专升本高等数学的讲义80页PPT
专升本高等数学(文史财经类)复习课件
第二节.函数的性质 一带而过
1. 函数的奇偶性 注意:定义域关于原点对称
奇函数:f (x) f (x) 图像关于原点对称
偶函数:f (x) f (x) 图像关于y轴对称
2. 函数的单调性
已知 y 当 x1 x2 当 x1 x2
f (x), xa,b, 若有
时,若有f x1 f x2
运算顺序:1 x2 3 2正弦函数sin 3指数运算e 分解顺序:1 y e 2 sin 3 x2 3
(反过来)
方法:从最后一层运算开始分解,每分解一步去掉一 层运算,分解到基本初等函数的和差积商为止。
例2 将下列复合函数分解为简单函数
1.y cos2 x
2.y x2 2x
3 y cos 2x 1 4 y ln sin x3
lim ex , 即当x 时,ex为正无穷大
x
lim 1 , 即当x 0时,1 为无穷大
x0 x
x
关于无穷大的说明
1、f (x) ,即f (x) 或
2、函数f (x)无穷大,不仅与函数有关,还与
变化趋势有关。如lim 1 ,而lim 1 1
x0 x
x3 x 3
3、无穷大实际上极限是不存在
1、只有0是可以作为无穷小的唯一的常数
2、无穷小与自变量的变化趋势有关,
例如:
lim
1
1
x1 x
例2:自变量x在怎样的变化过程中,下列函数为无穷小
(1)y 3x 1 无穷小的性质
(2) y 2x
(3) y (1)x 3
性质1 有限个无穷小的代数和为无穷小
性质2 有界函数与无穷小的乘积为无穷小
性质3 有限个无穷小的乘积为无穷小
例3
第一章函数、极限、连续(专升本专用PPT)-文档资料
六个常见函数的有界性: | sin x | 1; | cos x | 1; ( , ) | | arcsinx | | arctanx |
2
; | arccosx | ;[1,1] ; | arc cot x | ; ( , )
2
x 例2.判断函数f ( x) 的有界性 2 1 x x | x| | x| 1 解: 因为| f ( x) || | 2 2 1 x 1 x 2| x| 2 (1 x 2 2 | x |).所以函数f ( x)有界 .
y u是中间变量,y是因变量.
u , u 1 x 2
4 y就不是x的复合函数;复 合函数可分解为蕳单的函数
( 2)反函数 : 设函数y f ( x )的值域为Z f , 如果对Z f 中 任一y值从关系式y f ( x )中可确定惟一的一个 x值, 则称变量x为变量y的函数, 记为 : x ( y ), 其中 ( y )称为y f ( x )的反函数,习惯上y f ( x )的反 函数记为: y f 1 ( x )
f n ( x), y lim f (t , x) (1)极限形式的函数:y lim n tx
(2)积分形式的函数: y
5.非初等函数
x
0
f (t )dt ( f (t )连续 )
6.函数的简单性质 (1)奇偶性 设函数 f ( x )在区间x上有定义,如果对x X 恒有 f ( x ) f ( x ) (或f ( x ) f ( x )) 则称f(x)为偶函数(或f(x)为奇函数).偶函数f(x)的 图形对称于y轴,奇函数f(x)的图形对称于原点.
13ቤተ መጻሕፍቲ ባይዱ
专升本高数多元函数微分PPT课件
开 域 :不 包 括 边 界 在 内 的 区 域 称 为 开 域 .
无 界 区 域 有 界 区 域 :如 果 区 域 延 伸 到 无 穷 远 处 , 则称为无界区域,否则称为有界区域.
邻 域 :把 满 足 不 等 式 (x x0)2 ( y y0)2 ( 0) 的 点 P (x, y ) 的 全 体 称 为 点 P0 ( x0 , y0 ) 的 邻 域 . 它 是 以 点 P0 为 中 心 , 为 半 径 的 圆 形 开 区 域 , 称 不 包 含 点 P0 的 邻 域 为 无 心 邻 域 .
