实验39荧光法测定乙酰水杨酸
分子荧光法测定水杨酸乙酰水杨酸1
分子荧光法测定水杨酸和乙酰水杨酸一、实验目的1、学习荧光分析法的基本原理。
2、掌握应用分子荧光法测定乙酰水杨酸、水杨酸的分析方法。
3、了解F-3501型荧光分光光度计的主要结构及工作原理,掌握其正确的使用方法。
二、实验原理某些物质经紫外光或波长较短的可见光照射后,会发射出较入射波长更长的荧光。
荧光光谱反映了物质的特性,建立在测量荧光光谱基础上的分析方法称为荧光分析法。
当进行荧光测定时,总要选择不同波长的光波进行测定,即一个为激发光——物质所吸收的光;另一个为物质吸收后发出的光称为发射光或荧光。
对同一物质而言,在稀溶液(即A = abc < 0.05)中,荧光的强度F与该物质的浓度C 有以下关系:F = 2.3φabcI0式中φ为荧光过程的量子效率,a为荧光分子的吸光系数,b为试样的吸收光程,I0为入射光的强度。
当I0及b 不变时,上式变为:F= KC其中,K为常数。
荧光分析法具有灵敏度高(一般超过分光光度法2~3个数量级)、取样少、方法快速等特点,现已成为食品、生物医药、天然产品、农业、环境保护、化工等领域中的重要分析方法之一。
但由于许多物质本身不会发生荧光,故在使用范围上受到一定的限制。
乙酰水杨酸(ASA,即阿司匹林)水解能生成水杨酸(SA),而在乙酰水杨酸中,或多或少都存在着水杨酸。
由于两者都有苯环,也有一定的荧光效率,因而在以三氯甲烷为溶剂的条件下,可用荧光法进行测定。
从乙酰水杨酸和水杨酸的激发光谱和荧光光谱中可以发现:乙酰水杨酸和水杨酸的激发波长和发射波长均不同,利用此性质,可在各自的激发波长和发射波长下分别测定。
三、仪器与试剂1、仪器F-3501型荧光分光光度计、电子天平、离心机、真空泵、石英比色皿、移液管、棕色容量瓶、比色管、烧杯、砂芯抽滤装置、量筒、洗耳球、洗瓶等。
阿司匹林中乙酰水杨酸含量的测定
荧光光度法测定阿司匹林中乙酰水杨酸的含量一、实验目的1.掌握用荧光法测定药物中的乙酰水杨酸含量的方法。
2.掌握970CRT 型荧光分光光度计的操作方法。
3.加深对荧光光度法原理的理解。
二、实验原理1.荧光光度法原理(1)常温下,处于基态的分子吸收一定的紫外可见光的辐射能成为激发态分子,激发态分子通过无辐射跃迁至第一激发态的最低振动能级,再以辐射跃迁的形式回到基态,发出比吸收光波长长的光而产生荧光。
在稀溶液中,当实验条件一定时,荧光强度I F 与物质的浓度c 成线性关系:即Kc I F (这是荧光光谱法定量分析的理论依据)。
(2)荧光光谱激发光谱:固定测量波长(选最大发射波长),化合物发射的荧光强度与照射光波长的关系曲线。
激发光谱曲线的最高处,处于激发态的分子最多,荧光强度最大。
荧光强度波长发射光谱:固定激发光波长(选最大激发波长), 化合物发射的荧光强度与发射光波长关系曲线。
固定发射光波长进行激发光波长扫描,找出最大激发光波长,然后固定激发光波长进行荧光发射波长扫描,找出最大荧光发射波长。
激发光波长和发射荧光波长的选择是本实验的关键。
2. 荧光光度法测定阿司匹林中乙酰水杨酸的含量通常称为ASA 的乙酰水杨酸(阿司匹林)水解即生成水杨酸(SA )(如下式)。
而在阿司匹林中或多或少存在一些水杨酸,用醋酸—氯仿作为溶剂,然后用荧光法可以分别测定其含量,少许醋酸还可以增加二者的荧光强度(本次实验只测定阿司匹林中乙酰水杨酸的含量)。
在1%的乙酸—氯仿中乙酰水杨酸的激发光谱和荧光光谱如图所示:(为了消除药片之间的差异,可以取几片一起研磨,然后取部分由代表性的样品进行分析)三、仪器与试剂:仪器:970CRT 型荧光分光光度计及附件;容量瓶:1000mL 2只,100 mL 2只,50mL 8只;l0mL 吸管2支;铁架台;研钵;称量瓶;玻璃棒;烧杯;定量滤纸;电子天平。
试剂:冰醋酸;氯仿;乙酰水杨酸;阿司匹林;丙酮。
乙酰水杨酸的制备实验报告
乙酰水杨酸(阿司匹林)的合成实验报告一、教学要求:1、通过本实验了解乙酰水杨酸(阿斯匹林)的制备原理和方法。
2、进一步熟悉重结晶、熔点测定、抽滤等基本操作.3、了解乙酰水杨酸的应用价值。
二、预习内容:1、重结晶操作2、抽虑操作三、实验操作流程:水杨酸,醋酸酐浓硫酸摇匀70度左右20min冷却抽滤粗产物乙酸乙酯沸石加热回流趁热过滤冷却抽滤洗涤乙酰水杨酸三、实验原理:乙酰水杨酸即阿斯匹林(aspirin),是19世纪末合成成功的,作为一个有效的解热止痛、治疗感冒的药物,至今仍广泛使用,有关报道表明,人们正在发现它的某些新功能。
水杨酸可以止痛,常用于治疗风湿病和关节炎。
它是一种具有双官能团的化合物,一个是酚羟基,一个是羧基,羧基和羟基都可以发生酯化,而且还可以形成分子内氢键,阻碍酰化和酯化反应的发生。
阿斯匹林是由水杨酸(邻羟基苯甲酸)与醋酸酐进行酯化反应而得的。
水杨酸可由水杨酸甲酯,即冬青油(由冬青树提取而得)水解制得。
本实验就是用邻羟基苯甲酸(水杨酸)与乙酸酐反应制备乙酰水杨酸。
反应式为:OOH OH +(C H3CO)23+CH3COOH副反应:OOHOH2OHC OOOOH +OH 2OOHOCOCH3OOHOH+OCOCH3C OOOOH表1 主要试剂和产品的物理常数在50mL 圆底烧瓶中,加入干燥的水杨酸7。
0g (0。
050mol )和新蒸的乙酸酐10ml (0。
100mol)(思考题1),再加10滴浓硫酸,充分摇动(思考题2)。
水浴加热,水杨酸全部溶解,保持瓶内温度在70℃左右(思考题3),维持20min ,并经常摇动。
稍冷后,在不断搅拌下倒入100ml 冷水中,并用冰水浴冷却15min ,抽滤,冰水洗涤(思考题4),得乙酰水杨酸粗产品。
将粗产品转至250ml 圆底烧瓶中,装好回流装置,向烧瓶内加入100ml 乙酸乙酯和2粒沸石,加热回流,进行热溶解(思考题5).然后趁热过滤,冷却至室温,抽滤,用少许乙酸乙酯洗涤,干燥,得无色晶体状乙酰水杨酸,称重,计算产率。
复方乙酰水杨酸的含量测定
复方乙酰水杨酸的含量测定复方乙酰水杨酸是一种广泛用于医药领域的药物,它由乙酰水杨酸和水杨酸组成,在治疗头痛、风湿痛、关节炎等方面具有显著的疗效。
因此,对复方乙酰水杨酸的含量进行准确的测定具有重要的临床应用价值。
本文将介绍复方乙酰水杨酸的含量测定方法。
一、试剂与仪器1、试剂:粉末状的复方乙酰水杨酸、氯仿、乙醇、六氯化铀、氢氧化钠、盐酸、石油醚、硫酸、甲苯和双氧水等。
2、仪器:电子天平、垂线式pH计、紫外-可见分光光度计、滴定管、离心机、高压液相色谱仪等。
二、含量测定方法1、前处理(1)、样品的制备首先,将复方乙酰水杨酸样品分别精密称量至0.1g以上的量,并分别置于两个不同的容量瓶中。
然后,向每个容量瓶中加入小量的氢氧化钠,并用足量的蒸馏水溶解,最后定容至50ml。
将上述制备好的样品瓶中的溶液过滤,并将滤液收集到干净的离心管中。
