精品解析:山东省潍坊市2018年中考数学试卷(原卷版)
精品解析:2024年1月普通高等学校招生全国统一考试适应性测试(九省联考)数学试题(原卷版)
(2)设 为直线 与直线 交点,求 面积的最小值.
19.离散对数在密码学中有重要的应用.设 是素数,集合 ,若 ,记 为 除以 的余数, 为 除以 的余数;设 , 两两不同,若 ,则称 是以 为底 的离散对数,记为 .
(1)若 ,求 ;
(2)对 ,记 为 除以 的余数(当 能被 整除时, ).证明: ,其中 ;
14.以 表示数集 中最大的数.设 ,已知 或 ,则 的最小值为__________.
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
15.已知函数 在点 处的切线与直线 垂直.
(1)求 ;
(2)求 的单调区间和极值.
16.盒中有标记数字1,2,3,4的小球各2个,随机一次取出3个小球.
2024年1月普通高等学校招生全国统一考试适应性测试(九省联考)数学试题
注意事项:
].答卷前,考生务必将自己的考生号、姓名、考点学校、考场号及座位号填写在答题卡上.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
3.考试结束后,将本试卷和答题卡一并交回.
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.样本数据16,24,14,10,20,30,12,14,40的中位数为()
A.14B.16C.18D.20
2.椭圆 的离心率为 ,则 ()
A. B. C. D.2
6.已知 为直线 上的动点,点 满足 ,线
C. 上的点到 的距离均为 D. 是两条平行直线
精品解析:2022年山东省泰安市中考数学真题(原卷版)
A B. C. 5D.
2.计算(a3)2•a3的结果是( )
A.a8B.a9C.a10D.a11
3.某种零件模型如图所示,该几何体(空心圆柱)的俯视图是( )
A. B. C. D.
4.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=( )
(2)若八年级共有200人参与答卷,请估计八年级测试成绩大于95分的人数;
(3)从测试成绩优秀的学生中选出5名语言表达能力较强的学生,其中八年级3名,七年级2名.现从这5名学生中随机抽取2名到当地社区担任党史宣讲员.请用画树状图或列表的方法,求恰好抽到同年级学生的概率.
22.某电子商品经销店欲购进A、B两种平板电脑,若用9000元购进A种平板电脑12台,B种平板电脑3台;也可以用9000元购进A种平板电脑6台,B种平板电脑6台.
八年级:100 98 98 89 87 98 95 90 90 89
整理数据:
成绩x(分)
年级
85<x≤90
90<x≤95
95<x≤100
七年级
3
4
3
八年级
5
a
b
分析数据:
统计量
年级
平均数
中位数
众数
七年级
94.1
95
d
八年级
93 4
c
98
应用数据:
(1)填空: ______, ______, ______, ______;
A. B. C. D.
12.如图, ,点M、N分别在边 上,且 ,点P、Q分别在边 上,则 的最小值是()
A. B. C. D.
第Ⅱ卷(非选择题共102分)
精品解析:山东省青岛市城阳区2022-2023学年八年级上学期期中数学试题(原卷版)
2022-2023学年山东省济宁市任城区七年级(下)期中英语试卷一、听力选择(共8小题,计15分)(一)请听录音中八组短对话。
每组对话后有一个小题,从题中所给的A 、B 、C 三个选项中,选出与对话内容相符的图片或能回答所给问题的最佳答案。
(每组对话读两遍)1.Where is Tom going this afternoon?2.What does the man like watching?3What kind of robots does the woman expect to have?4.How much yogurt do the speakers need?A.One cup.B.Two cups.C.Three cups.5.What kind of movie did the girl see last night?A.A cartoon movie.B.An action movie.C.A scary movie.6.What does Tom’s sister keep doing every day?A.Reading.B.Writing.C.Telling stories.7.What will the girl do for her mom?A.Cook a meal.B.Make a card.C.Buy a gift.8.What does the woman mean?.A.She likes football matches.B.She is bored with football matches.C.She will watch the football match.(二)请听录音中两段较长的对话。
每段对话后有几个小题,从题中所给的A、B、C三个选项中,选出能回答所给问题的最佳答案。
(每段对话读两遍)9.(3分)1.What class is Lily going to have?A.A singing class.B.A dancing class.C.A swimming class.2.How often does she have the class?A.Every day.B.Twice a week.C.Three times a week.3.How does she feel after the class?A.Happy.B.Relaxed.C.Sad.10.(4分)1.What’s the relationship(关系) between the two speakers?A.Teacher and student.B.Brother and sister.C.Mother and son.2.What are they making?A.Bread.B.A hamburger.C.A sandwich.3.Who washes the vegetables?A.The woman.B.The man.C.We don’t know.4.How many pieces of tomato are there in it?A.One.B.Two.C.Three.二、阅读理解(共4小题,计30分)Welcome to Robot Store! We’ve got some new robots. You will love them!No 1 Price: ¥769It looks like a man’s head. It is made in Shanghai. If you have any difficulty in yourstudy, it can give you great help. For example, when you don’t know how to spell anEnglish word, it can show you the word and read it to you.No 2 Price: ¥689It is made in Beijing. It can play lots of music and it can also sing. The music is verybeautiful and the singing is beautiful, too. It can help you relax if you feel tired. Youmay ask it to play any music or sing any song you like.No 3 Price: ¥499Time Robot looks like a clock, but it is not only a clock. It can also tell your parentswhen to work and tell you when to get up... It can talk with people and answer thequestions about time. It is made in Nanjing.No 4 Price: ¥11,100Housework Robot is a very useful robot. It can help you do many kinds of housework,such as washing and cleaning. When you are tired after work or after school, you mayask it to do the housework for you. It is made in Wuhan.1. Which of the robots is the most expensive? ________A. No 1.B. No 2.C. No 3.D. No 4.2. How much should you pay if you want to buy a robot to help with study? ________A. ¥769.B. ¥689.C. ¥499.D. ¥11,100.3. Xiao Ming is interested in singing, he can buy ________.A. No 1.B. No 2.C. No 3.D. No 4.4. Which of the following is TRUE? ________A. The four robots can all answer people’s questions.B. The four robots are made in different cities of China.C. For your grandparents, Study Robot is the most useful.D. The price of Time Robot is higher than that of Music Robot.Dear John,Thank you very much for your letter. I am glad that you enjoyed your holiday with me. We enjoyed having you and your sister here. We hope that you will both be able to come again next year. Perhaps you’ll be able to stay longer next time you come. A week is not really long enough, is it? If your school has five weeks’ holiday next year, perhaps (或许) you’ll be able to stay with us for two or three weeks.We have been long back at school three weeks now. It feels like three months! I expect (期待) that you are both working very hard now that you are in Grade One. I am going to work hard next year when I am in Grade One.Tom and Ann went for a picnic yesterday but I didn’t go with them because I cut my foot and I couldn’t walkvery well. They went to an island and enjoyed themselves. Do you still remember the island? That’s where all five of us spent the last day of our holiday.Tom, Ann and I send our best wishes to Betty and you. We hope to see you soon.Yours sincerely,Michael5. Who stayed with Michael for a holiday? ________A. Only John.B. Only Tom and Ann.C. John and his sister.D. Only Tom.6. How long did their holiday last (持续)? ________A. For one week.B. For two weeks.C. For three weeks.D. For five weeks.7. From the words of “It feels like three months!” we know that ________.A. Michael’s teacher is very strict with the studentsB Michael is pleased with his school report.C. Michael has no interest in learningD. Michael works very hard at his studies8. Why didn’t Michael go to the island for picnic? ________A. He had to go to school.B. He didn’t like the island.C. Something was wrong with his foot.D. The weather was bad that day.It’s easy to just get fast food when you’re hungry, but it can also be unhealthy and expensive. So I decided to test myself and not have fast food for five days. I made my own food at home using healthy cooking way.Day 1: Hardest dayIt’s difficult to get started. McDonald’s was calling me! Then I remembered my plan. I cookedfish for dinner.Day 2: ▲I tried some cabbage noodles at home. Cabbage isn’t my all-time favorite, but I was surprised byhow good it tasted.Day 3: New breakfastFor breakfast, I had a banana sandwich. Don’t let the name “sandwich” fool (欺骗) you. Thebanana actually works as the “bread” for breakfast.Day 4: At-home pancake(煎饼)I found an easy way to cook pancake. I needed carrot, onion, tomatoes, lettuce and some othervegetables. What great food!Day 5: Going all outI made it! I even cooked mushroom (蘑菇) chicken for my family! I will eat healthy food moreoften.9. What do we know about the writer from Day 1?A. The writer gets a call from McDonald’s.B. The writer really wants to eat McDonald’s.C. McDonald’s helps the writer make a plan.D. The writer was good at cooking fish.10. Why does the writer think that the name “banana sandwich” fool you?A. Because there is no bread.B. Because it tastes really good.C. Because there are no bananas.D. Because sandwiches are unhealthy.11. What’s the best heading (标题) for Day 2?A. Keeping fast foodB. Eating noodlesC. Staying at homeD. Trying new things12. What can we know from the plan?A. The writer will not have fast food for three days.B. The writer decides to eat healthily more often.C. The writer wants to lose weight and eat less for five days.D The writer cooked mushroom chicken for his family on the fourth day..We teenagers like to feel that we are special. Unluckily, many of us grow up believing that we’re not special atall. We wish that we could be better at sports or more popular. We wish we had nicer clothes or more money. Likethe Scarecrow or the Tin Man from The Wizard of Oz (绿野仙踪), we believe we’re not good enough. In the movie,the Scarecrow wishes that he had a brain (大脑). The Tin Man wishes he had a heart.In the end, they each know that they have what they want.Most parents want us to be the best we can be. They sometimes try to encourage (鼓励) us to do better. But in fact, we’re not good enough. There will always be someone who is better at something than us.Like the Scarecrow or the Tin Man, we all hope what we believe will make us better people. But we don’t realize (意识到) that we already have the very things we want inside us. Parents sometimes forget to tell us that we are special and that we are good enough. Maybe no one told them when they were growing up, or maybe they just forgot. Anyway, we should tell them that each of us, in our own way, is special. And we are all good enough.13. We can know that the writer ________ from the article.A. is a movie starB. is a teenagerC. gets on well with his parentsD. wants to be the best he can be14. The writer thinks parents should ________.A. be better at sports or more popularB. be nice to their childrenC. often tell their children they are specialD. ask their children to do much housework15. What does the writer believe?A. Not everyone can be famous.B. It’s important to be like others.C. We are all good enough in our own way.D. Nothing is difficult to the man who will try.三、听力填词(共1小题,计5分)录音中有一段独白,根据所听内容填写下面的表格,独白读两遍。
【精品】2018年苏教版小升初数学试卷(逐题解析版)
