接CG.在下列结论中:①DE=EF;②△DAE≌△DCG;③AC⊥CG;④CE=CF.其中正确的是()A.②③④B.①②③C.①②④D.①③④【答案】B【解答】解:①过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:∵四边形ABCD是正方形,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,∴NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,故①正确;②∵矩形DEFG为正方形;∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),故②正确;③根据②得AE=CG,∠DAE=∠DCG=45°,∴∠ACG=90°,∴AC⊥CG,故③正确;④当DE⊥AC时,点C与点F重合,∴CE不一定等于CF,故④错误,综上所述:①②③正确.故选:B.22.(2023春•西平县期中)如图,正方形ABCD边长为12,里面有2个小正方形,各边的顶点都在大正方形的边上的对角线或边上,它们的面积分别是S1,S2,则S1+S2=()A.68B.72C.64D.70【答案】A【解答】解:如图,由正方形的性质,∠1=∠2=∠3=∠4=45°,所以,四个角所在的三角形都是等腰直角三角形,∵正方形的边长为12,∴AC=12,∴两个小正方形的边长分别为×12=4,×12=6,∴S1+S2=(4)2+62=32+36=68.故选:A.23.(2023•光山县校级三模)如图,正方形OABC中,点A(4,0),点D为AB上一点,且BD=1,连接OD,过点C作CE⊥OD交OA于点E,过点D作MN∥CE,交x轴于点M,交BC于点N,则点M的坐标为()A.(5,0)B.(6,0)C.(,0)D.(,0)【答案】C【解答】解:∵OABC是正方形,A(4,0),∴OA=OC=AB=4,∠AOC=∠OAB=90°,∵BD=1,∴AD=3,D(4,3),∵CE⊥OD,∴∠DOE=90°﹣∠CEO=∠OCE,在△COE和△OAD中,,∴△COE≌△OAD(ASA),∴OE=AD=3,∴E(3,0),设直线CE为y=kx+b,把C(0,4),E(3,0)代入得:,解得,∴直线CE为y=﹣x+4,由MN∥CE设直线MN为y=﹣x+c,把D(4,3)代入得:﹣+c=3,解得c=,∴直线MN为y=﹣x+,在y=﹣x+中,令y=0得﹣x+=0,解得x=,∴M(,0),故选:C.方法二:∵CE⊥OD,CE∥MN,∴OD⊥MN,∴∠ADM=90°﹣∠ODA=∠AOD,∵∠DAO=90°=∠MAD,∴△DAO∽△MAD,∴=,∵点A(4,0),BD=1,∴OA=4=AB,AD=AB﹣BD=3,∴=,解答AM=,∴OM=OA+AM=4+=,∴M(,0),故选:C.24.(2023•鄞州区校级模拟)如图,在正方形ABCD中,O为对角线AC、BD的交点,E、F分别为边BC、CD上一点,且OE⊥OF,连接EF.若,则E F的长为()A.2B.2+C.+1D.3【答案】A【解答】解:在正方形ABCD中,AC和BD为对角线,∴∠AOB=∠BOC=90°,∠OBC=∠OCD=45°,OB=OC,∵∠AOE=150°,∴∠BOE=60°;∵OE⊥OF,∴∠EOF=∠BOC=90°,∴∠BOE=∠COF=60°,∴△BOE≌△COF(ASA),∴OE=OF,∴△OEF是等腰直角三角形;过点F作FG⊥OD,如图,∴∠OGF=∠DGF=90°,∵∠ODC=45°,∴△DGF是等腰直角三角形,∴GF=DG=DF=,∵∠AOE=150°,∴∠BOE=60°,∴∠DOF=30°,∴OF=2GF=,∴EF=OF=2.故选:A.25.(2023•淮南二模)如图,在△BCP中,BP=2,PC=4,现以BC为边在BC的下方作正方形ABCD并连接AP,则AP的最大值为()A.B.6C.D.