然后,加入等量的氯仿并摇匀,使乙酰水杨酸和水杨酸能够充分溶解。
将上述提取好的溶液放置在离心机中,离心一段时间,然后用沙漏或毛细吸管将下层液体分离出来,并过滤到50ml的瓶中,以便进一步分析。
(1)、紫外-可见分光光度法将去除蛋白质的样品溶液放入紫外-可见分光光度计中,测量其在274nm处的吸光度Au,并根据以下公式计算乙酰水杨酸的含量:含量= (Au×V×D×1000) / (ε×m)其中,Au为吸光度,V为取样量(单位为 ml),D为稀释倍数,ε为乙酰水杨酸在274nm处的摩尔消光系数,m为样品的质量。
(2)、高压液相色谱法将上述制备好的样品溶液直接注入高压液相色谱仪中,测定每个组分的峰面积,然后与已知浓度的乙酰水杨酸标准品的峰面积进行比较,计算出样品中乙酰水杨酸的含量。
将上述制备好的样品溶液放入垂线式pH计中,调节其 pH 值至 9-10,然后加入硫酸,产生水杨酸。
将生成的水杨酸与六氯化铀溶液混合,等待2min后,加入甲苯,并用滴定管滴入盐酸,将生成的水杨酸中的六氯化铀还原,最后测定其滴定溶液的体积,并计算出样品中水杨酸的含量。
乙酰水杨酸的制备实验报告
乙酰水杨酸的制备实验报告一、实验目的1、了解乙酰水杨酸(阿司匹林)的制备原理和方法。
2、掌握重结晶的操作技术。
3、学习用酸碱滴定法测定乙酰水杨酸的含量。
二、实验原理乙酰水杨酸是由水杨酸和乙酸酐在浓硫酸催化下进行酯化反应而制得的。
反应式如下:水杨酸+乙酸酐→ 乙酰水杨酸+乙酸反应过程中,浓硫酸作为催化剂,加速反应的进行。
反应完成后,需要经过一系列的分离和纯化操作,得到纯净的乙酰水杨酸。
三、实验仪器与试剂1、仪器电子天平圆底烧瓶(250mL)回流冷凝管玻璃棒布氏漏斗抽滤瓶表面皿温度计锥形瓶移液管酸式滴定管碱式滴定管2、试剂水杨酸(AR)乙酸酐(AR)浓硫酸(AR)乙醇(AR)饱和碳酸钠溶液盐酸溶液(1:1)酚酞指示剂四、实验步骤1、称取一定量的水杨酸(_____g)于干燥的250mL 圆底烧瓶中,加入_____mL 乙酸酐,再缓慢滴入_____滴浓硫酸,边滴加边振摇。
2、在圆底烧瓶上安装回流冷凝管,在石棉网上加热回流_____分钟,控制反应温度在_____℃左右。
3、反应结束后,将反应液倒入盛有_____mL 冰水的烧杯中,搅拌,使结晶析出。
4、待结晶完全后,进行抽滤,用少量冰水洗涤晶体,得到粗产品。
5、将粗产品转移至表面皿上,自然晾干。
6、粗产品的纯化:将粗产品用乙醇水(体积比为 1:1)的混合溶剂进行重结晶。
具体操作是:在锥形瓶中加入粗产品和适量的混合溶剂,加热至固体完全溶解,稍冷后,加入少量活性炭,煮沸_____分钟,趁热过滤。
滤液冷却至室温,待结晶析出后,再次抽滤,用少量乙醇洗涤晶体,干燥后得到纯净的乙酰水杨酸。
7、乙酰水杨酸含量的测定:准确称取_____g 乙酰水杨酸样品,置于锥形瓶中,加入_____mL 乙醇,使其溶解。
加入_____滴酚酞指示剂,用_____mol/L 的氢氧化钠标准溶液滴定至溶液呈粉红色,且_____秒内不褪色,记录消耗氢氧化钠标准溶液的体积。
五、实验数据记录与处理1、水杨酸的质量:_____g2、乙酸酐的体积:_____mL3、浓硫酸的滴数:_____滴4、回流反应时间:_____分钟5、反应温度:_____℃6、粗产品的质量:_____g7、纯产品的质量:_____g8、氢氧化钠标准溶液的浓度:_____mol/L9、消耗氢氧化钠标准溶液的体积:_____mL根据以下公式计算乙酰水杨酸的含量:乙酰水杨酸的含量(%)=(c × V × 01802 × 100)/ m其中,c 为氢氧化钠标准溶液的浓度(mol/L),V 为消耗氢氧化钠标准溶液的体积(mL),m 为样品的质量(g),01802 为乙酰水杨酸的摩尔质量(g/mol)。
实验荧光法测定乙酰水杨酸和水杨酸
实验荧光法测定乙酰水杨酸和水杨酸一、目的要求1、掌握用荧光法测定药物中乙酰水杨酸和水杨酸的方法。
2、掌握RF-5301型荧光仪的操作方法。
二、原理通常称为ASA的乙酞水杨酸(阿司匹林)水解即生成水杨酸(SA),而在阿司匹林中,都或多或少存在一些水杨酸。
用氯仿作为溶剂,用荧光法可以分别测定它们。
加少许醋酸可以增加二者的荧光强度。
在1,醋酸一氯仿中,乙酞水杨酸和水杨酸的激发光谱和荧光光谱如图1.图1 在1,醋酸一氯仿中,乙酞水杨酸和水杨酸的激发光谱和荧光光谱为了消除药片之间的差异,可取几片药片一起研磨,然后取部分有代表性的样品进行分析。
三、仪器与试剂仪器 RF-5301型荧光仪,石英皿;容量瓶:1000mL 2只,100mL 8只,50mL 10只;l0mL吸管2支。
试剂乙酰水杨酸贮备液:称取0.4000g 乙酰水杨酸溶于1,醋酸一氯仿溶液中,用1,醋酸一氯仿溶液定容于1000mL容量瓶中;水杨酸贮备液:称取0.750g水杨酸溶于1,醋酸一氯仿溶液中,并用其定容于1000mL容量瓶中;醋酸;氯仿。
四、实验步骤1、绘制ASA和SA的激发光谱和荧光光谱将乙酰水杨酸和水杨酸贮备液分别稀释100倍(每次稀释10倍,分二次完成)。
用该溶液,分别绘制ASA和SA的激发光谱和荧光光谱曲线,并分别找到它们的最大激发波长和最大发射波长。
2、制作标准曲线(1) 乙酞水杨酸标准曲线在5只50mL容量瓶中,用吸量管分别加入4.00µg/mLASA溶液2、4、6、8、l0mL,用1,醋酸一氯仿溶液稀释至刻度,摇匀。
分别测量它们的荧光强度。
(2) 水杨酸标准曲线在5只50mL容量瓶中,用吸量管分别加入7.50µg/mL SA溶液2、4、6、8、l0mL,用1,醋酸一氯仿溶液稀释至刻度,摇匀。
分别测量它们的荧光强度。
、阿司匹林药片中乙酰水杨酸和水杨酸的测定 3将5片阿司匹林药片称量后磨成粉末,称取400.0mg用1,醋酸一氯仿溶液溶解,全部转移至100mL容量瓶中,用1,醋酸一氯仿溶液稀释至刻度。
乙酰水杨酸的测定与光谱分析
05
乙酰水杨酸测定中的干 扰因素及消除方法
共存离子的干扰及消除
要点一
共存离子的干扰
在测定乙酰水杨酸时,溶液中可能存在的其他离子会对其 产生干扰,影响测定的准确性。
要点二
消除方法
采用离子交换法、萃取法或共沉淀法等分离手段,将干扰 离子从溶液中去除,以减小其对乙酰水杨酸测定的影响。
有机溶剂的干扰及消除
利用超声波的空化作用加速溶剂渗透 和物质传递,可实现乙酰水杨酸的快 速提取和分离。
微波辅助萃取技术
利用微波能加速有机溶剂对样品中乙 酰水杨酸的提取,具有提取效率高、 操作简便、节省时间和溶剂等优点。
测定仪器设备的升级与改造
高性能液相色谱仪
具有高灵敏度、高分辨率和高自动化程度等优点,可实现乙酰水 杨酸的高效分离和准确检测。
可以实现对乙酰水杨酸结构的准确鉴别。
04
乙酰水杨酸测定中的样 品处理技术
萃取技术
液-液萃取
利用两种不混溶的液体(通常为水和有机溶剂) 对乙酰水杨酸进行分离和纯化。
固-液萃取