2018年苏教版小升初数学试卷一、计算.(56分)1.(5分)直接写得数.0.36+4=0×= 5.7﹣0.5÷0.25=4×÷4×=0.9=0.22=÷80%=+=81×=(﹣)×12=2.(18分)解方程.(1)9x÷2=54(2)3(x+0.6)÷4=1.2(3)5x﹣2.4=12.6(4)0.4:12=x :(5)2(x﹣0.8)×3=2.4(6):x=40.3.(21分)递等式计算,能简算的要简算.×12+0.25×48 9.63÷2.5÷49.6+0.4×(3﹣2.75)19.82﹣6.57﹣3.43 8.37﹣ 3.25﹣(1.37+1.75)4.6×22+46×7.84.(12分)列式计算.(1)一个数的比它的多1.8,这个数是多少?(2)两个12相乘的积比一个数的4倍少24,这个数是多少?(3)比10个多的数是多少?(4)与的和乘它的差是多少?二、概念部分.填空.(18分)5.(5分)9.4cm2=m25t7kg=t1.75时=分6吨=吨千克.6.(2分)北京举办的第29届奥运会,奥运会主场建筑面积为二百五十八万零三百平方米,写作平方米,改写成用“万”作单位的数为万平方米.7.(1分)一本书一共有m页,小胖每天看8页,看了a天,还剩页没看.8.(2分)16和24的最大公因数是;30和25的最小公倍数是.9.(1分)把2.4:3.8化成最简整数比是.三、选择题16.(1分)下列说法中正确的是()A.14是7的因数B.91是一个质数C.2.5与0.4互为倒数D.2和10是互为质数17.(1分)在数轴上,离开原点5个单位长度的点表示的数是()A.+5 B.﹣5 C.+5和﹣5 D.018.(1分)如果a是奇数,b是偶数,那么下列各项中是奇数的式子是()A.a﹣b B.2a﹣b C.2a+b D.2(a+b)19.(1分)某养值场养鸭38只,比养的鸡的2倍多6只,养值场养鸡多少只?()A.38×2+6 B.38÷2+6 C.(38+6)÷2 D.(38﹣6)÷220.(1分)下列图形中,对称轴最少的是()A.长方形B.正方形C.等腰三角形D.圆21.(1分)在1千克水中加入20克盐,这时盐占盐水的()A.B.C.D.22.(1分)一种花生仁的出油率是38%,1000千克花生仁可榨油()A.380 B.1380 C.约238123.(1分)要统计一袋牛奶里的营养成分所占百分比情况,你会选用()A.条形统计图B.折线统计图C.扇形统计图三、解答题(共1小题,满分5分)10.(5分)几何部分.求图1和图2的体积(各边单位长度为cm)四、解决问题(20分)11.(4分)一条路全长480米,第一天修了这条路的,第二天修了这条路的,还剩这条路的几分之几没有修?12.(4分)已知梯形的面积是60平方厘米,高是12厘米,下底是4厘米,求上底是多少厘米?13.(4分)某钢厂三月份用电480千瓦时,比二月份节约了25%.节约了多少千瓦时?14.(4分)一个工厂由于采用了新工艺,现在每件产品的成本是37.4元,比原来降低了15%,原来每件成本是多少元?15.(4分)某厂生产一批水泥,原计划每天生产150吨,可以按时完成任务.实际每天增产30吨,结果只用25天就完成了任务.原计划完成生产任务需要多少天?2018年苏教版小升初数学试卷答案与解析一、计算.(56分)1.(5分)直接写得数.0.36+4=0×= 5.7﹣0.9=0.5÷0.25=4×÷4×=0.22=÷80%=+=81×=(﹣)×12=【分析】根据小数和分数四则运算的计算法则以及混合运算的运算顺序计算即可,其中(﹣)×12根据乘法的分配律简算即可.【解答】解:0.36+4=4.360×=0 5.7﹣0.9=4.80.5÷0.25=24×÷4×=0.22=0.04÷80%=1+=81×=(﹣)×12=1【点评】本题属于基本的计算,在平时注意积累经验,逐步提高运算的速度和准确性.关键是熟练掌握计算法则.2.(18分)解方程.(1)9x÷2=54(2)3(x+0.6)÷4=1.2(3)5x﹣2.4=12.6(4)0.4:12=x :(5)2(x﹣0.8)×3=2.4(6):x=40.【分析】(1)根据等式的性质,在方程两边同时乘2,再同时除以9得解;(2)根据等式的性质,在方程两边同时乘4,再把方程化简成3x+1.8=4.8,在方程两边同时除以减去1.8,再同时除以3得解;(3)根据等式的性质,在方程两边同时加上2.4,再同时除以5得解;(4)根据比例的基本性质,先把比例式转化成等式12x=0.4×,再根据等式的性质,在方程两边同时除以12得解;(5)根据等式的性质,在方程两边同时除以3,再把方程化简成2x﹣1.6=0.8,在方程两边同时除以加上1.6,再同时除以2得解;(6)求比的后项,就用比的前项除以比值得解.【解答】解:(1)9x÷2=549x÷2×2=54×29x÷9=108÷9x=12(2)3(x+0.6)÷4=1.23(x+0.6)÷4×4=1.2×43x+1.8=4.83x+1.8﹣1.8=4.8﹣1.83x÷3=3÷3x=1(3)5x﹣2.4=12.65x﹣2.4+2.4=12.6+2.45x÷5=15÷5x=3(4)0.4:12=x:12x=0.4×12x÷12=÷12x=(5)2(x﹣0.8)×3=2.42(x﹣0.8)×3÷3=2.4÷32x﹣1.6=0.82x﹣1.6+1.6=0.8+1.62x÷2=2.4÷2x=1.2(6):x=40x=÷40x=.【点评】本题主要考查了学生根据比例的性质解比例以及利用等式的性质解方程的能力;解答过程中要注意把等号要对齐.3.(21分)递等式计算,能简算的要简算.×12+0.25×48 9.63÷2.5÷419.82﹣6.57﹣3.43 8.37﹣ 3.25﹣9.6+0.4×(3﹣2.75)(1.37+1.75)4.6×22+46×7.8【分析】(1)(7)根据乘法的分配律简算即可.(2)根据乘法的结合律简算即可.(3)根据除法的性质简算即可.(4)(5)根据减法的性质简算即可.(6)先算小括号里的减法,再算外面的乘法,最后算加法.【解答】解:(1)×12+=×(12+1)=×13=66(2)0.25×48=0.25×4×12=1×12=12(3)9.63÷2.5÷4=9.63÷(2.5×4)=9.63÷10=0.963(4)19.82﹣6.57﹣3.43=19.82﹣(6.57+3.43)=19.82﹣10=9.82(5)8.37﹣3.25﹣(1.37+1.75)=8.37﹣3.25﹣1.37﹣1.75=(8.37﹣1.37)﹣(3.25+1.75)=7﹣5=2(6)9.6+0.4×(3﹣2.75)=9.6+0.4×0.25=9.6+0.1=9.7(7)4.6×22+46×7.8=4.6×(22+78)=4.6×100=460【点评】此题是考查四则混合运算,要仔细观察算式的特点,灵活运用一些定律进行简便计算.4.(12分)列式计算.(1)一个数的比它的多1.8,这个数是多少?(2)两个12相乘的积比一个数的4倍少24,这个数是多少?(3)比10个多的数是多少?(4)与的和乘它的差是多少?【分析】(1)把这个数看作单位“1”,它的(﹣)是1.8,求这个数是多少用除法计算.(2)先求出这个数的4倍是12×12+24,然后再除以4就是这个数.(3)用10乘得到的积,再加上即可.(4)分别求与的和与差,然后用得到的和乘差即可.【解答】解:(1)1.8÷(﹣)=1.8÷=10.8答:这个数是10.8.(2)(12×12+24)÷4=168÷4=42答:这个数是42.(3)10×+=2+=2答:比10个多的数是2.(4)(+)×(﹣)=×=答:积是.【点评】本题关键是要分清楚数量之间的关系,先求什么再求什么,找清列式的顺序,列出算式.二、概念部分.填空.(18分)5.(5分)9.4cm2=0.00094m25t7kg= 5.007t1.75时=105分6吨=6吨800千克.【分析】(1)低级单位平方厘米化高级单位平方米除以进率10000.(2)把7千克除以进率1000化成0.007吨再与5吨相加.(3)高级单位时化低级单位分乘进率60.(4)6吨看作6吨与吨之和,把吨乘进率1000化成800千克.【解答】解:(1)9.4cm2=0.00094m2;(2)5t7kg=5.007t;(3)1.75时=105分;(4)645吨=6吨800千克.故答案为:0.00094,5.007,105,6,800.【点评】本题是考查质量、面积、时间的单位换算.单位换算首先要弄清是由高级单位化低级单位还是由低级单位化高级单位,其次记住单位间的进率.6.(2分)北京举办的第29届奥运会,奥运会主场建筑面积为二百五十八万零三百平方米,写作258 0300平方米,改写成用“万”作单位的数为258.03万平方米.【分析】(1)根据整数的写法:从高位到低位,一级一级地写,哪一个数位上一个计数单位也没有,就在那个数位上写0,据此写出.(2)改成用万作单位的数,是把万位后面的4个“0”去掉,或者在万位数的右下角点上小数点,然后把小数末尾的0去掉,再在数的后面写上“万”字,据此改写.【解答】解:二百五十八万零三百平方米,写作:258 0300平方米,改写成用“万”作单位的数为:258.03万平方米.故答案为:258 0300,258.03.【点评】本题主要考查了求大数的近似数,注意:(1)改写和求近似数不同,改写数的大小不变;求近似数数的大小变了;(2)不论是改写还是求近似数,都要带计数单位“亿”字或“万”字.7.(1分)一本书一共有m页,小胖每天看8页,看了a天,还剩m﹣8a页没看.【分析】根据题意,先求出小胖a天看了多少页,进而用总页数减去看了的页数得解.【解答】解:m﹣8×a=m﹣8a(页).故答案为:m﹣8a.【点评】此题考查用字母表示数,关键是把给出的字母当做已知数,再根据基本的数量关系列式即可.8.(2分)16和24的最大公因数是8;30和25的最小公倍数是150.【分析】根据求两个数最大公约数也就是这两个数的公有质因数的连乘积,最小公倍数是公有质因数与独有质因数的连乘积求解.【解答】解:(1)16=2×2×2×224=2×2×2×3所以16和24的最大公因数是2×2×2=8.(2)25=5×530=2×3×5所以25和30的最小公倍数是5×5×2×3=150;故答案为:8,150.【点评】考查了求几个数的最大公因数的方法与最小公倍数的方法:两个数的公有质因数连乘积是最大公约数;两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除法解答.9.(1分)把2.4:3.8化成最简整数比是12:19.【分析】根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(0除外)比值不变,进而把比化成最简比.【解答】解:2.4:3.8=(2.4×5):(3.8×5)=12:19.故答案为:12:19.【点评】此题考查化简比的方法,要注意化简比的结果仍是一个比.三、选择题16.(1分)下列说法中正确的是()A.14是7的因数B.91是一个质数C.2.5与0.4互为倒数D.2和10是互为质数【分析】根据题意,对各题进行依次分析、进而得出结论.【解答】解:A、14是7的倍数,所以14是7的因数,说法错误;B、91是一个质数,说法错误,91的因数有1、7、13、91,是合数;C、2.5×0.4=1,所以2.5与0.4互为倒数,说法正确;D、2和10是互为质数,说法错误;故选:C.【点评】此题涉及的知识点较多,但都比较简单,属于基础题,只要认真,容易完成,注意平时基础知识的积累.17.(1分)在数轴上,离开原点5个单位长度的点表示的数是()A.+5 B.﹣5 C.+5和﹣5 D.0【分析】在数轴上,到原点5个单位长度的点分在原点的左边或右边两种情况,依此即可求解.【解答】解:在数轴上,到原点5个单位长度的点表示的数是+5和﹣5.【点评】考查了数轴的认识,注意本题有两种情况,不要漏解.18.(1分)如果a是奇数,b是偶数,那么下列各项中是奇数的式子是()A.a﹣b B.2a﹣b C.2a+b D.2(a+b)【分析】此题可以用排除法来选,根据各选项的式子逐一判断其奇偶性.【解答】解:A、a是奇数,b是偶数,奇数﹣偶数=奇数,符合题意;B、因为2a是偶数,b也是偶数,偶数﹣偶数=偶数,不符合题意;C、因为2a是偶数,b也是偶数,偶数+偶数=偶数,不符合题意;D、根据偶数的定义可得:2(a+b)一定是偶数,所以不符合题意.故选:A.【点评】此题考查的目的是理解掌握偶数、奇数的意义以及偶数与奇数的性质.19.(1分)某养值场养鸭38只,比养的鸡的2倍多6只,养值场养鸡多少只?()A.38×2+6 B.38÷2+6 C.(38+6)÷2 D.(38﹣6)÷2【分析】根据题意可得到等量关系式:养鸡的只数×2+6=养鸭的只数,那么养鸡的只数=(养鸭的只数﹣6)÷2,由此将数据代入等量关系式进行解答即可.【解答】解:(38﹣6)÷2=32÷2=16(只)答:养值场养鸡16只.故选:D.【点评】关键是根据题意得出数量关系式:养鸡的只数×2+=养鸭的只数,由此解答.20.(1分)下列图形中,对称轴最少的是()A.长方形B.正方形C.等腰三角形D.圆【分析】依据轴对称图形的定义即可作答.【解答】解:据轴对称图形的特点和定义可知:正方形有四条对称轴,长方形有两条对称轴,等腰三角形有一条对称轴,圆形有无数条对称轴;答:对称轴最少的图形是等腰三角形.【点评】此题主要考查如何确定轴对称图形的对称轴条数及位置.21.(1分)在1千克水中加入20克盐,这时盐占盐水的()A.B.C.D.【分析】在1千克水即1000克中加入20克盐,则盐水重1000+20克,根据分数的意义,此时盐占盐水的20÷(1000+20).【解答】解:1千克=1000克20÷(1000+20)=20÷1020=即盐占盐水的.故选:C.【点评】求一个数是另一个数的几分之几,用除法.22.(1分)一种花生仁的出油率是38%,1000千克花生仁可榨油()A.380 B.1380 C.约2381【分析】出油率是指出油量占花生仁总质量的百分比,计算方法是:出油率=×100%,知道其中的两个量就可求出第三个量.【解答】解:1000×38%=380(千克);答:1000千克花生仁可榨油380千克.故选:A.【点评】此题属于百分率问题,要看清已知的数量与未知数量之间的关系,选择合适的解法.23.(1分)要统计一袋牛奶里的营养成分所占百分比情况,你会选用()A.条形统计图B.折线统计图C.扇形统计图【分析】扇形统计图是用整个圆表示总数(单位“1”),用圆内各个扇形的大小表示各部分数量占总数的百分之几.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系;由此来解决这个问题.【解答】解:根据扇形统计图的特点和作用,要统计一袋牛奶里的营养成分所占百分比情况,你会选用扇形统计图.故选:C.【点评】此题主要考查扇形统计图的特点和作用,能够根据它的特点和主要解决有关的实际问题.三、解答题(共1小题,满分5分)10.(5分)几何部分.求图1和图2的体积(各边单位长度为cm)【分析】(1)根据圆锥的体积公式:V=sh,正方体的体积公式:V=a3,把数据分别代入公式求出它们的体积和即可.(2)将图形分割为两个长方体,根据长方体的体积公式:V=abh,把数据代入公式求出两个长方体的体积和即可.【解答】解:(1) 3.14×(2÷2)2×3+2×2×2= 3.14×1×3+8=3.14+8=11.14(立方厘米);答:它的体积是11.14立方厘米.(2)45×10×5+10×5×(20﹣5)=2250+50×15=2250+750=3000(立方厘米);答:它的体积是3000立方厘米.【点评】解答求组合图形的体积,关键是观察分析图形是由哪几部分组成的是求各部分的体积和、还是求各部分的体积差,再根据相应的体积公式解答.四、解决问题(20分)11.(4分)一条路全长480米,第一天修了这条路的,第二天修了这条路的,还剩这条路的几分之几没有修?【分析】把这条路的总长度看成单位“1”,用总长度“1”减去第一天修的分率,再减去第二天修的分率,就是剩下的占总长度的几分之几没修.【解答】解:1﹣﹣=﹣=答:还剩这条路的没有修.【点评】本题考查了分数减法应用题,关键是确定单位“1”,然后根据分数减法的意义计算.12.(4分)已知梯形的面积是60平方厘米,高是12厘米,下底是4厘米,求上底是多少厘米?【分析】因为梯形面积=(上底+下底)×高÷2,已知面积、高和下底,求上底,用面积乘2除以高,再减去下底即可.【解答】解:60×2÷12﹣4=120÷12﹣4=10﹣4=6(厘米)答:上底是6厘米.【点评】此题考查了学生对梯形面积公式的掌握与运用情况.13.(4分)某钢厂三月份用电480千瓦时,比二月份节约了25%.节约了多少千瓦时?【分析】把二月份的用电量看成单位“1”,三月份的用电量比二月份少25%,那么三月份的用电量就是二月份的1﹣25%,用三月份的用电量除以这个分率就是三月份用电量,然后再乘25%即可求出节约了多少千瓦时.【解答】解:480÷(1﹣25%)×25%=480÷0.75×0.25=160(千瓦时)答:节约了160千瓦时.【点评】本题考查了百分数除法应用题,关键是确定单位“1”,找到具体数量对应的分率;解答依据是:已知一个数的百分之几是多少,求这个数用除法计算.求一个数的百分之几是多少用乘法计算.14.(4分)一个工厂由于采用了新工艺,现在每件产品的成本是37.4元,比原来降低了15%,原来每件成本是多少元?【分析】原来的成本是单位“1”,现在的成本就是原来成本的(1﹣15%),求单位“1”用除法解答,即37.4除以(1﹣15%)即可.【解答】解:37.4÷(1﹣15%)=37.4÷85%=44(元);答:原来每件成本是44元.【点评】本题先找出单位“1”,已知一个数的百分之几是多少,求这个数用除法求解.15.(4分)某厂生产一批水泥,原计划每天生产150吨,可以按时完成任务.实际每天增产30吨,结果只用25天就完成了任务.原计划完成生产任务需要多少天?【分析】先求出实际每天生产多少吨水泥,再求这批水泥一共有多少吨,再用总吨数除以计划的每天生产的吨数求出计划的天数.【解答】解:(150+30)×25=180×25=4500(吨)4500÷150=30(天).答:原计划完成生产任务需要30天.【点评】解答此题的关键是先根据工作量=工作效率×工作时间求得总量,再由不变的总量求得单一量.。
潍坊市2018年中考数学试卷及答案解析
2018年山东省潍坊市中考数学试卷一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.(3分)|1﹣|=()A.1﹣B.﹣1 C.1+D.﹣1﹣2.(3分)生物学家发现了某种花粉的直径约为0.0000036毫米,数据0.0000036用科学记数法表示正确的是()A.3.6×10﹣5B.0.36×10﹣5C.3.6×10﹣6D.0.36×10﹣63.(3分)如图所示的几何体的左视图是()A.B.C.D.4.(3分)下列计算正确的是()A.a2•a3=a6 B.a3÷a=a3C.a﹣(b﹣a)=2a﹣b D.(﹣a)3=﹣a35.(3分)把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A.45°B.60°C.75°D.82.5°6.(3分)如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是()A.∠CBD=30°B.S△BDC=AB2C.点C是△ABD的外心D.sin2A+cos2D=l7.(3分)某篮球队10名队员的年龄结构如表,已知该队队员年龄的中位数为21.5,则众数与方差分别为()A.22,3 B.22,4 C.21,3 D.21,48.(3分)在平面直角坐标系中,点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为()A.(2m,2n)B.(2m,2n)或(﹣2m,﹣2n)C.(m,n)D.(m,n)或(﹣m,﹣n)9.(3分)已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x ≤5时,与其对应的函数值y的最大值为﹣1,则h的值为()A.3或6 B.1或6 C.1或3 D.4或610.(3分)在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP 的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,﹣300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是()A.Q(3,240°)B.Q(3,﹣120°) C.Q(3,600°)D.Q(3,﹣500°)11.(3分)已知关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1,x2.若+=4m,则m的值是()A.2 B.﹣1 C.2或﹣1 D.不存在12.(3分)如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A.B.C.D.二、填空题(本大题共6小题,共18分,只要求填写最后结果,每小题填对得3分)13.(3分)因式分解:(x+2)x﹣x﹣2=.14.(3分)当m=时,解分式方程=会出现增根.15.(3分)用教材中的计算器进行计算,开机后依次按下,把显示结果输入如图的程序中,则输出的结果是.16.(3分)如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为.17.(3分)如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x 于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x 轴正半轴于点A3;….按此作法进行下去,则的长是.18.(3分)如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30°方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行小时即可到达.(结果保留根号)三、解答题(本大题共7小题,共66分。
山东省潍坊市2018年中考数学试题(含答案)(精品)