数的极限 lim f (x, y) A存在.反过来,如果当 P(x, y) 沿 xx0
y y 0
两条不同路径趋近于点 P0 (x0, y0 )时,函数 f (x, y) 趋近于不 同的值, 则可以断定函数的二重极限不存在.
y
Байду номын сангаас
P0
p o
x
2 . 多元函数的连续性
定义 设二元函数 z f (x, y)在点 P0 (x0 , y0 )的某个 邻域内有定义,若
点M (x, y,z).所有这样确定的点的集 x
合就是二元函数 z f (x, y)的图形,由 上一章知,通常是一张空间曲面(如 图 11.1-3 所示).
z zf(x,y) M(x,y,z)
o y
P(x,y) 图11.1-3
11.1.2 二元函数的极限与连续
1. 二 元 函 数 的 极 限
定 义 设 二 元 函 数 z f (x, y) , 如 果 当 点(x, y) 以 任 何
lim f (x, y) f (x0 , y0 )
(1)
xx0
y y0
则称二元函数 z f (x, y)在点 P0 (x0 , y0 )处连续.若函数
专升本考试课件
专升本考试课件一、教学内容本次教学内容选自专升本考试辅导教材《高等数学》第三章《一元函数微分学》的部分内容。
详细内容包括导数的定义、求导法则、高阶导数、隐函数求导、导数的应用等。
二、教学目标1. 让学生掌握导数的定义,理解导数在几何和物理上的意义。
2. 使学生熟练运用求导法则,解决实际问题中的求导问题。
3. 培养学生运用导数解决实际问题的能力。
三、教学难点与重点教学难点:隐函数求导、导数的应用。
教学重点:导数的定义、求导法则、高阶导数的计算。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:教材、笔记本、计算器。
五、教学过程1. 实践情景引入(5分钟)通过展示汽车行驶过程中速度与时间的关系图,引导学生思考如何描述物体的瞬时速度。
2. 导数的定义(15分钟)按照教材内容,讲解导数的定义,解释导数在几何和物理上的意义。
3. 求导法则(20分钟)介绍常用函数的求导法则,结合例题进行讲解。
4. 高阶导数(10分钟)解释高阶导数的概念,举例说明高阶导数的计算方法。
5. 隐函数求导(10分钟)介绍隐函数求导的方法,结合例题进行讲解。
6. 导数的应用(15分钟)通过实际例子,讲解导数在求解极值、最值问题中的应用。
7. 随堂练习(10分钟)设计针对性的练习题,让学生巩固所学知识。
六、板书设计1. 导数的定义及公式2. 常用函数求导法则3. 高阶导数计算方法4. 隐函数求导方法5. 导数在实际问题中的应用七、作业设计1. 作业题目:(1)求下列函数的导数:y = x^3 2x^2 + 3x 4y = sin(x)cos(x)(2)已知函数 y = (x^2 + 1)^2,求 y''(二阶导数)。
(3)求下列隐函数的导数:y^3 3xy^2 + 2x^3 = 0(4)某物体做直线运动,其位移 s(t) = t^3 6t^2 + 9t +1(单位:米),求 t = 2 秒时的瞬时速度。
专转本高数知识点 讲义课件 第一讲:极限、洛比塔法则
n 例如, 数列 x n ; 有界 数列 x n 2 n . 无界 n1 数轴上对应于有界数列的点 x n 都落在闭区间
[ M , M ]上.
2.唯一性
定理2 每个收敛的数列只有一个极限.
问题: 函数 y f ( x ) 在 x 的过程中, 对应 函数值 f ( x ) 无限趋近于确定值 A.
1
y x2 1
o
x
分x 0和x 0两种情况分别讨论
x从左侧无限趋近 x0 , 记作x x0 0; x从右侧无限趋近 x0 , 记作x x0 0;
左极限
0, 0, 使当x0 x x 0时,
恒有 f ( x ) A . 记作 lim f ( x ) A 或 f ( x 0 0) A.
