黄冈中学第二轮复习专题三电场和磁场
2024年高考物理二轮复习专题三电场与磁场第9讲磁场、带电粒子在磁场中的运动
(5) 带电粒子在匀强磁场中常见的运动类型
① 匀速直线运动:当v∥B时,带电粒子以速度v做匀速直线运动。
② 匀速圆周运动:当v⊥B时,带电粒子在垂直于磁感线的平面内以入
射速度大小做匀速圆周运动。
③ 螺旋运动:当v和B不平行不垂直时,带电粒子的运动看成垂直于磁
几何关系可知r2-r2cos30°=L,又qv2B=m ,则v2=
(+ )
。
(2) 粒子在磁场中运动的时间。
解:(2)
由T= ,得T=
。若粒子带正电,粒子做圆周
运动的圆心角为300°,则运动的时间为t1=
;若粒子带负
电,圆心角为60°,则运动时间为t2= 。
关系确定范围。
③ 常用的结论有:直径是圆的最大弦。同一圆中大弦对应大的圆心
角。刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界
定的平面。
(3) 带电粒子在磁场中的受力情况
① 磁场只对运动的电荷有力的作用,对静止的电荷无力的作用。磁场
对运动电荷的作用力叫洛伦兹力。
② 洛伦兹力的大小和方向:其大小为F=qvBsinθ,θ为v与B的夹角。F的
方向由左手定则判定,四指的指向应为正电荷运动的方向或负电荷运动
的反切点的法线过圆心。
(2) 半径确定:利用平面几何知识求半径。
3. 带电粒子在磁场中的临界极值问题的四个结论
(1) 刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界
相切。
(2) 当速率v一定时,弧长(或圆心角小于180°时的弦长)越长,圆心
2024高考物理二轮专题复习第一编专题复习攻略专题三电场和磁场第8讲磁场及带电粒子在磁场中的运动课件
方向的分量大小不变、方向相反;电荷量不变.不计重力.下列说法正确
的是(
)
答案:BD
A.粒子的运动轨迹可能通过圆心O
B.最少经2次碰撞,粒子就可能从小孔射出
C.射入小孔时粒子的速度越大,在圆内运动时间越短
D.每次碰撞后瞬间,粒子速度方向一定平行于碰撞点与圆心O的连线
场区域,磁感应强度大小为B0,这些带电粒子都将从磁场圆上O点进入正方形
区域,正方形过O点的一边与半径为r0的磁场圆相切.在正方形区域内存在一
个面积最小的匀强磁场区域,使汇聚到O点的粒子经过该磁场区域后宽度变为
2r0,且粒子仍沿水平向右射出,不考虑粒子间的相互作用力及粒子的重力,
下列说法正确的是(
)
A.正方形区域中匀强磁场的磁感应强度大小为2B0,
D.6-3 3
考向4 带电粒子在有界磁场运动的临界与极值问题
例 4 [2023·四川省成都市三诊]一匀强磁场的磁感应强度大小为B,
方向垂直于纸面向外,其边界如图中虚线所示,ab=cd=2L,bc=de
=L,一束 42 He粒子在纸面内从a点垂直于ab射入磁场,这些粒子具有
各种速率.不计粒子之间的相互作用.已知粒子的质量为m、电荷量
素养培优·情境命题
“数学圆”法在磁场中的应用
1.解决带电粒子在磁场中运动的临界问题,关键在于运用动态思维,
利用动态圆思想寻找临界点,确定临界状态,根据粒子的速度方向找
出半径方向,同时由磁场边界和题设条件画好轨迹,定好圆心,建立
几何关系.
2.粒子射出或不射出磁场的临界状态是粒子运动轨迹与磁场边界相
有界磁场中运动的时间越长.
高三物理二轮复习 第一部分 专题三 电与磁 第一讲 电场的基本性质课件
考点一 电场强度的理解与计算
本考点是对电场强度概念、公式等基础知识的考查,考查 时常结合库仑定律、电场力、平衡条件等相关知识简单交 汇命题,属于送分题型。建议考生自学为主
[先记牢]
1.常用的公式
2.常用的思想方法——对称法
[再用活]
1.空间有多个点电荷时,某点的电场强度为各点电荷在此点
3.如图所示,xOy 平面是无穷大导体的表面,
该导体充满 z<0 的空间,z>0 的空间为真
空。将电荷为 q 的点电荷置于 z 轴上 z=
h 处,则在 xOy 平面上会产生感应电荷。空间任意一点处的
电场皆是由点电荷 q 和导体表面上的感应电荷共同激发的。
已知静电平衡时导体内部场强处处为零,则在 z 轴上 z=h2处
()
A.2kRq2-E
B.4kRq2-E
C.38kRq2-E D.1k2qR2-E
解析:若球完整,则带电量 Q=32q,则球在 M 点产生的电场 E0=2kRQ2=38kRq2,根据电场的叠加原理,除去 A1B1 球面后,球 在 M 点产生的电场 E1=E0-E=38kRq2-E,由对称性可知球壳 在 N 点产生的场强大小等于 E1,C 正确。 答案:C
破口,如诊断卷第1题,
(2015·山东高考)直角坐标系 xOy 中,M、N 两点位于 x 轴上,G、
H 两点坐标如图。M、N 两点各固定一负点电荷,一电量为 Q 的
正点电荷置于 O 点时,G 点处的电场强度恰好为零。静电力常量
用 k 表示。若将该正点电荷移到 G 点,则 H 点处场强的大小和方
向分别为
应电荷产生的电场强度仍为 k94hq2,所以该处合场强为 E=k94hq2
高考物理二轮复习专题三电场和磁场2磁场及带电粒子在磁场中的运动课件
休息时间到啦
同学们,下课休息十分钟。现在是休息时间,你们休 睛,
看看远处,要保护好眼睛哦~站起来动一动,久坐对 哦~
[规律方法]——知规律 握方法 求解导体棒所受安培力问题的方法 (1)正确地对导体棒进行受力分析,应特别注意通电导体棒受到 的安培力的方向,安培力与导体棒和磁感应强度组成的平面垂直. (2)画出辅助图(如导轨、斜面等),并标明辅助方向(磁感应强度 B、电流 I 的方向). (3)将立体的受力分析图转化为平面受力分析图,即画出与导体 棒垂直的平面内的受力分析图.
= AB 2sin
α=2sAinBθ,然后再与半径公式 2
r=mqBv联系起来求解.
(3)运动时间的确定:t=36α0°T(可知,α 越大,粒子在磁场中运
动时间越长).