利用固体吸附剂吸附乙酰水杨酸,然后用溶剂洗 脱,达到分离和纯化的目的。
膜萃取
利用半透膜使水杨酸通过膜而留下乙酰水杨酸, 达到分离目的。
沉淀技术
盐析法
通过加入无机盐使水杨酸或乙酰水杨 酸以沉淀形式析出,再进行分离和纯 化。
共沉淀法
利用杂质离子与乙酰水杨酸形成共沉 淀,将乙酰水杨酸与其他杂质分离。
蒸馏技术
常压蒸馏
利用乙酰水杨酸与杂质的沸点差进行 分离,通过控制蒸馏温度和压力,收 集不同沸点的组分。
减压蒸馏
降低压力使沸点降低,有助于分离沸 点相近的组分和减少能耗。
紫外可见分光光度计
乙酰水杨酸(阿司匹林)的制备实验报告
一、教学要求:1、通过本实验了解乙酰水杨酸(阿斯匹林)的制备原理和方法。
2、进一步熟悉重结晶、熔点测定、抽滤等基本操作。
3、了解乙酰水杨酸的应用价值。
二、预习内容:1、重结晶操作2、抽虑操作三、实验操作流程:冷却70度左右浓硫酸摇匀抽滤水杨酸,醋酸酐粗产物20min15min洗涤乙酸乙酯加热趁热过滤冷却洗涤乙酰水杨酸沸石抽滤回流干燥测熔点三、实验原理:乙酰水杨酸即阿斯匹林(aspirin),是19世纪末合成成功的,作为一个有效的解热止痛、治疗感冒的药物,至今仍广泛使用,有关报道表明,人们正在发现它的某些新功能。
水杨酸可以止痛,常用于治疗风湿病和关节炎。
它是一种具有双官能团的化合物,一个是酚羟基,一个是羧基,羧基和羟基都可以发生酯化,而且还可以形成分子内氢键,阻碍酰化和酯化反应的发生。
阿斯匹林是由水杨酸(邻羟基苯甲酸)与醋酸酐进行酯化反应而得的。
水杨酸可由水杨酸甲酯,即冬青油(由冬青树提取而得)水解制得。
本实验就是用邻羟基苯甲酸(水杨酸)与乙酸酐反应制备乙酰水杨酸。
反应式为:OOOHOH浓HSO24CHCOOH(CHCO)O3++32OHOCOCH3副反应:OOHOHHO2+2COOHOHOOOOOCOCH3OHOH+COOHOCOCH3OHOO表1 主要试剂和产品的物理常数名称分子量 m.p.或b.p. 水醇醚水杨酸 138 158(s) 微易易醋酐 102.09 139.35(l) 易溶 ? 乙酰水杨酸 180.17 135(s) 溶、热溶微四、实验步骤:在50mL圆底烧瓶中,加入干燥的水杨酸7.0g(0.050mol)和新蒸的乙酸酐10ml(0.100mol)(思考题1),再加10滴浓硫酸,充分摇动(思考题2)。
水浴加热,水杨酸全部溶解,保持瓶内温度在70?左右(思考题3),维持20min,并经常摇动。
稍冷后,在不断搅拌下倒入100ml冷水中,并用冰水浴冷却15min,抽滤,冰水洗涤(思考题4),得乙酰水杨酸粗产品。
荧光法测定乙酰水杨酸和水杨酸
乙酰水杨酸:250350nm乙酰水杨酸(ASA)(EX)01020乙酰水杨酸(ASA)(EX) No. Start(nm) Apex(nm) End(nm) Height(Data) Valley(nm) Valley(Data)1 250.0 279.5 327.5 14.45 327.5 0.562 2 327.5 344.0 400.0 26.70 400.0 0.122发射光谱:250350nm乙酰水杨酸(ASA)(EM)01020乙酰水杨酸(ASA)(EM) No. Start(nm) Apex(nm) End(nm) Height(Data) Valley(nm) Valley(Data)1 250.0 347.5 400.0 26.21 400.0 1.002水杨酸的激发光谱:250350nm水杨酸(SA)(EX)0102030水杨酸(SA)(EX)No. Start(nm) Apex(nm) End(nm) Height(Data) Valley(nm) Valley(Data)1 250.0 255.0 285.5 10.71 285.5 1.7632 285.5 300.5 400.0 35.67 400.0 0.133发射光谱:250300350400nm水杨酸(SA)(EM)0102030405060708090 100水杨酸(SA)(EM)No. Start(nm) Apex(nm) End(nm) Height(Data) Valley(nm) Valley(Data)1 250.0 303.0 320.0 36.03 320.0 0.777乙酰水杨酸的标准曲线:Standard Calibration2010ug/mlStd.No. 344.0/347.0 Conc (ug/ml) diff RD t1 25.95 0.080 -0.065 -0.2467 -0.4993Comment:2 26.14 0.160 0.058 0.222 0.4492Comment:3 26.45 0.400 0.150 0.5701 1.154Comment:4 26.55 0.800 -0.143 -0.5454 -1.104Samp.No. 344.0/347.0 Conc (ug/ml)1 29.93 4.271Calibration type: 1st orderForce curve through zero: NoMin Conc (ug/ml): 0.080Max Conc (ug/ml): 0.800A0: -27.731A1: 1.0692R: 0.91582R2: 0.83873Lower concentration limit (ug/ml) : 0.000Upper concentration limit (ug/ml) : 1000.000水杨酸标准曲线:-0.10.10.20.30.40.50.60.70.80.91.11.21.3ug/mlStandard Calibration0102030 4050Std.No. 300.0/303.0 Conc (ug/ml) diff RD t 1 39.59 0.160 -0.084 -0.1968 -0.5092 Comment:2 42.61 0.400 0.247 0.5792 1.498 Comment:3 43.04 0.800 -0.072 -0.1695 -0.4385 Comment:4 45.06 1.200 -0.091 -0.2129 -0.5507Samp.No. 300.0/303.0 Conc (ug/ml) 1 47.85 1.636 Calibration type: 1st order Force curve through zero: No Min Conc (ug/ml): 0.160 Max Conc (ug/ml): 1.200 A0: -7.4015 A1: 0.18888 R: 0.93297 R2: 0.87043Lower concentration limit (ug/ml) : 0.000 Upper concentration limit (ug/ml) : 1000.000。
荧光分析法测定水杨酸...