A
o
x0
x0
x0
x
显然, 找到一个后, 越小越好.
x 1 2. 例4 证明 lim x 1 x 1
2
证
函数在点x=1处没有定义.
任给 0,
x2 1 f ( x) A 2 x 1 x 1
要使 f ( x ) A ,只要取 ,0
x
0, X 0, 使当x X时, 恒有 f ( x ) A .
lim f ( x ) A且 x lim f ( x ) A. 定理 : lim f ( x) A x x
二、自变量趋向有限值时函数的极限
问题: 函数 y f ( x ) 在 x x0 的过程中 , 对应 函数值 f ( x ) 无限趋近于确定值 A.
满足不等式 f ( x ) A ,那末常数 A 就叫函数
专升本数学连续ppt课件
目录
• 函数与极限 • 导数与微分 • 不定积分与定积分 • 常微分方程 • 空间解析几何与向量代数 • 概率论初步
01
函数与极限
函数的概念与性质
总结词
理解函数的基本概念和性质是学习专升本数学的基础。
详细描述
函数是数学中用来描述变量之间关系的工具,其定义域和对应关系是构成函数的两个要素。函数的性质包括奇偶 性、单调性、周期性等,这些性质在解决实际问题中有着广泛的应用。
要点二
分类
根据未知函数的导数的阶数,常微分方程可以分为一阶、 二阶、高阶微分方程等。
一阶常微分方程
概念
一阶常微分方程是未知函数的导数是一阶的常微分方程。
分类
一阶常微分方程可以分为线性微分方程和非线性微分方程。
求解方法
对于简单的一阶常微分方程,可以通过分离变量法、积分因式分解法等方法求解。对于复杂的非线性微 分方程,可能需要使用数值计算方法。
定积分的概念与计算
定积分的概念
01
定积分是描述曲线下的面积的问题,它可以通过分割
、近似、求和、取极限等步骤进行计算。
定积分的计算
02 定积分可以通过牛顿-莱布尼茨公式、换元法等方法
进行计算。
常见积分公式
03
定积分也有许多常见的积分公式,例如$\int_a^b
x^n dx = \frac{n}{n+1}(x^{n+1})|_{a}^{b}$。
理等领域。
Hale Waihona Puke 03不定积分与定积分不定积分的概念与计算
不定积分的概念
不定积分是微分的逆运算,它描述了某个函数的一组 原函数。
不定积分的计算
不定积分可以通过分部积分法、换元法等方法进行计 算。
专升本高等数学课件 第一章
称为由①, ②确定的复合函数, u 称为中间变量.
[说明] 通常 f 称为外层函数,g 称为内层函数.
注意:1.不是任何两个函数都可以复合成一个复 合函数的;
例如 y arcsin u, u 2 x2; y arcsin(2 x2 )
2.复合函数可以由两个以上的函数经过复 合构成.
例如 y cot x , y u, u cot v, v x .
例如,
2x 1,
f
(
x)
x2
1,
x0 x0
y x2 1
y 2x 1
• 隐函数:函数 y 与自变量 x 的对应法则用一个方程 F(x, y) 0
表示的函数,如x2 y2 1 0 .
二、函数的性质
1.函数的单调性
设函数 f ( x)的定义域为D, 区间I D, 如果对于区间 I 上任意两点 x1及 x2 , 当x1 x2时, (1) 若恒有 f ( x1 ) f ( x2 ),
o
例如,x2 y2 a2.
(x, y)
x
x
D
定义: 点集C {( x, y) y f ( x), x D} 称为
函数y f ( x)的图形.
3、函数的表示法
解析法:用解析表达式表示函数关系
表格法:用列表的方法来表示函数关系
图示法:用平面直角坐标系上的曲线来 表示函数关系
几个特殊的函数举例
反余弦函数 y arccos x
y arccos x
反正切函数 y arctan x
y arctan x
反余切函数 y arccot x
y arccot x
幂函数,指数函数,对数函数,三角函数和反 三角函数统称为基本初等函数.
