行程问题专项训练

合集下载

小学数学行程问题专项练习

小学数学行程问题专项练习

典型例题1早晨,张老师从家骑自行车以每小时15千米的速度去上班,用0。

4小时到达学校。

中午下班,因逆风,张老师骑自行车以每小时12千米的速度沿原路回家,需多少小时到家?举一反三11、小明从家去学校,每分钟走80米,用了12分钟;中午放学沿原路回家,每分钟走100米,多少分钟到家?2、汽车从甲地到乙地平均每小时行50千米,6小时到达;原路返回时每小时比去时快10千米,返回时用了几个小时?3、货车从A城到B城,去时每小时行50千米,4小时到达;沿原路返回时比去时多用了1小时,返回时每小时比去时慢多少千米?典型例题2一辆汽车以每小时40千米的速度从甲地到乙地,出发1。

5小时后,超过中点8千米。

照这样的速度,这辆汽车还要行驶多长时间才能到达乙地?举一反三21、一辆汽车以每小时50千米的速度从A地到B地,出发1。

2小时后,超过中点6千米.照这样的速度,这辆汽车还要行驶多长时间才能达到B地?2、一辆摩托车从甲地开往乙地,出发1。

8小时,行了72千米,距离中点还有8千米。

照这样的速度,这辆汽车还要行驶多长时间才能到达乙地?3、一辆汽车以每小时40千米的速度从东站开往西站,1。

5小时后,剩下的路程比全程的一半少6千米。

照这样的速度,这辆汽车从东站到西站共需多长时间?典型例题3小明上学时坐车,回家时步行,在路上共用了1.25小时.如果往返都坐车,全部行程只需30分钟。

如果往返都步行,全部行程需要多少小时?举一反三31、小红上学时坐车,回家步行,在路上一共用了36分钟。

如果往返都坐车,全部行程只需10分钟,如果往返都步行,需要多少分钟?2、张师傅上班坐车,下班步行,在路上共用了1.5小时。

如果往返都步行,在路上一共需要2。

5小时。

问张师傅往返都坐车,在路上需要多少分钟?3、李师傅上班骑车,下班步行,在路上共用2小时,已知他骑车的速度是步行的4倍。

问李师傅往返骑车只需多少时间?典型例题4小明每天早晨6:50从家出发,7:20到校,老师要求他明天提前6分钟到校,如果明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校.问:小明家距学校多远?举一反三41、解放军某部开往边境,原计划需行军18天,实际平均每天比原计划多行12千米,结果提前3天到达。

四年级数学上册 《行程问题》专项训练

四年级数学上册 《行程问题》专项训练

《行程问题》专项训练
1、卡车从南京出发,沿高速公路开往杭州.如果每小时行90千米,已经行了2小时,此时距终点还有20千米,南京到杭州的距离是多少千米呢?
解:90×2+20
=180+20
=200(千米)
答:南京到杭州的距离是200千米.
2、甲、乙两地相距285千米,一辆汽车从甲地开往乙地,行了3小时后还剩60千米,这辆汽车平均每小时行多少千米?
解:(285-60)÷3
=225÷3
=75(千米)
答:这辆汽车平均每小时行75千米.
3、一辆从北京到济南的长途客车,中途经过天津,北京到天津的公路长大约140千米,天津到济南的公路长大约370千米,早晨6:50出发,何时到达济南?
解:(140+370)÷85=6(小时)
6:50加上行驶的6小时就是12:50分到达济南.
答:12:50到达济南.。

2024年人教版六年级下册数学小升初专题训练:行程问题(含答案)

2024年人教版六年级下册数学小升初专题训练:行程问题(含答案)

2024年人教版六年级下册数学小升初专题训练:行程问题一、单选题1.甲乙两人各走一段路,他们走的时间比是4:5,速度比是5:3,他们走的路程比是( )。

A.12:25B.4:3C.3:4D.25:122.放学了,小明和小红同时从学校回家,小明每分钟行60米,小红每分钟行50米,经过10分钟两人都刚好回到家,小明和小红家的距离不可能是( )米。

A.100B.500C.1100D.12003.一个人从县城骑车去乡办厂。

他从县城骑车出发,用30分钟时间行完了一半路程,这时,他加快了速度,每分钟比原来多行50米。

又骑了20分钟后,他从路旁的里程标志牌上知道,必须再骑2千米才能赶到乡办厂,则县城到乡办厂之间的总路程为( )。

A.15千米B.18千米C.21千米D.50千米4.甲、乙两地相隔一座山岭,某人从甲地到乙地用6.5小时,从乙地回到甲地用7.5小时,他往返途中上山速度是3千米/时,下山速度是4千米/时,则甲、乙两地间的山岭路程有( )千米。

A.24.5B.24C.49D.485.小猫与小兔从相距1km的两地同时出发,若相向而行,a分钟相遇;若同向而行,b分钟后小猫追上小兔.则小猫与小兔的速度比是( )A.b+ab―a B.a+ba―bC.a―ba+bD.b―ab+a6.正方形ABCD(如图),边长80米,甲从A点,乙从B点,同时沿同方向运动,每分钟的速度甲为135米,乙为120米,每过一个顶点时要多用5秒,出发后,甲与乙相会需要( )A.A B.B C.C D.D二、填空题7.小杰用815小时走完了223千米的路程。

以此速度他1小时可以走 千米。

8.一列动车平均每小时行驶160千米,可以写作 ,这列动车从漳州到福州大约行驶了2小时,漳州到福州大约有 千米。

9.如图,电车从A站经过B站到达C站,然后返回.去时B站停车,而返回时不停,去时的车速为每小时48千米,返回时的车速是每小时 千米.10.在比例尺是1:3000000的地图上,量得甲、乙两地间的公路长是4.5cm。

人教版数学五年级上册人教版《行程问题》专项训练

人教版数学五年级上册人教版《行程问题》专项训练

人教版五年级上册数学专项拔高《行程问题》专项训练班级:姓名:亲爱的同学,在做练习的时候一定要认真审题,完成题目后,记得养成认真检查的好习惯。

祝你轻松完成本次练习!【记录卡】亲爱的同学,在完成本专项练习后,你收获了什么?掌握了哪些新本领呢?在这里记录一下你的收获吧!年月日1.李爷爷每天坚持散步锻炼身体。