【答案】D【解答】解:将△ABP绕点B逆时针旋转90°得△BCE,连接PE,则△BPE是等腰直角三角形,AP=CE,∴PE=BP=2,在△CPE中,CE≤PE+CP,∴CE的最大值为2+4,即AP的最大值为2+4,故选:D.26.(2023春•平桥区期末)如图,边长为2的正方形ABCD的对角线相交于点O,点E是BC边上的动点,连接OE并延长交AB的延长线于点P,过点O作OQ⊥OP交CD于点F,交BC延长线于点Q,连接PQ.若点E恰好是OP中点时,则PQ的长为()A.2B.C.D.【答案】D【解答】解:作OH⊥AB于H,∵四边形ABCD是正方形,∴△OBC和△OAB是等腰直角三角形,∴∠BOP+∠EOC=90°,∵OQ⊥OP,∴∠QOC+∠EOC=90°,∴∠BOP=∠COQ,∵∠ABO=∠OCB=45°,∴∠OBP=∠OCQ=135°,∵OB=OC,∴△OBP≌△OCQ(ASA),∴PO=QO,∴△OPQ是等腰直角三角形,∵OH⊥AB,EB⊥AB,∴BE∥OH,∴PB:BH=PE:OE,∵OE=PE,∴PB=BH,∵△OAB是等腰直角三角形,OH⊥AB,∴OH=BH=AB=×2=1,∴PB=BH=1,∴PH=PB+BH=2,∴OP===,∴PQ=PO=.故选:D.27.(2023春•江阴市期末)如图,E为正方形ABCD中BC边上的一点,且AB=12,BE=4,M、N分别为边CD、AB上的动点,且始终保持MN⊥AE,则AM+NE的最小值为()A.8B.8C.8D.12【答案】C【解答】解:过点D作DH∥MN,交AB于点H,过点E作EG∥MN,过点M作MG∥NE,两直线交于点G,连接AG,如图,∵四边形ABCD是正方形,∴AB∥CD,∠B=∠BAD=90°,∵AB=12,BE=4,∴AE===4,∵DH∥MN,AB∥CD,∴四边形DHNM是平行四边形,∴DH=MN,∵MN⊥AE,DH∥MN,EG∥MN,∴DH⊥AE,AE⊥EG,∴∠BAE+∠AHD=90°=∠AHD+∠ADH,∠AEG=90°,∴∠BAE=∠ADH,在△ABE和△DAH中,,∴△ABE≌△DAH(ASA),∴DH=AE=4,∴MN=DH=AE=4,∵EG∥MN,MG∥NE,∴四边形NEGM是平行四边形,∴NE=MG,MN=EG=AE=4,∴AM+NE=AM+MG,∴当点A,点M,点G三点共线时,AM+NE的最小值为AG,∴AG===8.故选:C.28.(2023春•徐州期中)如图,正方形ABCO和正方形DEFO的顶点A、O、E在同一直线l上,且EF=,AB=4,给出下列结论:①∠COD=45°;②AD⊥CF;③CF=;④四边形ABDO的面积与正方形ABCO的面积相等.其中正确的结论为()A.①②③④B.①②C.①②③D.①③④【答案】C【解答】解:过D作DN⊥AE于N,延长BC交直线DN于M,连接CD,如图:∵四边形ABCO、四边形DEFO是正方形,∴∠AOC=90°=∠COE,∠DOE=45°,∴∠COD=45°,故①正确,∵∠AOC=90°=∠FOD,∴∠AOD=135°=∠COF,又OA=OC,OD=OF,∴△AOD≌△COF(SAS),∴∠ADO=∠CFO,AD=CF,∵∠DKS=∠FKO,∴∠DSK=∠FOK=90°,∴AD⊥CF,故②正确;∵四边形DEFO是正方形,∴△DON是等腰直角三角形,∵EF==DO,∴DN=ON=DO=1,∵∠MNO=∠NOC=∠OCM=90°,∴四边形NOCM是矩形,∴MN=OC=AB=4,CM=ON=1∴DM=MN﹣DM=1,BM=BC+CM=5,在Rt△BDM中,BD=,∴CF=BD=,故③正确;=BC•DM=×2×3=1.5,S△CDO=OC•ON=×4×1=2,∵S△BCDS△CDO,∴S△BCD≠≠S△BCT,∴S△DTO≠S正方形ABCO,故④错误,∴S四边形ABDO∴正确的有①②③,故选:C.29.