专转本冲刺高等数学讲义
换元的同时也换限,可证明
s
in
n
xdx
2 sin n xdx,
0
2
从而上式得证
2004年专转本考试真题(答案)
四.综合题(每题8分,3题共24分)
21.证明: xf (sin x)dx
f (sin x)dx,
0
20
并利用此等式求
0
sin x x 1 cos2
dx . x
证明:令 x t,代入左式即可;
分析:零点定理结合严格单调性
方法二:应用零点定理
例4 证明方程 2x2 1 x2 1 dt 0在
0 1t
0,1内有唯一实根 .
方法二:应用零点定理(答案):
例 4 证明方程 2x2 1 x2 1 dt 0
0 1t
在0,1 内有唯一实根 .
分析:令 f (x) 2x2 1 x2 1 dt,f (0) f (1) 0,
0 a b a b的a, b, 恒 有 下 式 成 立 :f (a) f (b) f (a b)
(2001年 考 题 )
提示:f (a b) f (b) f (1) • a, f (a) f (0) f (2 ) • a
0, a, b, a b四个关键点
0 a b a+b
0 1t
又因为
f (x)
2x 4x3 1 x2
0,f
( x)严格单调增加.
方法二:应用零点定理
例 5 函数f (x) 在a,b上连续,且f (x) 0,
求方程
x
f (t)dt
b
1
dt 0
a
x f (t)
在(a,b) 内根的个数.
方法二:应用零点定理(答案):
专升本-高数一-PPT课件
例 2.下列各函数中,互为反函数的是(
n t, x o t cy (1 ) . y a x
)
1 x , 1 y ( ) 1 - x (2) .y2 2
知识点:反函数 求反函数的步骤是:先从函数 y f ( x ) 中解出 x f 1 ( y ) ,再置换 x 与
y ,就得反函数 y f 1 ( x ) 。
故函数的定义域为:{( x , y ) | x 0 且 x y 0} (2)要使函数有意义必须满足
故
x2 x 2 0 x 1 或 x 2 ,即 , x 2 x20 D ( 2, 1) (2, ) .
二、 极限
1.概念回顾
2、 极限的求法
利用极限四则运算、 连续函数、重要极限、无穷小代换、洛比达法则等 例 5: 求 lim
x
x5 . x2 9
1 5 1 5 2 lim( 2 ) x5 x x x 0 0. 解: lim 2 lim x x x x 9 x 9 9 1 1 2 lim(1 2 ) x x x 知识点:设 a0 0, b0 0, m, n N ,
数。
: D g ( D ) D f: D f( D ) g 1 1 1
f g : D f [ g ( D ) ]
例 1.下列函数中,函数的图象关于原点对称的是( (1) y 2 x 2 1 ; (3) y x 1 . 知识点: 函数的奇偶性 (2) y x 3 2sin x ;
则 lim
am x x b x n n
m
m a bn a1 x a0 0 b1 x b0
mn mn mn
专升本高数第二章导数-PPT课件
左、右导数
设函数 y f (x )在点 x 如果 0的某个邻域内有定义
f (x x ) f (x y 0 0) 左极限 lim lim 存在,那 x 0 x 0 x x 称此极限值为函数 y f (x )在点 x 0 处的左导数。
2 x e b( 1 b ) f ( 0 ) l i m 2 x 0 x
f ( 0 ) f ( 0 ) , a 2
(二) 曲线的切线方程及法线方程
设 曲 线 的 方 程 为 y f() x , 若 f() x在 x 处 可 导 , 0 则 曲 线 在 点 M ( x ,y ) 处 的 切 线 方 程 为 0 0 y y f ( x ) ( x x ) 0 0 0
仍是 x 的函数,称为 f (x)的导函数。
1. 基本导数表
x x
1 c 0 , ( x ) x
x x
( aa ) l n a , ( e ) e
1 1 ( l o g x ) , ( l n x ) a x l n a x
( s i n x ) c o s( x , c o s x )s i n x 2 2 ( t a n x ) s e c x , ( c o t x ) c s c x ( s e c x ) s e c x t a n x , ( c s c x ) c s c x c o t x
第二章 一元函数微分学
§2.1. 导数与微分
(一) 导数的概念
我们再用极限来研究变量变化 的快慢程度,这即是微分学中 的重要概念—导数。
专升本 高数第二讲 连续 (详细)PPT课件
解 分界点为 x =1,x =2
(i)当 x=1时 lim f ( x) lim 0 0,
x1
x1
lim f ( x) lim(2x 1) 3
x 1
x 1
所以 x= 1 是函数的跳跃间断点
(ii)讨论 x=2
lim f (x) lim (2x 1) 5
x2
x2
lim f (x) lim (1 x2) 5
(1) f(x)±g(x) ,(2)f(x)·g(x),
(3)若g(x0)≠0
,
都在x0处连续。
定理 基本初等函数在定义域内是连续的. 定理 一切初等函数在其定义区间内都是连续的.