[典例赏析]——析典题 学通法 [例 2] (2019·全国Ⅰ,24T)如图,在直角三角形 OPN 区域内存 在匀强磁场,磁感应强度大小为 B、方向垂直于纸面向外.一带正电 的粒子从静止开始经电压 U 加速后,沿平行于 x 轴的方向射入磁场; 一段时间后,该粒子在 OP 边上某点以垂直于 x 轴的方向射出.已知 O 点为坐标原点,N 点在 y 轴上,OP 与 x 轴的夹角为 30°,粒子进 入磁场的入射点与离开磁场的出射点之间的距离为 d,不计重力.求
Ⅰ卷 19T 安培力 科学思维 磁场的叠加.(2)带电粒子在
Ⅱ卷 18T 洛伦兹力 科学思维 匀强磁场中的匀速圆周运动
Ⅱ卷 21T 安培力 科学思维 (常涉及临界问题、多解问题)
分析粒子在电场和磁场中的
2017
运动,画出运动轨迹,根据
磁感应强
Ⅲ卷 18T
物理观念 几何关系结合动能定理.牛
度
顿运动定律解题是今后高考
高考物理二轮复习第一部分专题整合专题三电场和磁场第讲磁场及带电粒子在磁场中的运动课件.ppt
A. 3∶2 C. 3∶1
图 3-2-3 B. 2∶1 D.3∶ 2
解析 当粒子在磁场中运动半个
圆周时,打到圆形磁场的位置最远,
则当粒子射入的速度为 v1,如图,由 几何知识可知,粒子运动的轨道半径
为 r1=Rcos 60°=12R;同理,若粒子射入的速度为 v2,
由几何知识可知,粒子运动的轨道半径为 r2=Rcos 30° = 23R;根据 r=mqBv∝v,则 v2∶v1=r2∶r1= 3∶1,
轴上下侧的绝缘漆均刮掉,不能保证线圈持续转动下
去,B 项错误;如果仅左转轴的上侧绝缘漆刮掉,右转
轴的下侧绝缘漆刮掉,则线圈中不可能有电流,因此线
圈不可能转动,C 项错误;如果左转轴上下侧的绝缘漆
均刮掉,右转轴仅下侧的绝缘漆刮掉效果与 A 项相同,
因此 D 项正确。
答案 AD
3.(2017·全国卷Ⅱ)如图 3-2-3 所示,虚线所示 的圆形区域内存在一垂直于纸面的匀强磁场,P 为磁场 边界上的一点,大量相同的带电粒子以相同的速率经过 P 点,在纸面内沿不同的方向射入磁场,若粒子射入的 速度为 v1,这些粒子在磁场边界的出射点分布在六分之 一圆周上;若粒子射入速度为 v2,相应的出射点分布在 三分之一圆周上,不计重力及带电粒子之间的相互作 用,则 v2∶v1 为
故选 C。
答案 C
4.(2016·新 课 标 卷 Ⅰ) 现 代 质 谱 仪 可
用来分析比质子重很多倍的离子,其
示意图如图 3-2-4 所示,其中加速
电压恒定。质子在入口处从静止开始 图3-2-4
被加速电场加速,经匀强磁场偏转后从出口离开磁场。
若某种一价正离子在入口处从静止开始被同一加速电
场加速,为使它经匀强磁场偏转后仍从同一出口离开磁
高三二轮复习专题-电场与磁场3
高三复习专题:电场与磁场31、(2013海南卷).如图,电荷量为q 1和q 2的两个点电荷分别位于P 点和Q 点。
已知在P 、Q 连线至某点R 处的电场强度为零,且PR=2RQ 。
则 A .q 1=2q 2 B .q 1=4q 2 C .q 1=-2q 2 D .q 1=-4q 2 2、(2013全国新课标I )、如图,一半径为R 的圆盘上均匀分布着电荷量为Q 的电荷,在垂直于圆盘且过圆心c 的轴线上有a 、b 、d 三个点,a 和b 、b 和c 、c 和d 间的距离均为R ,在a 点处有一电荷量为q 的固定点电荷。
已知b 点处的场强为零,则d 点处场强的大小为(k 为静电力常量)A.kB. kC. kD. k3、(2013山东理综) (多选) 如图所示,在x 轴相距为L 的两点固定两个等量异种点电荷+Q 、-Q ,虚线是以+Q 所在点为圆心、L /2为半径的圆,a 、b 、c 、d 是圆上的四个点,其中a 、c 两点在x 轴上,b 、d 两点关于x 轴对称。
下列判断正确的是A .b 、d 两点处的电势相同B.四点中c 点处的电势最低C .b 、d 两点处的电场强度相同D .将一试探电荷+q 沿圆周由a 点移至c 点,+q 的电势能减小4.(2014上海)(多选)静电场在轴上的场强E 随x 的变化关系如图所示,x 轴正向为场强正方向,带正电的点电荷沿x 轴运动,则点电荷()(A )在x 2和x 4处电势能相等(B )由x 1运动到x 3的过程电势能增大(C )由x 1运动到x 4的过程电场力先增大后减小(D )由x 1运动到x 4的过程电场力先减小后增大5.[2014·安徽卷] 一带电粒子在电场中仅受静电力作用,做初速度为零的直线运动.取该直线为x 轴,起始点O 为坐标原点,其电势能E p 与位移x 的关系如右图所示.下列图像中合理的是( )6. [2014·新课标全国卷Ⅰ] 如图所示,MN 为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未面出),一带电粒子从紧贴铝板上表面的P 点垂直于铝板向上射出,从Q 点穿越铝板后到达PQ 的中点O ,已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变.不计重力.铝板上方和下方的磁感应强度大小之比为( )A .2 B.2 C .1 D.227.[2014·山东卷] 如图所示,场强大小为E 、方向竖直向下的匀强电场中有一矩形区域abcd ,水平边ab 长为s ,竖直边ad 长为h .质量均为m 、带电荷量分别为+q 和-q 的两粒子,由a 、c 两点先后沿ab 和cd 方向以速率v 0进入矩形区(两粒子不同时出现在电场中).不计重力.若两粒q 1q 2A 电场强度与位移关系B 粒子动能与位移关系C 粒子速度与位移关系D 粒子加速度与位移关系子轨迹恰好相切,则v 0等于( ) A.s22qE mh B .s2qE mh C.s 42qE mh D.s 4qE mh8.[2014·江苏卷] (多选) 如图所示,导电物质为电子的霍尔元件位于两串联线圈之间,线圈中电流为I ,线圈间产生匀强磁场,磁感应强度大小B 与I 成正比,方向垂直于霍尔元件的两侧面,此时通过霍尔元件的电流为I H ,与其前后表面相连的电压表测出的霍尔电压UH 满足:U H =k I H B d,式中k 为霍尔系数,d 为霍尔元件两侧面间的距离.电阻R 远大于R L ,霍尔元件的电阻可以忽略,则( )A .霍尔元件前表面的电势低于后表面B .若电源的正负极对调,电压表将反偏C .I H 与I 成正比D .电压表的示数与R L 消耗的电功率成正比9.[2014·安徽卷] “人造小太阳”托卡马克装置使用强磁场约束高温等离子体,使其中的带电粒子被尽可能限制在装置内部,而不与装置器壁碰撞.已知等离子体中带电粒子的平均动能与等离子体的温度T 成正比,为约束更高温度的等离子体,则需要更强的磁场,以使带电粒子在磁场中的运动半径不变.由此可判断所需的磁感应强度B 正比于( )A.T B .T C.T 3 D .T 210【2015江苏-7】(多选).一带正电的小球向右水平抛入范围足够大的匀强电场,电场方向水平向左,不计空气阻力,则小球A .做直线运动B .做曲线运动C .速率先减小后增大,D .速率先增大后减小11【2015天津-7】(多选)如图所示.氕核、氘核、氚核三种粒子从同一位置无初速地飘入电场线水平向右的加速电场E 1 ,之后进入电场线竖直向下的匀强电场E 2发生偏转,最后打在屏上。
高三物理二轮复习专题三电场和磁场第1讲电场和磁澄件
备考策略
1.要熟悉各种电场的电场线、等势面分布特点,运用动力学 决粒子的运动轨迹和能量变化问题.