某一周他最多的一天走了2.5km,最少的一天走了1.5km。

请估计一下这一周(按7天算)李爷爷所走总路程可能是()。

A.8km B.10km C.15km D.20km2.华华的爸爸妈妈每天早上都要晨跑2.1km,爸爸跑完全程用时12.5分,比妈妈快2.7分。

华华妈妈跑1km平均需要多少分?下面列式正确的是()。

A.2.1÷(12.5+2.7)B.2.1÷(12.5-2.7)C.(12.5+2.7)÷2.1D.(12.5-2.7)÷2.13.甲、乙两辆汽车同时从厦门开往深圳,甲汽车每小时行90.5km,乙汽车每小时行98.2km,经过8小时两车相距多少千米?下面是五(1)班四名同学的算法,你认为()的算法是正确的。

芳芳:(98.2—90.5)×8丽丽:(98.2+90.5)×8强强:98.2×8—90.5×8红红:98.2×8+90.5×8A.芳芳和强强B.丽丽和红红C.芳芳和丽丽D.强强和红红4.河南和北京相距720km。

一辆运输车和货车同时从两地相对开出,经过6小时相遇,已知运输车每小时行驶60km,货车每小时行驶xkm,下列方程中不正确的是()。

A.60×6+6x=720B.(60+x)×6=720C.6x=(720-60)×6D.x+60=720÷65.甲、乙两辆客车,甲车行驶的路程为585千米,所用的时间为9.75小时。

乙车行驶的路程为540千米。

用同样的速度行驶,乙车比甲车少行驶()分钟。

行程问题训练题

行程问题训练题

行程问题训练题一、复习相遇问题:1、甲、乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

求两人几小时后相遇?2、甲车每小时行6千米,乙车每小时行驶5千米,两车于相隔10千米的两地同时相背而行,几小时后两车相隔65千米?3、甲、乙两人从A、B两地步行相向而行,甲每小时走3千米,乙每小时走2千米,两人相遇时距离中点还有3千米。

A、B两地相距多远?二、复习追及问题:1、甲、乙两人分别从相距24千米的两地同时向东而行,甲骑自行车每小时行13千米,乙步行每小时走5千米。

几小时后甲可以追上乙?2、一辆每小时行60千米的汽车去追一辆先行96千米的汽车,已知行了480千米后追上。

那么,先行的汽车每小时行多少千米?3、甲、乙两人沿运动场的跑道跑步,甲每分钟跑290米,乙每分钟跑270米,跑道一圈长400米,如果两人同时从起跑线上同方向跑,那么甲经过多长时间才能第一次追上乙?三、复习航行问题1、一艘船在静水中速度是60千米/小时,已知水流速度是5千米/小时,那么(1)、这艘船在顺水中的速度是______千米/小时.在逆水中的速度是______千米/小时(2)、这艘船在顺水航行120千米需要_______小时。

在逆水中航行120千米又需要_____小时2、两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/小时,水流速度是a千米/小时。

(1)、甲船在顺水中的速度是多少(2)、乙船在逆水中的速度是多少(3)、 2小时后两船相距多远(4)、 2小时后甲船比乙船多航行多少千米。

3、某船来往于相距360 千米的两港口之间。

上行(逆水)需用18 小时,下行要用15 小时。

这只船在静水中速度和水流速度各是多少?4、轮船在两个码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流速度是2千米/小时。

求轮船在静水中航行的速度。

5、一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时的飞机航行速度和两城之间的距离。

四年级数学上册 思维拓展训练:行程问题

四年级数学上册 思维拓展训练:行程问题
如果同时行走,坐汽车的同学应该多走2000米,2000÷(700-200)=4(分).
也就是说同时行走,在汽车到达后,自行车还要性4分钟才能到达,那么距离为(10+4)×200=2800(米)
解:(60×4+80×3)÷(80-60)=24(分钟)
60×(24+4)=1680(千米)
答:小明的家到学校的路程是1680千米.
4、上午8时8分,小明骑自行车从家里出发,8分后,爸爸骑摩托车去追他,在离家4千米的地方追上了他,然后爸爸立刻回家.到家后又立刻回头去追小明,再追上他的时候,离家恰好是8千米,问这时是几时几分?
时间:9×2÷(48-42)=3小时
距离:(48+42)×3=270千米
6、快车和慢车同时从甲乙两地相对开出,已知快车每小时行40千米,3小时后,快车已驶过中点25千米,这时与慢车还相距7千米,求慢车每小时行多少千米?
两地路程:(40×3-25)×2=190(千米)
慢车速度:(190-40×3-7)÷3=21(千米)
解答:解:爸爸的速度是小明的几倍:(4+8)÷4=3(倍)
爸爸走4千米所需的时间:8÷(3-1)=4(分钟)
爸爸的速度:4÷4=1(千米/分)
爸爸所用的时间:(4+4+8)÷1=16(分钟)
16+16=32(分钟)
答:这时是8时32分.
5、甲车和乙车同时从A,B两地相向而行.甲车每小时行48千米,乙车每小时行42千米,两车在离中点9千米处相遇,求AB两地的距离.
根据路程÷速度=时间可知,龟到达终点需要2000÷25此时兔子行了2000-400=1600米,
根据兔子的速度可知,兔子行了1600÷320=5分钟,

应用题专项训练之行程问题(含答案)

应用题专项训练之行程问题(含答案)

应用题专项训练三知识回顾1.行程问题速度×时间=路程时间相同时,路程比等于速度比路程相同时时间比等于速度比的反比2.相遇问题速度和×相遇时间=相遇路程3.追及问题速度差×追及时间=相差路程4.火车过桥桥长+车长=路程速度×过桥时间=路程5.流水行船船速:在静水中的速度水速:河流中水流动的速度顺水船速:船在顺水航行时的速度逆水速度:船在逆水航行时的速度顺水船速=船速+水速=逆水船速+水速×2行程问题常用的解题方法有⑴公式法⑵图示法⑶比例法⑷分段法⑸方程法典型应用题例1、甲、乙两辆汽车从两地相向而行,甲车每小时行85千米,乙车每小时行76千米,甲车开出2小时,乙车才开出,又过了4小时两车相遇,两地间的距离是多少千米?例2、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇。