2018年潍坊市初中学业水平考试数学试题第I 卷(选择题共36分)一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.|1-( )A .1B .1C .1+D .1-2.生物学家发现了某种花粉的直径约为0.0000036毫米,数据0.000036用科学记数法表示正确的是( ) A .53.610-⨯B .50.3610-⨯C .63.610-⨯D .60.3610-⨯3.如图所示的几何体的左视图是( )4.下列计算正确的是( )A .236a a a ⋅= B .33a a a ÷= C .()2ab a a b --=- D .3311()26a a -=- 5.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则1∠的度数是( )A .45B .60C .75D .82.56.如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB ,分别以,A B 为圆心,以AB 长为半径作弧,两弧的交点为C ; (2)以C 为圆心,仍以AB 长为半径作弧交AC 的延长线于点D ; (3)连接,BD BC 下列说法不正确的是( )A .30CBD ∠=B .24BDC S AB ∆=C .点C 是ABD ∆的外心D .22sin cos 1A D +=7.某篮球队10名队员的年龄结构如下表,已知该队队员年龄的中位数为21.5,则众数与方差分别为( )A .22,3B .22,4C .21,3D .21,48.在平面直角坐标系中,点(,)P m n 是线段AB 上一点,以原点O 为位似中心把AOB ∆放大到原来的两倍,则点P 的对应点的坐标为( ) A .(2,2)m n B .(2,2)m n 或(2,2)m n -- C .11(,)22m nD .11(,)22m n 或11(,)22m n --9.已知二次函数2()y x h =-- (h 为常数),当自变量x 的值满足25x ≤≤时,与其对应的函数值y 的最大值为-1,则h 的值为( ) A .3或6B .1或6C .1或3D .4或610.在平面内由极点、极轴和极径组成的坐标系叫做极坐标系如图,在平面上取定一点O 称为极点;从点O 出发引一条射线Ox 称为极轴;线段OP 的长度称为极径点P 的极坐标就可以用线段OP 的长度以及从Ox 转动到OP 的角度(规定逆时针方向转动角度为正)来确定,即(3,60)P 或(3,300)P -或(3,420)P 等,则点P 关于点O 成中心对称的点Q 的极坐标表示不正确的是( )A .(3,240)QB .(3,120)Q -C .(3,600)QD .(3,500)Q -11.已知关于x 的一元二次方程2(2)04mmx m x -++=有两个不相等的实数根12,x x ,若12114m x x +=,则m 的值是( ) A .2B .-1C .2或-1D .不存在12.如图,菱形ABCD 的边长是4厘米,60B ∠= ,动点P 以1厘米/秒的速度自A 点出发沿AB 方向运动至B 点停止,动点Q 以2厘米/秒的速度自B 点出发沿折线BCD 运动至D 点停止若点,P Q 同时出发运动了t 秒,记BPQ ∆的面积为2S 厘米,下面图象中能表示S 与t 之间的函数关系的是( )第Ⅱ卷(非选择题共84分)二、填空题(本大题共6小题,共18分,只要求填写最后结果,每小题填对得3分)13.因式分解:(2)2x x x +--= . 14.当m = 时,解分式方程533x mx x-=--会出现增根. 15.用教材中的计算器进行计算,开机后依次按下. 把显示结果输人下侧的程序中,则输出的结果是 .16.如图,正方形ABCD 的边长为1,点A 与原点重合,点B 在y 轴的正半轴上,点D 在x 轴的负半轴上将正方形ABCD 绕点A 逆时针旋转30至正方形AB C D '''的位置,B C ''与CD 相交于点M ,则M 的坐标为 .17.如图,点1A 的坐标为(2,0),过点1A 作不轴的垂线交直:l y =于点1B 以原点O 为圆心,1OB 的长为半径断弧交x 轴正半轴于点2A ;再过点2A 作x 轴的垂线交直线l 于点2B ,以原点O 为圆心,以2OB 的长为半径画弧交x 轴正半轴于点3A ;…按此作法进行下去,则20192018A B 的长是 .18.如图.一-艘渔船正以60海里/小时的速度向正东方向航行,在A 处测得岛礁P 在东北方向上,继续航行1.5小时后到达B 处此时测得岛礁P 在北偏东30方向,同时测得岛礁P 正东方向上的避风港M 在北偏东60方向为了在台风到来之前用最短时间到达M 处,渔船立刻加速以75海里/小时的速度继续航行 小时即可到达 (结果保留根号)三、解答题(本大题共7小题,共66分.解答要写出必要的文字说明、证明过程或演算步骤)19.如图,直线35y x =-与反比例函数1k y x-=的图象相交于(2,)A m ,(,6)B n -两点,连接,OA OB .(1)求k 和n 的值;(2)求AOB ∆的面积.20.如图,点M 是正方形ABCD 边CD 上一点,连接AM ,作DE AM ⊥于点E ,BF AM ⊥手点F ,连接BE .(1)求证:AE BF =;(2已知2AF =,四边形ABED 的面积为24,求EBF ∠的正弦值.21.为进一步提高全民“节约用水”意识,某学校组织学生进行家庭月用水量情况调查活动,小莹随机抽查了所住小区n 户家庭的月用水量,绘制了下面不完整的统计图.(1)求n 并补全条形统计图;(2)求这n 户家庭的月平均用水量;并估计小莹所住小区420户家庭中月用水量低于月平均用水量的家庭户数;(3)从月用水量为35m 和39m 的家庭中任选两户进行用水情况问卷调查,求选出的两户中月用水量为35m 和39m 恰好各有一户家庭的概率. 22.如图,BD 为ABC ∆外接圆O 的直径,且BAE C ∠=∠.(1)求证:AE 与O 相切于点A ;(2)若,AE BC BC =∥AC =求AD 的长.23.为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有,A B 两种型号的挖掘机,已知3台A 型和5台B 型挖掘机同时施工一小时挖土165立方米;4台A 型和7台B 型挖掘机同时施工一小时挖土225立方米.每台A 型挖掘机一小时的施工费用为300元,每台B 型挖掘机一小时的施工费用为180元.(1)分别求每台A 型, B 型挖掘机一小时挖土多少立方米?(2)若不同数量的A 型和B 型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?24.如图1,在ABCD 中,DH AB ⊥于点,H CD 的垂直平分线交CD 于点E ,交AB 于点F ,6,4AB DH ==,:1:5BF FA =.(1)如图2,作FG AD ⊥于点G ,交DH 于点M ,将DGM ∆沿DC 方向平移,得到CG M ''∆,连接M B '.①求四边形BHMM '的面积;②直线EF 上有一动点N ,求DNM ∆周长的最小值.(2)如图3.延长CB 交EF 于点Q .过点Q 作OK AB ∥,过CD 边上的动点P 作PK EF ∥,并与QK 交于点K ,将PKQ ∆沿直线PQ 翻折,使点K 的对应点K '恰好落在直线AB 上,求线段CP 的长.25.如图1,抛物线2112y ax x c =-+与x 轴交于点A 和点(1,0)B ,与y 轴交于点3(0,)4C ,抛物线1y 的顶点为,G GM x ⊥轴于点M .将抛物线1y 平移后得到顶点为B 且对称轴为直l 的抛物线2y .(1)求抛物线2y 的解析式;(2)如图2,在直线l 上是否存在点T ,使TAC ∆是等腰三角形?若存在,请求出所有点T 的坐标:若不存在,请说明理由;(3)点P 为抛物线1y 上一动点,过点P 作y 轴的平行线交抛物线2y 于点Q 点Q 关于直线l 的对称点为R 若以,,P Q R 为顶点的三角形与AMC ∆全等,求直线PR 的解析式.2018年潍坊市初中学业水平考试 数学试题(A)参考答案及评分标准一、选择题(本大题共12小题,每小题选对得3分,共36分)BCDCC DDBBD AD二、填空题(本大题共6小题,每小题填对得3分,共18分)13.(2)(1)x x +-14.2 15.7 16.(3-17.201923π18.185+ 三、解答题(本大题共7小题,共66分)19.解:(1)点(,6)B n -在直线35y x =-上,635n ∴-=-,解得13n =-,1(,6)3B ∴--,反比例函数1k y x -=的图象也经过点1(,6)3B --, 11 6()23k ∴-=-⨯-=,解得3k =;(2)设直线35y x =-分别与x 轴,y 轴相交于点C ,点D , 当0y =时,即5350,3x x -==,53OC ∴=, 当0x =时,3055y =⨯-=-,5OD ∴=, 点(2,)A m 在直线35y x =-上,3251m ∴=⨯-=.即(2,1)A ,AOB AOC COD BOD S S S S ∆∆∆∆∴=++155135(155)23336=⨯⨯+⨯+⨯=. 20.(1)证明:90BAF DAE ∠+∠=,90ADE DAE ∠+∠=,BAF ADE ∴∠=∠,在Rt DEA ∆和Rt AFB ∆中,,ADE BAF DEA AFB ∠=∠∠=∠,DA AB =,Rt Rt DEA AFB ∴∆≅∆AE BF ∴=.(2)解:设AE x =,则BF x =,四边形ABED 的面积为24,2DE AF ==,21122422x x ∴+⨯=, 解得126,8x x ==-(舍),624EF AE AF ∴=-=-=,在Rt EFB ∆中,BE ==,sin EF EBFBE ∴∠===.21.解:(1)由题意知:(32)25%20n =+÷=, 补全的条形图为:(2)这20户家庭的月平均用水量为:42526784931026.9520⨯+⨯+⨯+⨯+⨯+⨯=3()米,月用水量低于36.95m 的家庭共有11户, 所以1142023120⨯=,估计小莹所住小区月用水量低于36.95m 的家庭户数为231.(3)月用水量为35m 的有两户家庭,分别用,a b 来表示;月用水量为39m 的有三户家庭,分别用,,c d e 来表示,画树状图如下:由树状图可以看出,有10种等可能的情况,其中满足条件的共有6种情况, 所以63105P ==, 22.证明:(1)连接OA 交BC 于点F ,则OA OD =,D DAO ∴∠=∠,,D C C DAO ∠=∠∴∠=∠,BAE C ∠=∠,BAE DAO ∴∠=∠,BD 是O 的直径,90DAB ∴∠= ,即90DAO OAB ∠+∠=,90BAE OAB ∴∠+∠=,即90OAE ∠=,AE OA ∴⊥,AE ∴与O 相切于点A .(2),AE BC AE OA ⊥∥,OA BC ∴⊥1,2AB AC FB BC ∴==, AB AC ∴=,2BC AC ==BF AB ∴==,在Rt ABF ∆中,1AF ==,在Rt OFB ∆中,222()OB BF OB AF =+-,4OB ∴=,8BD ∴=,∴在Rt ABD ∆中,AD ====23.解:(1)设每台A 型,B 型挖掘机一小时分别挖土x 立方米和y 立方米,根据题意,得35165,47225,x y x y +=⎧⎨+=⎩ 解得30,15.x y =⎧⎨=⎩所以,每台A 型挖掘机一小时挖土30立方米,每台B 型挖据机一小时挖土15立方米. (2)设A 型挖掘机有m 台,总费用为W 元,则B 型挖据机有(12)m -台.根据题意,得43004180W m =⨯+⨯(12)4808640m m -=+,因为430415(12)108043004180(12)12960m m m m ⨯+⨯-≥⎧⎨⨯+⨯-≤⎩,解得69m m ≥⎧⎨≤⎩,又因为12m m ≠-,解得6m ≠,所以79m ≤≤. 所以,共有三种调配方案.方案一:当7m =时,125m -= ,即A 型挖据机7台,B 型挖掘机5台; 案二:当8m =时,124m -= ,即A 型挖掘机8台,B 型挖掘机4台; 方案三:当9m =时,123m -= ,即A 型挖掘机9台,B 型挖掘机3台.4800>,由一次函数的性质可知,W 随m 的减小而减小,当7m =时,=4807+8640=12000W ⨯最小,此时A 型挖掘机7台, B 型挖掘机5台的施工费用最低,最低费用为12000元. 24.解:(1)①在ABCD 中,6AB = ,直线EF 垂直平分CD ,3DE FH ∴==,又:1:5BF FA =,1,5BF FA ∴==,2AH ∴=,Rt Rt AHD MHF ∆∆,HM AH FH DH∴=,234HM ∴=, 32HM ∴=, 根据平移的性质,6MM CD '== ,连结BM ,13=622BHMM S '⨯⨯四边形1315+4=222⨯⨯. ②连结CM 交直线EF 于点N ,连结DN ,直线EF 垂直平分CD ,CN DN ∴=, 35,22MH DM =∴=, 在Rt COM ∆中,222MC DC DM =+, 22256()2MC ∴=+, 即132MC =, MN DN MN CN MC +=+=DNM ∴∆周长的最小值为9.(2)BF CE ∥,143QF BF QF CE ∴==+, 2QF ∴=,6PK PK '∴==过点K '作E F EF ''∥,分别交CD 于点E ,交QK 于点F ', 当点P 在线段CE 上时,在Rt PK E ''∆中,222PE PK E K ''''=-,PE '∴=,Rt ~Rt PE K K F Q ''''∆∆,PE E K K F QF '''∴='''42QF ∴=',5QF '∴=, PE PE EE ''∴=-==155CP -∴=, 同理可得,当点P 在线段ED 上时,155CP +'=. 综上可得,CP.25.解:(1)由题意知,34102c a c ⎧=⎪⎪⎨⎪-+=⎪⎩, 解得14a =-, 所以,抛物线y 的解析式为21113424y x x =--+; 因为抛物线1y 平移后得到抛物线2y ,且顶点为(1,0)B , 所以抛物线2y 的解析式为221(1)4y x =--, 即2111424y x x =-+-;(2)抛物线2y 的对称轴l 为1x =,设(1,)T t ,已知3(3,0),(0,)4A C -, 过点T 作TE y ⊥轴于E ,则 22221TC TE CE =+=+223325()4216t t t -=-+, 222TA TB AB =+=222(13)16t t ++=+,215316AC =, 当TC AC =时, 即232515321616t t -+=,解得134t +=234t -=; 当TC AC =时,得21531616t +=,无解; 当TC AC =时,得2232516216t t t -+=+,解得3778t =-; 综上可知,在抛物线2y 的对称轴l 上存在点T 使TAC ∆是等腰三角形,此时T 点的坐标为13(1,4T +,23(1,4T -,377(1,)8T -. (3)设2113(,)424P m m m --+, 则2111(,)424Q m m m -+-, 因为,Q R 关于1x =对称,所以2111(2,)424R m m m --+-, 情况一:当点P 在直线的左侧时,2113424PQ m m =--+-2111()1424m m m -+-=-, 22QR m =-,又因为以,,P Q R 构成的三角形与AMG ∆全等,当PQ GM =且QR AM =时,0m =, 可求得3(0,)4P ,即点P 与点C 重合 所以1(2,)4R -,设PR 的解析式y kx b =+, 则有3,412.4b k b ⎧=⎪⎪⎨⎪+=-⎪⎩ 解得12k =-, 即PR 的解析式为1324y x =-+, 当PQ AM =且QR GM =时,无解,情况二:当点P 在直线l 右侧时,2111424P Q m m ''=--+-2111()1424m m m -+-=-, 22Q R m ''=-, 同理可得51(2,),(0,)44P R ''-- P R ''的解析式为1124y x =--, 综上所述, PR 的解析式为1324y x =-+或1124y x =--.。
2018年山东省潍坊市中考数学试卷(含答案与解析)
数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前山东省潍坊市2018年初中学业水平考试数 学(考试时间120分钟,满分120分)第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.1-= ( )A.1-1C.1+D.1--2.生物学家发现了某种花粉的直径约为0.000 003 6毫米,数据0.000 003 6用科学记数法表示正确的是 ( )A.53.610-⨯ B.50.3610-⨯ C.63.610-⨯ D.60.3610-⨯3.如图所示的几何体的左视图是( )第2题A B C D4.下列计算正确的是( )A.236a a a ⋅=B.33a a a ÷=C.()2a b a a b --=-D.331126a a ⎛⎫= ⎪⎝⎭--5.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则1∠的度数是( )A.45︒B.60︒C.75︒D.82.5︒(第5题)(第6题)6.如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB ,分别以A ,B 为圆心,以AB 长为半径作弧,两弧的交点为C ; (2)以C 为圆心,仍以AB 长为半径作弧交AC 的延长线于点D ; (3)连接BD ,BC . 下列说法不正确的是( )A.30CBD ∠=︒B.2BDCSAB =C.点C 是ABD △的外心D.22sin cos 1A D +=7.某篮球队10名队员的年龄结构如表,已知该队队员年龄的中位数为21.5,则众数与方差分别为( ) 年龄19 20 21 22 24 26 人数 1 1 x y 2 1 A.22,3B.22,4C.21,3D.21,4毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共24页)数学试卷 第4页(共24页)8.在平面直角坐标系中,点()P m n ,是线段AB 上一点,以原点O 为位似中心把AOB △放大到原来的两倍,则点P 的对应点的坐标为( )A.()2,2m nB.()2,2m n ()或()2m,2n --C.11,22m n ⎛⎫ ⎪⎝⎭D.11,22m n ⎛⎫ ⎪⎝⎭或11,22m n ⎛⎫-- ⎪⎝⎭9.已知二次函数()2y x h =--(h 为常数),当自变量的值满足25x ≤≤时,与其对应的函数值y 的最大值为1-,则h 的值为 ( )A.3或6B.1或6C.1或3D.4或610.在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O 称为极点;从点O 出发引一条射线Ox 称为极轴;线段OP 的长度称为极径.点P 的极坐标就可以用线段OP 的长度以及从Ox 转动到OP 的角度(规定逆时针方向转动角度为正)来确定,即()3,60P ︒或()3,300P -︒或()3,420P ︒等,则点P 关于点O 成中心对称的点Q 的极坐标表示不正确的是( )A.()3,240Q ︒B.()3,120Q ︒-C.()3,600Q ︒D.()3,500Q -︒11.已知关于x 的一元二次方程()224mmx m x ++=-0有两个不相等的实数根1x ,2x .若12114m x x +=,12114m x x +=则m 的值是 ( )A.2B.1-C.2或1-D 不存在12.如图,菱形ABCD 的边长是4厘米,60B ∠=︒,动点P 以1厘米秒的速度自A 点出发沿AB 方向运动至B 点停止,动点Q 以2厘米/秒的速度自B 点出发沿折线BCD 运动至D 点停止.若点P 、Q 同时出发运动了t 秒,记BPQ △的面积为2cm S ,下面图象中能表示S 与t 之间的函数关系的是( )第12题ABCD第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分) 13.因式分解:()22x x x +--= . 14.当m = .时,解分式方程533x mx x-=--会出现增根. 15.用教材中的计算器进行计算,开机后依次按下,把显示结果输入如图的程序中,则输出的结果是 .(第15题)16.如图,正方形ABCD 的边长为1,点A 与原点重合,点B 在y 轴的正半轴上,点D 在x 轴的负半轴上,将正方形ABCD 绕点A 逆时针旋转30︒至正方形'AB C D ''的位置,'B C '与CD 相交于点M ,则点M 的坐标为 .17.如图,点1A 的坐标为()2,0,过点1A 作x 轴的垂线交直线3l y x =:于点1B ,以原点O 为圆心,1OB 的长为半径画弧交x 轴正半轴于点2A ;再过点2A 作x 轴的垂线交直线l 于点2B ,以原点O 为圆心,以2OB 的长为半径画弧交x 轴正半轴于点3A ;….按此作法进行下去,则20192018A B 的长是 .(第16题)(第17题)(第18题)数学试卷 第5页(共24页) 数学试卷 第6页(共24页)18.如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A 处测得岛礁P 在东北 方向上,继续航行1.5小时后到达B 处,此时测得岛礁P 在北偏东30︒方向,同时测 得岛礁P 正东方向上的避风港M 在北偏东60︒方向.为了在台风到来之前用最短时间 到达M 处,渔船立刻加速以75海里/小时的速度继续航行 小时即可到达.(结 果保留根号)三、解答题(本大题共7小题,共66分。
精品解析:2023年山东省临沂市中考数学真题(原卷版)