2.对于带电粒子在电场、磁场和复合场中的运动问题,要善 动模型(类平抛运动和匀速圆周运动),从受力情况、运动规律、 析,综合运用动力学方法和功能关系加以解决.
3.了解速度选择器、质谱仪、回旋加速器、磁流体发电机等 工作原理.
电场性质的判断思路
题型二 与平行板电容器有关的电场问题
命题规律 与平行板电容器有关的电场问题是高考命题的热点之一,命 板电容器的电容、电场强度、电势差、电势、电势能等物理量比 带电粒子在电容器中的平衡和加速问题.
方法点拨
平行板电容器问题的分析方法 (1)明确平行板电容器中的哪些物理量是不变的,哪些物理量 变化. (2)应用平行板电容器的决定式 C=4επrkSd分析电容器的电容的变 (3)应用电容的定义式 C=QU分析电容器带电量和两板间电压的 (4)应用 E=Ud 分析电容两极板间电场强度的变化.
解析 平行板电容器带有等量异种电荷,当极板正对面积不变 电场强度E不变.保持下极板不动,将上极板向下移动一小段距 置,由U=Ed可知,两极板之间的电势差减小,静电计指针的偏 极板接地(电势为零),两极板之间的电场强度不变,所以点电荷 不变.综上所述,选项D正确.
3.如图,一平行板电容器的两极板与一电压恒定的电源相 置,极板间距为d,在下极板上叠放一厚度为l的金属板,其上部 P静止在电容器中,当把金属板从电容器中快速抽出后,粒子P开 度为g.粒子运动加速度为( A )
解析 电子仅在电场力作用下可能从A运动到B,也可能从B运 A错误;若aA>aB,说明电子在A点受到的电场力大于在B点受到的 离点电荷较近,B距离点电荷较远,又因为电子受到的电场力指 Q靠近M端且为正电荷,选项B正确;无论Q是正电荷还是负电荷 到B,一定是克服电场力做功,若电子从B运动到A,一定是电场 有EpA<EpB,选项C正确;对于同一个负电荷,电势低处电势能大 于A点电势,选项D错误.
黄冈中学第二轮三 电磁学
电磁学命题人:程洲平 审稿人:程洲平 校对人:丰正东本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷17到19页,第Ⅱ卷19至24页,共120分,考试时间90分钟。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共40分)注意事项: 1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试卷上。
一、选择题(本题共10小题,每题4分,共40分。
在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确,全部选对的得4分,选错或不答得0分,选对但不全的得2分。
) 1.如图1所示,投影仪光源使用的是强光灯泡,灯泡发光时必须用风扇进行散热,因此在设计投影仪简易电路时要求满足:带动风扇的电动机启动后,灯泡才可以发光;电动机未启动时,灯泡不可以发光。
若电动机的电路元件符号用M 表示,则下列各电路中符合设计要求的是( )2.如图2所示,某空间存在正交的匀强磁场和匀强电场,电场方向水平向右,磁场方向垂直纸面向里,一带电微粒由a 点进入电磁场并刚好能沿ab 直线运动,下列说法正确的是( ) A .微粒一定带负电 B .微粒的动能一定减小 C .微粒的电势能一定增加 D .微粒的机械能一定增加3.如图3所示,不计电阻的U 形线框abcd 处于匀强磁场中,磁场的磁感应强度为B ,方向垂直于纸面向内。
长度为L 的直导线MN 中间串有一个电压表,并跨接在ab 与cd 上且与ab 、cd 垂直,它们之间的接触是完全光滑的,R 为电阻,C 为电容器。
现令MN 以速度v 0向右匀速运动,用U 表示电压表的读数,Q 表示电容器所带电荷量,C 表示电容器电容,F 表示对MN 的拉力。
设电压表体积很小,其中线圈切割磁感线对MN 间的电压的影响可以忽略不计则(此题不好 )A .Q =CBLv 0B .U =0C .U =BLv 0D .22B L v F R4.某同学按图4所示电路进行实验,电压表内阻看做无限大,电流表内阻看作零。
第二轮复习(电学专题)
专题三 电场和磁场黄冈中学:江楚桥【方法归纳】一、场强、电势的概念 1、电场强度E①定义:放入电场中某点的电荷受的电场力F 与它的电量q 的比值叫做该点的电场强度。
②数学表达式:q F E/=,单位:m V /③电场强度E 是矢量,规定正电荷在电场中某点所受电场力的方向即为该点的电场强度的方向 ④场强的三个表达式⑤比较电场中两点的电场强度的大小的方法:由于场强是矢量。
比较电场强度的大小应比较其绝对值的大小,绝对值大的场强就大,绝对值小的场强就小。
Ⅰ在同一电场分布图上,观察电场线的疏密程度,电场线分布相对密集处,场强较大;电场较大;电场线分布相对稀疏处,场强较小。
Ⅱ形成电场的电荷为点电荷时,由点电荷场强公式2r kQ E =可知,电场中距这个点电荷Q 较近的点的场强比距这个点电荷Q 较远的点的场强大。
Ⅲ匀强电场场强处处相等Ⅳ等势面密集处场强大,等势面稀疏处场强小 2、电势、电势差和电势能 ①定义:电势:在电场中某点放一个检验电荷q ,若它具有的电势能为E ,则该点的电势为电势能与电荷的比值。
电场中某点的电势在数值上等于单位正电荷由该点移到零电势点时电场力所做的功。
也等于该点相对零电势点的电势差。
电势差:电荷在电场中由一点A 移到另一点B 时,电场力做功AB W 与电荷电量q 的比值,称为AB 两点间的电势差,也叫电压。
电势能:电荷在电场中所具有的势能;在数值上等于将电荷从这一点移到电势能为零处电场力所做的功。
②定义式:qEU =或q W U AB AB =,单位:VUq E = 单位:J③说明:Ⅰ电势具有相对性,与零电势的选择有关,一般以大地或无穷远处电势为零。
Ⅱ电势是标量,有正负,其正负表示该的电势与零电势的比较是高还是低。
Ⅲ电势是描述电场能的物理量,④关于几个关系关于电势、电势差、电势能的关系电势能是电荷与电场所共有的;电势、电势差是由电场本身因素决定的,与检验电荷的有无没有关系。
电势、电势能具有相对性,与零电势的选择有关;电势差具有绝对性,与零电势的选择无关。
2021届高考物理二轮复习专题三电场与磁场(PPT版)63张
2021届高考物理二轮复习专题三电场 与磁场( PPT版) 63张( 完整版 )
解析 由粒子运动轨迹可知,M受到的是吸引力,N受到的是排斥力,由于 O点的电荷带正电,所以M带负电荷,N带正电荷,选项A正确;M从a点运动到b 点,库仑力做负功,根据动能定理可知,M的动能减小,所以M在b点的动能小于 它在a点的动能,选项B正确;d点和e点处在同一等势面上,则N在d点的电势能 等于它在e点的电势能,选项C正确;N受到排斥力,在从c点运动到d点的过程中 库仑斥力做正功,选项D错误。
2021届高考物理二轮复习专题三电场电与场磁与场磁(场PP(TP版PT)版63)张共(63完张整版 )