东西两地相距多少千米?甲乙所行的路程比=甲乙的速度比=56:48=7:6 东西两地相距多少千米?(32+32)÷(7-6)×(7+6)=832千米解:设东西两地相距X千米。

(X÷2+32)÷56=(X÷2-32)÷48 (+32)÷56=()÷48 56=48+32) 7=6+32) =3X+192 =192+224 =416 X=832 答:东西两地相距832千米。

例3、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?设全程X千米。

1/2X-8=X-4×32 1/2X-8=X-128 1/2X=X-128+8 1/2X=X-120 120=1/2 X x=240240-32×4=112(千米)112÷56=2(小时)2+4=6(小时)例4、小狗和小猴参加的100米预赛.结果,当小狗跑到终点时,小猴才跑到90米处,决赛时,自作聪明的小猴突然提出:小狗天生跑得快,我们站在同一起跑线上不公平,我提议把小狗的起跑线往后挪10米.小狗同意了,小猴乐滋滋的想:“这样我和小狗就同时到达终点了!”亲爱的小朋友,你说小猴会如愿以偿吗?【解析】小猴不会如愿以偿.第一次,小狗跑了100米,小猴跑了90米,所以它们的速度比为100:9010:9=;那么把小狗的起跑线往后挪10米后,小狗要跑110米,当小狗跑到终点时,小猴跑了91109910⨯=米,离终点还差1米,所以它还是比小狗晚到达终点.例5、甲、乙二人分别从A、B 两地同时出发,相向而行,甲、乙的速度之比是4 : 3,二人相遇后继续行进,甲到达B 地和乙到达A地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点30千米,则A、B 两地相距多少千米?【解析】两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比,即两个人相遇时所走过的路程比为4 : 3.第一次相遇时甲走了全程的4/7;第二次相遇时甲、乙两个人共走了3个全程,三个全程中甲走了453177⨯=个全程,与第一次相遇地点的距离为542(1)777--=个全程.所以A、B两地相距2301057÷=(千米).例6、甲、乙两人同时从A地出发到B地,经过3小时,甲先到B地,乙还需要1小时到达B地,此时甲、乙共行了35千米.求A,B两地间的距离.【分析】甲用3小时行完全程,而乙需要4小时,说明两人的速度之比为4:3,那么在3小时内的路程之比也是4:3;又两人路程之和为35千米,所以甲所走的路程为4352034⨯=+千米,即A,B两地间的距离为20千米.例7、甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

行 程 问 题

行 程 问 题

行程问题(专题训练)——相遇问题思路导航:1、相遇问题的特点是相向而行。

等量关系:总路程=速度和×相遇时间你速度和=总路程÷相遇时间相遇时间=总路程÷速度和2、相遇问题中,如果两车同时出发,则到相遇为止,两车所用的时间相同,这是解决问题的关键。

例1 甲乙两地间的路程为450千米,一列慢车从甲站开出,每小时行驶65千米,一列快车从乙站开出,每小时行驶85千米,若快车先开出30分钟,慢车才出发,两车相向而行,求慢车出发几小时与快车相遇?练习1 甲、乙两人相距60米,相向而行,甲从A地每秒走3米,乙从B地每秒走2米,如果甲先走10米,那么几秒后两人相遇?例2 甲乙两地间的路程为450千米,一列慢车从甲站开出,每小时行驶65千米,一列快车从乙站开出,每小时行驶85千米,若两车同时出发,几小时后两车相距150千米?练习2 甲、乙两人相距60米,相向而行,甲从A地每秒走3米,乙从B地每秒走2米,那么几秒后两人相距20米?例3 甲乙两地间的路程为450千米,一列慢车从甲站开出,每小时行驶65千米,一列快车从乙站开出,每小时行驶85千米,若两车同时出发,快车、慢车到达甲、乙站后立即返回,几小时第二次相遇?练习3 甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时后相遇。

已知甲骑车每小时比乙每小时多走2千米,求甲,乙两人的速度。

同类演练:1. 甲、乙两人相距285米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,如果甲先走12米,那么甲出发几秒与乙相遇?2. 甲、乙两架飞机同时从相距750千米的两个机场相向飞行,飞了半小时到达同一中途机场,如果甲飞机的速度是乙飞机的1.5倍,求乙飞机的速度。

3.甲、乙两站相距510千米,一列慢车从甲站开往乙站,速度为每小时45千米,慢车行驶两小时后,另有一列快车从乙站开往甲站,速度为每小时60千米,求快车开出后几小时与慢车相遇?4.小明和小丽同时从学校出发到运动场看体育比赛,小明每分钟走80米,他走到运动场等了5分钟,比赛才开始,小丽每分钟走60米,她进入运动场时,比赛已经开始3分钟,问学校到运动场有多远?5.某人从家里骑自行车到学校。

小学数学应用题综合训练(行程问题大全含解析)

小学数学应用题综合训练(行程问题大全含解析)

行程问题篇及答案1.小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?解答:爸爸骑车和小明步行的速度比是(1-3/10):(1/2-3/10)=7:2,骑车和步行的时间比就是2:7,所以小明步行3/10需要5÷(7-2)×7=7分钟,所以,小明步行完全程需要7÷3/10=70/3分钟。

2. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.解答:乙车比甲车多行11-7+4=8分钟。

说明乙车行完全程需要8÷(1-80%)=40分钟,甲车行完全程需要40×80%=32分钟,当乙车行到B地并停留完毕需要40÷2+7=27分钟。

甲车在乙车出发后32÷2+11=27分钟到达B地。

即在B地甲车追上乙车。

3. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?解法一:甲车和乙车的速度比是15:10=3:2,相遇时甲车和乙车的路程比也是3:2,所以,两城相距12÷(3-2)×(3+2)=60千米解法二:甲车工效是1/10,乙车工效是1/15,两车相遇要1÷(1/10+1/15)=6小时,相遇时甲车比乙多清扫12千米,则多清扫全程的6/10-6/15=1/5,东西两城相距12÷(1/5)=60千米4. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.解答:大轿车行完全程比小轿车多17-5+4=16分钟,所以大轿车行完全程需要的时间是16÷(1-80%)=80分钟,小轿车行完全程需要80×80%=64分钟。