定理1.13 (复合函数的连续性)设函数u=g(x)在x= x0处连 续,y=f(u)在u0=g(x0)处连续,则复合函数y=f[g(x)]在x= x0 处连续。
如果
,则称函数f(x)在点x0处右连续。由
上述定义2可知如果函数y=f(x)在点x0处连续,则f(x)在点x0
处左连续也右连续。
lim f (x) f (x0 ) lim f (x) lim f (x) f (x0 )
x x0
x x0
x x0
lim f (x) f (x0 ) lim f (x) lim f (x) f (x0 )
例1 证明 x3 方 4x2程 10在区 (0,1)内 间 至少.有一根
证 令 f(x ) x 3 4 x 2 1 ,则 f(x)在 [0,1]上连 , 续 又 f(0)10 , f(1 ) 20 , 由零点定理,
(a,b),使 f()0, 即 34 210 ,
方x3 程 4x210在 (0,1)内至少 . 有
连续定义
专升本高等数学课件 第二章
设有曲线C及C上一点M, y
在M点外任取C上一点N,
N
作割线MN,当点N沿曲线 C趋向点M时,如果割线 MN趋向于它的极限位置
M
C
NT
MT,则称直线MT为曲线C
在点M处的切线.
0
x
2.【切线问题】 割线的极限位置——切线位置
求曲线L:y f ( x)在点 M( x0 , y0 )处切线的斜率。
割线 MN 的斜率为:
【解】 y 2sin x cos x ln x y 2cos x cos x ln x 2sin x ( sin x) ln x 2sin x cos x 1 x 2cos 2x ln x 1 sin 2x. x
【例3】 求 y tan x 的导数 .
【解】
y (tan x) (sin x ) cos x
o t0
f (t)
t
s
y y f (x)
N
CM
T
o x0 x x
所求量为函数增量与自变量增量之比的极限 .
二、导数的定义—— “点导数”定义
1.【定义】 设函数
在点 的某邻域内有定义 ,
若
lim
x x0
f ( x) f ( x0 ) lim y
x x0
x0 x
y f ( x) f ( x0 ) x x x0
【解】 由导数的几何意义,得切线斜率为
k y x1 2
( 1 ) x
x1 2
1 x2
x1 2
4.
切线方程为 y 2 4( x 1), 即 4x y 4 0.
2
法线方程为 y 2 1 ( x 1), 即 2x 8 y 15 0.