2021届高考物理二轮复习专题三电场电与场磁与场磁(场PP(TP版PT)版63)张共(63完张整版 )
一、由电场中的“点、线、面、迹”判断相关问题 (1)由轨迹向合外力的方向弯曲,确定粒子所受电场力方向; (2)根据粒子电性判断电场线方向; (3)根据“沿着电场线方向电势逐渐降低”判断电势高低; (4)根据公式Ep=qφ(代入正负号)判断电势能大小; (5)根据电场力做功的正负判断电势能的变化或动能的变化; (6)根据电场线或等差等势面疏密判断所受电场力大小。
2021届高考物理二轮复习专题三 电场与磁场(PPT版)共63张
2021届高考物理二轮复习专题三电场 与磁场( PPT版) 63张( 完整版 )
解析 因为粒子沿轨迹AB运动时,电场力做的功为负,沿轨迹BC运动时, 电场力做的功为正,所以在B点的速度小于在A点的速度,A项错误;因为在B点 的电场线比在A点的电场线疏,所以粒子在B点所受电场力小,所以在B点的加 速度小于在A点的加速度,B项错误;从B点看,电场力提供向心力,方向向下,而 电场方向向上(电场线箭头方向),所以该粒子带负电。因为电势φpA>φpB,电势 能Ep=(-q)·φ,所以电势能EA<EB,即粒子在B点的电势能大于在A点的电势能,C 项正确;沿轨迹AB电场力做的功为负,沿轨迹BC电场力做的功为正,所以沿轨 迹AB和沿轨迹BC电场力做的功不同,D项错误。
高中物理二轮专题突破精品讲义 第三部分 电场和磁场专题1
第三专题 电场和磁场一、知识梳理(一)电场和磁场中的带电粒子1、知识网络2、方法点拨:分析带电粒子在电场、磁场中运动,主要是两条线索:(1)力和运动的关系。
根据带电粒子所受的力,运用牛顿第二定律并结合运动学规律求解。
(2)功能关系。
根据场力及其它外力对带电粒子做功引起的能量变化或全过程中的功能关系,从而可确定带电粒子的运动情况,这条线索不但适用于均匀场,也适用于非均匀场。
因此要熟悉各种力做功的特点。
处理带电粒子在场中的运动问题应注意是否考虑带电粒子的重力。
这要依据具体情况而定,质子、α粒子、离子等微观粒子,一般不考虑重力;液滴、尘埃、小球等宏观带电粒子由题设条件决定,一般把装置在空间的方位介绍的很明确的,都应考虑重力,有时还应根据题目的隐含条件来判断。
处理带电粒子在电场、磁场中的运动,还应画好示意图,在画图的基础上特别注意运用几何知识寻找关系。
3、典型例题例1(1999年高考全国卷)如图1所示,图中虚线MN 是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感应强度为B 的匀强磁场,方向垂直纸面向外。
O 是MN 上的一点,从O 点可以向磁场区域发射电量为+q 、质量为m 、速率为v 的粒子,粒子射入磁场时的速度可在纸面内各个方向。
已知先后射入的两个粒子恰好在磁场中给定的P 点相遇,P 到半径公式:qB mv R = 周期公式:qB m T π2=O 的距离为L ,不计重力及粒子间的相互作用。
(1)求所考察的粒子在磁场中的轨道半径;(2)求这两个粒子从O 点射入磁场的时间间隔。
【点拨解疑】(1)设粒子在磁场中做圆周运动的轨道半径为R ,由牛顿第二定律得Rv m qvB 2=,则qB mv R = (2)如图2所示,以OP 为弦可以画两个半径相同的圆,分别表示在P 点相遇的两个粒子的轨迹。
圆心分别为O 1、O 2,过O 点的直径分别为OO 1Q 1、OO 2Q 2,在O 点处两个圆的切线分别表示两个粒子的射入方向,用θ表示它们之间的夹角。
新高考新教材物理二轮复习核心专题突破3电场与磁场第二讲磁场带电粒子在磁场中的运动pptx课件
二是直接分析、讨论临界状态,找出临界条件,从而通过临界条
件求出临界值
物理 (1)利用临界条件求极值;(2)利用边界条件求极值;(3)利用矢量
两种 方法 图求极值
方法 数学 (1)用三角函数求极值;(2)用一元二次方程的判别式求极值;(3)
方法 用不等式的性质求极值;(4)用图像法求极值
(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界
可推知(
)
测量序号
Bx/μT
By/μT
Bz/μT
1
0
21
-45
2
0
-20
-46
3
21
0
-45
4
-21
0
-45
A.测量地点位于南半球
B.当地的地磁场大小约为50 μT
C.第2次测量时y轴正向指向南方
D.第3次测量时y轴正向指向东方
答案 BC
解析 本题考查地磁场的特点及磁感应强度的叠加计算。由表中z轴数据可
(1)若在线圈中通入的微小电流为I,求平衡后
弹簧长度改变量的绝对值Δx及PQ上反射光点
与O点间的弧长s。
(2)某同学用此装置测一微小电流,测量前未调零,将电流通入线圈后,PQ上
反射光点出现在O点上方,与O点间的弧长为s1;保持其他条件不变,只将该
电流反向接入,则反射光点出现在O点下方,与O点间的弧长为s2。求待测
R=ρ0 ,金属棒
运动过程中安培力不变,轨迹中点处金属棒受力平衡,由几何关系得
安
=
=
=
,可知
0
I= ,联
高三物理二轮复习专题3 电场与磁场
B.k
答案
解析
考点
探究
KAODIAN TANJIU
解析▶ 线框上的电荷在 O 点产生的电场强度等效为与 A 点对应的电
荷量为 q 的电荷在 O 点产生的电场,故 E1=
2
4
2 = 2 ,方向沿 O 到 B,B 点
的电荷在 O 点产生的电场强度 E2= 2 ,方向沿 B 到 O,由电场强度的叠
2
足够短的带电荷量为 q 的一小段,将其沿 OA 连线延长线向上移动 的
距离到 B 点处,若线框的其他部分的带电荷量与电荷分布保持不变,
则此时 O 点的电场强度为( C
,方向沿 O 到 B
2
3
C.k 2 ,方向沿 O 到 B
A.k
)。
3
,方向沿 O 到 B
22
5
D.k 2 ,方向沿 B 到 O
的电场
点电荷的电场
等量异种点电荷
的电场
连线上,中点
电势最低,而
在中垂线上,
中点电势最
高
(1)连线中点O点和中垂
线上无穷远处的电场强
度均为零,即电场强度先
增大,后逐渐减小;
(2)在两电荷的连线上,
由中点O的电场强度为零
开始向两端逐渐变大;关
于O点的对称点的电场强
度大小相等,方向相反
枕形导体形成的电
场
二、带电粒子在电场中的运动
KAODIAN TANJIU
变式训练
1.如图所示,E、F、G、H 为矩形 ABCD 各边的中点,O 为 EG、HF 的交点,AB 边的
长度为 d,BC 边的长度为 。E、G 两点各固定一等量点电荷,另一电荷量为 Q 的
高考物理二轮复习第一部分专题三电场与磁场第二讲磁场及带电粒子在磁场中的运动课件.ppt
2019-9-11
谢谢你的关注
20
2019-9-11
3.新高考命题仍会将带电粒子在匀强磁场中的运
动作为磁感应相结合.