中考数学总复习《行程问题(一次函数实际综合应用)》专项提升训练(带答案)

中考数学总复习《行程问题(一次函数实际综合应用)》专项提升训练(带答案)

中考数学总复习《行程问题(一次函数实际综合应用)》专项提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________1.李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s(千米)与行驶时间t(小时)的关系如图所示(中途休息、加油的时间不计).当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s关于t的函数表达式;(3)当货车显示加油提醒后,问行驶时间t在怎样的范围内货车应进站加油?2.一辆快车从甲地出发驶向乙地,在到达乙地后,立即按原路原速返回到甲地,快车出发一段时间后一辆慢车从甲地驶向乙地,中途因故停车1h后,继续按原速驶向乙地,两车距甲地4的路程kmy与慢车行驶时间()h x之间的函数图象如图所示,请结合图象解答下列问题:(1)甲乙两地相距______km,快车行驶的速度是______ km/h,图中括号内的数值是______ ;(2)求快车从乙地返回甲地的过程中,y与x的函数解析式;(3)慢车出发多长时间,两车相距120km3.甲、乙两地之间是一条直路,王明跑步从甲地往乙地,陈星骑自行车从乙地往甲地,两人同时出发,陈星先到达目的地,设两人的在行进过程中保持匀速,两人之间的距离()km y 与运动时间()h x 的函数关系大致如图所示,请你根据图形进行探究:(1)王明和陈星的速度分别是多少?(2)请写出线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围. 4.某次无人机展演活动中,Ⅰ号无人机从海拔10m 处出发,以12m/min 的速度匀速上升,Ⅱ号无人机从海拔30m 处同时出发,以()m/min a 的速度匀速上升,经过5min 两架无人机位于同一海拔高度()m b .无人机海拔高度()m y 与时间()min x 的关系如图.两架无人机都上升了15min .(1)求b 的值及Ⅱ号无人机海拔高度()m y 与时间()min x 的关系式; (2)问无人机上升了多少时间,两无人机高度相差32m .5.现有A 、B 两种品牌的共享电动车,收费y (元)与骑行时间(min)x 之间的函数关系如图所示,其中A 品牌收费方式对应1y ,B 品牌的收费方式对应2y .(1)直接写出A 品牌收费方式对应的函数关系式为 .(2)如果小致每天早上需要骑共享电动车去上班,已知两种品牌共享电动车的平均行驶速度均为30km /h ,小致家到学校的距离为6km ,那么小致选择 (填“A 品牌”或“B 品牌”)的共享电动车更省钱.(3)求出两种收费相差0.5元时x 的值.6.如图,小李和小赵相约去农庄游玩.小李从甲小区骑电动车出发,同时小赵从乙小区开车出发,途中去超市购物,购物后仍按原速继续驶向农庄,甲乙小区、超市和农庄之间的路程如图①所示,图②中线段OD 、BC 分别表示小李、小赵行驶中离甲小区的路程()km s 与出发时间t (分)之间的函数图象(或部分图象).根据图象回答问题:(1)分别求出线段OD 、BC 的函数表达式;(2)请补全小赵离甲小区的路程为()km s 与出发时间t (分)的函数图象,并写出小赵在超市购物,用时______分钟.7.甲、乙两人同时开车从A 地出发,沿同一条道路去B 地,途中都以两种不同的速度1V 与212()V V V >行驶.甲前一半路程以速度1V 匀速行驶,后一半路程以速度2V 匀速行驶;乙前一半时间以速度匀速2V 行驶,后一半时间用以速度1V 匀速行驶.(1)设甲乙两人从A 地到B 地的平均速度分别为V 甲和V 乙,则V =甲___________;___________(V =乙用含1V 、2V 的式子表示).2(1)当04t<≤时,求2v关于t的函数关系式;(2)求图中a的值;(3)小明每次踢球都能使球的速度瞬间增加6m/s,球运动方向不变,当小明带球跑完200m,写出小明踢球次数共有____次,并简要说明理由.10.已知甲、乙、丙三地依次在同一直线上,乙地离甲地260km,丙地离乙地160km.一艘游轮从甲地出发,途经乙地前往丙地.当游轮到达乙地时,一艘货轮沿着同样的线路从甲地出发前往丙地.已知游轮的速度为20km/h,离开甲地的时间记为t(单位:h),两艘轮船离甲地的距离y(单位:km)关于t的图象如图所示(游轮在停靠前后的行驶速度不变).货轮比游轮早2.6h到达丙地.根据相关信息,解答下列问题:(1)填表:游轮离开甲地的时间/h 6 13 16 22 24游轮离甲地的距离/km120 260(2)填空:①游轮在乙地停靠的时长为_______h;②货轮从甲地到丙地所用的时长为_______h,行驶的速度为_______km/h;③游轮从乙地出发时,两艘轮船的距离为_______km.13.我国已取得脱贫攻坚的全面胜利,国家已进入乡村振兴实施阶段,现代物流的高速发展,为乡村振兴的实施提供了良好条件.某物流公司的汽车在市区行驶20km后进入高速路,在高速路上匀速行驶一段时间后,再在乡村道路上行驶1h到达目的地,汽车行驶的时间x(单位:h)与行驶的路程y(单位:km)之间的关系如图所示.请结合图象,回答下列问题:(1)汽车在乡村道路上行驶的平均速度是______ km/h;(2)求汽车在高速路上行驶的路程y与行驶的时间x之间的函数关系式,并写出自变量x的取值范围;(3)当该物流车行驶到距离出发地120km时,请问该车再过1.5小时能不动达目的地,如果能,写出计算过程;如果不能,直接写出1.5小时后该车离目的地还有多远?14.甲、乙两车分别从相距15km的大连北站和大连广播电视中心同时匀速相向而行.甲车出发10min后,由于交通管制,停止了2min,再出发时速度比原来减少15km/h,并安全到达终点.甲、乙两车距大连北站的路程y(单位:km)与两车行驶时间x(单位:h)的图象如图所示.(1)填空: a______;(2)求乙车距大连北站的路程y与两车行驶时间x的函数解析式,并直接写出自变量x的取值范围;(3)求甲、乙两车相遇时,乙车距大连北站的路程.15.随着疫情的消失,三年的管控使人们的消费和旅游在2023年的“五一”假期得以全面释放.小明和小军分别骑车和驾车从本村出发,沿同一条公路去东门外生态公园游玩.小明骑一段时间后,小军驾车出发,结果半路遭遇堵车,当小明迫上小军后,小军坐小明的自行车一起去生态公园(小军泊车时间忽略不计),如图是小明、小军两人在去生态公园过程中经过的路程()my与小明出发时间()s x之间的函数图像.请结合图像回答:(1)村与公园的距离为______ ,小明骑车速度是______ m/s.(2)小军在离开村多少公里处遭遇堵车?从小军遇到堵车到追上小明用了多长时间?(3)直接写出两人何时相距520m?16.甲、乙两地相距320km,A,B两辆货车同时分别从甲、乙两地相向而行,货车A先出发,一个小时后,货车B也出发,若它们都保持匀速行驶,货车A、货车B距乙地的距离()y km与时x h之间的关系如图所示.间()(1)求货车B距乙地的距离y与时间x的关系式;(2)求货车B到甲地后,货车A还需多长时间到达乙地.参考答案:1.(1)工厂离目的地的路程为880千米 (2)s 关于t 的函数表达式:()80880011s t t =-+≤≤ (3)t 的取值范围是254t ≤≤1522.(1)400,100,7(2)快车从乙地返回甲地的过程中,y 与x 的函数解析式为100400y x =-+ (3)慢车出发1小时或103小时或143小时,两车相距120km3.(1)王明跑步的速度为8km/h ,陈星的速度为16km/h . (2)()24241 1.5y x x =-≤≤ 4.(1)70 830y x =+(2)无人机上升了13min ,两无人机高度相差32m . 5.(1)10.2y x =(2)小明选择A 品牌的共享电动车更省钱 (3)两种收费相差0.5元时,x 的值为15或25;6.(1)线段OD 的函数表达式为()0.5020y x x =≤≤;线段BC 函数表达式为()81218y x x =-≤≤; (2)小赵在超市购物,用时10min . 7.(1)12121222VV V V V V ++,(2)乙(3)①1210050300V V S ===,,,②3.5小时 8.(1)20a = 140b =; (2)2020y x =+甲1550y x =+乙;(3)飞行1分钟或者11分钟时,两架航模飞行高度相差25米。