试卷类型:A2023年临沂市初中学业水平考试试题数 学注意事项:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题),共8页,满分120分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考试结束后,将本试卷和答题卡一并交回.2.答题注意事项见答题卡,答在本试卷上不得分.第I 卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1. 计算(7)(5)−−−的结果是( )A. 12−B. 12C. 2−D. 22. 下图中用量角器测得ABC ∠的度数是( )A. 50°B. 80°C. 130°D. 150°3. 下图是我国某一古建筑的主视图,最符合视图特点的建筑物的图片是( )A B. C. D. 4. 某小区的圆形花园中间有两条互相垂直的小路,园丁在花园中栽种了8棵桂花,如图所示.若A ,B两处.桂花的位置关于小路对称,在分别以两条小路为x ,y 轴的平面直角坐标系内,若点A 的坐标为(6,2)−,则点B 的坐标为( )A. (6,2)B. (6,2)−−C. (2,6)D. (2,6)−5. 在同一平面内,过直线l 外一点P 作l 的垂线m ,再过P 作m 的垂线n ,则直线l 与n 的位置关系是( )A. 相交B. 相交且垂直C. 平行D. 不能确定6. 下列运算正确的是( )A. 321a a −=B. 222()a b a b −=−C. ()257a a =D. 325326a a a ⋅=. 7. 将一个正六边形绕其中心旋转后仍与原图形重合,旋转角的大小不可能是( )A. 60°B. 90°C. 180°D. 360° 8.设m =,则实数m 所在的范围是( ) A. 5m <− B. 54m −<<− C. 43m −<<− D. 3m >−9. 在项目化学习中,“水是生命之源”项目组为了解本地区人均淡水消耗量,需要从四名同学(两名男生,两名女生)中随机抽取两人,组成调查小组进行社会调查,恰好抽到一名男生和一名女生的概率是( ) A. 16 B. 13 C. 12 D. 2310. 正在建设中临滕高速是我省“十四五”重点建设项目.一段工程施工需要运送土石方总量为5310m ,设土石方日平均运送量为V (单位:3m /天),完成运送任务所需要的时间为t (单位:天),则V 与t 满足( )A. 反比例函数关系B. 正比例函数关系C. 一次函数关系D. 二次函数关系的11. 对于某个一次函数(0)y kx b k =+≠,根据两位同学的对话得出的结论,错误的是( )A. 0k >B. 0kb <C. 0k b +>D. 12k b =− 12. 在实数, , a b c 中,若0,0a b b c c a +=−>−>,则下列结论:①|a |>|b |,②0a >,③0b <,④0c <,正确的个数有( )A. 1个B. 2个C. 3个D. 4个第Ⅱ卷(非选择题 共84分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在答题卡规定的区域内,在试卷上答题不得分.二、填空题(本大题共4小题,每小题3分,共12分)13. 6和8,则它的面积为______.14. 观察下列式子21312×+=;22413×+=;23514×+=;……按照上述规律,____________2n =.15. 如图,三角形纸片ABC 中,69AC BC ==,,分别沿与BC AC ,平行的方向,从靠近A 的AB 边的三等分点剪去两个角,得到的平行四边形纸片的周长是____________.16. 小明利用学习函数获得的经验研究函数22y x x=+的性质,得到如下结论: ①当1x <−时,x 越小,函数值越小;②当10x −<<时,x 越大,函数值越小;③当01x <<时,x 越小,函数值越大;④当1x >时,x 越大,函数值越大.其中正确的是_____________(只填写序号). 三、解答题(本大题共7小题,共72分)17. (1)解不等式1522x x −−<,并在数轴上表示解集. (2)下面是某同学计算211a a a −−−的解题过程: 解:211a a a −−− 22(1)11a a a a −−−− ① 22(1)1a a a −−=− ② 2211a a a a −+−=− ③ 111a a −=− ④ 上述解题过程从第几步开始出现错误?请写出正确的解题过程.18. 某中学九年级共有600名学生,从中随机抽取了20名学生进行信息技术操作测试,测试成绩(单位:分)如下:81 90 82 89 99 95 91 83 92 93 87 92 94 88 92 87 100 86 85 96(1)请按组距为5将数据分组,列出频数分布表,画出频数分布直方图;(2)①这组数据中位数是_____________;②分析数据分布的情况(写出一条即可)_____________;(3)若85分以上(不含85分)成绩为优秀等次,请预估该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数.19. 如图,灯塔A 周围9海里内有暗礁.一渔船由东向西航行至B 处,测得灯塔A 在北偏西58°方向上,继续航行6海里后到达C 处,测得灯塔A 在西北方向上.如果渔船不改变航线继续向西航行,有没有触礁的危险?(参考数据:sin 320.530,cos320.848,tan 320.625;sin 580.848,°°°°≈≈≈≈cos580.530tan58 1.6°≈°≈,)20. 大学生小敏参加暑期实习活动,与公司约定一个月(30天)的报酬是M 型平板电脑一台和1500元现金,当她工作满20天后因故结束实习,结算工资时公司给了她一台该型平板电脑和300元现金.(1)这台M 型平板电脑价值多少元?(2)小敏若工作m 天,将上述工资支付标准折算为现金,她应获得多少报酬(用含m 的代数式表示)? 21. 如图,O 是ABC 外接圆,BD 是O 的直径,,AB AC AE BC =∥,E 为BD 的延长线与AE 的交点.的的(1)求证:AE 是O 切线;(2)若75,2ABC BC ∠=°=,求 CD 的长. 22. 如图,90,,,A AB AC BD AB BC AB BD ∠=°=⊥=+.(1)写出AB 与BD 的数量关系(2)延长BC 到E ,使CE BC =,延长DC 到F ,使CF DC =,连接EF .求证:EF AB ⊥. (3)在(2)的条件下,作ACE ∠的平分线,交AF 于点H ,求证:AH FH =.23. 综合与实践问题情境小莹妈妈的花卉超市以15元/盆的价格新购进了某种盆栽花卉,为了确定售价,小莹帮妈妈调查了附近A ,B ,C ,D ,E 五家花卉店近期该种盆栽花卉的售价与日销售量情况,记录如下:售价(元/盆)日销售量(盆) A20 50 B30 30 C18 54 D22 46 E26 38数据整理 的(1)请将以上调查数据按照一定顺序重新整理,填写在下表中:售价(元/盆)日销售量(盆)模型建立(2)分析数据的变化规律,找出日销售量与售价间的关系;拓广应用(3)根据以上信息,小莹妈妈在销售该种花卉中,①要想每天获得400元的利润,应如何定价?②售价定为多少时,每天能够获得最大利润?。
(中考精品卷)山东省泰安市中考数学真题 (解析版)
泰安市2022年初中学业水平考试数学试题注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷4至7页,考试时间120分钟.2.答题前请考生仔细阅读答题卡上的注意事项,并务必按照相关要求作答. 3.考试结束后,监考人员将本试题和答题卡一并收回.第Ⅰ卷(选择题)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来)1. 计算()162⎛⎫-⨯- ⎪⎝⎭的结果是( ) A. -3 B. 3C. -12D. 12【答案】B 【解析】【分析】直接计算即可得到答案. 【详解】()162⎛⎫-⨯- ⎪⎝⎭=162⨯ =3 故选:B .【点睛】本题考查有理数的乘法,解题的关键是熟练掌握有理数乘法的知识. 2. 下列运算正确的是( ) A. 624x x -= B. 236a a a --⋅= C. 633x x x ÷= D. ()222x y x y -=-【答案】C 【解析】【分析】根据合并同类项,负整数指数幂,同底数幂相除,完全平方公式,逐项判断即可求解.【详解】解:A 、624x x x -=,故本选项错误,不符合题意; B 、23-⋅=a a a ,故本选项错误,不符合题意; C 、633x x x ÷=,故本选项正确,符合题意;D 、()2222x y x xy y -=-+,故本选项错误,不符合题意; 故选:C【点睛】本题主要考查了合并同类项,负整数指数幂,同底数幂相除,完全平方公式,熟练掌握相关运算法则是解题关键. 3. 下列图形:其中轴对称图形的个数是( ) A. 4 B. 3C. 2D. 1【答案】B 【解析】【分析】对每个图形逐一分析,能够找到对称轴的图形就是轴对称图形. 【详解】从左到右依次对图形进行分析:第1个图在竖直方向有一条对称轴,是轴对称图形,符合题意; 第2个图在水平方向有一条对称轴,是轴对称图形,符合题意; 第3个图找不到对称轴,不是轴对称图形,不符合题意; 第4个图在竖直方向有一条对称轴,是轴对称图形,符合题意; 因此,第1、2、4都是轴对称图形,共3个. 故选:B .【点睛】本题考查轴对称图形的概念,解题的关键是寻找对称轴.4. 2022年北京冬奥会国家速滑馆“冰丝带”屋顶上安装的光伏电站,据测算,每年可输出约44.8万度的清洁电力.将44.8万度用科学记数法可以表示为( ) A. 60.44810⨯度 B. 444.810⨯度 C. 54.4810⨯度 D. 64.4810⨯度【答案】C 【解析】【分析】绝对值大于1的数可以用科学记数法表示,一般形式为a ×10n ,n 为正整数,且比原数的整数位数少1,据此可以解答.【详解】解:44.8万度=448000度=54.4810⨯度. 故选:C【点睛】本题考查用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形的式为10n a ⨯,其中110a ≤<,n 是正整数,正确确定a 的值和n 的值是解题的关键. 5. 如图,12l l ∥,点A 在直线1l 上,点B 在直线2l 上,AB BC =,25C ∠=︒,160∠=︒,则2∠的度数是( )A. 70︒B. 65︒C. 60︒D. 55︒【答案】A 【解析】【分析】先根据等边对等角求出∠BAC 的度数,然后根据平行线的性质求出∠ABD 的度数,最后利用三角形内角和定理求解即可. 【详解】解:∵AB =BC , ∴∠BAC =∠C =25°, ∵12l l ∥, ∴∠ABD =∠1=60°,∴∠2=180°-∠C -∠BAC -∠ABD ==180°-25°-25°-60°=70°, 故选A .【点睛】本题主要考查了平行线的性质,等腰三角形的性质,三角形内角和定理,正确求出∠BAD 和∠ABD 的度数是解题的关键.6. 如图,AB 是⊙O 的直径,ACD CAB ∠=∠,2AD =,4AC =,则⊙O 的半径为(A. B. C.【答案】D【解析】【分析】连接CO并延长CO交⊙于点E,连接AE,根据OA=OC,可得∠ACD=∠ACE,从而得到AE=AD=2,然后根据勾股定理,即可求解.【详解】解:如图,连接CO并延长CO交⊙于点E,连接AE,∵OA=OC,∴∠ACE=∠CAB,∠=∠,∵ACD CAB∴∠ACD=∠ACE,∴AD AE=,∴AE=AD=2,∵CE是直径,∴∠CAE=90°,∴CE===∴⊙O故选:D.【点睛】本题主要考查了圆周角定理,勾股定理,熟练掌握圆周角定理,勾股定理是解题的关键.7. 某次射击比赛,甲队员的成绩如图,根据此统计图,下列结论中错误的是()A. 最高成绩是9.4环B. 平均成绩是9环C. 这组成绩的众数是9环D. 这组成绩的方差是8.7【答案】D 【解析】【分析】根据统计图即可判断选项A ,根据统计图可求出平均成绩,即可判断选项B ,根据统计图即可判断选项C ,根据所给数据进行计算即可判断选项D .【详解】解:A 、由统计图得,最高成绩是9.4环,选项说法正确,不符合题意; B 、平均成绩:1(9.48.49.29.28.898.6999.4)910⨯+++++++++=,选项说法正确,符合题意;C 、由统计图得,9出现了3次,出现的次数最多,选项说法正确,不符合题意;D 、方差:22222222221(9.49)(8.49)(9.29)(9.29)(8.89)(99)(8.69)(99)(99)(9.49)0.09610⎡⎤⨯-+-+-+-+-+-+-+-+-+-=⎣⎦,选项说法错误,符合题意; 故选D .【点睛】本题考查了平均数,众数,方差,解题的关键是理解题意掌握平均数,众数和方差的计算方法.8. 如图,四边形ABCD 中.60A ∠=︒,AB CD ∥,DE AD ⊥交AB 于点E ,以点E 为圆心,DE 为半径,且6DE =的圆交CD 于点F ,则阴影部分的面积为( )A. 6π-B. 12π-C. 6πD.12π 【答案】B 【解析】【分析】过点E 作EG ⊥CD 于点G ,根据平行线的性质和已知条件,求出30EDG AED ∠=∠=︒,根据ED =EF ,得出30DFE FDE ∠=∠=︒,即可得出1803030120DEF ∠=︒-︒-︒=︒,解直角三角形,得出GE 、DG ,最后用扇形的面积减三角形的面积得出阴影部分的面积即可.【详解】解:过点E 作EG ⊥CD 于点G ,如图所示:∵DE ⊥AD , ∴∠ADE =90°, ∵∠A =60°,∴∠AED =90°-∠A =30°, ∵AB CD ,∴30EDG AED ∠=∠=︒, ∵ED =EF ,∴30DFE FDE ∠=∠=︒,∴1803030120DEF ∠=︒-︒-︒=︒, ∵EG CD ⊥, ∴DG FG =,∵DE =6,30EDF ∠=︒, ∴132EG DE ==,cos30DG DE =⨯︒=∴2DF DG == ∴DEF DEF S S S ∆=-阴影扇形21206133602π⨯=-⨯12π=-,. 故选:B .【点睛】本题主要考查了平行线的性质,垂径定理,等腰三角形的判定和性质,扇形面积计算公式,解直角三角形,作出辅助线,求出∠DEF =120°,DF 的长,是解题的关键. 9. 抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如表:x -2 -1 0 6 y461下列结论不正确的是( ) A. 抛物线的开口向下B. 抛物线的对称轴为直线12x =C. 抛物线与x 轴的一个交点坐标为()2,0D. 函数2y ax bx c =++的最大值为254【答案】C 【解析】【分析】利用待定系数法求出抛物线解析式,由此逐一判断各选项即可【详解】解:由题意得42046a b c a b c c -+=⎧⎪-+=⎨⎪=⎩,解得116a b c =-⎧⎪=⎨⎪=⎩,∴抛物线解析式为22125624y x x x ⎛⎫=-++=--+ ⎪⎝⎭,∴抛物线开口向下,抛物线对称轴为直线12x =,该函数的最大值为254,故A 、B 、D 说法正确,不符合题意; 令0y =,则260x x -++=, 解得3x =或2x =-,∴抛物线与x 轴的交点坐标为(-2,0),(3,0),故C 说法错误,符合题意; 故选C .【点睛】本题主要考查了二次函数的性质,正确求出二次函数解析式是解题的关键.10. 我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株楼后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( ) A. ()316210x x -=B. ()316210x -=C.()316210x x -=D. 36210x =【答案】A 【解析】【分析】设这批椽的数量为x 株,则一株椽的价钱为3(x −1)文,利用总价=单价×数量,即可得出关于x 的一元二次方程,此题得解.【详解】解:∵这批椽的数量为x 株,每株椽的运费是3文,少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,∴一株椽的价钱为3(x −1)文,依题意得:3(x −1)x =6210, 故选:A .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.11. 如图,平行四边形ABCD 的对角线AC ,BD 相交于点O .点E 为BC 的中点,连接EO 并延长交AD 于点F ,60ABC ∠=︒,2BC AB =.下列结论:①AB AC ⊥;②4AD OE =;③四边形AECF 是菱形;④14BOE ABC S S =△△.其中正确结论的个数是( )A. 4B. 3C. 2D. 1【答案】A 【解析】【分析】通过判定ABE ∆为等边三角形求得60=︒∠BAE ,利用等腰三角形的性质求得30EAC ∠=︒,从而判断①;利用有一组邻边相等的平行四边形是菱形判断③,然后结合菱形的性质和含30°直角三角形的性质判断②;根据三角形中线的性质判断④. 【详解】解: 点E 为BC 的中点,22BC BE CE ∴==,又2BC AB = ,AB BE ∴=,60ABC ∠=︒ ,ABE ∴∆是等边三角形,60BAE BEA ∴∠=∠=︒,30EAC ECA ∴∠=∠=︒,90BAC BAE EAC ∴∠=∠+∠=︒,即AB AC ⊥,故①正确;在平行四边形ABCD 中,//AD BC ,AD BC =,AO CO =,CAD ACB ∴∠=∠,在AOF ∆和COE ∆中,CAD ACB OA OCAOF COE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AOF COE ASA ∴∆≅∆,AF CE ∴=,∴四边形AECF 是平行四边形,又AB AC ⊥ ,点E 为BC 的中点,AE CE ∴=,∴平行四边形AECF 是菱形,故③正确;AC EF ∴⊥,在Rt COE ∆中,30ACE ∠=︒, 111244OE CE BC AD ∴===,故②正确; 在平行四边形ABCD 中,OA OC =, 又 点E 为BC 的中点,ΔΔΔ1124BOE BOC ABC S S S ∴==,故④正确; 综上所述:正确的结论有4个, 故选:A .【点睛】本题考查平行四边形的性质,等边三角形的判定和性质,菱形的判定和性质,含30°的直角三角形的性质,掌握菱形的判定是解题关键.12. 如图,四边形ABCD 为矩形,3AB =,4BC =.点P 是线段BC 上一动点,点M 为线段AP 上一点.ADMBAP ∠=∠,则BM 的最小值为()A.52B.12532D.2-【答案】D 【解析】【分析】证明=90AMD ︒∠,得出点M 在O 点为圆心,以AO 为半径的园上,从而计算出答案.【详解】设AD 的中点为O ,以O 点为圆心,AO 为半径画圆∵四边形ABCD 为矩形 ∴+=90BAP MAD ︒∠∠ ∵ADMBAP ∠=∠∴+=90MAD ADM ︒∠∠ ∴=90AMD ︒∠∴点M 在O 点为圆心,以AO 为半径的园上连接OB 交圆O 与点N∵点B 为圆O 外一点∴当直线BM 过圆心O 时,BM 最短∵222BO AB AO =+,1==22AO AD ∴29413BO =+=∴BO =∵2BN BO AO =-=故选:D .【点睛】本题考查直角三角形、圆的性质,解题的关键是熟练掌握直角三角形和圆的相关知识. 第Ⅱ卷(非选择题)二、填空题(本大题共6小题,只要求填写最后结果)13. -=__________.【答案】【解析】【分析】先计算乘法,再合并,即可求解.-3=-==,故答案为:【点睛】本题主要考查了二次根式的混合运算,熟练掌握二次根式的混合运算法则是解题的关键.14. 如图,四边形ABCD 为平行四边形,则点B 的坐标为________.【答案】()2,1--【解析】【分析】根据平行四边形的性质以及点的平移即可得出结论.【详解】解: 四边形ABCD 为平行四边形,∴DA CB ∥,即将D 点平移到A 的过程与将C 点平移到B 的过程保持一致,将D 点平移到A 的过程是::134x --=-(向左平移4各单位长度);:220y -=(上下无平移);∴将C 点平移到B 的过程按照上述一致过程进行得到()24,1B --,即()2,1B --, 故答案为:()2,1--.【点睛】本题考查平行四边形的性质及点的平移,掌握点的平移的代数表示是解决问题的关键.15. 如图,在ABC 中,90B ∠=︒,⊙O 过点A 、C ,与AB 交于点D ,与BC 相切于点C ,若32A ∠=︒,则ADO ∠=__________【答案】64︒##64度【解析】【分析】根据同弧对应的圆心角是圆周角的2倍计算出DOC ∠,再根据//AB OC ,内错角ADO DOC ∠=∠得到答案.【详解】如下图所示,连接OC从图中可以看出,DAC ∠是圆弧 DC对应的圆周角,DOC ∠是圆弧 DC 对应的圆心角 得264DOC DAC ︒∠=∠=.∵BC 是圆O 的切线∴OC BC ⊥∵90B ∠=︒∴AB BC ⊥∴//AB OC∴64ADO DOC ︒∠=∠=故答案为:64︒.【点睛】本题考查圆的切线的性质,圆周角定理、平行线的判定和性质,解题的关键是熟练掌握圆和平行线的相关知识.16. 如图,某一时刻太阳光从窗户射入房间内,与地面的夹角30DPC ∠=︒,已知窗户的高度2m AF =,窗台的高度1m CF =,窗外水平遮阳篷的宽0.8m AD =,则CP 的长度为______(结果精确到0.1m ).【答案】4.4m##4.4米【解析】【分析】根据题意可得AD ∥CP ,从而得到∠ADB =30°,利用锐角三角函数可得tan 0.46m AB AD ADB =⨯∠=≈,从而得到BC =AF +CF -AB =2.54m ,即可求解.【详解】解:根据题意得:AD ∥CP ,∵∠DPC =30°,∴∠ADB =30°,∵0.8m AD =,∴tan 0.80.46m AB AD ADB =⨯∠=≈, ∵AF =2m ,CF =1m ,∴BC =AF +CF -AB =2.54m , ∴ 2.54 4.4m tan tan 30BC CP BPC ︒==≈∠, 即CP 的长度为4.4m .故答案为:4.4m .【点睛】本题主要考查了解直角三角形、平行线的性质,熟练掌握锐角三角函数是解题的关键.17. 将从1开始的连续自然数按以下规律排列:若有序数对(),n m 表示第n 行,从左到右第m 个数,如()3,2表示6,则表示99的有序数对是_______.【答案】()10,18【解析】【分析】分析每一行的第一个数字的规律,得出第n 行的第一个数字为211n +-(),从而求得最终的答案.【详解】第1行的第一个数字:()2111=+-1第2行的第一个数字:()22121=+-第3行的第一个数字:()25131=+-第4行的第一个数字:()210141=+-第5行的第一个数字:()217151=+-…..,设第n 行的第一个数字为x ,得()211x n =+-设第1n +行的第一个数字为z ,得21z n =+设第n 行,从左到右第m 个数为y当99y =时 221(1)991n n +-≤<+∴22(1)98n n -≤<∵n 为整数∴10n =∴21182x n =+-=()∴9982118m =-+=故答案为:()10,18.【点睛】本题考查数字规律的性质,解题的关键是熟练掌握数字规律的相关性质. 18. 如图,四边形ABCD 为正方形,点E 是BC 的中点,将正方形ABCD 沿AE 折叠,得到点B 的对应点为点F ,延长EF 交线段DC 于点P ,若6AB =,则DP 的长度为___________.【答案】2【解析】【分析】连接AP ,根据正方形的性质和翻折的性质证明Rt △AFP ≌Rt △ADP (HL ),可得PF =PD ,设PF =PD =x ,则CP =CD −PD =6−x ,EP =EF +FP =3+x ,然后根据勾股定理即可解决问题.【详解】解:连接AP ,如图所示,∵四边形ABCD 为正方形,∴AB =BC =AD =6,∠B =∠C =∠D =90°,∵点E 是BC 的中点,∴BE =CE =12AB =3,由翻折可知:AF =AB ,EF =BE =3,∠AFE =∠B =90°,∴AD =AF ,∠AFP =∠D =90°,在Rt △AFP 和Rt △ADP 中, AP AP AF AD =⎧⎨=⎩, ∴Rt △AFP ≌Rt △ADP (HL ),∴PF =PD ,设PF =PD =x ,则CP =CD −PD =6−x ,EP =EF +FP =3+x ,在Rt △PEC 中,根据勾股定理得:EP 2=EC 2+CP 2,∴(3+x )2=32+(6−x )2,解得x =2,则DP 的长度为2,故答案为:2.【点睛】本题考查了翻折变换,正方形的性质,勾股定理,解决本题的关键是掌握翻折的性质.三、解答题(本大题共7小题,解答应写出必要的文字说明、证明过程或推演步骤)19. (1)化简:244224a a a a -⎛⎫--÷ ⎪--⎝⎭ (2)化简:52312>34x x -+- 【答案】(1)22a a +;(2)1x <【解析】【分析】(1)先将小括号内的式子进行通分计算,然后算括号外面的除法;(2)根据“去分母,去括号,移项,合并同类项,系数化1”的步骤解一元一次不等式.【详解】(1)解:原式()2224424a a a a ---=⨯-- 224424a a a a a --=⨯-- ()()()42224a a a a a a -+-=⨯-- ()2a a =+22a a =+(2)解:()()212452>331x x ⨯--+24208>93x x -++209>3248x x ----29>29x --1x <【点睛】本题考查分式的混合运算,解一元一次不等式,理解分式的基本性质,掌握分式混合运算的运算顺序和计算法则以及解一元一次不等式的基本步骤是解题关键.20. 2022年3月23日.“天宫课堂”第二课开讲.“太空教师”翟志刚、王亚平、叶光富在中国空间站为广大青少年又一次带来了精彩的太空科普课.