解题要领
这类问题的特点是利用有界磁场或利用两种磁场相
互组合命题,带电粒子的运动形式为圆周运动,涉及的
方法和规律包括牛顿运动定律、圆周运动的各物理量的
流产生的磁场的方向也要相反.
解析:导线P和Q中电流I均向里时,
2019-9-11
设其在a点产生的磁感应强度大小BP=BQ
=B1,如图所示,则其夹角为60°,它们在a点的合磁场
的磁感应强度平行于PQ向右、
谢谢你的关注
15
大小为 3 B1.又根据题意Ba=0,则B0= 3 B1,且B0 平行于PQ向左.若P中电流反向,则BP反向、大小不 变,BQ和BP大小不变,夹角为120°,合磁场的磁感应强 度大小为B′1=B1(方向垂直PQ向上、与B0垂直),a点合 磁场的磁感应强度B= B20+B′1=233B0,则ABD项均错 误,C项正确.
2019-9-11
谢谢你的关注
13
4. (2017·全国卷Ⅱ)如图,在磁感应强度大小为B0的 匀强磁场中,两长直导线P和Q垂直于纸面固定放置,两 者之间的距离为l.在两导线中均通有方向垂直于纸面向 里的电流I时,纸面内与两导线距离均为l的a点处的磁感 应强度为零.如果让P中的电流反向、其他条件不变, 则a点处磁感应强度的大小为( )
2019-9-11
谢谢你的关注
17
mv A.2qB
3mv B. qB
2mv C. qB
4mv D. qB
[题眼点拨] ①“q>0”说明带电粒子带正电;②“与
ON只有一个交点”说明轨迹与ON边界相切.
高三物理第二轮辅导-------电场和磁场
例题1. “电子能量分析器”主要由处于真空中的电子偏转器和探测板组成。
偏转器是由两个相互绝缘、半径分别为R A和R B的同心圆金属半球面A和B构成,A、B为电势值不等的等势面,其过球心的截面如图所示。
一束电荷量为e、质量为m的电子以不同的动能从偏转器左端M的正中间小孔垂直入射,进入偏转电场区域,最后到达偏转器右端的探测板N,其中动能为E k0的电子沿等势面C做匀速圆周运动到达N板的正中间。
忽略电场的边缘效应。
(1)判断半球面A、B的电势高低,并说明理由;(2)求等势面C所在处电场强度E的大小;(3)若半球面A、B和等势面C的电势分别为φA、φB和φC,则到达N板左、右边缘处的电子,经过偏转电场前、后的动能改变量ΔE K左和ΔE K右分别为多少?(4)比较|ΔE K左|和|ΔE K右|的大小,并说明理由。
例题2. 如图所示,直线形挡板p1p2p3与半径为r的圆弧形挡板p3p4p5平滑连接并安装在水平台面b1b2b3b4上,挡板与台面均固定不动。
线圈c1c2c3的匝数为n,其端点c1、c3通过导线分别与电阻R1和平行板电容器相连,电容器两极板间的距离为d,电阻R1的阻值是线圈c1c2c3阻值的2倍,其余电阻不计,线圈c1c2c3内有一面积为S、方向垂直于线圈平面向上的匀强磁场,磁场的磁感应强度B随时间均匀增大。
质量为m的小滑块带正电,电荷量始终保持为q,在水平台面上以初速度v0从p1位置出发,沿挡板运动并通过p5位置。
若电容器两板间的电场为匀强电场,p1、p2在电场外,间距为L,其间小滑块与台面的动摩擦因数为μ,其余部分的摩擦不计,重力加速度为g.求:(1)小滑块通过p2位置时的速度大小。
(2)电容器两极板间电场强度的取值范围。
(3)经过时间t,磁感应强度变化量的取值范围。
例题3. 如图所示,空间分布着方向平行于纸面且与场区边界垂直的有界匀强电场,电场强度为E、宽度为L。
在紧靠电场右侧的圆形区域内,分布着垂直于纸面向外的匀强磁场,圆形磁场区域半径为r。
高三物理二轮复习 第一三 电场与磁场 第2讲 磁
咐呼州鸣咏市呢岸学校第2讲磁场对电流和运动电荷的作用一、选择题1.图中a、b、c、d为四根与纸面垂直的长直导线,其横截面位于正方形的四个顶点上,导线上通有大小相同的电流,方向如下图.一带正电的粒子从正方形中心O点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是( )A.向上B.向下C.向左D.向右解析:选B.a、b、c、d四根导线上电流大小相同,它们在O点形成的磁场的磁感强度B大小相同,方向如图甲所示.O点合磁场方向如图乙所示,根据左手那么可以判由O点垂直纸面向外运动的带正电的粒子所受洛伦兹力方向向下,B选项正确.2.(2021·2月)如下图,两平行的粗糙金属导轨水平固在匀强磁场中,磁感强度为B,导轨宽度为L,一端与电源连接.一质量为m的金属棒ab垂直于平行导轨放置并接触良好,金属棒与导轨间的动摩擦因数为μ=33,在安培力的作用下,金属棒以v0的速度向右匀速运动,通过改变磁感强度的方向,可使流过导体棒的电流最小,此时磁感强度的方向与竖直方向的夹角为( )A.37°B.30°C.45°D.60°解析:选B.此题考查通电导体棒在磁场中的平衡问题.由题意对棒受力分析,设磁感强度的方向与竖直方向成θ角,那么有BIL cos θ=μ(mg-BIL sin θ)整理得BIL=μmgcos θ+μsin θ,电流有最小值,就相当于安培力有最小值,最后由数学知识解得:θ=30°,那么A、C、D错,B对.3.(2021·高考卷Ⅰ,T14,6分)两相邻匀强磁场区域的磁感强度大小不同、方向平行.一速度方向与磁感强度方向垂直的带电粒子(不计重力),从较强磁场区域进入到较弱磁场区域后,粒子的( )A .轨道半径减小,角速度增大B .轨道半径减小,角速度减小C .轨道半径增大,角速度增大D .轨道半径增大,角速度减小解析:选D .分析轨道半径:带电粒子从较强磁场区域进入到较弱磁场区域后,粒子的速度v 大小不变,磁感强度B 减小,由公式r =mv qB 可知,轨道半径增大.分析角速度:由公式T =2πm qB可知,粒子在磁场中运动的周期增大,根据ω=2πT知角速度减小.选项D 正确. 4.(2021·)如下图,半径为R 的圆形区域内有垂直于纸面向里的匀强磁场.重力不计、电荷量一的带电粒子以速度v 正对着圆心O 射入磁场,假设粒子射入、射出磁场点间的距离为R ,那么粒子在磁场中的运动时间为( )A .23πR 9vB .2πR 3vC .23πR 3vD .πR 3v 解析:选A .此题考查带电粒子在磁场中的运动问题,根据题意可画出粒子运动轨迹示意图,如下图:由几何关系可知α=60°,β=120°,粒子从A →B 运动的时间t =120°360°·T ,又T =2πr v ,r R =tan α2,解得t =23πR 9v.所以A 正确,B 、C 、D 错误. 5.(多项选择)(2021·高考卷)如图甲所示,两根光滑平行导轨水平放置,间距为L ,其间有竖直向下的匀强磁场,磁感强度为B .