奥数--行程问题专项训练

奥数--行程问题专项训练

行程问题专项练习基础题:1.客车和一列货车同时从两个车站相对开出,货车每小时行35千米,客车每小时行45千米,5小时相遇,两车站相距多少千米?2.两城相距66千米,甲、乙二人分别从两城同时相对而行,甲每小时行5千米,乙每小时比甲快1千米,几小时后相遇?3.甲、乙二人分别从相距110千米的两地相对而行。

5小时后相遇,甲每小时行12千米,乙每小时行多少千米?4.甲、乙两站相距485千米,两列火车同时从两站相对开出,5小时相遇。

第一列火车比第二列火车每小时快3千米,两列火车每小时的速度各是多少?5.甲、乙两列火车同时从相距650千米的两地相向而行,甲列火车每小时行50千米,乙列火车每小时行52千米,4小时后还差多少千米才能相遇?6.甲、乙两庄相距90千米。

小刚和小牛分别由两庄同时相向出发。

2小时后两人相距56千米,如果小刚每小时行8千米,小牛每小时行多少千米?拓展题:1.北京到沈阳的的铁路长830千米,两列火车同时相对开出,10小时相遇。

已知甲车每小时行41千米,乙车每小时行多少千米?2.一列客车和一列货车从同一地点相背而行,当客车行驶6小时,货车行驶7小时后,两车之间相距699千米。

已知客车每小时比货车快6千米,客车每小时行多少千米?3.甲、乙两列火车从相距780千米的两地相向而行,甲车每小时行45千米,乙车先出发2小时后,甲车才出发,甲车行8小时后与乙车相遇。

乙车每小时行多少千米?4.甲骑自行车每小时行15千米,乙步行每小时5千米,如果两人同时同地朝同一方向出发,甲骑了30千米到达某地,马上原路返回,在途中和乙相遇。

两人从出发到相遇共经过了多长时间?5.A、B两地相距300千米,甲、乙两车同时从两地出发,相向而行,各自到达目的地后又立即返回,经过8小时后他们第二次相遇,已知甲每小时行45千米,乙每小时行多少千米?6.两地相距2400米,甲、乙两人同时同地向同一方向走,甲每分钟走115米,乙每分钟走125米,当乙到达目的地后立即返回与甲相遇,两人从出发到相遇共经过多少分钟?7.两支队伍相距55千米的两地相向而行,通讯员骑马以每小时16千米的速度在两支队伍之间不断往返联络。

人教版六年级下册数学 行程问题 小升初专项训练

人教版六年级下册数学   行程问题   小升初专项训练

人教版六年级下册数学小升初专项训练行程问题一.单选题1.甲、乙两地相距850千米,一辆快车,一辆慢车分别从甲乙两地同时出发,相向而行,已知快车的速度为110千米/小时,慢车速度为90千米/小时,则当两车相距150千米时,甲车行驶的时间是()小时。

A.3.5B.5C.3或4D.3.5或52.乐乐每天步行锻炼身体,他13小时走了53千米。

乐乐步行的速度是()A.5千米B.13千米/小时C.5千米/小时D.59千米/小时3.甲、乙两地相隔一座山岭,某人从甲地到乙地用6.5小时,从乙地回到甲地用7.5小时,他往返途中上山速度是3千米/时,下山速度是4千米/时,则甲、乙两地间的山岭路程有()千米。

A.24.5B.24C.49D.484.有甲、乙、丙三人同时同地出发,绕个花圃行走,乙、丙二人同方向行走,甲与乙相背而行,甲每分钟走40米,乙每分钟走38米,丙每分钟走35米,在途中,甲和乙相遇后3分钟和丙相遇。