42
四、可导与连续的关系
2024版《专升本》PPT课件
《专升本》PPT课件contents •专升本概述•专升本考试分析•专升本备考策略•专升本学校与专业选择•专升本学习技巧与方法•专升本心态调整与压力应对目录01专升本概述定义与背景专升本定义专科毕业生通过考试或其他方式升入本科阶段学习的过程。
教育背景随着高等教育普及化,专升本成为提升学历和职业发展的重要途径。
学历提升获得本科学历,提高个人学历水平。
知识拓展深入学习专业领域知识,拓宽知识面。
职业发展增强就业竞争力,有利于职位晋升和薪酬增长。
普通专升本参加全省统一考试,录取后进入本科阶段学习。
成人高等教育专升本通过成人高考或自学考试等方式获得本科学历。
网络教育专升本利用现代远程教育技术,自主学习并获得本科学历。
开放大学专升本参加开放大学组织的考试,录取后进入本科阶段学习。
02专升本考试分析考试科目与形式考试科目主要包括公共课和专业课两大类。
公共课一般为英语、计算机等,专业课则根据报考专业而定。
考试形式采用闭卷、笔试的形式进行,部分地区或专业可能还包括面试或实践操作等环节。
考试难度与通过率考试难度相对于高考而言,专升本考试难度适中,但竞争较为激烈。
考试内容侧重于基础知识和应用能力的考查。
通过率不同地区、不同专业的通过率存在一定差异。
一般来说,通过率在30%~50%之间。
历年真题解析真题来源可以从官方网站、教育机构等渠道获取历年真题。
真题解析通过对历年真题的深入研究,可以了解考试趋势、题型分布和难易程度,为备考提供有力支持。
同时,还可以针对自己的薄弱环节进行有针对性的复习。
03专升本备考策略03阶段性复习目标设定阶段性复习目标,如每周完成一个模块的复习,确保按计划推进复习进度。
01分析考试大纲仔细研读专升本考试大纲,了解考试内容和要求,明确复习方向和重点。
02制定复习时间表根据考试大纲和个人实际情况,制定详细的复习时间表,合理安排每天的学习任务。
制定复习计划选择备考资料官方教材购买官方指定的教材,确保获取最权威、最准确的考试信息。
专升本高等数学课件 第四章
多元函数中同样有定义域、值域、自变量、因变量 等概念.
【例1】求 f ( x, y) arcsin(3的定x义2 域y2.) x y2
【解】 3 x2 y2 1 x y2 0
2 x2 y2 4
x
y2
所求定义域为 D {(x, y) | 2 x2 y2 4, x y2}.
偏导数 , 记为
z , y
f , y
zy ,
f y ( x, y) , f2( x, y)
(2)【多元函数的偏导数】
偏导数的概念可以推广到二元以上函数
[例如] 三元函数 u = f (x , y , z) 在点 (x , y , z) 处对 x 的
偏导数定义为
x x
x
x
x
fy(x, y, z) ? fz(x, y, z) ?
f (x x, y) f (x, y) A x o(| x |),
lim f (x x, y) f (x, y) A z ,
x0
x
x
同理可得
B z . y
故
dz z x z y
x y
由此可见:可微 连续;可微 可偏导
⑵可导与可微的关系: ①一元函数:在某点 可导
可微.
②多元函数:各偏导数存在
2. 【混合偏导数相等的条件】
(1)【问题】 混合偏导数都相等吗? 答: 不一定相等
【补例】设
f
( x,
y)
x3 y x2 y2
0
( x, y) (0,0) ( x, y) (0,0)
求 f ( x, y)在点(0,0)的二阶混合偏导数.
[注意]分段函数
在分界点的偏导 数要用定义求得.
专升本-高等数学--第三章-PPT
Δx0
Δx Δx0
Δx0
Δx
由此可见,曲线 y f (x)在点M 0处的纵坐标 y 的增量
Δ y 与横坐标 x的增量Δx之比,当 x 0 时的极限即为
曲线在M 0点处的切线斜率.
二、导数的概念
1.导数的定义
设函数 y f (x)在点 x0的某一邻域内有定义,当自
变量 x在 x0处有增量Δx(Δx 0, x0 Δx仍在该邻域内)时,
Q (t0 )
细杆 质量
的线 m m(x) Δm m(x0 Δx) m(x0)
密度
Δx
Δx
(x0
)
lim
Δx0
m(
x0
Δx) Δx
m(x0
)
边际
成本 总成本 模型 C C(x)
ΔC C(x Δx) C(x)
Δx
Δx
C(x) limΔC limC(xΔx)C(x)
Δx Δx0
Δx0
即在 x 处连续的函数未必在 x 处可导.