荧光分析法测定药品中的羟基苯甲酸异构体含量一.实验目的1.学习荧光分析法的基本原理和操作;2.熟悉荧光分析法进行多组分含量的测定方法。
二.实验原理1、荧光分析法原理:当被测物质受到光照后,被测物分子吸收了具有特征频率的辐射能,分子从基态上升到激发态,分子在较高能级的激发态时,它可能处于激发态中各种振动状态的一种。
然而由于分子通过与溶剂分子、同类分子或其他分子的碰撞,而失去振动能级,降低至激发态时的最低振动能级,在此过程中并不发光。
但当分子从激发态的最低振动能级,即第一电子激发态的最低振动能级跃迁至基态的各个不同的振动能级时,则以光的形式辐射出能量,所辐射出的光既是荧光。
2、激发光谱和发射光谱:激发光谱:荧光是光致发光,因此必须选择合适的激发光波长,这可以从它们的激发光谱曲线来确定。
绘制激发光谱曲线时,选择荧光的最大发射波长为测量波长,改变激发光的波长,测量荧光强度的变化。
以激发波长为横坐标、荧光强度为纵坐标作图,即得到荧光化合物的激发光谱。
激发光谱的形状与吸收光谱的形状极为相似,经校正后的真实激发光谱与吸收关顾不仅形状相同,而且波长位置也一样。
这是因为物质分子吸收能量的过程就是激发过程。
发射光谱:发射光谱简称荧光光谱。
如果将激发光波长固定在最大激发波长处,然后扫描发射波长,测定不同发射波长处的荧光强度,即得到荧光光谱。
3、试验方法机理:邻- 羟基苯甲酸(亦称水杨酸)和间- 羟基苯甲酸分子组成相同,均含一个能发射荧光的苯环,但因其取代基的位置不同而具有不同的荧光性质。
在pH=12 的碱性溶液中,二者在310nm附近紫外光的激发下均会发射荧光;在pH=5.5的近中性溶液中,间-羟基苯甲酸不发荧光,邻-羟基苯甲酸因分子内形成氢键增加分子刚性而有较强荧光,且其荧光强度与pH=12时相同。
利用此性质,可在pH=5.5 时测定二者混合物中邻-羟基苯甲酸含量时,间-羟基苯甲酸不干扰。
另取同样量混合物溶液,测定pH=12 时的荧光强度,减去 pH=5.5时测得的邻-羟基苯甲酸的荧光强度,即可求出间-羟基苯甲酸的含量。
乙酰水杨酸的测定与光谱分析 共25页PPT资料
混合,调成糊状,夹在盐片中测定。液体石蜡本身有红外 吸收,此法不能用来研究饱和烷烃的红外吸收。
(3)薄膜法
主要用于高分子化合物的测定。可将它们直接加热熔 融后涂制或压制成膜。也可将试样溶解在低沸点的易挥 发溶剂中,涂在盐片上,待溶剂挥发后成膜测定。
(3)试样的浓度和测试厚度应选择适当,以使光 谱图中的大多数吸收峰的透射比处于10%~80% 范围内。
1 . 固体试样
(1)压片法 将1~2mg试样与200mg纯KBr研细均匀,置于模
具中,用(5~10)107Pa压力在油压机上压成透明薄片 ,即可用于测定。试样和KBr都应经干燥处理方法:酚羟基与三氯化铁溶液的显色反应 (1)物理方法:IR;1H-NMR;UV
3. 主要药品与仪器
乙酰水杨酸 三氯化铁溶液 溴化钾
试管 IR测定仪 NMR测定仪
4. 样品制备方法
要获得一张高质量红外光谱图,除了仪器本身的因 素外,还必须有合适的样品制备方法。 一、红外光谱法对试样的要求
盐片间成膜
3 .气体样品
气态样品 可在玻璃气槽内进行 测定,它的两端粘有红外透光的NaCl 或KBr窗片。先将气槽抽真空,再将 试样注入。
5. 乙酰水杨酸的特征红外吸收
乙酰水杨酸的1H-NMR谱
Assign. A B C D E F
Shift(ppm) 11. 8.125 7.624 7.356 7.142 2.352
定性及定量分析。不同的物质具有不 同的化学键,其吸收波长不同(定 性);而对光波吸收的多少与物质的 量成正比,因此可以用来定量。
END
当样品量特别少或样品面积特别小时,采用光束聚光 器,并配有微量液体池、微量固体池和微量气体池,采 用全反射系统或用带有卤化碱透镜的反射系统进行测量。
乙酰水杨酸的制备实验报告
乙酰水杨酸的制备实验报告实验目的:本实验旨在通过苯酚与乙酸酐反应,制备乙酰水杨酸,并通过实验验证反应的可行性和产物的纯度。
实验原理:乙酰水杨酸是一种常用的有机合成中间体,在医药和化妆品工业中具有广泛的应用。
其制备方法主要是通过苯酚与乙酸酐的酯化反应得到。
实验步骤:1. 准备实验器材:准备好苯酚、乙酸酐、浓硫酸、氢氧化钠、饱和氯化钠溶液以及各种玻璃仪器。
2. 反应装置的组装:将一个带有水冷冷凝管的反应烧瓶固定在支架上,将烧瓶与Buchi温控反应蒸馏器相连。
3. 反应物配置:取适量苯酚加入到烧瓶中,再加入适量乙酸酐,将混合物搅拌均匀。
4. 加入催化剂:将少量浓硫酸滴入混合物中,注意搅拌均匀。
5. 反应过程:打开烧瓶水冷冷凝管的水龙头,加热反应烧瓶,同时控制温度不超过90℃。
6. 反应溶液处理:停止加热后,将反应溶液从反应烧瓶中转移到一个分液漏斗中。
7. 提取产物:用饱和氯化钠溶液冲洗分液漏斗中的有机相,并收集有机相。
8. 分离纯化:将有机相经过干燥剂干燥,再经Buchi温控反应蒸馏器进行蒸馏,收集乙酰水杨酸产物。
实验结果与讨论:经过实验,得到的乙酰水杨酸产物以白色晶体的形式出现,并且产物经过红外光谱分析证实为乙酰水杨酸。
实验中注意控制反应温度和加入适量的催化剂,这对于产率和纯度的提高非常重要。
此外,通过分液漏斗的提取和蒸馏纯化,可有效提高产物的纯度。
结论:本实验成功地制备了乙酰水杨酸。
通过对产品的分析和纯化,得到的产物具有一定的纯度。
实验结果表明,该方法可以可靠地制备乙酰水杨酸,为后续的应用提供了基础和保证。
参考文献:无。
乙酰水杨酸和测定及光谱分析
红外光谱原理: 不同的物质具有不同的化学键,其吸
收波长不同,当样品受到频率连续变化的 红外光照射时,分子吸收了某些频率的辐 射,产生分子振动和转动能级从基态到激 发态的跃迁,使相应于这些吸收区域的透 射光强度减弱。记录红外光的百分透射比 与波数或波长关系曲线,就得到红外光谱。
红外光谱意义: 利用物质对红外光波的吸收进行
i. KBr压片+样品架
然后,将压片置于样品池/多功能反射头上
仪器面板及工作站使用1
在仪器键盘上按Scan+Backg+1,或在工作站上点击instrument下的 Scan background,扣背景。
仪器面板及工作站使用2