为了激发学生的航天兴趣,某校举行了太空科普知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分为如下5组(满分100分),A 组:7580x ≤<,B 组:8085x ≤<.C 组:8590x ≤<,D 组:9095x ≤<,E 组:95100x ≤≤,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:(1)本次调查一共随机抽取了 名学生的成绩,频数直方图中,所抽取学生成绩的中位数落在 组;(2)补全学生成绩频数直方图:(3)若成绩在90分及以上为优秀,学校共有3000名学生,估计该校成绩优秀的学生有多少人?(4)学校将从获得满分的5名同学(其中有两名男生,三名女生)中随机抽取两名,参加周一国旗下的演讲,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.【答案】(1)400 名,D(2)见解析(3)1680人(4)见解析,3 5【解析】【分析】(1)用C组的人数除以C组所占的百分比可得总人数,再用总人数乘以B组所占的百分比,可求出m,从而得到第200位和201位数落在D组,即可求解;(2)求出E租的人数,即可求解;(3)用学校总人数乘以成绩优秀的学生所占的百分比,即可求解;(4)根据题意,画树状图,可得共有20种等可能的结果,恰好抽中一名男生和一名女生的结果有12种,再根据概率公式计算,即可求解.【小问1详解】解:9624%400÷=名,所以本次调查一天随机抽取400 名学生的成绩,频数直方图中40015%60m=⨯=,∴第200位和201位数落在D组,即所抽取学生成绩的中位数落在D组;故答案为:400,D【小问2详解】解:E组的人数为40020609614480----=名,补全学生成绩频数直方图如下图:【小问3详解】解:该校成绩优秀的学生有1448030001680400+⨯=(人);【小问4详解】解:根据题意,画树状图如图,共有20种等可能的结果,恰好抽中一名男生和一名女生的结果有12种,∴恰好抽中一名男生和一名女生的概率为123205P ==. 【点睛】本题主要考查了频数直方图和扇形统计图,用样本估计总体,利用树状图或列表法求概率,明确题意,准确从统计图中获取信息是解题的关键.21. 如图,点A 在第一象限,AC x ⊥轴,垂足为C ,OA =,1tan 2A =,反比例函数k y x=的图像经过OA 的中点B ,与AC 交于点D .(1)求k 值;(2)求OBD 的面积.【答案】(1)2(2)32 【解析】【分析】(1)在Rt ACO ∆中,90ACO ∠=︒,1tan 2A =,再结合勾股定理求出2OC =,4AC =,得到()2,4A ,再利用中点坐标公式即可得出()1,2B ,求出k 值即可;(2)在平面直角坐标系中求三角形面积,找平行于坐标轴的边为底,根据AD y ∥轴,选择AD 为底,利用O B D O A D B A D S S S =-△△△代值求解即可得出面积.小问1详解】【解:根据题意可得,在Rt ACO ∆中,90ACO ∠=︒,1tan 2A =, 2AC OC ∴=,222(2)OC OC ∴+=,2OC ∴=,4AC =,()2,4A ∴,OA 的中点是B ,()1,2B ∴,2k ∴=;【小问2详解】解:当2x =时,1y =,()2,1D ∴,413AD ∴=-=,∴O B D O A D B A D S S S =-△△△()11332321222=⨯⨯-⨯⨯-=. 【点睛】本题考查反比例函数的图像与性质,涉及到勾股定理,三角函数求线段长,中点坐标公式、待定系数法确定函数关系式中的k ,平面直角坐标系中三角形面积的求解,熟练掌握反比例函数的图像与性质是解决问题的关键.22. 泰安某茶叶店经销泰山女儿茶,第一次购进了A 种茶30盒,B 种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A 种茶20盒,B 种茶15盒,共花费5100元.求第一次购进的A 、B 两种茶每盒的价格.【答案】A 种茶每盒100元,B 种茶每盒150元【解析】【分析】设第一次购进A 种茶每盒x 元,B 种茶每盒y 元,根据第一次购进了A 种茶30盒,B 种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A 种茶20盒,B 种茶15盒,共花费5100元列出方程组求解即可.【详解】解:设第一次购进A 种茶每盒x 元,B 种茶每盒y 元,根据题意,得30206000,1.220 1.2155100.x y x y +=⎧⎨⨯+⨯=⎩ 解,得100,150.x y =⎧⎨=⎩∴A 种茶每盒100元,B 种茶每盒150元.【点睛】本题主要考查了二元一次方程组的实际应用,正确设出未知数列出方程组求解是解题的关键.23. 如图,矩形ABCD 中,点E 在DC 上,DE BE =,AC 与BD 相交于点O .BE 与AC 相交于点F .(1)若BE 平分CBD ∠,求证:BF AC ⊥;(2)找出图中与OBF 相似的三角形,并说明理由;(3)若3OF =,2EF =,求DE 的长度.【答案】(1)证明见解析(2)ECF △,BAF △与OBF 相似,理由见解析(3)3【解析】【分析】(1)根据矩形的性质和角平分线的定义即可得出结论;(2)根据判定两个三角形相似判定定理,找到相应的角度相等即可得出;(3)根据OBF ECF ∽△△得出329OA BF =+,根据OBF BAF ∽△△得出()233BF OA =+,联立方程组求解即可.【小问1详解】证明:如图所示:四边形ABCD 为矩形,234∴∠=∠=∠,DE BE = ,的12∠∠∴=,13∠∠∴=,又BE 平分DBC ∠,16∴∠=∠,36∴∠=∠,又3∠ 与5∠互余,6∴∠与5∠互余,BF AC ∴⊥;【小问2详解】解:ECF △,BAF △与OBF 相似.理由如下:12∠=∠ ,24∠∠=,14∴∠=∠,又OFB BFO ∠=∠ ,OBF BAF ∴∽△△,13∠=∠ ,OFB EFC ∠=∠,OBF ECF ∴∽△△;【小问3详解】解:OBF ECF ∽△△,EF CF OF BF ∴=, 23CF BF∴=, 32CF BF ∴=,在矩形ABCD 中对角线相互平分,图中OA OC =3OF FC FC =+=+, 329OA BF ∴=+①,OBF BAF ∽△△,OF BF BF AF∴=, 2BF OF AF ∴=⋅,矩形ABCD 中3AF OA OF OA =+=+,()233BF OA ∴=+②,由①②,得1B F =±(负值舍去),213D E B E ∴==++=+.在【点睛】本题考查矩形综合问题,涉及到矩形的性质、角平分线的性质、角度的互余关系、两个三角形相似的判定与性质等知识点,熟练掌握两个三角形相似的判定与性质是解决问题的关键.24. 若二次函数2y ax bx c =++的图象经过点()2,0A -,()0,4B -,其对称轴为直线1x =,与x 轴的另一交点为C .(1)求二次函数的表达式;(2)若点M 在直线AB 上,且在第四象限,过点M 作MN x ⊥轴于点N .①若点N 在线段OC 上,且3MN NC =,求点M 的坐标;②以MN 为对角线作正方形MPNQ (点P 在MN 右侧),当点P 在抛物线上时,求点M 的坐标.【答案】(1)2142y x x =-- (2)①836,55⎛⎫- ⎪⎝⎭;②1,52⎛⎫- ⎪⎝⎭ 【解析】【分析】(1)利用待定系数解答,即可求解;(2)①先求出直线AB 的表达式为24y x =--,然后设点N 的坐标为()0m ,.可得(),24M m m --.可得到24MN m =+,4NC m =-.再由3MN NC =,即可求解;②连接PQ 与MN 交与点E .设点M 的坐标为(),24t t --,则点N 的坐标为(),0t 根据正方形的性质可得E 的坐标为(),2t t --,进而得到P 的坐标()22,2t t +--.再由点P 在抛物线上,即可求解.【小问1详解】解: 二次函数2y ax bx c =++的图象经过点()0,4-,4c ∴=-.又 抛物线经过点()2,0A -,对称轴为直线1x =,1,24240,b a a b ⎧-=⎪∴⎨⎪--=⎩ 解得∶1,21,a b ⎧=⎪⎨⎪=-⎩∴抛物线的表达式为2142y x x =--. 【小问2详解】解∶①设直线AB 的表达式为y kx n =+.点A ,B 的坐标为()2,0A -,()0,4B -,∴204k n n -+=⎧⎨=-⎩, 解得∶24k n =-⎧⎨=-⎩, ∴直线AB 的表达式为24y x =--.根据题意得∶点C 与点()2,0A -关于对称轴直线1x =对称,()4,0C ∴.设点N 的坐标为()0m ,.MN x ⊥ 轴,(),24M m m ∴--.∴24MN m =+4NC m ∴=-.3MN NC =()2434m m ∴+=-, 解,得85m =. ∴点M 的坐标836,55⎛⎫- ⎪⎝⎭; ②连接PQ 与MN 交与点E .设点M 的坐标为(),24t t --,则点N 的坐标为(),0t四边形MPNQ 是正方形,PQ M N ∴⊥,NE EP =,12NE MN =. ∵MN ⊥x 轴, //PQ x ∴轴.∴E 的坐标为(),2t t --.2NE t ∴=+.222ON EP ON NE t t t ∴+=+=++=+.∴P 的坐标()22,2t t +--.点P 在抛物线2142yx x =--上, ()()212222422t t t ∴+-+-=--. 解,得112t =,22t =-. 点P 在第四象限,2t ∴=-舍去. 即12t =. ∴点M 坐标为1,52⎛⎫- ⎪⎝⎭.【点睛】本题主要考查了二次函数的综合题,熟练掌握二次函数的图形和性质,正方形的性质,一次函数的图象和性质是解题的关键.25. 问题探究(1)在ABC 中,BD ,CE 分别是ABC ∠与BCA ∠的平分线.①若60A ∠=︒,AB AC =,如图,试证明BC CD BE =+;②将①中的条件“AB AC =”去掉,其他条件不变,如图,问①中的结论是否成立?并说明理由.迁移运用(2)若四边形ABCD 是圆内接四边形,且2ACB ACD ∠=∠,2CAD CAB ∠=∠,如图,试探究线段AD ,BC ,AC 之间的等量关系,并证明.【答案】(1)①见解析;②结论成立,见解析;(2)AC AD BC =+,见解析【解析】【分析】(1)①证明ABC 是等边三角形,得出E 、D 为中点,从而证明BC CD BE =+;②在BC 上截取BG BE =,根据角平分线的性质,证明EBF GBF ≌△△,DFC GFC ≌△△,从而得到答案;(2)作点B 关于AC 的对称点E ,证明2360∠+∠=︒,从而得到60M ∠=︒,再根据AE 、DC 分别是MAC ∠、MCA ∠的角平分线,得到AC AD BC =+.【详解】(1)①60A ∠=︒ ,AB AC =,的AB AC BC ∴==.又BD Q 、CE 分别是ABC ∠、BCA ∠的平分线.∴点D 、E 分别是AC 、AB 的中点.1122BE AB BC ∴==,1122CD AC BC ==. BC BE CD ∴=+.②结论成立,理由如下:设BD 与CE 交于点F ,由条件,得12∠=∠,34∠=∠.又60A ∠=︒120ABC BCA ∴∠+∠=︒.()113602ABC BCA ∴∠+∠=∠+∠=︒. 120BFC ∴∠=︒.∴5660∠=∠=︒.在BC 上截取BG BE =.由∵BF =BF ,∴EBF GBF ≌△△.7660∴∠=∠=︒860∴∠=︒.85∴∠=∠.又∵CF =CF ,∴DFC GFC ≌△△.DC GC ∴=∴BC BG GC BE CD =+=+.(2)AC AD BC =+,理由如下:∵四边形ABCD 是圆内接四边形,∴180DAB BCD ∠+∠=︒.∵2ACB ACD ∠=∠,2CAD CAB ∠=∠∴21DAC ∠=∠,22BCA ∠=∠,∴3132180∠+∠=︒.∴1260∠+∠=︒.作点B 关于AC 的对称点E ,连结CE ,EA ,CE 的延长线与AD 的延长线交于点M ,AE 与CD 交于点F ,∴13∠=∠,BC CE =.∴2360∠+∠=︒.∴2223120∠+∠=︒∴120MAC MCA ∠+∠=︒∴60M ∠=︒∵AE 、DC 分别是MAC ∠、MCA ∠的角平分线由②得AC AD BC =+.【点睛】本题考查三角形、等边三角形、全等三角形、圆的内接四边形的性质,解题的关键是熟练掌握三角形、等边三角形、全等三角形、圆的内接四边形的相关知识。
【真题】山东省潍坊市2018年中考数学试题含答案解析
2018年潍坊市初中学业水平考试数学试题一、选择题1. ( )A. B. C. D.【答案】B【解析】分析:根据绝对值的性质解答即可.详解:|1-|=.故选B.点睛:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2. 生物学家发现了某种花粉的直径约为0.0000036毫米,数据0.000036用科学记数法表示正确的是( )A. B. C. D.【答案】C【解析】分析:绝对值小于1的正数用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解:0.0000036=3.6×10-6;故选C.点睛:本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3. 如图所示的几何体的左视图是( )A. (A)B. (B)C. (C)D. (D)【答案】D【解析】分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.详解:从左面看可得矩形中间有一条横着的虚线.故选D.点睛:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4. 下列计算正确的是( )A. B. C. D.【答案】C详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.5. 把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则的度数是( )A. B. C. D.【答案】C【解析】分析:直接利用平行线的性质结合已知角得出答案.详解:作直线l平行于直角三角板的斜边,可得:∠2=∠3=45°,∠3=∠4=30°,故∠1的度数是:45°+30°=75°.故选C.点睛:此题主要考查了平行线的性质,正确作出辅助线是解题关键.6. 如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段,分别以为圆心,以长为半径作弧,两弧的交点为;(2)以为圆心,仍以长为半径作弧交的延长线于点;(3)连接下列说法不正确的是( )A. B.C. 点是的外心D.【答案】D【解析】分析:根据等边三角形的判定方法,直角三角形的判定方法以及等边三角形的性质,直角三角形的性质一一判断即可;详解:由作图可知:AC=AB=BC,∴△ABC是等边三角形,由作图可知:CB=CA=CD,∴点C是△ABD的外心,∠ABD=90°,BD=AB,∴S△ABD=AB2,∵AC=CD,∴S△BDC=AB2,故A、B、C正确,故选D.点睛:本题考查作图-基本作图,线段的垂直平分线的性质,三角形的外心等知识,直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7. 某篮球队10名队员的年龄结构如下表,已知该队队员年龄的中位数为21.5,则众数与方差分别为( )A. 22,3B. 22,4C. 21,3D. 21,4【答案】D【解析】分析:先根据数据的总个数及中位数得出x=3、y=2,再利用众数和方差的定义求解可得.详解:∵共有10个数据,∴x+y=5,又该队队员年龄的中位数为21.5,即,∴x=3、y=2,则这组数据的众数为21,平均数为=22,故选D.点睛:本题主要考查中位数、众数、方差,解题的关键是根据中位数的定义得出x、y的值及方差的计算公式.8. 在平面直角坐标系中,点是线段上一点,以原点为位似中心把放大到原来的两倍,则点的对应点的坐标为( )A. B. 或C. D. 或【答案】B【解析】分析:根据位似变换的性质计算即可.详解:点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n)或(-2m,-2n),故选B.点睛:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.9. 已知二次函数(为常数),当自变量的值满足时,与其对应的函数值的最大值为-1,则的值为( )A. 3或6B. 1或6C. 1或3D. 4或6【答案】B【解析】分析:分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.详解:如图,当h<2时,有-(2-h)2=-1,解得:h1=1,h2=3(舍去);当2≤h≤5时,y=-(x-h)2的最大值为0,不符合题意;当h>5时,有-(5-h)2=-1,解得:h3=4(舍去),h4=6.综上所述:h的值为1或6.故选B.点睛:本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.10. 在平面内由极点、极轴和极径组成的坐标系叫做极坐标系如图,在平面上取定一点称为极点;从点出发引一条射线称为极轴;线段的长度称为极径点的极坐标就可以用线段的长度以及从转动到的角度(规定逆时针方向转动角度为正)来确定,即或或等,则点关于点成中心对称的点的极坐标表示不正确的是( )A. B.C. D.【答案】D【解析】分析:根据中心对称的性质解答即可.详解:∵P(3,60°)或P(3,-300°)或P(3,420°),由点P关于点O成中心对称的点Q可得:点Q的极坐标为(3,240°),(3,-120°),(3,600°),故选D.点睛:此题考查中心对称的问题,关键是根据中心对称的性质解答.11. 已知关于的一元二次方程有两个不相等的实数根,若,则的值是( )A. 2B. -1C. 2或-1D. 不存在【答案】A【解析】分析:先由二次项系数非零及根的判别式△>0,得出关于m的不等式组,解之得出m的取值范围,再根据根与系数的关系可得出x1+x2=,x1x2=,结合,即可求出m的值.详解:∵关于x的一元二次方程mx2-(m+2)x+=0有两个不相等的实数根x1、x2,∴,解得:m>-1且m≠0.∵x1、x2是方程mx2-(m+2)x+=0的两个实数根,∴x1+x2=,x1x2=,∵,∴=4m,∴m=2或-1,∵m>-1,∴m=2.故选A.点睛:本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:(1)根据二次项系数非零及根的判别式△>0,找出关于m的不等式组;(2)牢记两根之和等于-、两根之积等于.12. 如图,菱形的边长是4厘米,,动点以1厘米/秒的速度自点出发沿方向运动至点停止,动点以2厘米/秒的速度自点出发沿折线运动至点停止若点同时出发运动了秒,记的面积为,下面图象中能表示与之间的函数关系的是( )A. (A)B. (B)C. (C)D. (D)【答案】D【解析】分析:应根据0≤t<2和2≤t<4两种情况进行讨论.把t当作已知数值,就可以求出S,从而得到函数的解析式,进一步即可求解.详解:当0≤t<2时,S=2t××(4-t)=-t2+4t;当2≤t<4时,S=4××(4-t)=-2t+8;只有选项D的图形符合.故选D.点睛:本题主要考查了动点问题的函数图象,利用图形的关系求函数的解析式,注意数形结合是解决本题的关键.二、填空题(本大题共6小题,共18分,只要求填写最后结果,每小题填对得3分)13. 因式分解:____________.【答案】【解析】分析:通过提取公因式(x+2)进行因式分解.详解:原式=(x+2)(x-1).故答案是:(x+2)(x-1).点睛:考查了因式分解-提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.14. 当____________时,解分式方程会出现增根.【答案】2【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m,由分母可知,分式方程的增根是3,当x=3时,3-5=-m,解得m=2,故答案为:2.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.15. 用教材中的计算器进行计算,开机后依次按下.把显示结果输人下侧的程序中,则输出的结果是____________.【答案】34+9.【解析】分析:先根据计算器计算出输入的值,再根据程序框图列出算式,继而根据二次根式的混合运算计算可得.详解:由题意知输入的值为32=9,则输出的结果为[(9+3)-]×(3+)=(12-)×(3+)=36+12-3-2=34+9,故答案为:34+9.点睛:本题主要考查计算器-基础知识,解题的关键是根据程序框图列出算式,并熟练掌握二次根式的混合运算顺序和运算法则.16. 如图,正方形的边长为1,点与原点重合,点在轴的正半轴上,点在轴的负半轴上将正方形绕点逆时针旋转至正方形的位置,与相交于点,则的坐标为____________.【答案】【解析】分析:连接AM,由旋转性质知AD=AB′=1、∠BAB′=30°、∠B′AD=60°,证Rt△ADM≌Rt△AB′M 得∠DAM=∠B′AD=30°,由DM=ADtan∠DAM可得答案.详解:如图,连接AM,∵将边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形AB'C′D′,∴AD=AB′=1,∠BAB′=30°,∴∠B′AD=60°,在Rt△ADM和Rt△AB′M中,∵,∴Rt△ADM≌Rt△AB′M(HL),∴∠DAM=∠B′AM=∠B′AD=30°,∴DM=ADtan∠DAM=1×=,∴点M的坐标为(-1,),故答案为:(-1,).点睛:本题主要考查旋转的性质、正方形的性质,解题的关键是掌握旋转变换的不变性与正方形的性质、全等三角形的判定与性质及三角函数的应用.17. 如图,点的坐标为,过点作不轴的垂线交直于点以原点为圆心,的长为半径断弧交轴正半轴于点;再过点作轴的垂线交直线于点,以原点为圆心,以的长为半径画弧交轴正半轴于点;…按此作法进行下去,则的长是____________.【答案】【解析】分析:先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点A2019的坐标,再根据弧长公式计算即可求解,.详解:直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,OA2=,点A2的坐标为(4,0),这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)以此类推便可求出点A2019的坐标为(22019,0),则的长是.故答案为:.点睛:本题主要考查了一次函数图象上点的坐标特征,做题时要注意数形结合思想的运用,是各地的中考热点,学生在平常要多加训练,属于中档题.18. 