问:这个花圃的周长是多少米?()A.1000米B.1147米C.5850米D.10000米5.正方形ABCD(如图),边长80米,甲从A点,乙从B点,同时沿同方向运动,每分钟的速度甲为135米,乙为120米,每过一个顶点时要多用5秒,出发后,甲与乙相会需要()A.A B.B C.C D.D6.小猫与小兔从相距1km的两地同时出发,若相向而行,a分钟相遇;若同向而行,b分钟后小猫追上小兔.则小猫与小兔的速度比是()A.b+a b−a B.a+b a−b C.a−b a+b D.b−a b+a二.填空题7.一列火车从北京开往上海,3小时行了全程的37,这时距中点还有40千米。

这列火车平均每小时行千米,全程共千米。

8.甲走的路程比乙走的路程多13,乙用的时间比甲多14,那么甲乙的速度比是.9.甲乙两人的速度比是9:7,甲乙两人分别从A,B两地同时出发,如果相向而行,0.5个小时后相遇;如果他们同向而行,甲过小时能追上乙。

行程问题练习题及答案(3篇)

行程问题练习题及答案(3篇)

行程问题练习题及答案(3篇)行程问题练习题及答案 1(一)超车问题(同向运动,追及问题)1、一列慢车车身长125米,车速是每秒17米;一列快车车身长140米,车速是每秒22米。

慢车在前面行驶,快车从后面追上到完全超过需要多少秒?思路点拨:快车从追上到超过慢车时,快车比慢车多走两个车长的和,而每秒快车比慢车多走(22-17)千米,因此快车追上慢车并且超过慢车用的时间是可求的。

(125+140)÷(22-17)=53(秒)答:快车从后面追上到完全超过需要53秒。

2、甲火车从后面追上到完全超过乙火车用了110秒,甲火车身长120米,车速是每秒20米,乙火车车速是每秒18米,乙火车身长多少米?(20-18)×110-120=100(米)3、甲火车从后面追上到完全超过乙火车用了31秒,甲火车身长150米,车速是每秒25米,乙火车身长160米,乙火车车速是每秒多少米?25-(150+160)÷31=15(米)小结:超车问题中,路程差=车身长的和超车时间=车身长的和÷速度差(二)过人(人看作是车身长度是0的火车)1、小王以每秒3米的速度沿着铁路跑步,迎面__一列长147米的火车,它的行使速度每秒18米。

问:火车经过小王身旁的时间是多少?147÷(3+18)=7(秒)答:火车经过小王身旁的时间是7秒。

2、小王以每秒3米的速度沿着铁路跑步,后面__一列长150米的火车,它的行使速度每秒18米。

问:火车经过小王身旁的时间是多少?150÷(18-3)=10(秒)答:火车经过小王身旁的时间是10秒。

(四)过桥、隧道(桥、隧道看作是有车身长度,速度是0的火车)3、长150米的火车,以每秒18米的速度穿越一条长300米的隧道。

问火车穿越隧道(进入隧道直至完全离开)要多少时间?(150+300)÷18=25(秒)答:火车穿越隧道要25秒。

4、一列火车,以每秒20米的速度通过一条长800米的大桥用了50秒,这列火车长多少米?20×50-800=200(米)行程问题练习题及答案 2甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,A、B之间的距离是多少?解答:甲、乙两车共同走完一个AB全程时,乙车走了64千米,从上图可以看出:它们到第二次相遇时共走了3个AB全程,因此,我们可以理解为乙车共走了3个64千米,再由上图可知:减去一个48千米后,正好等于一个AB全程。

小升初专项训练(行程问题)

小升初专项训练(行程问题)

《行程问题》专项训练【例题精讲】1.王飞同学到图书馆借书,他去时每小时行3千米,借完图书后按原路返回,返回时每小时行6千米。

王飞同学往返的平均速度是每小时多少千米?2.我国某部边防军小分队成一列在野外行军,通信员在队伍中,数了一下他前后的人数,发现前面人数是后面的2倍,他往前超了5名战士,发现前面的人数和后面的人数一样多。

(1)这列队伍一共有多少名战士?(2)这列队伍要过一座长200米的大桥,为安全起见,相邻两名战士保持相同的一定间距,行军速度为4米/秒,从第一名战士上桥到全体通过大桥用了80秒时间。

请问:相邻两名战土间的距离为多少米?3.一位登山爱好者步行小径上黄山约9公里。

步行者需要往返18公里并在晚上20点前回到出发点。

他估计,他可以每小时1.5公里的平均速度步行上山,并以2倍的速度下山。

上山与下山速度已经把用餐和休息时间包含在内。

根据他的估计速度,若要在晚上20点前返回,他最迟可以几点钟上山?4.如图,四边形ABCD是平行四边形,点P从A点出发,沿AD-DC-CB匀速运动,运动速度为1厘米/秒,当运动时间为0~4秒时,三角形PAB的面积逐渐增大;当运动时间为4~9秒时,三角形PAB的面积一直为7.5cm ²;当运动时间为9~13秒时,三角形PAB的面积逐渐减少。

求这个平行四边形的面积和周长。

【巩固练习】1.小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去。

小李骑自行车的速度是10.8千米/小时,从乙地到甲地去。

他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇。

小李骑车从乙地到甲地需要多少分钟?2.人的速度为1米/秒,汽车的速度为3米/秒。

人和汽车同向而行,一列火车从后方开来,通过人用了22秒,通过汽车用了26秒(汽车车身长度不计)。

则这列火车的行驶速度为( )米/秒,这列火车的车身长度为( )米。

3.如图所示,在相距10厘米的两条平行线d和c之间,有正方形A和长方形B。

小升初数学行程问题专项训练题及答案

小升初数学行程问题专项训练题及答案

小升初数学行程问题专项训练题及答案一、甲、乙两车分别从A、B两地同时出发,相向而行,甲车每小时行40千米,乙车每小时行60千米,两车相遇后,甲车还需要再行多少小时才能到达B地?二、A、B两地相距1000千米,甲车从A地出发,乙车从B地出发,两车同时出发相向而行。