放入试样压片的样品架,按Scan+X or Y or Z+1,或在工作软件中 点击instrument下的Scan Sample。
沸点较高的试样,直接滴在两片盐片之间,形成液 膜。
对于一些吸收很强的液体,当用调整厚度的方法仍 然得不到满意的谱图时,可用适当的溶剂配成稀溶液进 行测定。
一些固体也可以溶液的形式进行测定。常用的红外光 谱溶剂应在所测光谱区内本身没有强烈的吸收,不侵蚀 盐窗,对试样没有强烈的溶剂化效应等。
液体滴入间隔片槽内; 高沸点液体直接滴在
压片模具和具体操作过程
压片过程:
套筒
底座
压芯
底托
压杆
a.将 压杆 置于 套筒 中
b. 盖上底托后翻过来
c.在套筒中放入一片压芯
压片过程演示
压片过程:
d.在套筒中加入样品
f. 盖 Байду номын сангаас 底 座
e.将另 一片压 芯盖在 套筒的 样品上
g.翻转, 取下底 托
荧光法测定水杨酸片中水杨酸的含量
第41卷第2期吉林师范大学学报(自然科学版)Vol.41ꎬNo.2㊀2020年5月JournalofJilinNormalUniversity(NaturalScienceEdition)Mayꎬ2020收稿日期:2020 ̄02 ̄27基金项目:国家青年自然科学基金项目(51609100)ꎻ吉林省科技发展计划项目(20160101287JC)第一作者简介:孙艳涛(1979 )ꎬ女ꎬ吉林省辽源市人ꎬ教授ꎬ博士ꎬ硕士生导师.研究方向:色谱与光谱分析.doi:10.16862/j.cnki.issn1674 ̄3873.2020.02.011荧光法测定水杨酸片中水杨酸的含量孙艳涛1ꎬ李美锡1ꎬ刘仕聪1ꎬ李㊀林1ꎬ刘㊀洋2(1.吉林师范大学化学学院ꎬ吉林四平136000ꎻ2.吉林师范大学物理学院ꎬ吉林四平136000)摘㊀要:利用荧光法测定水杨酸片中水杨酸的含量.用甲醇作为水杨酸的溶剂ꎬ对溶液的酸碱性㊁稳定性及其线性范围等条件进行了考察.结果表明ꎬ水杨酸含量在(0.387~1.935)ˑ10-8mol L-1范围内具有良好的线性关ꎬ水杨酸片中水杨酸的含量为1.636ˑ10-8mol L-1.关键词:荧光法ꎻ水杨酸ꎻ含量测定中图分类号:O65㊀㊀文献标志码:A㊀㊀文章编号:1674 ̄3873 ̄(2020)02 ̄0083 ̄06㊀㊀水杨酸(其结构如图1所示)是一种天然的消炎药ꎬ可以祛角质㊁杀菌㊁消炎等ꎬ因而在消炎等需求的用药及化妆品中都含有适量的水杨酸.复方水杨酸片㊁阿司匹林㊁复方乙酰水杨酸片及尼美舒利等含水杨酸的制剂作为医院的处方药应用广泛[1 ̄6].文献报道制剂中水杨酸含量的测定方法主要有荧光光谱法ꎬ电位滴定法ꎬ紫外 ̄可见分光光度法ꎬ库伦滴定法及高相液相色谱法[7 ̄11].荧光分光光度测定法具有灵敏度高㊁选择性强㊁用量少和方法简便等优点[12 ̄13]ꎬ常用于有机物和无机物的定性定量分析.本实验利用荧光光谱法考察了水杨酸片中水杨酸的含量.OHO OH图1㊀水杨酸的结构式Fig.1㊀Molecularstructureofsalicylicacid1㊀实验1.1㊀仪器与试剂1.1.1㊀仪器PELS ̄55型荧光光谱仪ꎬpHS ̄3C数字酸度计ꎬShimadzuUV ̄2550型紫外分光光度计ꎬSK5200H超声波清洗器ꎬBT125D十万分之一电子天平ꎬ可调式移液器.1.1.2㊀试剂水杨酸片ꎬ水杨酸标准品ꎬ甲醇(色谱纯)ꎬ冰醋酸(分析纯)ꎬ氯仿(分析纯)ꎬ实验用水(二次蒸馏水).48吉林师范大学学报(自然科学版)第41卷1.2㊀配制溶液1.2.1㊀样品溶液的配制准确称取水杨酸片粉末0.00210g于10mL的容量瓶中ꎬ用甲醇定容ꎬ超声15minꎬ配制成1.522ˑ10-6mol L-1的水杨酸片溶液.1.2.2㊀标准品溶液的配制准确称取水杨酸标准品0.00267g于10mL的容量瓶中ꎬ用甲醇定容ꎬ超声15minꎬ配制成1.935ˑ10-6mol L-1的水杨酸标准品溶液ꎬ使用时适当稀释.1.3㊀设置参数1.3.1㊀二维荧光光谱参数将激发光谱范围设置为310~600nmꎬ发射和激发的狭缝均设为15.0nmꎬ荧光波长设为301nmꎬ扫描速度设为1000nm min-1.1.3.2㊀三维荧光光谱参数激发波长设置为200~400nmꎬ发射波长设置为310~600nmꎬ发射和激发的狭缝均设为15.0nmꎬ扫描步长设为10nmꎬ扫描次数设为20次ꎬ扫描速度设为1000nm min-1[13].1.4㊀优化条件1.4.1㊀溶剂的考察准确移取4份30μL水杨酸标准溶液ꎬ分别加入甲醇㊁1%醋酸 ̄甲醇溶液㊁氯仿和1%醋酸 ̄氯仿不同溶剂ꎬ总体积为3.5mL.1.4.2㊀酸度的考察准确移取20μL水杨酸标准溶液和10μL不同pH值的缓冲液ꎬ配制1.1056ˑ10-5mol L-1的水杨酸标准溶液.配制三组平行样ꎬ考察荧光强度随溶液酸度的变化情况.1.4.3㊀稳定性的考察分别准确移取2份20μL水杨酸标准溶液配制成浓度为1.1056ˑ10-5mol L-1的水杨酸溶液.在密封㊁避光和干燥条件下ꎬ考察其荧光强度在48h内的变化情况.1.5㊀绘制标准曲线分别准确移取100㊁300㊁500㊁700㊁900和1000μL的水杨酸标准溶液ꎬ用甲醇稀释配制成3mL一系列不同浓度的水杨酸标准溶液并进行检测ꎬ绘制纵坐标为荧光强度(F)ꎬ横坐标为浓度(c)的标准曲线.2㊀结果与讨论2.1㊀溶剂的选择水杨酸易溶于醇类试剂ꎬ实验考察了四种溶剂分别是甲醇㊁1%醋酸 ̄甲醇㊁氯仿和1%醋酸 ̄氯仿.图2为上述不同溶剂中水杨酸的二维荧光光谱.从图2可知不同溶剂中水杨酸的激发和发射光谱形状略有不同ꎬ以甲醇作为溶剂ꎬ从图2(A)中可知水杨酸的荧光强度为725ꎻ以氯仿作溶剂ꎬ从图2(C)中观察到水杨酸的最大发射波长发生蓝移ꎬ且其荧光强度为240ꎻ以1%醋酸 ̄甲醇和1%醋酸 ̄氯仿作为溶剂的水杨酸最大发射波长发生红移ꎬ荧光强度分别为177和128.由此可知ꎬ使用甲醇作溶剂ꎬ水杨酸的荧光性质稳定ꎬ强度较大.2.2㊀二维荧光光谱利用紫外分光光度计测得303nm为水杨酸的最大吸收波长ꎬ将激发波长设为303nmꎬ在300~600nm范围内绘制水杨酸的发射光谱ꎬ确定430nm为其最大发射波长.