如图.一-艘渔船正以60海里/小时的速度向正东方向航行,在处测得岛礁在东北方向上,继续航行1.5小时后到达处此时测得岛礁在北偏东方向,同时测得岛礁正东方向上的避风港在北偏东方向为了在台风到来之前用最短时间到达处,渔船立刻加速以75海里/小时的速度继续航行____________小时即可到达(结果保留根号)【答案】.【解析】分析:如图,过点P作PQ⊥AB交AB延长线于点Q,过点M作MN⊥AB交AB延长线于点N,通过解直角△AQP、直角△BPQ求得PQ的长度,即MN的长度,然后通过解直角△BMN求得BM的长度,则易得所需时间.详解:如图,过点P作PQ⊥AB交AB延长线于点Q,过点M作MN⊥AB交AB延长线于点N,在直角△AQP中,∠PAQ=45°,则AQ=PQ=60×1.5+BQ=90+BQ(海里),所以BQ=PQ-90.在直角△BPQ中,∠BPQ=30°,则BQ=PQ•tan30°=PQ(海里),所以PQ-90=PQ,所以PQ=45(3+)(海里)所以MN=PQ=45(3+)(海里)在直角△BMN中,∠MBN=30°,所以BM=2MN=90(3+)(海里)所以(小时)故答案是:.点睛:本题考查的是解直角三角形的应用,此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.三、解答题19. 如图,直线与反比例函数的图象相交于,两点,连接.(1)求和的值;(2)求的面积.【答案】(1),;(2).【解析】分析:(1)先求出B点的坐标,再代入反比例函数解析式求出即可;(2)先求出直线与x轴、y轴的交点坐标,再求出即可.详解:(1)点在直线上,,解得,,反比例函数的图象也经过点,,解得;(2)设直线分别与轴,轴相交于点,点,当时,即,,当时,,,点在直线上,.即,.点睛:本题考查了用待定系数法求反比例函数的解析式,反比例函数与一次函数的交点问题、函数图象上点的坐标特征等知识点,能求出反比例函数的解析式是解此题的关键.20. 如图,点是正方形边上一点,连接,作于点,手点,连接.(1)求证:;(2已知,四边形的面积为24,求的正弦值.【答案】(1)证明见解析;(2).【解析】分析:(1)通过证明△ABF≌△DEA得到BF=AE;(2)设AE=x,则BF=x,DE=AF=2,利用四边形ABED的面积等于△ABE的面积与△ADE的面积之和得到•x•x+•x•2=24,解方程求出x得到AE=BF=6,则EF=x-2=4,然后利用勾股定理计算出BE,最后利用正弦的定义求解.详(1)证明:∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于点E,BF⊥AM于点F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中,∴△ABF≌△DEA(AAS),∴BF=AE;(2)解:设AE=x,则BF=x,DE=AF=2,∵四边形ABED的面积为24,∴•x•x+•x•2=24,解得x1=6,x2=-8(舍去),∴EF=x-2=4,在Rt△BEF中,BE=,∴sin∠EBF=.点睛:本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形.21. 为进一步提高全民“节约用水”意识,某学校组织学生进行家庭月用水量情况调查活动,小莹随机抽查了所住小区户家庭的月用水量,绘制了下面不完整的统计图.(1)求并补全条形统计图;(2)求这户家庭的月平均用水量;并估计小莹所住小区420户家庭中月用水量低于月平均用水量的家庭户数;(3)从月用水量为和的家庭中任选两户进行用水情况问卷调查,求选出的两户中月用水量为和恰好各有一户家庭的概率.【答案】(1)n=20,补全条形图见解析;(2)这20户家庭的月平均用水量为6.95立方米,小莹所住小区月用水量低于的家庭户数为231;(3),【解析】分析:(1)根据月用水量为9m3和10m3的户数及其所占百分比可得总户数,再求出5m3和8m3的户数即可补全图形;(2)根据加权平均数的定义计算可得月平均用水量,再用总户数乘以样本中低于月平均用水量的家庭户数所占比例可得;(3)列表得出所有等可能结果,从中找到满足条件的结果数,根据概率公式计算可得.详解:(1)n=(3+2)÷25%=20,月用水量为8m3的户数为20×55%-7=4户,月用水量为5m3的户数为20-(2+7+4+3+2)=2户,补全图形如下:(2)这20户家庭的月平均用水量为=6.95(m3),因为月用水量低于6.95m3的有11户,所以估计小莹所住小区420户家庭中月用水量低于6.95m3的家庭户数为420×=231户;(3)月用水量为5m3的两户家庭记为a、b,月用水量为9m3的3户家庭记为c、d、e,列表如下:由表可知,共有20种等可能结果,其中满足条件的共有12种情况,所以选出的两户中月用水量为5m3和9m3恰好各有一户家庭的概率为.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图和用样本估计总体.22. 如图,为外接圆的直径,且.(1)求证:与相切于点;(2)若,,求的长.【答案】(1)证明见解析;(2)AD=.【解析】分析:(1)连接OA,根据同圆的半径相等可得:∠D=∠DAO,由同弧所对的圆周角相等及已知得:∠BAE=∠DAO,再由直径所对的圆周角是直角得:∠BAD=90°,可得结论;(2)先证明OA⊥BC,由垂径定理得:,FB=BC,根据勾股定理计算AF、OB、AD的长即可.详解:证明:(1)连接OA,交BC于F,则OA=OB,∴∠D=∠DAO,∵∠D=∠C,∴∠C=∠DAO,∵∠BAE=∠C,∴∠BAE=∠DAO,∵BD是⊙O的直径,∴∠BAD=90°,即∠DAO+∠BAO=90°,∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE⊥OA,∴AE与⊙O相切于点A;(2)∵AE∥BC,AE⊥OA,∴OA⊥BC,∴,FB=BC,∴AB=AC,∵BC=2,AC=2,∴BF=,AB=2,在Rt△ABF中,AF=,在Rt△OFB中,OB2=BF2+(OB-AF)2,∴OB=4,∴BD=8,∴在Rt△ABD中,AD=.点睛:本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”.23. 为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有两种型号的挖掘机,已知3台型和5台型挖掘机同时施工一小时挖土165立方米;4台型和7台型挖掘机同时施工一小时挖土225立方米.每台型挖掘机一小时的施工费用为300元,每台型挖掘机一小时的施工费用为180元.(1)分别求每台型, 型挖掘机一小时挖土多少立方米?(2)若不同数量的型和型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?【答案】(1)每台型挖掘机一小时挖土30立方米,每台型挖据机一小时挖土15立方米;(2)共有三种调配方案.方案一: 型挖据机7台,型挖掘机5台;方案二: 型挖掘机8台,型挖掘机4台;方案三: 型挖掘机9台,型挖掘机3台.当A型挖掘机7台, 型挖掘机5台的施工费用最低,最低费用为12000元.【解析】分析:(1)根据题意列出方程组即可;(2)利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用.详解:(1)设每台型,型挖掘机一小时分别挖土立方米和立方米,根据题意,得解得所以,每台型挖掘机一小时挖土30立方米,每台型挖据机一小时挖土15立方米.(2)设型挖掘机有台,总费用为元,则型挖据机有台.根据题意,得,因为,解得,又因为,解得,所以.所以,共有三种调配方案.方案一:当时,,即型挖据机7台,型挖掘机5台;案二:当时,,即型挖掘机8台,型挖掘机4台;方案三:当时,,即型挖掘机9台,型挖掘机3台.,由一次函数的性质可知,随的减小而减小,当时,,此时型挖掘机7台, 型挖掘机5台的施工费用最低,最低费用为12000元.点睛:本题考查了二元一次方程组和一次函数增减性,解答时先根据题意确定自变量取值范围,再应用一次函数性质解答问题.24. 如图1,在中,于点的垂直平分线交于点,交于点,,.(1)如图2,作于点,交于点,将沿方向平移,得到,连接.①求四边形的面积;②直线上有一动点,求周长的最小值.(2)如图3.延长交于点.过点作,过边上的动点作,并与交于点,将沿直线翻折,使点的对应点恰好落在直线上,求线段的长.【答案】(1)①;②周长的最小值为9;(2)的长为或.【解析】分析:(1)①根据相似三角形的判定和性质以及平移的性质进行解答即可;②连接CM交直线EF于点N,连接DN,利用勾股定理解答即可;(2)分点P在线段CE上和点P在线段ED上两种情况进行解答.详解:(1)①在▱ABCD中,AB=6,直线EF垂直平分CD,∴DE=FH=3,又BF:FA=1:5,∴AH=2,∵Rt△AHD∽Rt△MHF,∴,即,∴HM=1.5,根据平移的性质,MM'=CD=6,连接BM,如图1,四边形BHMM′的面积=×6×1.5+×4×1.5=7.5;②连接CM交直线EF于点N,连接DN,如图2,∵直线EF垂直平分CD,∴CN=DN,∵MH=1.5,∴DM=2.5,在Rt△CDM中,MC2=DC2+DM2,∴MC2=62+(2.5)2,即MC=6.5,∵MN+DN=MN+CN=MC,∴△DNM周长的最小值为9.(2)∵BF∥CE,∴,∴QF=2,∴PK=PK'=6,过点K'作E'F'∥EF,分别交CD于点E',交QK于点F',如图3,当点P在线段CE上时,在Rt△PK'E'中,PE'2=PK'2-E'K'2,∴PE′=2,∵Rt△PE'K'∽Rt△K'F'Q,∴,即,解得:QF′=,∴PE=PE'-EE'=2−=,∴CP=,同理可得,当点P在线段DE上时,CP′=,如图4,综上所述,CP的长为或.点睛:此题考查四边形的综合题,关键是根据相似三角形的性质和平移的性质解答,注意(2)分两种情况分析.25. 如图1,抛物线与轴交于点和点,与轴交于点,抛物线的顶点为轴于点.将抛物线平移后得到顶点为且对称轴为直的抛物线.(1)求抛物线的解析式;(2)如图2,在直线上是否存在点,使是等腰三角形?若存在,请求出所有点的坐标:若不存在,请说明理由;(3)点为抛物线上一动点,过点作轴的平行线交抛物线于点,点关于直线的对称点为,若以为顶点的三角形与全等,求直线的解析式.【答案】(1)抛物线的解析式为;(2)点的坐标为,,;(3)的解析式为或.【解析】分析:(1)把和代入求出a、c的值,进而求出y1,再根据平移得出y2即可;(2)抛物线的对称轴为,设,已知,过点作轴于,分三种情况时行讨论等腰三角形的底和腰,得到关于t的方程,解方程即可;(3)设,则,根据对称性得,分点在直线的左侧或右侧时,结合以构成的三角形与全等求解即可.详解:(1)由题意知,,解得,所以,抛物线y的解析式为;因为抛物线平移后得到抛物线,且顶点为,所以抛物线的解析式为,即;(2)抛物线的对称轴为,设,已知,过点作轴于,则,,,当时,即,解得或;当时,得,无解;当时,得,解得;综上可知,在抛物线的对称轴上存在点使是等腰三角形,此时点的坐标为,,.(3)设,则,因为关于对称,所以,情况一:当点在直线的左侧时,,,又因为以构成的三角形与全等,当且时,,可求得,即点与点重合所以,设的解析式,则有解得,即的解析式为,当且时,无解,情况二:当点在直线右侧时,,,同理可得的解析式为,综上所述, 的解析式为或.点睛:本题主要考查了二次函数综合题,此题涉及到待定系数法求函数解析式、等腰三角形的判定与性质、全等三角形的性质等知识,解答(1)问的关键是求出a、c的值,解答(2)、(3)问的关键是正确地作出图形,进行分类讨论解答,此题有一定的难度.。
(中考精品卷)山东省烟台市中考数学真题(解析版)
2022年山东省烟台市中考数学真题一、选择题1. ﹣8的绝对值是( )A. 18B. 8C. ﹣8D. ±8【答案】B【解析】【分析】正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数.【详解】解:∵﹣8是负数,﹣8的相反数是8∴﹣8的绝对值是8.故选B.【点睛】本题考查绝对值的定义,理解绝对值的意义是解题的关键.2. 下列新能源汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.【答案】A【解析】【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【详解】A.既是轴对称图形,又是中心对称图形,故A符合题意;B.是轴对称图形,不是中心对称图形,故B不符合题意;C.不是轴对称图形,是中心对称图形,故C不符合题意;D.是轴对称图形,不是中心对称图形,故D不符合题意.故选:A.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.3. 下列计算正确的是( )A. 2a+a=3a2B. a3•a2=a6C. a5﹣a3=a2D. a3÷a2=a【解析】【分析】根据同底数幂的除法,合并同类项,同底数幂的乘法法则,进行计算逐一即可解答.【详解】解:A、2a+a=3a,故A不符合题意;B、a3•a2=a5,故B不符合题意;C、a5与a3不能合并,故C不符合题意;D、a3÷a2=a,故D符合题意;故选:D.【点睛】本题考查了同底数幂的除法,合并同类项,同底数幂的乘法,熟练掌握它们的运算法则是解题的关键.4. 如图,是一个正方体截去一个角后得到的几何体,则该几何体的左视图是( )A. B. C. D.【答案】A【解析】【分析】根据左视图是从左面看到的图形判定则可.【详解】解:从左边看,可得如下图形:故选:A.【点睛】本题考查三视图、熟练掌握三视图的定义是解决问题的关键.5. 一个正多边形每个内角与它相邻外角的度数比为3:1,则这个正多边形是( )A. 正方形B. 正六边形C. 正八边形D. 正十边形【解析】【分析】设这个外角是x °,则内角是3x °,根据内角与它相邻的外角互补列出方程求出外角的度数,根据多边形的外角和是360°即可求解.【详解】解:∵一个正多边形每个内角与它相邻外角的度数比为3:1, ∴设这个外角是x °,则内角是3x °, 根据题意得:x +3x =180°, 解得:x =45°, 360°÷45°=8(边), 故选:C .【点睛】本题考查了多边形的内角和外角,根据内角与它相邻的外角互补列出方程是解题的关键.6. 如图所示电路图,同时闭合两个开关能形成闭合电路的概率是( )A.13B.23C. 12D. 1【答案】B 【解析】【分析】画树状图,共有6种等可能的结果,其中同时闭合两个开关能形成闭合电路的结果有4种,再由概率公式求解即可.【详解】解:把S 1、S 2、S 3分别记为A 、B 、C , 画树状图如下:的共有6种等可能的结果,其中同时闭合两个开关能形成闭合电路的结果有4种,即AB 、AC 、BA 、CA ,∴同时闭合两个开关能形成闭合电路的概率为4263. 故选:B .【点睛】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比,列出树状图是解题的关键.7. 如图,某海域中有A ,B ,C 三个小岛,其中A 在B 南偏西40°方向,C 在B 的南偏东35°方向,且B ,C 到A 的距离相等,则小岛C 相对于小岛A 的方向是( )A. 北偏东70°B. 北偏东75°C. 南偏西70°D. 南偏西20° 【答案】A 【解析】【分析】根据题意可得∠ABC =75°,AD ∥BE ,AB =AC ,再根据等腰三角形的性质可得∠ABC =∠C =75°,从而求出∠BAC 的度数,然后利用平行线的性质可得∠DAB =∠ABE =40°,从而求出∠DAC 的度数,即可解答. 【详解】解:如图:由题意得:∠ABC =∠ABE +∠CBE =40°+35°=75°,AD ∥BE ,AB =AC , ∴∠ABC =∠C =75°,的∴∠BAC =180°﹣∠ABC ﹣∠C =30°, ∵AD ∥BE ,∴∠DAB =∠ABE =40°,∴∠DAC =∠DAB +∠BAC =40°+30°=70°, ∴小岛C 相对于小岛A 的方向是北偏东70°, 故选:A ..【点睛】本题考查了方向角,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.8. 如图,正方形ABCD 边长为1,以AC 为边作第2个正方形ACEF ,再以CF 为边作第3个正方形FCGH ,…,按照这样的规律作下去,第6个正方形的边长为( )A. ()5B. ()6C. )5D.)6 【答案】C 【解析】,第1个正方形的边长为1,其;第2,其对角线长为2;第3个正方形的边长为2,其对角线长为3;•••;第n 个正方形的边长为1n -.所以,第6个正方形的边长5.【详解】解:由题知,第1个正方形的边长1AB =,根据勾股定理得,第2个正方形的边长AC =,根据勾股定理得,第3个正方形的边长2CF =,根据勾股定理得,第4个正方形的边长3GF =,根据勾股定理得,第5个正方形的边长4GN =,根据勾股定理得,第6个正方形的边长5=.故选:C .倍关系是解题的关键.9. 二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,其对称轴为直线x =﹣12,且与x 轴的一个交点坐标为(﹣2,0).下列结论:①abc >0;②a =b ;③2a +c =0;④关于x 的一元二次方程ax 2+bx +c ﹣1=0有两个相等的实数根.其中正确结论的序号是( )A. ①③B. ②④C. ③④D. ②③【答案】D 【解析】【分析】根据对称轴、开口方向、与y 轴交点位置即可判断a 、b 、c 与0的大小关系,然后将由对称可知a =b ,从而可判断答案. 【详解】解:①由图可知:a >0,c <0,2ba-<0, ∴b >0,∴abc <0,故①不符合题意. ②由题意可知:2ba -=12-, ∴b =a ,故②符合题意.③将(﹣2,0)代入y =ax 2+bx +c , ∴4a ﹣2b +c =0,的∵a =b ,∴2a +c =0,故③符合题意.④由图象可知:二次函数y =ax 2+bx +c 的最小值小于0, 令y =1代入y =ax 2+bx +c ,∴ax 2+bx +c =1有两个不相同的解,故④不符合题意. 故选:D .【点睛】本题考查二次函数的图像与系数的关系,解题的关键是正确地由图象得出a 、b 、c 的数量关系,本题属于基础题型.10. 周末,父子二人在一段笔直的跑道上练习竞走,两人分别从跑道两端开始往返练习.在同一直角坐标系中,父子二人离同一端的距离s (米)与时间t (秒)的关系图像如图所示.若不计转向时间,按照这一速度练习20分钟,迎面相遇的次数为( )A. 12B. 16C. 20D. 24【答案】B 【解析】【分析】先求出二人速度,即可得20分钟二人所跑路程之和,再总结出第n 次迎面相遇时,两人所跑路程之和(400n ﹣200)米,列方程求出n 的值,即可得答案. 【详解】解:由图可知,父子速度分别为:200×2÷120103=(米/秒)和200÷100=2(米/秒),∴20分钟父子所走路程和为102060264003⎛⎫⨯⨯+=⎪⎝⎭(米), 父子二人第一次迎面相遇时,两人所跑路程之和为200米,父子二人第二次迎面相遇时,两人所跑路程之和为200×2+200=600(米), 父子二人第三次迎面相遇时,两人所跑路程之和为400×2+200=1000(米), 父子二人第四次迎面相遇时,两人所跑路程之和为600×2+200=1400(米), …父子二人第n 次迎面相遇时,两人所跑路程之和为200(n ﹣1)×2+200=(400n ﹣200)米,令400n ﹣200=6400, 解得n =16.5,∴父子二人迎面相遇的次数为16. 故选:B .【点睛】本题考查一次函数的应用,解题的关键是求出父子二人第n 次迎面相遇时,两人所跑路程之和()400200n -米.二、填空题11. 将24x -因式分解为________. 【答案】()()22x x +- 【解析】【分析】利用平方差公式可进行因式分解. 【详解】解:()()2422x x x -=+-,故答案为:()()22x x +-.【点睛】本题考查了公式法分解因式,掌握平方差公式的结构特征是正确应用的前提. 12. 观察如图所示的象棋棋盘,若“兵”所在的位置用(1,3)表示,“炮”所在的位置用(6,4)表示,那么“帅”所在的位置可表示为 _____.【答案】(4,1) 【解析】【分析】直接利用已知点坐标得出原点位置进而得出答案. 【详解】解:如图所示:“帅”所在的位置:(4,1), 故答案为:(4,1).【点睛】本题主要考查了坐标确定位置,正确得出原点位置是解题的关键.13. 如图,是一个“数值转换机”的示意图.若x =﹣5,y =3,则输出结果为 _____.【答案】13 【解析】【分析】根据题意可得,把5x =-,3y =代入()2012x y +进行计算即可解答. 【详解】解:当5x =-,3y =时,()()2200111532613222x y ⎡⎤+=-+=⨯=⎣⎦. 故答案为:13.【点睛】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.14. 小明和同学们玩扑克牌游戏.游戏规则是:从一副扑克牌(去掉“大王”“小王”)中任意抽取四张,根据牌面上的数字进行混合运算(每张牌上的数字只能用一次),使得运算结果等于24.小明抽到的牌如图所示,请帮小明列出一个结果等于24的算式 _____.【答案】(5-3+2)×6(答案不唯一) 【解析】【分析】根据有理数的加、减、乘、除、乘方运算法则,进行计算即可解答. 【详解】解:由题意得: (5-3+2)×6=24,故答案为:(5-3+2)×6(答案不唯一).【点睛】本题考查了有理数的混合运算,熟练掌握有理数的加、减、乘、除、乘方运算法则是解题的关键.15. 如图,A ,B 是双曲线y =kx(x >0)上的两点,连接OA ,O B .过点A 作AC ⊥x 轴于点C ,交OB 于点D .若D 为AC 的中点,△AOD 的面积为3,点B 的坐标为(m ,2),则m 的值为 _____.【答案】6 【解析】【分析】应用k 的几何意义及中线的性质求解. 【详解】解: D 为AC 的中点,AOD ∆的面积为3,∴AOC ∆的面积为6,所以122k m ==, 解得:m =6. 故答案为:6.【点睛】本题考查了反比例函数中k 的几何意义,关键是利用AOB ∆的面积转化为三角形AOC 的面积.16. 如图1,△ABC 中,∠ABC =60°,D 是BC 边上的一个动点(不与点B ,C 重合),DE ∥AB ,交AC 于点E ,EF ∥BC ,交AB 于点F .设BD 的长为x ,四边形BDEF 的面积为y ,y 与x 的函数图象是如图2所示的一段抛物线,其顶点P 的坐标为(2,3),则AB 的长为 _____.【答案】【解析】【分析】根据抛物线的对称性知,BC=4,作FH⊥BC于H,当BD=2时,▱BDEF的面积为3,则此时BF,AB=2BF,即可解决问题.