垂直于导轨水平对称放置一根均匀金属棒.从t =0时刻起,棒上有如图乙所示的持续交变电流I ,周期为T ,最大值为I m ,图I 所示方向为电流正方向.那么金属棒( )A .一直向右移动B .速度随时间周期性变化C .受到的安培力随时间周期性变化D .受到的安培力在一个周期内做正功解析:选ABC .根据题意得出v -t 图象如下图,金属棒一直向右运动,A 正确.速度随时间做周期性变化,B 正确.据F 安=BIL 及左手那么可判,F 安大小不变,方向做周期性变化,那么C 项正确.F 安在前半周期做正功,后半周期做负功,在一个周期内,安培力所做的总功为零,那么D 项错误.6.(2021·昆明一模)如下图,带有正电荷的A 粒子和B 粒子同时以同样大小的速度从宽度为d 的有界匀强磁场的边界上的O 点分别以30°和60°(与边界的夹角)射入磁场,又恰好都不从另一边界飞出,那么以下说法中正确的选项是( )A .A 、B 两粒子在磁场中做圆周运动的半径之比为13B .A 、B 两粒子在磁场中做圆周运动的半径之比为3C .A 、B 两粒子的qm之比是3 D .A 、B 两粒子的qm 之比是2+33解析:选D .粒子在磁场中由洛伦兹力提供向心力,从而确半径为R =mv qB ,由几何关系那么有R cos 30°+R =d ,r cos 60°+r =d ,得R r =32+3,故A 、B 错误;由于B 与v 的大小均相同,那么R 与q m成反比.所以A 、B 两粒子的qm 之比是2+33,故C 错误、D 正确. 7.(多项选择)(2021·一模)如下图,一束电子以大小不同的速率沿图示方向飞入横截面为一正方形的匀强磁场区,在从ab 边离开磁场的电子中,以下判断正确的选项是( )A .从b 点离开的电子速度最大B .从b 点离开的电子在磁场中运动时间最长C .从b 点离开的电子速度偏转角最大D .在磁场中运动时间相同的电子,其轨迹线一重合解析:选AD .电子进入磁场,轨迹圆心在入射点下方,使电子速度从零逐渐增大,逐渐增大轨迹圆半径,从左边界离开的电子轨迹为半圆,由作图可知从b 点离开的电子轨迹半径最大,且从b 点离开的电子其轨迹圆心角最小,速度偏转角最小,在磁场中运动时间最短,A 正确,B 、C 错误;从ab 边射出的电子其运动轨迹所对的圆心角随速度的增大而减小且均不大于π,对的运动时间逐渐减小,所以当运动时间相同时,其轨迹线一重合,D 正确.8.(多项选择)(2021·一模)如下图,在平面直角坐标系中有一个垂直于纸面向里的圆形匀强磁场,其边界过原点O 和y 轴上的点a (0,L ).一质量为m 、电荷量为e 的电子从a 点以初速度v 0平行于x 轴正方向射入磁场,并从x 轴上的b 点射出磁场,此时速度方向与x 轴正方向的夹角为60°.以下说法中正确的选项是( )A .电子在磁场中运动的时间为πL v 0 B .电子在磁场中运动的时间为2πL 3v 0 C .磁场区域的圆心坐标为⎝⎛⎭⎫3L 2,L 2 D .电子在磁场中做圆周运动的圆心坐标为(0,-2L )解析:选BC .设电子的轨迹半径为R ,由几何知识得R sin 30°=R -L ,得R =2L ,故电子在磁场中做圆周运动的圆心坐标为(0,-L ),电子在磁场中运动时间t =T 6,而T =2πR v 0,所以t =2πL 3v 0,A 、D 错误,B 正确;设磁场区域的圆心坐标为(x ,y ),其中x =12R cos 30°=32L ,y =L 2,故磁场圆心坐标为⎝⎛⎭⎫32L ,12L ,C 正确.9.(2021·东城区二模)如下图,M 、N 为两条沿竖直方向放置的直导线,其中有一条导线中通有恒电流,另一条导线中无电流.一带电粒子在M 、N 两条直导线所在的平面内运动,曲线ab 是该粒子的运动轨迹.带电粒子所受重力及空气阻力均可忽略不计.关于导线中的电流方向、粒子带电情况以及运动的方向,以下说法正确的选项是( )A .M 中通有自上而下的恒电流,带负电的粒子从a 点向b 点运动B .M 中通有自上而下的恒电流,带正电的粒子从a 点向b 点运动C .N 中通有自上而下的恒电流,带正电的粒子从a 点向b 点运动D .N 中通有自上而下的恒电流,带负电的粒子从a 点向b 点运动解析:选A .靠近导线M 处,粒子的偏转程度大,说明靠近M 处偏转的半径小,洛伦兹力提供电子偏转的向心力,由qvB =m v 2r 得圆周运动的半径r =mv qB,粒子速率不变,偏转半径小,说明B 强,又靠近通电直导线的地方磁场强,故只有M 中通电流,故C 、D 错误;根据曲线运动的特点,合外力指向弧内,当M 通向下的电流且粒子从a 点向b 点运动,利用安培那么可判断,在M 、N 之间的磁场为垂直纸面向外,根据左手那么可以判断,该粒子带负电,故A 正确,B 错误.10.(多项选择)(2021·高考卷)如下图,S 处有一电子源,可向纸面内任意方向发射电子,平板MN 垂直于纸面,在纸面内的长度L =9.1 cm ,中点O 与S 间的距离d =4.55 cm ,MN 与SO 直线的夹角为θ,板所在平面有电子源的一侧区域有方向垂直于纸面向外的匀强磁场,磁感强度B =2.0×10-4T .电子质量m =×10-31 kg ,电量e =-1.6×10-19 C ,不计电子重力.电子源发射速度v =1.6×106 m/s 的一个电子,该电子打在板上可能位置的区域的长度为l ,那么( )A .θ=90°时,l =9.1 cmB .θ=60°时,l =9.1 cmC .θ=45°时,l =4.55 cmD .θ=30°时,l =4.55 cm 解析:选AD .电子在磁场中运动,洛伦兹力提供向心力:evB =mv 2R ,R =mv Be =5×10-2 m =4.55 cm =L 2,θ=90°时,击中板的范围如图1所示,l =2R =9.1 cm ,选项A 正确.θ=60°时,击中板的范围如图2所示,l <2R =9.1 cm ,选项B 错误.θ=30°时,击中板的范围如图3所示,l =R =4.55 cm ,当θ=45°时,击中板的范围如图4所示,l >R (R =4.55 cm),应选项D 正确,选项C 错误.二、计算题11.(2021·一模)如下图,在真空中xOy 坐标平面的x >0区域内,有磁感强度B =1.0×10-2T 的匀强磁场,方向与xOy 平面垂直,在x 轴上的P (10,0)点,有一放射源,在xOy 平面内向各个方向发射速率v =104 m/s 的带正电的粒子,粒子的质量为m =1.6×10-25 kg ,电荷量为q =1.6×10-18 C ,求带电粒子能打到y 轴上的范围. 