例如,函数 y
x
x, x 0,
x,
x
0
显然在
x 0 处连续,
但是在该点不可导.
因为y f (0 x) f (x) x ,
所以在x 0 点的右导数:
f (0)
lim
x0
y x
lim x0
x x
x lim x0 x
1.
而左导数是:
f (0)
2.若lim xa
f (x) f (a) xa
A(A 为常数),试判断下列命
题是否正确.
(1) f (x)在点 x=a 处可导;
(2) f (x)在点 x=a 处连续;
(3) f (x) f (a) A(x a) o(x a).
专升本高等数学课件《内部资料》[优质ppt]
xx1dx,D f(x,y)d
四.解微分方程
C.三大应用
一.导数的应用 1.函数单调性、极值,曲线凹凸性、拐点,
作图. 2.应用题.求Max,Min. 3.利用中值定理证明等式或不等式. 二.定积分的应用.
1.几何应用 S,V, L
2.物理应用 W , F
三.微分方程的简单应用
D.向量代数与空间解几简介
lnx
② f(x)的定义 [0,2域 ]求 , f为 ( 1 )的定义域
1x2
注意:并非任何两个函数都可以复合
uy lnxu24yln(x24)无意义
(03) f(x1 x)x4 x 21,则 f(x)[x21 2]
(07)f(x)1x,则 f1( 1)[ x] 1x 1x 2x
(08)f(1) x ,则 f1(x)[1x]
1.定义 2.性质
① 当 x x 0 ( x ), ( x ) 0 , ( x ) 0 ,
则 (x) (x) 0
② 当 x x 0 ( x ), ( x ) 0 , ( x ) 0 ,
则 (x) (x) 0
③
f ( x ) M ,当 x x 0 ( x ), ( x ) 0
yarctaxn yarccoxt
(六)初等函数--由基本初等函数(1)经 过有限次的和,差,积,商运算,(2)有限次 的复合运算,(3)且可用一个公式表示的 函数.
非初等函数举例:
(1) y x x 2 x 3 x n ...
(2)y x x x
(3) y
a
sin( x 1) x 1
x
(C) y 1 lg 1 x
2 1 x
(D)
y
1 x 1 x
(模C) f[(x)]1cosx,(x)sinx
高等数学数学PPT课件精选全文完整版
归转化思想。
做
学生进行练习训练,个人独立思考与分组讨论相结合。
训
学生上黑板演示解题过程,其他学生点评,教师分析总结。
01
课程尚处于建设阶段,教学资源有待于进 一步完善,现有教学资源还没有得到充分 利用。
进一步开拓更多的学习资源,团队教师增 进针对教学方法和教学资源建设与利用方 面的交流。
பைடு நூலகம்
02
教学内容和教学设计在不断变化的社会需 求、学生思想,以及不断产生的新技术面 前有些滞后。
教学问题
转变传统的教学理念和改变旧的教学模式 探索、建立了新的教学模式和教学方法。
教学对象
教学对象为一年级学生,对大学学习环境、学习 方式需要有一定的适应期 。 教师向学生介绍大学学习的特点与方法,帮助学 生尽快度过适应期。
教学特色
通过不同形式的自主学习 、探究活动,让 学生体验
数学发现和创造的历程,发展他们的创 新意识 。
课程内容及授课学时数(1学期,共64课时)
序号 1 2 3 4 5 6
课程内容 第一章 函数的极限与连续 第二章 导数与微分 第三章 导数应用 第四章 不定积分 第五章 定积分 第六章 空间解析几何
授课学时 12 12 6 16 16 2
导向
依据
度
专业
满足 专业培养目
标
必需 够用
理论知识以“必需、够用”为原则,教学内 容体现“专业性”
教学内容的针对性
专业理论知识需求
后续课程学习要求
教学内容的适用性
高等数学基本要求 教学内容的针对性
淡化严格论证 强化数学应用 注重数学软件
符合课程目标
教学内容选择 辅助多媒体教学 自主学习能力