(2022秋•郑州期末)如图,在正方形ABCD中,点O是对角线AC,BD的交点,过点O作射线OM,ON分别交BC,CD于点E,F,且∠EOF=90°,EF,OC交于点G.下列结论:①△COE≌△DOF;②△OGE∽△FGC;③DF2+BE2=OG•OC;④正方形ABCD的面积是四边形CEOF面积的4倍.其中正确的结论是()A.①②③B.①②③④C.①②④D.③④【答案】C【解答】解:①在正方形ABCD中,OC=OD,∠COD=90°,∠ODC=∠OCB=45°,∵∠EOF=90°,∴∠COE=∠EOF﹣∠COF=90°﹣∠COF,∴∠COE=∠DOF,∴△COE≌△DOF(ASA),故①正确;②由①全等可得OE=OF,∴∠OEF=∠OCF=45°,∠OGE=∠CGF,∴△OGE∽△FGC,故②正确;④由①全等可得四边形CEOF的面积与△OCD面积相等,∴正方形ABCD的面积是四边形CEOF面积的4倍,故④正确;③∵△COE≌△DOF,∴CE=DF,∵四边形ABCD为正方形,∴BC=CD,∴BE=CF,在Rt△ECF中,CE2+CF2=EF2,∴DF2+BE2=EF2,∵∠OCE=∠OEG=45°,∠EOG=∠COE,∴△EOG∽△COE,∴=,∴OG•OC=EO2≠EF2,∴DF2+BE2≠OG•OC,故③不正确;综上所述,正确的是①②④,故选:C.30.(2023秋•西安期中)如图,在正方形ABCD中,AB=4,AC与BD交于点O,N是A O的中点,点M在边BC上,且BM=3,P为对角线BD上一点,当对角线BD平分∠N PM时,PM+PN的值为5.【答案】5.【解答】解:设PM与AC相交于点Q,∵在正方形ABCD中,AB=4,∴AC=AB=4,AC⊥BD,∠ABC=90°,∴∠NOP=∠QOP=90°,∵O为AC中点,∴0A=0C=2,∵N为OA的中点,∴ON=,∵对角线BD平分∠NPM,∴∠NPO=∠QPO,∵PO=PO,∴△NPO≌△QPO,∴OQ=ON=,PQ=PN,∠PNO=∠PQO,∴NQ=2,CQ=OC﹣CQ=,∴∵AB=4,BM=3,∴CM=1,∴,∴,∵∠ACB=∠QCM=45°,∴△CMQ~△CBA,∴∠CMQ=∠CBA=90°,∴∠PNO=∠PQO=∠CQM=45°,∴MQ=CM=1,∠NPQ=180°﹣∠PNO﹣∠PQO=90°,∴PQ2+PN2=NQ2,即2,∴PQ=PN=2,∴PM+PN=PQ+MQ+PN=2+1+2=5.31.(2023秋•重庆月考)如图,正方形ABCD的边长为4,E为DC边上一点,DE=3,连接AE,过D作AE的垂线交AE于点F,交BC于点G,则FG的长为.【答案】.【解答】解:∵四边形ABCD为正方形,且边长为4,∴AB=CD=4,∠ADC=∠C=90°,∴∠ADF+∠CDG=90°,又∵DF⊥AE,∴∠ADF+∠DAE=90°,∴∠DAE=∠CDG,在△ADE和△DCG中,,∴△ADE≌△DCG(ASA),∴DG=AE,在Rt△ADE中,AD=4,DE=3,由勾股定理得:AE==5,∴DG=AE=5,=AE•DF=AD•DE,由三角形的面积得:S△ADE∴AE•DF=AD•DE,∴5•DF=4×3,∴DF=,∴FG=DG﹣DF=5﹣=,故答案为:.32.(2023•增城区一模)如图,点E在正方形ABCD外,连结AE、BE、DE,过点A作AE 的垂线交DE于点F.若AE=AF=4,BF=10,则下列结论:①△AFD≌△AEB;②EB⊥ED;③点B到直线AE的距离为3;④S△ABF+S△ADF=40.其中正确的结论是①②③④.(填写所有正确结论的序号)【答案】①②③④.