解析:带电粒子在磁场中运动时由牛顿第二律得:qvB =m v 2R ,解得:R =mv qB=0.1 m =10 cm.如下图,当带电粒子打到y 轴上方的A 点与P 连线正好为其圆轨迹的直径时,A 点即为粒子能打到y 轴上方的最高点.因OP =10 cm ,AP =2R =20 cm ,那么OA = AP 2-OP 2=10 3 cm.当带电粒子的圆轨迹正好与y 轴下方相切于B 点时,假设圆心再向左偏,那么粒子就会从纵轴离开磁场,所以B 点即为粒子能打到y 轴下方的最低点,易得OB =R =10 cm ,综上所述,带电粒子能打到y 轴上的范围为-10~10 3 cm.答案:-10~10 3 cm12.(2021·六市六校模拟)如下图,无限宽广的匀强磁场分布在xOy 平面内,x 轴上下方磁场均垂直xOy 平面向里,x 轴上方的磁场的磁感强度为B ,x 轴下方的磁场的磁感强度为43B .现有一质量为m 、带电量为-q 的粒子以速度v 0从坐标原点O 沿y 轴正方向进入上方磁场.在粒子运动过程中,与x 轴交于假设干点.不计粒子的重力.求:(1)粒子在x 轴上方磁场做匀速圆周运动的半径;(2)设粒子在x 轴上方的周期为T 1,x 轴下方的周期为T 2,求T 1∶T 2;(3)如把x 轴上方运动的半周与x 轴下方运动的半周称为一周期的话,那么每经过一周期,在x 轴上粒子右移的距离;(4)在与x 轴的所有交点中,粒子两次通过同一点的坐标位置.解析:(1)设粒子在x 轴上方磁场做匀速圆周运动的半径为r 1,在下方磁场中做匀速圆周运动的半径为r 2,由Bqv 0=m v 20r 得r 1=mv 0Bq ,r 2=3mv 04qB . (2)由T =2πm qB得T 1=2πm Bq T 2=3πm 2BqT 1∶T 2=4∶3.(3)在磁场中运动轨迹如下图,如把x 轴上方运动的半周与x 轴下方运动的半周称为一周期的话,那么每经过一周期,在x 轴上粒子右移Δx =2r 1-2r 2=mv 02Bq(4)在第4周期刚结束时粒子第二次经过x 轴上x 1=2r 1这一点,以后每过一周期将会出现符合要求的点.故x k =2r 1+〔k -1〕r 12=k +32r 1 =〔k +3〕mv 02Bq (k =1,2,3,…). 答案:(1)mv 0Bq (2)4∶3 (3)mv 02Bq (4)〔k +3〕mv 02Bq (k =1,2,3,…)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄冈中学第二轮复习专题三电场和磁场【方法归纳】一、场强、电势的概念1、电场强度E①定义:放入电场中某点的电荷受的电场力F与它的电量q的比值叫做该点的电场强度。
②数学表达式:,单位:③电场强度E是矢量,规定正电荷在电场中某点所受电场力的方向即为该点的电场强度的方向④场强的三个表达式⑤比较电场中两点的电场强度的大小的方法:由于场强是矢量。
比较电场强度的大小应比较其绝对值的大小,绝对值大的场强就大,绝对值小的场强就小。
Ⅰ在同一电场分布图上,观察电场线的疏密程度,电场线分布相对密集处,场强较大;电场较大;电场线分布相对稀疏处,场强较小。
Ⅱ形成电场的电荷为点电荷时,由点电荷场强公式可知,电场中距这个点电荷Q较近的点的场强比距这个点电荷Q较远的点的场强大。
Ⅲ匀强电场场强处处相等Ⅳ等势面密集处场强大,等势面稀疏处场强小2、电势、电势差和电势能①定义:电势:在电场中某点放一个检验电荷q,若它具有的电势能为E,则该点的电势为电势能与电荷的比值。
电场中某点的电势在数值上等于单位正电荷由该点移到零电势点时电场力所做的功。
也等于该点相对零电势点的电势差。
电势差:电荷在电场中由一点A移到另一点B时,电场力做功与电荷电量q的比值,称为AB两点间的电势差,也叫电压。
电势能:电荷在电场中所具有的势能;在数值上等于将电荷从这一点移到电势能为零处电场力所做的功。
②定义式:或,单位:V单位:J③说明:Ⅰ电势具有相对性,与零电势的选择有关,一般以大地或无穷远处电势为零。
Ⅱ电势是标量,有正负,其正负表示该的电势与零电势的比较是高还是低。
Ⅲ电势是描述电场能的物理量,④关于几个关系关于电势、电势差、电势能的关系电势能是电荷与电场所共有的;电势、电势差是由电场本身因素决定的,与检验电荷的有无没有关系。
电势、电势能具有相对性,与零电势的选择有关;电势差具有绝对性,与零电势的选择无关。
关于电场力做功与电势能改变的关系电场力对电荷做了多少功,电势能就改变多少;电荷克服电场力做了多少功,电势能就增加多少,电场力对电荷做了多少正功,电势能就减少多少,即。
在学习电势能时可以将“重力做功与重力势能的变化”作类比。
关于电势、等势面与电场线的关系电场线垂直于等势面,且指向电势降落最陡的方向,等势面越密集的地方,电场强度越大。
⑤比较电荷在电场中某两点的电势大小的方法:Ⅰ利用电场线来判断:在电场中沿着电场线的方向,电势逐点降低。
Ⅱ利用等势面来判断:在静电场中,同一等势面上各的电势相等,在不同的等势面间,沿着电场线的方向各等势面的电势越来越低。
Ⅲ利用计算法来判断:因为电势差,结合,若,则,若,则;若,则⑥比较电荷在电场中某两点的电势能大小的方法:Ⅰ利用电场力做功来判断:在电场力作用下,电荷总是从电势能大的地方移向电势能小的地方。
这种方法与电荷的正负无关。
Ⅱ利用电场线来判断:正电荷顺着电场线的方向移动时,电势能逐渐减少;逆着电场线方向移动时,电势能逐渐增大。
负电荷则相反。
二、静电场中的平衡问题电场力(库仑力)虽然在本质上不同于重力、弹力、摩擦力,但是产生的效果是服从牛顿力学中的所有规律,所以在计算其大小、方向时应按电场的规律,而在分析力产生的效果时,应根据力学中解题思路进行分析处理。
对于静电场中的“平衡”问题,是指带电体的加速度为零的静止或匀速直线运动状态,属于“静力学”的范畴,只是分析带电体受的外力时除重力、弹力、摩擦力等等,还需多一种电场而已。
解题的一般思维程序为:①明确研究对象②将研究对象隔离出来,分析其所受的全部外力,其中电场力,要根据电荷的正负及电场的方向来判断。
③根据平衡条件或,列出方程④解出方程,求出结果。
三、电加速和电偏转1、带电粒子在电场中的加速在匀强电场中的加速问题一般属于物体受恒力(重力一般不计)作用运动问题。
处理的方法有两种:①根据牛顿第二定律和运动学公式结合求解②根据动能定理与电场力做功,运动学公式结合求解基本方程:在非匀强电场中的加速问题一般属于物体受变力作用运动问题。