将发射波长设置为430nmꎬ在200~430nm范围内绘制水杨酸的激发光谱ꎬ确定其具有两个激发波长分别为210nm和303nm.再分别以210nm和303nm作为激发波长ꎬ绘制其发射波长ꎬ确定其最大发射波长分别为405nm和398nmꎬ结果见图3.最终选择荧光强度最大的发射波长405nm作为测量波长.第2期孙艳涛ꎬ等:光法测定水杨酸片中水杨酸的含量㊀㊀(A)甲醇ꎻ(B)1%醋酸 ̄甲醇ꎻ(C)氯仿ꎻ(D)1%醋酸 ̄氯仿图2㊀不同溶剂中水杨酸的二维荧光光谱Fig.2㊀Two ̄dimensionaldiagramofsalicylicacidinthedifferentsolvents(Ex1=303nmꎬEx2=210nmꎬEm1=405nmꎬEm2=398nm)图3㊀水杨酸的二维图Fig.3㊀Two ̄dimensionaldiagramofsalicylicacid2.3㊀三维荧光光谱三维荧光光谱图具有高的选择性ꎬ由于其坐标比二维的平面图多一个ꎬ故可用于多组份混合物的分析[14].水杨酸的三维荧光光谱如图4所示ꎬ其激发波长有两个ꎬ分别为303nm和210nmꎬ对应的发射波长分别为405nm和398nmꎬ与二维荧光光谱所得信息一致.58吉林师范大学学报(自然科学版)第41卷图4㊀水杨酸的三维图Fig.4㊀Three ̄dimensionaldiagramofsalicylicacid2.4㊀酸度的影响实验考虑了溶液酸度对水杨酸的影响.图5为15种不同pH条件下的水杨酸溶液的荧光变化趋势ꎬ每组数据平行测定三组.图中可以看出酸性越强水杨酸的荧光强度越弱ꎬ碱性越强荧光强度越强ꎬ但显碱性的溶液中出现了白色絮状物ꎬ证明其性质有所改变ꎬ因此实验选择在中性条件下进行测定.图5㊀不同pH下水杨酸的荧光强度Fig.5㊀FluorescenceintensityofsalicylicacidatdifferentpHvalues代表性酸度条件下(分别为pH=2.3㊁pH=7.0㊁pH=13.0)水杨酸的三维荧光光谱图如图6所示.㊀68第2期孙艳涛ꎬ等:光法测定水杨酸片中水杨酸的含量(A)pH=2.3㊁(B)pH=7.0㊁(C)pH=13.0图6㊀代表性酸度条件下水杨酸的三维荧光光谱图Fig.6㊀Three ̄dimensionalfluorescencespectrographofsalicylicacidunderrepresentativeacidityconditions2.5㊀稳定性的影响以甲醇作水杨酸的溶剂ꎬ在密封㊁避光㊁干燥条件下保存ꎬ考察其48h内的稳定性ꎬ从图7可看出水杨酸在48h内的稳定性良好.图7㊀水杨酸的稳定性Fig.7㊀Stabilityofsalicylicacid2.6㊀标准曲线从水杨酸的标准曲线(如图8)得知ꎬ在(0.387~1.935)ˑ10-8mol L-1的浓度范围内ꎬ水杨酸浓度与其强度呈良好的线性关系ꎬ线性方程为y=386.61x-33.553ꎬ相关系数R2=0.9912.图8㊀水杨酸的标准曲线Fig.8㊀Standardcurveofsalicylicacid2.7㊀含量测定将水杨酸片的荧光强度带入标准曲线方程ꎬ经计算可求出水杨酸片中水杨酸的含量是1.636ˑ10-8mol L-1.7888吉林师范大学学报(自然科学版)第41卷3㊀结㊀论本实验采用甲醇作为水杨酸的溶剂ꎬ对溶液的酸碱性㊁稳定性及其线性范围等条件进行考察.水杨酸在(0.387~1.935)ˑ10-8mol L-1范围内具有良好的线性关系ꎬ利用荧光法测定水杨酸片中水杨酸的含量为1.636ˑ10-8mol L-1.参㊀考㊀文㊀献[1]李本淳ꎬ王丹.HPLC法测定复方水杨酸苯甲酸搽剂中水杨酸和苯甲酸的含量[J].中国药物评价ꎬ2017ꎬ34(4):255 ̄257. [2]韩迎春ꎬ赵丽华ꎬ龚时琼ꎬ等.荧光测定阿司匹林肠溶片中水杨酸实验的绿色化[J].实验室科学ꎬ2018ꎬ21(4):4 ̄7.[3]马延.经久不衰的阿司匹林[J].生命世界ꎬ2013(2):84 ̄93.[4]邓雅晨ꎬ梁建英.复方乙酰水杨酸片含量测定学生实验方法的改进[J].教育教学论坛ꎬ2013(34):266 ̄268.[5]李彩兰.尼美舒利的临床应用与进展[J].医学信息(中旬刊)ꎬ2010ꎬ5(6):1531 ̄1532.[6]JANDAMꎬRUELLANDE.Magicalmysterytour:Salicylicacidsignalling[J].EnvironmentalandExperimentalBotanyꎬ2015ꎬ117 ̄128. [7]李蕾ꎬ陈江敏.荧光分光光度法测定阿司匹林中游离水杨酸 PEG1500 ̄OP ̄(NH4)2SO4 ̄H2O双水相体系萃取分离[J].理化检验(化学分册)ꎬ2008(1):58 ̄60.[8]贝琦华ꎬ李祎ꎬ刘逸韬ꎬ等.电位滴定法测定尼美舒利含量能力验证结果分析[J].中国药事ꎬ2019ꎬ33(3):290 ̄294.[9]王慧.紫外 ̄可见分光光度法测定复方苯甲酸软膏中水杨酸的含量[J].北方药学ꎬ2014ꎬ11(1):10 ̄10.[10]高从ꎬ杨宁ꎬ黄力.库仑滴定法测定水杨酸醇溶液中水杨酸的含量[J].中国医院药学杂志ꎬ2014ꎬ34(6):494 ̄496.[11]SUNLJꎬPANZQꎬXIEJꎬetal.ElectrocatalyticactivityofsalicylicacidonAu@Fe3O4nanocompositesmodifiedelectrodeanditsdetectionintomatoleavesinfectedwithBotrytiscinerea[J].JournalofElectroanalyticalChemistryꎬ2013:127 ̄132.[12]段沅杏ꎬ贺兵ꎬ李干鹏ꎬ等.食品中正二氢愈疮酸含量的高效液相色谱荧光法测定[J].云南化工ꎬ2011ꎬ38(1):42 ̄47.[13]王堃ꎬ陈瑾ꎬ赵春晓ꎬ等.荧光分光光度法测定斯达舒中铝的含量[J].中国民族民间医药ꎬ2018ꎬ27(8):34 ̄36.[14]孙艳涛ꎬ王丽秋ꎬ赵磊ꎬ等.甘草次酸的荧光光谱研究[J].时珍国医国药ꎬ2013ꎬ24(3):621 ̄622.[15]于晓娟.微囊藻抑制 AgBiO3应急处置与酵母菌生态抑制法的研究[D].