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵AF⊥AE,∴∠FAE=∠BAE+∠BAF=90°,∵∠DAF+∠BAF=∠BAD=90°,∴∠BAE=∠DAF,又∵AE=AF,∴△AFD≌△AEB(SAS),故①正确;∴∠AFD=∠AEB,∵∠AEB=∠AEF+∠BEF,∠AFD=∠AEF+∠FAE,∴∠BEF=∠FAE=90°,即EB⊥ED,故②正确;过点B作BP⊥AE,交AE的延长线于P,则BF的长即点B到直线AE的距离,∵AE=AF=4,∠FAE=90°,∴FE=8,∠AEF=∠AFE=45°,在Rt△BEF中,FB=10,FE=8,∴BE=6,∵EB⊥ED,BP⊥AP,∴∠EPB=∠PBE=45°,∴BP=EP=3,故③正确;连接BD,S△AFD+S△AFB=S△AEB+S△AFB=S△AEF+S△BEF=×4×4+×6×8=40,故④正确;综上,正确结论的序号是①②③④,故答案为:①②③④.33.(2023秋•余江区期中)如图,四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:ED=EF;(2)若AB=2,,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,求∠EFC的度数.【答案】(1)见解答;(2)2;(3)∠EFC=120°或30°.【解答】(1)证明:作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,,∴Rt△EQF≌Rt△EPD(ASA),∴EF=ED,(2)解:如图2中,在Rt△ABC中.AC=AB=2,∵EC=,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,易知CG=.(3)解:①当DE与AD的夹角为30°时,点F在BC边上,∠ADE=30°,则∠CDE=90°﹣30°=60°,在四边形CDEF中,由四边形内角和定理得:∠EFC=360°﹣90°﹣90°﹣60°=120°,②当DE与DC的夹角为30°时,点F在BC的延长线上,∠CDE=30°,如图3所示:∵∠HCF=∠DEF=90°,∠CHF=∠EHD,∴∠EFC=∠CDE=30°,综上所述,∠EFC=120°或30°.34.(2023•歙县校级模拟)如图①,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)连接MN,△BMN是等边三角形吗?为什么?(2)求证:△AMB≌△ENB;(3)①当M点在何处时,AM+CM的值最小;②如图②,当M点在何处时,AM+BM+CM的值最小,请你画出图形,并说明理由.【答案】见试题解答内容【解答】(1)解:△BMN是等边三角形.理由如下:如图①,∵BM绕点B逆时针旋转60°得到BN,∴BM=BN,∠MBN=60°,∴△BMN是等边三角形;。
中考数学平行四边形-经典压轴题附详细答案
(3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.
【答案】见解析
【解析】
试题分析:探究:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得△BCE≌△DCG,则可得BE=DG;
应用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面积,继而求得答案.
试题解析:
探究:∵四边形ABCD、四边形CEFG均为菱形,
(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.
【答案】(1)见解析;(2) ;(3)见解析
【解析】
试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF;
∵∠CBN+∠ABN=90°,
∴∠ABN+∠BAM=90°,
∴∠APB=90°,
∴AM⊥BN.
(2)如图②中,以AB为斜边向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP.