甲车每小时行50千米,乙车每小时行70千米。

两车相遇后,甲车还需要再行多少小时才能到达B地?三、甲、乙两车分别从A、B两地同时出发,相向而行。

甲车每小时行60千米,乙车每小时行45千米。

两车相遇后,甲车还需要再行多少小时才能到达B地?答案:一、甲、乙两车分别从A、B两地同时出发,相向而行,甲车每小时行40千米,乙车每小时行60千米,两车相遇后,甲车还需要再行多少小时才能到达B地?解题思路:1、设两车相遇后甲车还需要再行x小时才能到达B地。

2、根据题意,甲车每小时行40千米,乙车每小时行60千米。

两车相遇后,甲车还需要再行x小时才能到达B地。

3、根据速度和时间的关系,可以得到方程:40x + 60x = 1000。

4、解方程得到:x = 10小时。

二、A、B两地相距1000千米,甲车从A地出发,乙车从B地出发,两车同时出发相向而行。

甲车每小时行50千米,乙车每小时行70千米。

两车相遇后,甲车还需要再行多少小时才能到达B地?解题思路:1、设两车相遇后甲车还需要再行x小时才能到达B地。

2、根据题意,甲车每小时行50千米,乙车每小时行70千米。

两车相遇后,甲车还需要再行x小时才能到达B地。

3、根据速度和时间的关系,可以得到方程:50x + 70x = 1000。

4、解方程得到:x = 8.33小时。

三、甲、乙两车分别从A、B两地同时出发,相向而行。

甲车每小时行60千米,乙车每小时行45千米。

两车相遇后,甲车还需要再行多少小时才能到达B地?解题思路:1、设两车相遇后甲车还需要再行x小时才能到达B地。

2、根据题意,甲车每小时行60千米,乙车每小时行45千米。

行程问题的练习题

行程问题的练习题

行程问题的练习题一、选择题1. 一辆汽车以每小时60公里的速度行驶,如果它行驶了2小时,那么它行驶了多少公里?A. 60公里B. 120公里C. 180公里D. 240公里2. 某同学骑自行车从家到学校,如果自行车的速度是每小时15公里,他需要20分钟到达学校,那么他家到学校的距离是多少公里?A. 5公里B. 3.75公里C. 2.5公里D. 1.25公里3. 一辆火车从A地到B地,如果火车的速度是每小时100公里,那么它需要多少时间才能行驶500公里?A. 5小时B. 3小时C. 2小时D. 1小时二、填空题4. 一辆汽车以每小时80公里的速度行驶,行驶了3小时,它行驶的总距离是________公里。

5. 某船以每小时20公里的速度在河上航行,如果它航行了4小时,那么它航行的总距离是________公里。

6. 一个人步行的速度是每小时5公里,如果他走了1.5小时,他走的总距离是________公里。

三、简答题7. 一辆汽车从甲地出发,以每小时120公里的速度向乙地行驶。

如果甲地到乙地的距离是360公里,那么汽车需要多少时间才能到达乙地?8. 某飞机从机场起飞,以每小时800公里的速度飞行。

如果飞行了2.5小时,那么飞机飞行了多少公里?9. 一个跑步者以每小时10公里的速度跑步,如果他跑了30分钟,他跑了多少公里?四、计算题10. 一辆摩托车和一辆汽车同时从同一地点出发,摩托车以每小时50公里的速度行驶,汽车以每小时100公里的速度行驶。

如果它们都行驶了3小时,那么汽车比摩托车多行驶了多少公里?11. 一辆火车从起点站出发,以每小时150公里的速度行驶,经过3小时后,火车到达了一个中间站。

如果火车从中间站继续以相同的速度行驶了2小时,那么火车总共行驶了多少公里?12. 某船在静水中的速度是每小时15公里,如果船顺流而下,水流的速度是每小时5公里,那么船顺流行驶的速度是多少?五、应用题13. 某公司需要将一批货物从仓库A运送到仓库B,两地之间的距离是200公里。

六年级上册数学(行程问题)应用题专项训练题

六年级上册数学(行程问题)应用题专项训练题

六年级上册数学1.快车和慢车从甲、乙两地同时相对开出,1.4小时后两车相遇,快车每小时行53千米,慢车每小时行45千米,甲、乙两地间的公路长多少千米?解:(53+45)×1.4=98×1.4=137.2(千米)答:甲、乙两地间的公路长137.2千米。

2.甲、乙两辆汽车从相距255千米A、B两地同时相向开出,甲车的速度是45千米/时,乙车的速度是40千米/时,他们几小时后相遇?解:255÷(45+40)=255÷85=3(小时)答:他们3小时后相遇。

3.甲、乙两车同时从A地开往B地,乙车6小时达到,甲车每小时比乙车慢8千米,因此比乙车迟到一小时达到.A、B两地间的路程是多少千米?解:8÷(1/6﹣1/7)=8÷1/42=336(千米)答:A、B两地间的路程是336千米。

4.甲乙两港相距120千米,一艘轮船从甲港驶往乙港用了5.5小时,返回时因为顺水比去时少用了1小时,求这艘轮船往返的平均速度。

解:120×2÷(5.5+5.5﹣1)=240÷(11﹣1)=24(千米)答:这艘轮船往返的平均速度是24千米。

5.韩雪的家距离学校480米,原计划7点40从家出发8点可到校,现在还是按原时间离开家,不过每分钟比原来多走16米,那么韩雪几点就可到校?解:速度为:480÷20=24(米/分),现在的速度为:24+16=40(米/分),上学所用的时间为:480÷40=12(分钟)答:7点40分从家出发,12分钟后,即7点52分可到学校。

6.小白从家骑车去学校,每小时15千米,用时2小时,回来以每小时10千米的速度行驶,需要多少时间?解:从家到学校的路程:15×2=30(千米)回来的时间30÷10=3(小时)答:回来需要3个小时。

7.王叔叔骑自行车从甲地到乙地,如果每小时行12千米,5小时到达,如果想提前1小时到达,每小时需要行多少千米?解:12×5÷(5﹣1)=60÷4=15(千米)答:每小时需要行15千米。