上海:上海交通大学ꎬ2011.DeterminationofsalicylicacidinsalicylicacidtabletsbyfluorescencespectrometrySUNYan ̄tao1ꎬLIMei ̄xi1ꎬLIUShi ̄cong1ꎬLILin1ꎬLIUYang2(1.CollegeofChemistryꎬJilinNormalUniversityꎬSiping136000ꎬChinaꎻ2.CollegeofPhysicsꎬJilinNormalUniversityꎬSiping136000ꎬChina)Abstract:Useingfluorescencespectrometrytodeterminationthesalicylicacidinsalicylicacidtablets.Usingmethanolasasolventforsalicylicacid.Theacidalkalinitystabilityandlinearrangeofsolutionwereinvestigated.Salicylicacidhasagoodlinearrelationshipintherangeof(0.387~1.935)ˑ10-8mol L-1.Determinationofsalicylicacidinsalicylicacidtabletsbyfluorescencewas1.636ˑ10-8mol L-1.Studentshavemasteredtheroutinetreatmentmethodofdrugsampleandthebasicoperationoffluorescenceinstrumentthroughexperimentꎬfurtherunderstandingofthequalitativeandquantitativeprinciplesofdeepfluorescencespectrometry.Keywords:fluorescencemethodꎻsalicylicacidꎻdeterminationofcontent(责任编辑:林险峰)。
实验39荧光法测定乙酰水杨酸
2018/9/4
2018/9/4
(3)激发态→基态的能量传递途径
电子处于激发态是不稳定状态,返回基态时,通过辐射 跃迁(发光)和无辐射跃迁等方式失去能量; 传递途径 辐射跃迁 无辐射跃迁
荧光
延迟荧光
磷光
系间跨越 内转移
外转移
振动弛预
激发态停留时间短、返回速度快的途径,发生的几率大, 发光强度相对大; 荧光:10-7~10 -9 s,第一激发单重态的最低振动能级→基态; 磷光:10-3~10s;第一激发三重态的最低振动能级→基态;
1)具有合适的结构; 2)具有一定的荧光量子产率。
荧光量子产率():
发射的光量子数 吸收的光量子数
荧光量子产率与激发态能量释放各过程的速率常数有关 ,如外转换过程速度快,不出现荧光发射;
2018/9/4
(2)化合物的结构与荧光
1)跃迁类型:* → 的荧光效率高,系间跨越过程的速率常 数小,有利于荧光的产生; 2)共轭效应:提高共轭度有利于增加荧光效率并产生红移 3)刚性平面结构:可降低分子振动,减少与溶剂的相互作用 ,故具有很强的荧光。如荧光素和酚酞有相似结构,荧光素 有很强的荧光,酚酞却没有。 4)取代基效应:芳环上 有供电基,如-NH2、- OH、-OR、-NHR等 使荧光增强;吸电子基 团,如-COOH、-NO2 、-N=N-、-SH等吸 电子基团是荧光减弱。 2018/9/4
迁也然。
2018/9/4
荧光激发光谱
荧光发射光谱
200
250
300
350
400
450
蒽的激发光谱和荧光光谱
2018/9/4
500 nm
4、荧光的产生与分子结构的关系
relation between fluorescence and molecular structure
乙酰水杨酸含量的测定
实验四、乙酰水杨酸含量的测定
一 实验目的
1、 练习滴定操作,掌握确定滴定终点的方法;掌握碱式滴定管的使用方法;
2、 熟悉酚酞指示剂的使用和终点的变化,掌握指示剂的选择方法;
3、 掌握用酸碱滴定法测定弱酸含量的原理和操作方法。
二 实验原理
乙酰水杨酸(阿司匹林),pKa=3.27×10-4,可用NaOH 直接滴定。
N aO H 1000N aO H c V M w m ××=
三 实验步骤 用差减称量法在电子天平上称取0.35 ~ 0.45g 乙酰水杨酸粉末3份于锥形瓶中;
0.1000mol/LNaOH
0.3500~0.4500g 乙酰水杨酸粉末
+中性乙醇10ml
如上图所示,平行滴定三次,滴定至溶液由无色变粉红色,30s 不褪色,记下读数V ;计算乙酰水杨酸的准确含量。
五 碱式滴定管操作步骤
检漏 、挪动珠子→ 洗涤(洗液、自来水、蒸馏水、润洗) →装液、排气泡 → 滴定操作(左右手、捏玻璃珠的位置)→ 读数(初、末读数)。
强调:不能连续滴定,每次都应以“0”刻度线附近开始滴定(为消除滴定管壁不均匀引起的误差);读数
时要取下。
六 实验注意事项:
1、 碱式滴定管在滴定前一定要排气泡,在滴定过程中也要防止气泡的产生;
2、 滴定临近终点时,要缓慢加入滴定剂。
不用水,用中性乙醇淋洗内壁。
3、 中性乙醇制备时已加入酚酞指示剂,滴定时不需用加指示剂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)高浓度下,随着浓度的增加,出现荧 光饱和甚至负增长现象 a、自吸收 b、自猝灭 (3)溶液中,引起荧光猝灭的几个因素 a、碰撞熄灭 b、能量转移 c、溶解氧的猝灭作用 d、自猝灭和自吸收
2018/9/4
3、激发光谱与荧光(磷光)光谱
excitation spectrum and fluore-scence spectrum
1)具有合适的结构; 2)具有一定的荧光量子产率。
荧光量子产率():
发射的光量子数 吸收的光量子数
荧光量子产率与激发态能量释放各过程的速率常数有关 ,如外转换过程速度快,不出现荧光发射;
2018/9/4
(2)化合物的结构与荧光
荧光(磷光):光致发光,照射光波长如何选择?