∵∠EFP=∠FPG=∠G=90°,
∴四边形EFPG是矩形,
∴∠FEG=∠AEB=90°,
(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求△APB周长的最大值;
平行四边形压轴题20道
平行四边形压轴题20道平行四边形是初中数学中一个重要的概念,其在几何中的应用非常广泛。
下面是 20 道有关平行四边形的初中奥数题,其中包括一些难题和压轴题。
1. 一个平行四边形的对角线相交于一点,那么这个点的坐标是多少?2. 一个三角形的三个顶点坐标都是公理,那么这个三角形是不是平行四边形?3. 一个矩形的对角线相等,并且矩形的两条边长之和等于第三边的长,那么这个矩形的周长是多少?4. 已知平行四边形的一边长为 3,另一边长为 5,那么这个平行四边形的对角线长是多少?5. 已知三角形的两边长分别为 3 和 5,那么这个三角形的第三边长是多少?6. 一个矩形的对角线相交于一点,那么这个点的坐标是多少?7. 已知平行四边形的一边长为 4,另一边长为 6,那么这个平行四边形的周长是多少?8. 已知三角形的两边长分别为 4 和 5,那么这个三角形的第三边长是多少?9. 一个平行四边形的对角线相等,并且平行于另外两条对角线,那么这个平行四边形的面积是多少?10. 已知矩形的一边长为 3,另一边长为 5,那么这个矩形的对角线长是多少?11. 一个矩形的对角线相交于一点,那么这个点的坐标是多少?12. 已知平行四边形的一边长为 3,另一边长为 4,那么这个平行四边形的周长是多少?13. 已知三角形的两边长分别为 3 和 4,那么这个三角形的第三边长是多少?14. 一个矩形的对角线相交于一点,那么这个点的坐标是多少?15. 已知平行四边形的一边长为 3,另一边长为 4,那么这个平行四边形的面积是多少?16. 已知三角形的两边长分别为 3 和 4,那么这个三角形的面积是多少?17. 一个矩形的对角线相等,并且平行于另外两条对角线,那么这个矩形的面积是多少?18. 已知矩形的一边长为 4,另一边长为 6,那么这个矩形的周长是多少?19. 一个矩形的对角线相交于一点,那么这个点的坐标是多少?20. 已知平行四边形的一边长为 4,另一边长为 6,那么这个平行四边形的周长是多少?以上 20 道平行四边形的初中奥数题,有些难度较高,需要学生有一定的几何思想和解题能力。
中考数学平行四边形-经典压轴题
1.已知,在矩形 ABCD 中,AB=a,BC=b,动点 M 从点 A 出发沿边 AD 向点 D 运动.
(1)如图 1,当 b=2a,点 M 运动到边 AD 的中点时,请证明∠ BMC=90°; (2)如图 2,当 b>2a 时,点 M 在运动的过程中,是否存在∠ BMC=90°,若存在,请给与 证明;若不存在,请说明理由; (3)如图 3,当 b<2a 时,(2)中的结论是否仍然成立?请说明理由. 【答案】(1)见解析; (2)存在,理由见解析; (3)不成立.理由如下见解析. 【解析】 试题分析:(1)由 b=2a,点 M 是 AD 的中点,可得 AB=AM=MD=DC=a,又由四边形 ABCD 是矩形,即可求得∠ AMB=∠ DMC=45°,则可求得∠ BMC=90°; (2)由∠ BMC=90°,易证得△ ABM∽ △ DMC,设 AM=x,根据相似三角形的对应边成比 例,即可得方程:x2﹣bx+a2=0,由 b>2a,a>0,b>0,即可判定△ >0,即可确定方程有 两个不相等的实数根,且两根均大于零,符合题意; (3)由(2),当 b<2a,a>0,b>0,判定方程 x2﹣bx+a2=0 的根的情况,即可求得答 案. 试题解析:(1)∵ b=2a,点 M 是 AD 的中点, ∴ AB=AM=MD=DC=a, 又∵ 在矩形 ABCD 中,∠ A=∠ D=90°, ∴ ∠ AMB=∠ DMC=45°, ∴ ∠ BMC=90°. (2)存在, 理由:若∠ BMC=90°, 则∠ AMB+∠ DMC=90°, 又∵ ∠ AMB+∠ ABM=90°, ∴ ∠ ABM=∠ DMC, 又∵ ∠ A=∠ D=90°, ∴ △ ABM∽ △ DMC, ∴ AM AB ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 如图,已知以厶
ABC 的三边为边在 BC 的同侧作等边△ ABD △ BCE △ ACF 请回答下列问题: (1) 四边形ADEF 是什么四边形?写出理由。
(2) 当厶ABC 满足什么条件时,四边形 ADEF 是菱形?
(3) 当厶ABC 满足什么条件时,以 A 、D E 、F 为顶点的四边形不存在?
2.
( 2009临沂)数学课上,张老师出示了问题:如图 1,四边形ABCD
是正方形,点 E 是边BC 的中点.
AEF 90°,且
EF 交正方形外角 DCG 的平行线CF 于点F ,求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取
AB 的中点 M 连接 ME 贝U AM =EC 易证 △ AME ECF ,所以
AE EF .