【详解】解:∵抛物线的顶点为(2,3),过点(0,0),∴x=4时,y=0,∴BC=4,作FH⊥BC于H,当BD=2时,▱BDEF的面积为3,∵3=2FH,∴FH=32,∵∠ABC=60°,∴BF=3 2 sin60︒∵DE∥AB,∴AB=2BF=,故答案为:【点睛】本题主要考查了动点的函数图象问题,抛物线的对称性,平行四边形的性质,特殊角的三角函数值等知识,求出BC=4是解题的关键.三、解答题17. 求不等式组231,13(1)2(1)x xx x≤-⎧⎨+-<+⎩的解集,并把它的解集表示在数轴上.【答案】1≤x<4,数轴见解析【解析】【分析】分别求出每一个不等式的解集,再求出其公共部分即可.【详解】解:23113(1)2(1)x xx x≤-⎧⎨+-<+⎩①②,由①得:1≥x ,由②得:4x <,∴不等式组的解集为:14x ≤<,将不等式组的解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键. 18. 如图,在▱ABCD 中,DF 平分∠ADC ,交AB 于点F ,BE ∥DF ,交AD 的延长线于点E .若∠A =40°,求∠ABE 的度数.【答案】70°【解析】【分析】根据平行四边形的性质和平行线的性质即可得到结论.【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A +∠ADC =180°,∵∠A =40°,∴∠ADC =140°,∵DF 平分∠ADC ,∴∠CDF =12∠ADC =70°, ∴∠AFD =∠CDF =70°,∵DF ∥BE ,∴∠ABE =∠AFD =70°.【点睛】本题考查了平行四边形的性质,平行线的性质,角平分线的定义,熟练掌握平行四边形的性质是解题的关键.19. 2021年4月,教育部办公厅在《关于进一步加强中小学生体质健康管理工作的通知》中明确要求保障学生每天校内、校外各1小时体育活动时间.某校为了解本校学生校外体育活动情况,随机对本校100名学生某天的校外体育活动时间进行了调查,并按照体育活动时间分A,B,C,D四组整理如下:组别体育活动时间/分钟人数A 0≤x<30 10B 30≤x<60 20C 60≤x<90 60D x≥90 10根据以上信息解答下列问题:(1)制作一个适当的统计图,表示各组人数占所调查人数的百分比;(2)小明记录了自己一周内每天的校外体育活动时间,制作了如下折线统计图.请计算小明本周内平均每天的校外体育活动时间;(3)若该校共有1400名学生,请估计该校每天校外体育活动时间不少于1小时的学生人数.【答案】(1)见解析(2)64分钟(3)980名【解析】【分析】(1)用扇形统计图表示各组人数占所调查人数的百分比;(2)根据平均数计算方法进行计算即可;的(3)样本估计总体,求出样本中每天校外体育活动时间不少于1小时的学生所占的百分比即可.【小问1详解】解:由于各组人数占所调查人数的百分比,因此可以采用扇形统计图;【小问2详解】 解:556563577075637++++++=64(分), 答:小明本周内平均每天的校外体育活动时间为64分钟;【小问3详解】1400×6010100+=980(名), 答:该校1400名学生中,每天校外体育活动时间不少于1小时的大约有980名.【点睛】本题考查统计图的选择,频数分布表以及平均数,掌握各种统计图的特点以及加权平均数的计算方法是正确解答的前提.20. 如图,某超市计划将门前的部分楼梯改造成无障碍通道.已知楼梯共有五级均匀分布的台阶,高AB =0.75m ,斜坡AC 的坡比为1:2,将要铺设的通道前方有一井盖,井盖边缘离楼梯底部的最短距离ED =2.55m .为防止通道遮盖井盖,所铺设通道的坡角不得小于多少度?(结果精确到1)(参考数据表) 计算器按键顺序 计算结果(已精确到0.001)11.3100.00314.7440.005【答案】不得小于11度【解析】【分析】根据题意可得DF=15AB=0.15米,然后根据斜坡AC坡比为1:2,可求出BC,CD的长,从而求出EB的长,最后在Rt△AEB中,利用锐角三角函数的定义进行计算即可解答.【详解】解:如图:由题意得:DF=15AB=0.15(米),∵斜坡AC的坡比为1:2,∴A BB C=12,DFCD=12,∴BC=2AB=1.5(米),CD=2DF=0.3(米),∵ED=2.55米,∴EB=ED+BC﹣CD=2.55+1.5﹣0.3=3.75(米),在Rt△AEB中,tan∠AEB=ABEB=0.753.75=15,查表可得,∠AEB≈11.310°≈11°,∴为防止通道遮盖井盖,所铺设通道的坡角不得小于11度.【点睛】本题考查了解直角三角形的应用﹣坡度坡角问题,熟练掌握坡比是解题的关键.的21. 扫地机器人具备敏捷的转弯、制动能力和强大的自主感知、规划能力,深受人们喜爱.某商场根据市场需求,采购了A,B两种型号扫地机器人.已知B型每个进价比A型的2倍少400元.采购相同数量的A,B两种型号扫地机器人,分别用了96000元和168000元.请问A,B两种型号扫地机器人每个进价分别为多少元?【答案】每个A型扫地机器人的进价为1600元,每个B型扫地机器人的进价为2800元【解析】【分析】设每个A型扫地机器人的进价为x元,则每个B型扫地机器人的进价为(2x﹣400)元,利用数量=总价÷单价,结合用96000元购进A型扫地机器人的数量等于用168000元购进B型扫地机器人的数量,即可得出关于x的分式方程,解之经检验后即可求出每个A型扫地机器人的进价,再将其代入(2x﹣400)中即可求出每个B型扫地机器人的进价.【详解】设每个A型扫地机器人的进价为x元,则每个B型扫地机器人的进价为(2x﹣400)元,依题意得:960001680002400x x=-,解得:x=1600,经检验,x=1600是原方程的解,且符合题意,∴2x﹣400=2×1600﹣400=2800.答:每个A型扫地机器人的进价为1600元,每个B型扫地机器人的进价为2800元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22. 如图,⊙O是△ABC的外接圆,∠ABC=45°.(1)请用尺规作出⊙O的切线AD(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB与切线AD所夹的锐角为75°,⊙O的半径为2,求BC的长.【答案】(1)见解析(2)【解析】【分析】(1)连接OA,过点A作AD⊥AO即可;(2)连接OB,OC.先证明∠ACB=75°,再利用三角形内角和定理求出∠CAB,推出∠BOC=120°,求出CH可得结论.【小问1详解】解:如图,切线AD即为所求;【小问2详解】如图:连接OB,OC.∵AD是切线,∴OA⊥AD,∴∠OAD=90°,∵∠DAB=75°,∴∠OAB=15°,∵OA=OB,∴∠OAB=∠OBA=15°,∴∠BOA=150°,∠AOB=75°,∴∠BCA=12∵∠ABC=45°,∴∠BAC=180°﹣45°﹣75°=60°,∴∠BOC=2∠BAC=120°,∵OB=OC=2,∴∠BCO=∠CBO=30°,∵OH⊥BC,∴CH=BH=OC•cos30°∴BC=【点睛】本题主要考查了作圆的 、三角形的外接圆、切线的判定和性质、解直角三角形等知识点,解题的关键是灵活运用所学知识解决问题.23.(1)【问题呈现】如图1,△ABC 和△ADE 都是等边三角形,连接BD ,CE .求证:BD =CE .(2)【类比探究】如图2,△ABC 和△ADE 都是等腰直角三角形,∠ABC =∠ADE =90°.连接BD ,CE .请直接写出BD CE的值. (3)【拓展提升】如图3,△ABC 和△ADE 都是直角三角形,∠ABC =∠ADE =90°,且A B B C =AD DE =34.连接BD ,CE . ①求BD CE的值; ②延长CE 交BD 于点F ,交AB 于点G .求sin ∠BFC 的值.【答案】(1)见解析 (2 (3)①35;②45 【解析】【分析】(1)证明△BAD ≌△CAE ,从而得出结论;(2)证明△BAD ∽△CAE ,进而得出结果;(3)①先证明△ABC ∽△ADE ,再证得△CAE ∽△BAD ,进而得出结果;②在①的基础上得出∠ACE =∠ABD ,进而∠BFC =∠BAC ,进一步得出结果.【小问1详解】证明:∵△ABC 和△ADE 都是等边三角形,∴AD =AE ,AB =AC ,∠DAE =∠BAC =60°,∴∠DAE ﹣∠BAE =∠BAC ﹣∠BAE ,∴∠BAD =∠CAE ,∴△BAD ≌△CAE (S A S ),∴BD =CE ;【小问2详解】解:∵△ABC 和△ADE 都是等腰直角三角形,AB AB AE AC ∴==,∠DAE =∠BAC =45°, ∴∠DAE ﹣∠BAE =∠BAC ﹣∠BAE ,∴∠BAD =∠CAE ,∴△BAD ∽△CAE ,BD AB CE AC ∴===; 【小问3详解】 解:①34AB AD AC DE ==,∠ABC =∠ADE =90°, ∴△ABC ∽△ADE , ∴∠BAC =∠DAE ,35AB AD AC AE ==, ∴∠CAE =∠BAD ,∴△CAE ∽△BAD ,35BD AD CE AE ∴== ; ②由①得:△CAE ∽△BAD ,∴∠ACE =∠ABD ,∵∠AGC =∠BGF ,∴∠BFC =∠BAC ,∴sin ∠BFC 45BC AC ==. 【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解决问题的关键是熟练掌握“手拉手”模型及其变形.24. 如图,已知直线y=43x+4与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c经过A,C两点,且与x轴的另一个交点为B,对称轴为直线x=﹣1.(1)求抛物线的表达式;(2)D是第二象限内抛物线上的动点,设点D的横坐标为m,求四边形ABCD面积S的最大值及此时D点的坐标;(3)若点P在抛物线对称轴上,是否存在点P,Q,使以点A,C,P,Q为顶点的四边形是以AC为对角线的菱形?若存在,请求出P,Q两点的坐标;若不存在,请说明理由.【答案】(1)y=﹣43x2﹣83x+4(2)S最大=334,D(﹣32,5)(3)存在,Q(﹣2,19 8)【解析】【分析】(1)先求得A,C,B三点的坐标,将抛物线设为交点式,进一步求得结果;(2)作DF⊥AB于F,交AC于E,根据点D和点E坐标可表示出DE的长,进而表示出三角形ADC的面积,进而表示出S的函数关系式,进一步求得结果;(3)根据菱形性质可得PA=PC,进而求得点P的坐标,根据菱形性质,进一步求得点Q坐标.【小问1详解】解:当x=0时,y=4,∴C(0,4),当y=0时,43x+4=0,∴x =﹣3,∴A (﹣3,0),∵对称轴为直线x =﹣1,∴B (1,0),∴设抛物线的表达式:y =a (x ﹣1)•(x +3),∴4=﹣3a ,∴a =﹣43, ∴抛物线的表达式为:y =﹣43(x ﹣1)•(x +3)=﹣43x 2﹣83x +4; 【小问2详解】如图1,作DF ⊥AB 于F ,交AC 于E ,∴D (m ,﹣243m ﹣83m +4),E (m ,﹣43m +4), ∴DE =﹣243m ﹣83m +4﹣(43m +4)=﹣43m 2﹣4m , ∴S △ADC =12DE ⋅OA =32•(﹣43m 2﹣4m )=﹣2m 2﹣6m , ∵S △ABC =12AB OC ⋅=1432⨯⨯=6, ∴S =﹣2m 2﹣6m +6=﹣2(m +32)2+334, ∴当m =﹣32时,S 最大=334,当m=﹣32时,y=﹣433(1)(3)322⨯--⨯-+=5,∴D(﹣32,5);【小问3详解】设P(﹣1,n),∵以A,C,P,Q为顶点的四边形是以AC为对角线的菱形,∴PA=PC,即:PA2=PC2,∴(﹣1+3)2+n2=1+(n﹣4)2,∴n=13 8,∴P(﹣1,138),∵x P+x Q=x A+x C,y P+y Q=y A+y C∴x Q=﹣3﹣(﹣1)=﹣2,y Q=4﹣138=198,∴Q(﹣2,198).【点睛】本题考查了二次函数及其图象性质,勾股定理,菱形性质等知识,解决问题的关键是熟练掌握相关二次函数和菱形性质。
母题29 图像题-2018年中考化学母题题源系列(原卷版)
母题29:图像题【母题来源】【2018年山东省泰安市】【母题题文】向某盐酸和氯化镁的混合溶液中加入某浓度的氢氧化钠溶液,产生沉淀的质量与加入氢氧化钠溶液的质量关系如图所示。
下列说法不正确的是A.a点溶液中滴入紫色石蕊试液变红B.bc段(不含b点)反应的化学方程式为: MgCl2 +2NaOH==Mg(OH)2↓+2NaClC.整个变化过程中氯离子数目没有改变D.d点溶液中含有两种溶质时,氢氧化钠先和稀盐酸反应生成氯化钠和水,后和氯化镁反应生成氢氧化镁沉淀和氯化钠。
A、a点溶液中含有的溶质有没有反应的盐酸、反应生成的硫酸钠和没有反应的氯化镁三种物质,盐酸呈酸性,能使紫色石蕊试液变红,故A错误;B、bc段发生的反应是氢氧化钠和氯化镁反应生成氢氧化镁和氯化钠,化学方程式为: MgCl2 +2NaOH==Mg(OH)2↓+2NaCl,故B错误;C、整个变化过程中氯离子没有生成沉淀或气体,也没有加入,所以整个变化过程中氯离子数目没有改变,故C错误;D、d点时,氢氧化钠和盐酸、氯化镁恰好完全反应,溶液中的溶质只有氯化钠一种,故D正确。
故选D。
【命题意图】本题主要是考查物质之间反应的图像变化,考查学生对图像识别能力知识的掌握程度,中考中此类题是难度较大的综合的题,掌握图像中各部分的涵义是答题的关键。
【考试方向】图像题的考查是对多个知识点的综合考查,可以设计到初中化学中的方方面面,主要涉及到溶解度、溶液的稀释、溶液的导电性、沉淀量化学反应过程等方面。
【得分要点】要仔细观察、分析图像,准确理解题意,弄清图像题中与曲线或直线变化的有关量的关系,并且能根据图像中给定的量的关系,依据物质的性质、变化规律或通过计算解答。
1.【2017年中考真题精品化学(黑龙江大庆卷)】下列关系曲线不能正确反映其对应变化关系的是( ) A.加热KClO3和MnO2固体混合物B.向Ca(OH)2溶液中通入CO2至过量C.向一定浓度的NaOH溶液中加水稀释D.将等质量的Mg和Al分别与过量等浓度的盐酸反应,则a为Mg,b为Al2.【2017年中考真题精品解析化学(广西玉林卷)】下列图象中能正确反映其对应关系的是( )A.向某温度时一定量的不饱和硝酸钾溶液中不断加入硝酸钾固体B.向等质量的锌粉和铁粉中分别加入足量的溶质质量分数相同的稀硫酸C.一定温度下向一定量的某饱和氢氧化钙溶液中加入少量氧化钙D.一定温度下,两份质量和溶质质量分数均相等的过氧化氢溶液分别在有无二氧化锰的情况下制取氧气3.【北京市门头沟区2018届九年级二模】20℃时,将等质量的a、b两种固体,分别加入到盛有lO0g水的烧杯中,充分搅拌后,现象如图甲,升温到50℃时,现象如图乙,a、b两种固体的溶解度曲线如图丙。
精品解析2020年山东省潍坊市中考数学二模试题(解析版)
中考数学二模试卷一、选择题(本大题共 12 小题,共 36 分)1.当0a >时,下列关于幂的运算正确的是( ) A. 00a = B. 1a a -=-C. ()22a a -=-D. 221aa -=【答案】D 【解析】 【分析】根据零指数幂、负整数指数幂、乘方的意义逐项计算即可. 【详解】A. ∵ 01a = ,故不正确; B. ∵ 1a -=1a,故不正确; C. ∵ ()22a a -= ,故不正确; D. 221aa -=,正确; 故选D.【点睛】本题考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.非零数的负整数指数幂等于这个数的正整数次幂的倒数;非零数的零次幂等于1.2.下列图标中,既是轴对称图形,又是中心对称图形的是( ) A.B.C.D.【答案】D 【解析】试题分析:根据轴对称图形和中心对称图形的概念,可知: A 既不是轴对称图形,也不是中心对称图形,故不正确; B 不是轴对称图形,但是中心对称图形,故不正确; C 是轴对称图形,但不是中心对称图形,故不正确; D 即是轴对称图形,也是中心对称图形,故正确. 故选D.考点:轴对称图形和中心对称图形识别3. 下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A. ①B. ②C. ③D. ④【答案】C【解析】试题解析:①作一个角等于已知角的方法正确;②作一个角的平分线的作法正确;③作一条线段的垂直平分线缺少另一个交点,作法错误;④过直线外一点P作已知直线的垂线的作法正确.故选C.考点:基本作图.4.下列运算正确的是()A. a-(b+c)=a-b+cB. 2a2•3a3=6a 5C. a3+a3=2a6D. (x+1)2=x2+1【答案】B【解析】【分析】根据去括号法则,单项式的乘法,合并同类项以及完全平方公式进行计算即可.【详解】A、原式=a-b-c,故本选项错误;B、原式=6a5,故本选项正确;C、原式=2a3,故本选项错误;D、原式=x2+2x+1,故本选项错误;故选:B.【点睛】本题考查了单项式乘单项式,整式的加减,完全平方公式,熟记计算法则和完全平方公式是基础.5.如图,⊙O的直径AB=4,BC切⊙O于点B,OC平行于弦AD,OC=5,则AD的长为( )A.65B.85C.7 D.23【答案】B 【解析】 连接BD ,∵AB 是直径,∴∠ADB=90°,∵OC ∥AD ,∴∠A=∠BOC ,∴cos ∠A=cos ∠BOC, ∵BC 切⊙O 于点B ,∴OB ⊥BC ,∴cos ∠BOC=OB OC =25, ∴cos ∠A=cos ∠BOC=25,又∵cos ∠A=ADAB ,AB=4, ∴AD=85,故选B..6.若12,x x 与是方程22210x mx m m -+--=的两个根,且12121x x x x +=-,则m 的值为( ) A. -1或2 B. 1或-2C. -2D. 1【答案】D 【解析】试题分析:根据一元二次方程的韦达定理可得:122m b x x a +=-=,212m 1cx x m a==--n ,则根据题意可知:()22m 1m 1m =---,解得:1221m m ,=-=;根据根的判别式可得:()()2224ac 2m 4m 10b m -=----≥,解得:m 1≥-;综上所述m=1,故选D .7.如图,在直角坐标系中,点A 在函数y=4x(x >0)的图象上,AB ⊥x 轴于点B ,AB 的垂直平分线与y 轴交于点C ,与函数y=4x(x >0)的图象交于点D ,连结AC ,CB ,BD ,DA ,则四边形ACBD 的面积等于( )A. 2B.3 C. 43【答案】C 【解析】 【分析】解:设4()A a a ,,可求出2(2)D a a,,由于对角线垂直,计算对角线乘积的一半即可. 【详解】设A (a ,4a ),可求出D (2a ,2a), ∵AB ⊥CD , ∴S 四边形ACBD =12AB ∙CD=12×2a ×4a =4,故选:C .【点睛】本题主要考查了反比例函数系数k 的几何意义以及线段垂直平分线的性质,解题的关键是设出点A 和点B 的坐标.8.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是( ) A.14B.12C.34D. 1【答案】B 【解析】【详解】从长为3,5,7,10的四条线段中任意选取三条作为边,所有等可能情况有:3,5,7;3,5,10;3,7,10;5,7,10,共4种,其中能构成三角形的情况有:3,5,7;5,7,10,共2种,则P(能构成三角形)=24=12,故选B.9.如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为()A. 60°B. 67.5°C. 75°D. 54°【答案】A【解析】【详解】解:如图,连接DF、BF.∵FE⊥AB,AE=EB,∴FA=FB,∵AF=2AE,∴AF=AB=FB,∴△AFB是等边三角形,∵AF=AD=AB,∴点A是△DBF的外接圆的圆心,∴∠FDB=12∠FAB=30°,∵四边形ABCD是正方形,∴AD=BC ,∠DAB=∠ABC=90°,∠ADB=∠DBC=45°, ∴∠FAD=∠FBC , ∴△FAD ≌△FBC , ∴∠ADF=∠FCB=15°, ∴∠DOC=∠OBC+∠OCB=60°. 故选A .10.已知抛物线y=14x 2+1具有如下性质:该抛物线上任意一点到定点F (0,2)的距离与到x 轴的距离始终相等,如图,点M 的坐标为(3,3),P 是抛物线y=14x 2+1上一个动点,则△PMF 周长的最小值是( )A. 3B. 4C. 5D. 6【答案】C 【解析】【详解】过点M 作ME ⊥x 轴于点E ,交抛物线y=14x 2+1于点P ,此时△PMF 周长最小值,∵F (0,2)、M (33),∴ME=3,()22(30)32-+-=2, ∴△PMF 周长的最小值=ME+FM=3+2=5. 故选C .【点睛】本题求线段和的最值问题,把需要求和的线段,找到相等的线段进行转化,转化后的线段共线时为最值情况.11.如图,在Rt △ABC 中,∠BCA =90°,∠BAC =30°,BC =2,将Rt △ABC 绕A 点顺时针旋转90°得到Rt △ADE ,则BC 扫过的面积为( )A.2π B. (23)π-C.23π- D. π【答案】D 【解析】解:在Rt △ABC 中,∠BCA =90°,∠BAC =30°,BC =2,∴AC =23,AB =4,∵将Rt △ABC 绕点A 逆时针旋转90°得到Rt △ADE ,∴△ABC的面积等于△ADE的面积,∠CAB =∠DAE ,AE =AC =23,AD =AB =4,∴∠CAE =∠DAB =90°,∴阴影部分的面积S =S扇形BAD +S △ABC ﹣S 扇形CAE ﹣S △ADE =2904360π⨯+12×2×23﹣290(23)π⨯﹣12×2×23=π.故选D . 点睛:本题考查了三角形、扇形的面积,旋转的旋转,勾股定理等知识点的应用,解此题的关键是把求不规则图形的面积转化成求规则图形(如三角形、扇形)的面积. 12.如图,在平面直角坐标系中,直线l :y=33x -与x轴交于点B 1,以OB 1为边作等边三边形A 1OB 1,过点A 1作A 1B 2平行于x 轴,交直线l 于点B 2,以A 1B 2为边长作等边三角形A 2A 1B 2,过点A 2作A 2B 3平行于x 轴,交直线l 于点B 3,以A 2B 3为边长作等边三角形A 3A 2B 3,…,则点A 2017的横坐标是( )A. 2017214-B. 22017-1C. 22017D. 2017212- 【答案】D 【解析】 【分析】先根据直线l 的解析式求得直线与坐标轴的交点坐标,据此得到∠OB 1D=30°,依据平行的性质、等边三角形得到其他角的度数,继而得到∆A1B1B2是直角三角形的性,依据含有30度直角三角形边的关系,得到相邻两个等边三角形的边长之比为1:2,再依次求出:1A的横坐标为1212-,2A的横坐标为2212-,3A的横坐标为3212-,进而得到n A的横坐标为212n-,据此可得点2017A的横坐标.