(1).荧光(磷光)的激发光谱曲线
固定测量波长(选最大发射波长),化合物发射的荧光(磷 光)强度与照射光波长的关系曲线 (图中曲线I ) 。 激发光谱曲线的最高处,处于激发态的分子最多,荧光 强度最大;
2018/9/4
(2).荧光光谱(或磷光光谱)
固定激发光波长(选
2
,l 1),产生不同吸收带,但均回到第一激发单重态的最
低振动能级再跃迁回到基态,产生波长一定的荧光(如l ‘2 )。
c. 镜像规则
通常荧光发射光谱与它的吸收光谱(与激发光谱形状一 样)成镜像对称关系。
2018/9/4
镜像规则的解释
基态上的各振动能级分布 与第一激发态上的各振动能级 分布类似; 基态上的 零振动能级与 第一激发态的 二振动能级之 间的跃迁几率 最大,相反跃
最大激发波长), 化合物
发射的荧光(或磷光强度)
与发射光波长关系曲线(
发射光谱 荧光激发光谱
磷光光谱
200
260
320
380
440
500
560
620
室温下菲的乙醇溶液荧(磷)光光谱
2018/9/4
(3).激发光谱与发射光谱的关系
a.Stokes位移 激发光谱与发射光谱之间的波长差值。发射光谱的波长比 激发光谱的长,振动弛豫消耗了能量。 b.发射光谱的形状与激发波长无关 电子跃迁到不同激发态能级,吸收不同波长的能量(如能级 图l
实验 39 荧光法测定乙酰 水杨酸
一、概述
二、实验部分
三、实验中需要注意的几个问 题
2018/9/4
一、概述
1、荧光与磷光的产生过程
luminescence process of molecular fluorescence 。 phosphorescence
(1) 分子能级与跃迁
分子能级比原子能级复杂; 在每个电子能级上,都存在振动、转动能级; 基态(S0)→激发态(S1、S2、激发态振动能级):吸收特定频 率的辐射;量子化;跃迁一次到位; 激发态→基态:多种途径和方式(见能级图);速度最快、 激发态寿命最短的途径占优势; 第一、第二、…电子激发单重态 S1 、S2… ;
迁也然。
2018/9/4
荧光激发光谱
荧光发射光谱
200
250
300
350
400
450
蒽的激发光谱和荧光光谱
2018/9/4
500 nm
4、荧光的产生与分子结构的关系
relation between fluorescence and molecular structure
(1).分子产生荧光必须具备的条件
外转换使荧光或磷光减弱或“猝灭”。
系间跨越:不同多重态,有重叠的转动能级间的非辐射跃迁。 改变电子自旋,禁阻跃迁,通过自旋—轨道耦合进行。
2018/9/4
辐射能量传递过程
荧光发射:电子由第一激发单重态的最低振动能级→基态( 多为 S1→ S0跃迁),发射波长为 l ‘2的荧光; 10-7~10 -9 s 。 由图可见,发射荧光的能量比分子吸收的能量小,波长 长; l ‘2 > l 2 > l 1 ; 磷光发射:电子由第一激发三重态的最低振动能级→基态( T1 → S0跃迁); 电子由S0进入T1的可能过程:( S0 → T1禁阻跃迁)
第一、第二、…电子激发三重态 T1 、 T2 … ;
2018/9/4
(2)电子激发态的多重度
电子激发态的多重度:M=2S+1 S为电子自旋量子数的代数和(0或1); 平行自旋比成对自旋稳定(洪特规则),三重态能级比相应 单重态能级低; 大多数有机分子的基态处于单重态; S0→T1 禁阻跃迁; 通过其他途径进入 ( 见能级图 ) ;进入的 几率小;
2018/9/4
内转换 S2
内转换 振动弛豫 系间跨越
S1
能 量 吸 收 T1 发 射 荧 光 T2
外转换
发 射 磷 振动弛豫 光
S0
l 2018/9/4 1
l2
l 2
l3
非辐射能量传递过程
振动弛豫:同一电子能级内以热能量交换形式由高振动能级 至低相邻振动能级间的跃迁。发生振动弛豫的时间10 -12 s。 内转换:同多重度电子能级中,等能级间的无辐射能级交换。 通过内转换和振动弛豫,高激发单重态的电子跃回第一 激发单重态的最低振动能级。 外转换:激发分子与溶剂或其他分子之间产生相互作用而转 移能量的非辐射跃迁;
S0 →激发→振动弛豫→内转移→系间跨越→振动弛豫→ T1
发光速度很慢: 10-3~10 s 。 光照停止后,可持续一段时间。
2018/9/4
2、溶液浓度与荧光强度的关系
(1)在低浓度下,荧光强度与溶液浓度有 线性关系:
荧光强度 If正比于吸收的光量Ia和荧光量子效率 : If = Ia 由朗-比耳定律: Ia = I0(1-10- l c ) If = I0(1-10- l c ) = I0(1-e-2.3 l c ) 浓度很低时,将括号项近似处理后: If = 2.3 I0 l c = Kc
2018/9/4
2018/9/4
(3)激发态→基态的能量传递途径
电子处于激发态是不稳定状态,返回基态时,通过辐射 跃迁(发光)和无辐射跃迁等方式失去能量; 传递途径 辐射跃迁 无辐射跃迁
荧光
延迟荧光
磷光
系间跨越 内转移
外转移
振动弛预
激发态停留时间短、返回速度快的途径,发生的几率大, 发光强度相对大; 荧光:10-7~10 -9 s,第一激发单重态的最低振动能级→基态; 磷光:10-3~10s;第一激发三重态的最低振动能级→基态;