在此基础上,同学们作了进一步的研究:
(1 )小颖提出:如图2,如果把“点 E 是边BC 的中点”改为“点 E 是边BC 上 (除B , C 外)的任意一点”,其它条件 不变,那么结论“ AE =EF'仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图 3,点E 是BC 的延长线上(除 C 点外)的任意一点,其他条件不变,结论“ AE=EF'仍然成
立•你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
图2 图3
图1
3. (2009年铁岭市)△ ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ ADE是以AD 为边的等边三角形,过点E作BC的平行线,分别交射线AB AC于点F、G,连接BE .
(1)如图(a)所示,当点D在线段BC上时.
①求证:△ AEB ADC ;
②探究四边形BCGE是怎样特殊的四边形?并说明理由;
(2)如图(b)所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立?
(3)在(2)的情况下,当点D运动到什么位置时,四边形BCGE是菱形?并说明理由.
4. (2009年日照
市)
已知正方形ABCD中, E为对角线BD上一点,过E点作EF丄BD交BC于F,连接DF G为DF中点,
连接EG CG
(1)求证:EGCG
(2)将图①中厶BEF绕B点逆时针旋转450,如图②所示,取DF中点G连接EG CG问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)将图①中厶BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观
察你还能得出什么结论?(均不要求证明)
图
第24题图①第24题图②
A D
第24题图③
5 ( 2009江西)如图 1,在等腰梯形 ABCD 中,AD // BC , E 是AB 的中点,过点 E 作EF // BC 交CD 于点
F • AB 4, BC 6,/ B 60 .
(1) 求点E 到BC 的距离;
(2) 点P 为线段EF 上的一个动点,过 P 作PM EF 交BC 于点M ,过M 作MN // AB 交折线ADC 于点N ,连结 PN ,设 EP
X .
① 当点N 在线段AD 上时(如图2) , △ PMN 的形状是否发生改变?若不变,求出 △ PMN 的周长;若改变,请说明理
由;
② 当点N 在线段DC 上时(如图 3),是否存在点 P ,使△ PMN 为等腰三角形?若存在,请求出所有满足要求的 x 的
值;若不存在,请说明理由
6•如图〔,△ ABC 是等腰直角三角形,四边形 ADEF 是正方形,D F 分别在AB AC 边上,此时BD=CF BDLCF 成立. (1 )当正方形ADEF 绕点A 逆时针旋转0 (0°v B v 90°)时,如图 2, BDCF 成立吗?若成立,请证明;若不成立, 请说明理由. (2)当正方形ADEF 绕点A 逆时针旋转45°时,如图3,延长BD 交CF 于点G. ① 求证:BDL CF
② 当AB=4, AD=二时,求线段BG 的长.
⑴方法感悟: 如图①,在正方形 ABCD 中,点 E , F 分别为 DC BC 边上的点,且满足/ EAF=45,连接 EF ,求证
DE+BF=EF
感悟解题方法,并完成下列填空:
将厶ADE 绕点A 顺时针旋转90°得到△ ABG 此时 AB 与AD 重合,由旋转可得: AB=AD,BG=DE, / 仁/2,/ ABG 2 D=9C ° ,
•••/ ABG+Z ABF=9C +90° =180°,
因此,点G B , F 在同一条直线上.
•••/ EAF=45 2+Z 3=/ BAD-/ EAF=90 -45° =45°
•••/ 仁/2, •/ 1 + / 3=45°. 即/ GAF=/ _________ . 又 AG=AE AF=AF • △ GAF ^
.
________ =EF ,故 DE+BF=EF
⑵方法迁移: 1
如图②,将Rt ABC 沿斜边翻折得到厶ADC 点 E , F 分别为DC BC 边上的点,且/ EAF 』/ DAB 试猜
2 想DE, BF , EF 之间有何数量关系,并证明你的猜想. ⑶问题拓展:
EAF - DAB ,试猜想当/
B 与/ D 满足什么关系
2 时,可使得 DE+BF=EF 请直接写出你的猜想(不必说明理由)
如图③,在四边形 ABCD 中, AB=AD E, F 分别为DC,BC 上的点,满足 D
E
C
(第 25 题)。