六年级行程问题经典例题40题

六年级行程问题经典例题40题

六年级行程问题经典例题40题一、相遇问题1. 甲、乙两人分别从A、B两地同时出发,相向而行。

甲的速度是每小时5千米,乙的速度是每小时4千米,经过3小时后两人相遇。

求A、B两地的距离。

解析:根据相遇问题的公式,路程 = 速度和×相遇时间。

甲、乙的速度和为5 + 4 = 9(千米/小时),相遇时间是3小时,所以A、B两地的距离为9×3 = 27(千米)。

2. 两地相距600千米,上午8时,客车以每小时60千米的速度从甲地开往乙地,货车以每小时50千米的速度从乙地开往甲地。

要使两车在中点相遇,货车必须在上午几时出发?解析:两地中点距离为600÷2 = 300千米。

客车到达中点需要的时间为300÷60 = 5小时,货车到达中点需要的时间为300÷50 = 6小时。

客车上午8时出发,5小时后即13时到达中点,货车要6小时到达中点,所以货车必须提前1小时出发,也就是上午7时出发。

3. 甲、乙两车分别从A、B两地同时出发,相向而行,甲车每小时行70千米,乙车每小时行80千米,3小时后两车还相距50千米。

A、B两地相距多远?解析:甲、乙两车3小时行驶的路程之和为(70 + 80)×3=450千米,此时还相距50千米,所以A、B两地相距450+ 50 = 500千米。

二、追及问题4. 甲、乙两人在相距12千米的A、B两地同时出发,同向而行。

甲步行每小时行4千米,乙骑车在后面,每小时速度是甲的3倍。

几小时后乙能追上甲?解析:乙的速度是4×3 = 12千米/小时,乙与甲的速度差是12 4 = 8千米/小时。

追及路程是12千米,根据追及时间 = 追及路程÷速度差,可得追及时间为12÷8 = 1.5小时。

5. 一辆汽车从甲地开往乙地,每小时行40千米,开出5小时后,一列火车以每小时90千米的速度也从甲地开往乙地。

在甲乙两地的中点处火车追上汽车,甲乙两地相距多少千米?解析:汽车先开出5小时行驶的路程为40×5 = 200千米。

应用题专项训练之行程问题(含答案)

应用题专项训练之行程问题(含答案)

例1、甲、乙两辆汽车从两地相向而行,甲车每小时行85千米,乙车每小时行76千米,甲车开出2小时,乙车才开出,又过了4小时两车相遇,两地间的距离是多少千米?例2、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇。

东西两地相距多少千米?例3、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?例4、小狗和小猴参加的100米预赛.结果,当小狗跑到终点时,小猴才跑到90米处,决赛时,自作聪明的小猴突然提出:小狗天生跑得快,我们站在同一起跑线上不公平,我提议把小狗的起跑线往后挪10米.小狗同意了,小猴乐滋滋的想:“这样我和小狗就同时到达终点了!”亲爱的小朋友,你说小猴会如愿以偿吗?例5、甲、乙二人分别从A、B 两地同时出发,相向而行,甲、乙的速度之比是 4 : 3,二人相遇后继续行进,甲到达B 地和乙到达A地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点30千米,则A、B 两地相距多少千米?例6、甲、乙两人同时从A地出发到B地,经过3小时,甲先到B地,乙还需要1小时到达B地,此时甲、乙共行了35千米.求A,B两地间的距离.例7、甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。

求东西两村相距多少千米?例8、小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20米。

30分钟后小平到家,到家后立即沿原路返回,在离家350米处遇到小红。

小红每分钟走多少米?例9、一列货车要通过一条1800米长的大桥。

已知从货车车头上桥到车尾离开桥共用120秒,货车完全在桥上的时间为80秒,这列货车长多少米?例10、两码头相距360千米,一艘汽艇顺水航行完全程要9小时,逆水航行完全程要12小时。

这艘船在静水中的速度是多少千米?这条河水流速度是多少千米?过关演练1、小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米?2、甲乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行程问题专项训练题一、填空题。

1.王华在一段路上练习长跑,如果每小时多跑0.5千米,时间就变成原来的4
5,原来的速度是每小时___
千米。

2.A、B两城相距480千米,一辆汽车以每小时55千米的速度从A城开往B城。

早是8时出发,到中午12时,离A城有___千米。

3.骑车每小时行驶8千米,乘车每小时行驶40千米,已知同一段路骑车比乘车多用36分钟,这段路长___千米。

4.甲从A地去B地,去时每时行4千米,用了5小时,回来时每时行5千米,来回的平均速度是___。

二、应用题。

1.一支解放军部队从驻地乘车赶往某地抗洪抢险,如果将车速比原来提高1
9,就可以在预定
的时间提前20分钟赶到;如果先按原速度行驶72千米,再将车速比原来提高1
3,就可以比预定的
时间提前30分钟赶到。

这支解放军部队的行程是多少千米?
2.甲、乙两车同时从A、B两地出发,相向而行,在离A地75千米处迎面相遇,两车各自到达对方出发地后立即以原速沿原路返回,各自返回时在离A地33千米处第二次相遇。

A、B两地相距多少千米?
3.小明从家步行去上学,原计划每分钟走50米,为了提早10分钟到校,他决定把速度加快,每分钟走75米。

小明家到学校的路程是多少米?
4.甲、乙两车同时从A、B两地相对开出,甲车行驶到两地中点时,乙车离中点还有全程的1 6
的路程,相遇时甲行了全程的几分之几?
5.甲、乙两车由A、B两地同时相向开出,已知甲车与乙车的速度比是2:3,甲走完全程需
要51
2小时,求两车出后后几小时相遇?
6.一辆汽车从A地开往B地,如果把车速减少10%,那么要比原定时间迟1小时到达,如果
以原速行驶180千米后,再把车速提高20%,那么可比原定时间提早1小时到达,AB两地相距多少千米?
7.学校组织同学们春游,小明从甲地上山越过山顶下山到乙地,共走23.5千米,用6.5小时。

已知上山每小时走3千米,下山每小时走5千米。

他从乙地经原路上山越过山顶返回甲地,要用多少时间?
8.龟兔赛跑,全程2000米,龟每分钟爬25米,兔每分钟跑320米,兔自以为速度快,在途中睡一觉,如果龟到终点时,兔离终点还有400米,兔在途中睡了多少分钟?。

相关文档
最新文档