处理的方法只能根据动能定理与电场力做功,运动学公式结合求解。
基本方程:2、带电粒子在电场中的偏转设极板间的电压为U ,两极板间的距离为,极板长度为。
运动状态分析:带电粒子垂直于匀强电场的场强方向进入电场后,受到恒定的电场力作用,且与初速度方向垂直,因而做匀变速曲线运动——类似平抛运动如图1。
运动特点分析:在垂直电场方向做匀速直线运动在平行电场方向,做初速度为零的匀加速直线运动通过电场区的时间: 粒子通过电场区的侧移距离: 粒子通过电场区偏转角:带电粒子从极板的中线射入匀强电场,其出射时速度方向的反向延长线交于入射线的中点。
所以侧移距离也可表示为:四、电容器的动态分析这类问题关键在于弄清楚哪些是变量;哪些是不变量;哪些是自变量;哪些是因变量。
同时要注意对公式的理解,定义式适用于任何电容器,而电容C 与Q 、U 无关。
区分两种基本情况:一是电容器两极间与电源相连接,则电容器两极间的电势差U 不变;二是电容器充电后与电源断开,则电容器所带的电量Q 保持不变。
电容器结构变化引起的动态变化问题的分析方法 平行板电容器是电容器的一个理想化模型,其容纳电荷的本领用电容C 来描述,当改变两金属板间距d 、正对面积S 或其中的介质时,会引起C 值改变。
给两个金属板带上等量异号电荷Q 后,板间出现匀强电场E ,存在电势差U 。
若改变上述各量中的任一个,都会引起其它量的变化。
若两极板间一带电粒子,则其受力及运动情况将随之变化,与两极板相连的静电计也将有显示等等。
解此类问题的关键是:先由电容定义式、平行板电容器电容的大小C 与板距d 、正面积S 、介质的介电常数的关系式和匀强电场的场强计算式导出,,等几个制约条件式备用。
接着弄清三点:①电容器两极板是否与电源相连接?②哪个极板接地?③C 值通过什么途径改变?若电容器充电后脱离电源,则隐含“Q 不改变”这个条件;若电容器始终接在电源上,则隐含“U 不改变”(等于电源电动势)这个条件;若带正电极板接地,则该极板电势为零度,电场中任一点的电势均小于零且沿电场线方向逐渐降低;若带负电极板接地,则该极板电势为零,电场中任一点电势均大于零。
五、带电粒子在匀强磁场的运动 1、带电粒子在匀强磁场中运动规律 初速度的特点与运动规律 ① 为静止状态② 则粒子做匀速直线运动③ ,则粒子做匀速圆周运动,其基本公式为: 向心力公式: 运动轨道半径公式:; 运动周期公式: 动能公式: T 或、的两个特点:T 、和的大小与轨道半径(R )和运行速率()无关,只与磁场的磁感应强度(B )和粒子的荷质比()有关。
图1荷质比()相同的带电粒子,在同样的匀强磁场中,、和相同。
④与B 成(角,,则粒子做等距螺旋运动 2、解题思路及方法 圆运动的圆心的确定:①利用洛仑兹力的方向永远指向圆心的特点,只要找到圆运动两个点上的洛仑兹力的方向,其延长线的交点必为圆心.②利用圆上弦的中垂线必过圆心的特点找圆心 六、加速器问题 1、直线加速器①单级加速器:是利用电场加速,如图2所示。
粒子获得的能量:缺点是:粒子获得的能量与电压有关,而电压又不能太高,所以粒子的能量受到限制。
②多级加速器:是利用两个金属筒缝间的电场加速。
粒子获得的能量:缺点是:金属筒的长度一个比一个长,占用空间太大。
2、回旋加速器采用了多次小电压加速的优点,巧妙地利用电场对粒子加速、利用磁场对粒子偏转,实验对粒子加速。
①回旋加速器使粒子获得的最大能量:在粒子的质量、电量,磁感应强度B 、D 型盒的半径R 一定的条件下,由轨道半径可知,,即有,,所以粒子的最大能量为由动能定理可知,,加速电压的高低只会影响带电粒子加速的总次数,并不影响引出时的最大速度和相应的最大能量。
②回旋加速器能否无限制地给带电粒子加速?回旋加速器不能无限制地给带电粒子加速,在粒子的能量很高时,它的速度越接近光速,根据爱因斯坦的狭义相对论,这里粒子的质量将随着速率的增加而显著增大,从而使粒子的回旋周期变大(频率变小)这样交变电场的周期难以与回旋周期一致,这样就破坏了加速器的工作条件,也就无法提高速率了。
七、粒子在交变电场中的往复运动当电场强度发生变化时,由于带电粒子在电场中的受力将发生变化,从而使粒子的运动状态发生相应的变化,粒子表现出来的运动形式可能是单向变速直线运动,也可能是变速往复运动。
带电粒子是做单向变速直线运动,还是做变速往复运动主要由粒子的初始状态与电场的变化规律(受力特点)的形式有关。
1、若粒子(不计重力)的初速度为零,静止在两极板间,再在两极板间加上图3的电压,粒子做单向变速直线运动;若加上图4的电压,粒子则做往复变速运动。
2、若粒子以初速度为从B 板射入两极板之间,并且电场力能在半个周期内使之速度减小到零,则图1的电压能使粒子做单向变速直线运动;则图2的电压也不能粒子做往复运动。
图3图4U•q ,m 0B所以这类问题要结合粒子的初始状态、电压变化的特点及规律、再运用牛顿第二定律和运动学知识综合分析。
八、粒子在复合场中运动1、在运动的各种方式中,最为熟悉的是以垂直电磁场的方向射入的带电粒子,它将在电磁场中做匀速直线运动,那么,初速v0的大小必为E/B,这就是速度选择器模型,关于这一模型,我们必须清楚,它只能选取择速度,而不能选取择带电的多少和带电的正负,这在历年高考中都是一个重要方面。
2、带电物体在复合场中的受力分析:带电物体在重力场、电场、磁场中运动时,其运动状态的改变由其受到的合力决定,因此,对运动物体进行受力分析时必须注意以下几点:①受力分析的顺序:先场力(包括重力、电场力、磁场力)、后弹力、再摩擦力等。
②重力、电场力与物体运动速度无关,由物体的质量决定重力大小,由电场强决定电场力大小;但洛仑兹力的大小与粒子速度有关,方向还与电荷的性质有关。
所以必须充分注意到这一点才能正确分析其受力情况,从而正确确定物体运动情况。
3、带电物体在复合场的运动类型:①匀速运动或静止状态:当带电物体所受的合外力为零时②匀速圆周运动:当带电物体所受的合外力充当向心力时③非匀变速曲线运动;当带电物体所受的合力变化且和速度不在一条直线上时4、综合问题的处理方法(1)处理力电综合题的的方法处理力电综合题与解答力学综合题的思维方法基本相同,先确定研究对象,然后进行受力分析(包括重力)、状态分析和过程分析,能量的转化分析,从两条主要途径解决问题。
①用力的观点进解答,常用到正交分解的方法将力分解到两个垂直的方向上,分别应用牛顿第三定律列出运动方程,然后对研究对象的运动进分解。
可将曲线运动转化为直线运动来处理,再运用运动学的特点与方法,然后根据相关条件找到联系方程进行求解。
②用能量的观点处理问题对于受变力作用的带电体的运动,必须借助于能量观点来处理。