【详解】解:由直线l:y=33x-可得:直线l与x轴交于点B1(1,0),与y轴交于D(0,-3),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=12OB1=12,即A1的横坐标为12=1212-,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=12A1B2=1,即A2的横坐标为12+1=32=2212-,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=12A2B3=2,即A3的横坐标为12+1+2=72=3212-,同理可得,A4的横坐标为12+1+2+4=154=4212-,由此可得,A n的横坐标为21 2n-,∴点A2017的横坐标是2017212-,故选:D.【点睛】本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律.二、填空题(本大题共 6 小题,共 18 分)13.已知x+y=3,xy=6,则x2y+xy2的值为____.【答案】32【解析】分析:因式分解,把已知整体代入求解.详解:x2y+xy2=xy(x+y)= 63⨯=32.点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(2)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.14.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB 等于______度.【答案】108°【解析】【分析】如图,易得△OCD为等腰三角形,根据正五边形内角度数可求出∠OCD,然后求出顶角∠COD,再用360°减去∠AOC、∠BOD、∠COD即可【详解】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.故答案为108°【点睛】本题考查正多边形的内角计算,分析出△OCD是等腰三角形,然后求出顶角是关键.15.如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是____.【答案】8【解析】试题分析:根据从上边看得到的图形是俯视图,可知从上边看是一个梯形:上底是1,下底是3,两腰是2,周长是1+2+2+3=8,故答案为8.考点:1、简单组合体的三视图;2、截一个几何体16.一般地,当α、β为任意角时,tan(α+β)与tan(α-β)的值可以用下面的公式求得:tan(α±β)=tan tan1tan tanαβαβ±⋅m.例如:tan15°=tan(45°-30°)=tan45tan301tan45tan30-+⋅o oo o313311-+⨯3333-+()()23)3333+-3tan75°的值为______.【答案】【解析】 【分析】根据给定的公式,将tan 451︒=,tan 303︒=代入tan45tan30tan 751tan45+tan30︒︒︒=-︒⋅︒中计算化简即可.【详解】解: tan75°=tan (45°+30°)=tan45tan301tan45tan30︒+︒-︒⋅︒13+.故答案为:【点睛】本题考查了三角函数的计算以及用平方差公式进行分母有理化,读懂新定义的含义是关键.17.若数a 使关于x 的分式方程211a x x +--=4的解为正数,且使关于y ,不等式组21323()0y yy a +⎧->⎪⎨⎪-≤⎩的解集为y <-2,则符合条件的所有整数a 的和为______. 【答案】10 【解析】 【分析】根据分式方程的解为正数即可得出a <6且a≠2,根据不等式组的解集为y <-2,即可得出a≥-2,找出-2≤a <6且a≠2中所有的整数,将其相加即可得出结论.【详解】解:分式方程21x -+1a x -=4的解为64a x -=且x≠1, ∵关于x 的分式方程21x -+1a x-=4的解为正数, ∴64a ->0 且64a-≠1, ∴a <6且a≠2. 21323()0y yy a +⎧-⎪⎨⎪-≤⎩>①② 解不等式①得:y <-2; 解不等式②得:y≤a . ∵关于y不等式组21323()0y yy a +⎧-⎪⎨⎪-≤⎩>的解集为y <-2,∴a≥-2.∴-2≤a<6且a≠2.∵a为整数,∴a=-2、-1、0、1、3、4、5,(-2)+(-1)+0+1+3+4+5=10.故答案为10.【点睛】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组的解集为y<-2,找出-2≤a<6且a≠2是解题的关键.18.观察下列运算过程:计算:1+2+22+ (210)解:设S=1+2+22+…+210,①①×2得2S=2+22+23+…+211,②②-①得S=211-1.所以,1+2+22+…+210=211-1运用上面的计算方法计算:1+3+32+…+32018=______.【答案】2019312-.【解析】【分析】令s=1+3+32+33+⋯+32018,然后在等式的两边同时乘以3,接下来,依据材料中的方程进行计算即可.【详解】解:令s=1+3+32+33+⋯+32018,等式两边同时乘以3得:3s=3+32+33+ (32019)两式相减得:2s=32019-1,∴s=2019312-,故答案为:2019312-.【点睛】本题主要考查的是数字的变化规律,读懂材料中用到的整体思想、方程思想是解题的关键.三、解答题(本大题共 7 小题,共 66 分)19.小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°=22⎛⎫⎪⎪⎝⎭+22⎛⎫⎪⎪⎝⎭=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°-α)=1.(1)当α=30°时,验证sin2α+sin2(90°-α)=1是否成立;(2)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.【答案】(1)证明见解析;(2)成立,证明见解析【解析】试题分析:(1)将α=30°代入求值即可;(2)设∠A=α,∠B=90°-α,将∠A、∠B便可以是一个直角三角形的两个角,在直角三角形中利用正弦函数的定义及勾股定理即可验证.解:(1)当α=30°时,sin2α+sin2(90°-α)=sin230°+sin260°=(12)2+(32)2=14+34=1.(2)小明的猜想成立,证明如下:如图,在△ABC中,∠C=90°,设∠A=α,则∠B=90°-α,∴sin2α+sin2(90°-α)=(BCAB)2+(ACAB)2=222AC BCAB+=22ABAB=1.故猜想成立.20.(2017四川省内江市)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:(1)这项被调查的总人数是多少人?(2)试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;(3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.【答案】(1)50;(2)108°;(3)12.【解析】分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数;(2)画出树状图,由概率公式即可得出答案.本题解析:解:(1)调查的总人数是:19÷38%=50(人).C组的人数有50-15-19-4=12(人),补全条形图如图所示.(2)画树状图如下.共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=61 122=.点睛:本题考查了列表法与树状图、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.21.如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.(1)若13ADAB=,求sinC;(2)求证:DE是⊙O切线.【答案】(1)sinC=13;(2)证明见解析.【解析】【分析】(1)根据直径所对的圆周角是直角得到∠ADB=90°,根据三角形的内角和得到∠ABD+∠BAD=90°. ∠ABC=90°,得到∠C+∠BAC=90°,根据同角的余角相等得到∠C=∠ABD.根据正弦的定义得到sin∠ABD=13,即可求出sinC;(2) 连接OD,根据直角三角形斜边的中线等于斜边的一半得到DE=BE=CE,根据等腰三角形的性质得到∠EDB=∠EBD. ∠ODB=∠OBD.即可求出∠EDO=90°,即可证明.【详解】(1)∵AB为⊙O的直径,∴∠ADB=90°,∴∠ABD+∠BAD=90°.∵∠ABC=90°,∴∠C+∠BAC=90°,∴∠C=∠ABD.∵13 ADAB,∴sin∠ABD=13,∴sinC=1 3 .(2)如图,连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠BDC=90°.∵E为BC的中点,∴DE=BE=CE,∴∠EDB=∠EBD.∵OD=OB,∴∠ODB=∠OBD.∵∠ABC=90°,∴∠EDO=∠EDB+∠ODB=∠EBD+∠OBD=∠ABC=90°,∴OD⊥DE.∵OD是⊙O的半径,∴DE是⊙O的切线.【点睛】考查圆周角定理,同角的余角相等,直角三角形的性质,圆的切线的证明等,比较基础,难度不大.22.如图,物理教师为同学们演示单摆运动,单摆左右摆动中,在OA 的位置时俯角∠EOA =30°,在OB 的位置时俯角∠FOB =60°,若OC ⊥EF ,点A 比点B 高7cm .(1)求单摆的长度;(2)求从点A 摆动到点B 经过的路径长. 【答案】(1)单摆的长度约为(7+7 3 )cm ;(2)从点A 摆动到点B 经过的路径长为773π+ cm . 【解析】试题分析:(1)过点A 作AP ⊥OC 于点P ,过点B 作BQ ⊥OC 于点Q ,由题意得60,30AOP BOQ o o,∠=∠=设OA OB x ==,根据三角函数得13cos ,cos 2OP OA AOP x OQ OB BOQ x =∠==∠=,由PQ OQ OP =-可得关于x 的方程,解之可得;(2)由(1)知90773AOB OA OB ∠=︒==+,,利用弧长公式求解可得. 试题解析:(1)如图,过点A 作AP ⊥OC 于点P ,过点B 作BQ ⊥OC 于点Q ,3060EOA FOB ∠=∠=o o Q ,,且OC ⊥EF , 60,30AOP BOQ ∴∠=∠=o o , 设OA =OB =x ,则在Rt △AOP 中, 1cos ,2OP OA AOP x =∠=在Rt △BOQ 中, cos 2OQ OB BOQ x =∠=,由PQ =OQ −OP 可得1722x x -=,解得:7x =+(cm ),答:单摆的长度约为7+; (2)由(1)知, 60,30,AOP BOQ ∠=∠=o o且7OA OB ==+ 90AOB ∴∠=o ,则从点A 摆动到点B .=答:从点A 摆动到点B πcm . 23.自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16 000元采购A 型商品的件数是用7 500元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价多10元. (1)求一件A ,B 型商品的进价分别为多少元?(2)若该欧洲客商购进A ,B 型商品共250件进行试销,其中A 型商品的件数不大于B 型的件数,且不小于80件,已知A 型商品的售价为240元/件,B 型商品的售价为220元/件,且全部售出.设购进A 型商品m 件,求该客商销售这批商品的利润v 与m 之间的函数解析式,并写出m 的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A 型商品,就从一件A 型商品的利润中捐献慈善资金a 元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.【答案】(1)一件B 型商品的进价为150元,一件A 型商品的进价为160元;(2)80≤m ≤125;(3)m =80时,最大利润为(18 300-80a)元. 【解析】 【分析】(1)设一件B 型商品的进价为x 元,则一件A 型商品的进价为(x +10)元.根据16000元采购A 型商品的件数是用7500元采购B 型商品的件数的2倍,列出方程即可解决问题; (2)根据总利润=两种商品的利润之和,列出式子即可解决问题;(3)设利润为w 元.则w =(80﹣a )m +70(250﹣m )=(10﹣a )m +17500,分三种情形讨论即可解决问题.【详解】解:(1)设一件B 型商品的进价为x 元,则一件A 型商品的进价为(x +10)元. 由题意:160007500210x x=⨯+,解得x =150,经检验x =150是分式方程的解. 答:一件B 型商品的进价为150元,一件A 型商品的进价为160元. (2)因客商购进A 型商品m 件,所以客商购进B 型商品(250﹣m )件.由题意:v =80m +70(250﹣m )=10m +17500,∵80≤m ≤250﹣m ,∴80≤m ≤125,∴v =10m +17500(80≤m ≤125); (3)设利润为w 元.则w =(80﹣a )m +70(250﹣m )=(10﹣a )m +17500:①当10﹣a >0时,w 随m 的增大而增大,所以m =125时,最大利润为(18750﹣125a )元. ②当10﹣a =0时,最大利润为17500元.③当10﹣a <0时,w 随m 的增大而减小,所以m =80时,最大利润为(18300﹣80a )元,∴当0<a <10时,最大利润为(18750﹣125a )元;当a =10时,最大利润为17500元;当a >10时,最大利润为(18300﹣80a )元.【点睛】本题考查了分式方程的应用、一次函数的应用等知识,解题的关键是理解题意,学会构建方程或一次函数解决问题,属于中考常考题型. 24.如图,对称轴为直线x =72的抛物线经过点A (6,0)和B (0,4). (1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形,求四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)①当四边形OEAF 的面积为24时,请判断OEAF 是否为菱形?②是否存在点E ,使四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为22725()326y x =--,顶点为;(2)274()252S x =--+,1<x <6;(3)①四边形OEAF 是菱形;②不存在,理由见解析 【解析】 【分析】(1)已知了抛物线的对称轴解析式,可用顶点式二次函数通式来设抛物线,然后将A 、B 两点坐标代入求解即可.(2)平行四边形的面积为三角形OEA 面积的2倍,因此可根据E 点的横坐标,用抛物线的解析式求出E 点的纵坐标,那么E 点纵坐标的绝对值即为△OAE 的高,由此可根据三角形的面积公式得出△AOE 的面积与x 的函数关系式进而可得出S 与x 的函数关系式.(3)①将S=24代入S ,x 的函数关系式中求出x 的值,即可得出E 点的坐标和OE ,OA 的长;如果平行四边形OEAF 是菱形,则需满足平行四边形相邻两边的长相等,据此可判断出四边形OEAF 是否为菱形. ②如果四边形OEAF 是正方形,那么三角形OEA 应该是等腰直角三角形,即E 点的坐标为(3,﹣3)将其代入抛物线的解析式中即可判断出是否存在符合条件的E 点.【详解】(1)由抛物线的对称轴是72x =,可设解析式为27()2y a x k =-+.把A 、B 两点坐标代入上式,得 227(6)0,2{7(0) 4.2a k a k -+=-+=解之,得225,.36a k ==-故抛物线解析式为22725()326y x =--,顶点为725(,).26- (2)∵点(,)E x y 在抛物线上,位于第四象限,且坐标适合22725()326y x =--, ∴y<0,即-y>0,-y 表示点E 到OA 的距离. ∵OA 是OEAF Y 的对角线, ∴2172264()2522OAE S S OA y y x ==⨯⨯⋅=-=--+V . 因为抛物线与x 轴的两个交点是(1,0)的(6,0),所以,自变量x 的 取值范围是1<x <6.(3)①根据题意,当S = 24时,即274()25242x --+=.化简,得271().24x -=解之,得123, 4.x x == 故所求的点E 有两个,分别为E 1(3,-4),E 2(4,-4). 点E 1(3,-4)满足OE = AE ,所以OEAF Y 是菱形; 点E 2(4,-4)不满足OE = AE ,所以OEAF Y 不是菱形. ②当OA ⊥EF ,且OA = EF 时,OEAF Y 是正方形, 此时点E 的坐标只能是(3,-3). 而坐标为(3,-3)的点不在抛物线上, 故不存在这样的点E ,使OEAF Y 为正方形.25.如图,在矩形ABCD 中,AB=3,BC=4,将矩形ABCD 绕点C 按顺时针方向旋转α角,得到矩形A'B'C'D',B'C 与AD 交于点E ,AD 的延长线与A'D'交于点F .(1)如图①,当α=60°时,连接DD',求DD'和A'F 的长;(2)如图②,当矩形A'B'CD'的顶点A'落在CD 的延长线上时,求EF 的长; (3)如图③,当AE=EF 时,连接AC ,CF ,求AC•CF 的值. 【答案】(1)DD′=3,A′F= 43;(2)154;(3)754. 【解析】 【分析】(1)①如图①中,∵矩形ABCD 绕点C 按顺时针方向旋转α角,得到矩形A 'B 'C 'D ',只要证明△CDD ′是等边三角形即可解决问题;②如图①中,连接CF ,在Rt △CD ′F 中,求出FD ′即可解决问题;(2)由△A ′DF ∽△A ′D ′C ,可推出DF 的长,同理可得△CDE ∽△CB ′A ′,可求出DE 的长,即可解决问题; (3)如图③中,作FG ⊥CB ′于G ,由S △ACF =12•AC •CF =12•AF •CD ,把问题转化为求AF •CD ,只要证明∠ACF =90°,证明△CAD ∽△F AC ,即可解决问题;【详解】解:(1)①如图①中,∵矩形ABCD 绕点C 按顺时针方向旋转α角,得到矩形A'B'C'D', ∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=3∠A′D′C=∠ADC=90°. ∵α=60°,∴∠DCD′=60°,∴△CDD′是等边三角形,∴DD′=CD=3.②如图①中,连接CF.∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,∴△CDF≌△CD′F,∴∠DCF=∠D′CF=12∠DCD′=30°.在Rt△CD′F中,∵tan∠D′CF=''D F CD,∴D′F=3,∴A′F=A′D′﹣D′F=4﹣3.(2)如图②中,在Rt△A′CD′中,∵∠D′=90°,∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2.∵∠DA′F=∠CA′D′,∠A′D F=∠D′=90°,∴△A′DF∽△A′D′C,∴''''A D DFA D CD=,∴243DF=,∴DF=32.同理可得△CDE∽△CB′A′,∴'''CD EDCB A B=,∴343ED=,∴ED=94,∴EF=ED+DF=154.(3)如图③中,作FG⊥CB′于G.∵四边形A′B′CD′是矩形,∴GF=CD′=CD=3.∵S△CEF=12•EF•DC=12•CE•FG,∴CE=EF,∵AE=EF,∴AE=EF=CE,∴∠ACF=90°.∵∠ADC=∠ACF,∠CAD=∠FAC,∴△CAD∽△FAC,∴AC ADAF AC=,∴AC2=AD•AF,∴AF=254.∵S△ACF=12•AC•CF=12•AF•CD,∴AC•CF=AF•CD=754.21。
精品解析:2023年山东省烟台市中考数学真题(解析版)
2023年烟台市初中学业水平考试数学试题一、选择题1. 23−的倒数是( )A.23 B. 23−C.32D. 32−【答案】D 【解析】【分析】根据乘积是1两个数叫做互为倒数解答. 【详解】解:∵23132−×−=, ∴23−的倒数是32−,故选:D .【点睛】本题考查倒数的定义,掌握互为倒数的两个数积为1,是解题的关键. 2.是同类二次根式的是( )A.B.C.D.【答案】C 【解析】【分析】根据同类二次根式定义,逐个进行判断即可.【详解】解:A2=不是同类二次根式,不符合题意; B不是同类二次根式,不符合题意; C=是同类二次根式,符合题意; D=不是同类二次根式,不符合题意; 故选:C .【点睛】本题主要考查了同类二次根式,解题的关键是掌握同类二次根式的定义:将二次根式化为最简二次根式后,被开方数相同的二次根式是同类二次根式;最简二次根式的特征:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式. 3. 下列四种图案中,是中心对称图形的是( )的的A. B. C. D.【答案】B 【解析】【分析】根据中心对称图形的定义,逐个进行判断即可,中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形. 【详解】解:根据题意可得:是中心对称图形的只有B , 故选:B .【点睛】本题主要考查了中心对称图形的定义,解题的关键是中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形. 4. 下列计算正确的是( ) A. 2242a a a += B. ()32626a a = C. 235a a a ⋅= D. 824a a a ÷=【答案】C 【解析】【分析】根据合并同类项、幂的乘方、同底数幂的乘法、同底数幂的除法的运算法则逐项排查即可解答. 【详解】解:A .2222a a a +=,故该选项不正确,不符合题意; B .()32628a a =,故该选项不正确,不符合题意;C .235a a a ⋅=,故该选项正确,符合题意;D .826a a a ÷=,故该选项不正确,不符合题意. 故选:C .【点睛】本题主要考查了合并同类项、幂的乘方、同底数幂的乘法、同底数幂的除法等知识,掌握运算法则是解题的关键. 5. 不等式组321,23m m −≥ −>的解集在同一条数轴上表示正确的是( )A. B.C.D.【答案】A【解析】【分析】用数轴表示不等式的解集时,要注意“两定”:一是定界点,定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.【详解】解:32123m m −≥−>①② 解不等式①得:m 1≥ 解不等式②得:1m <−将不等式的解集表示在数轴上,如图所示,故选:A .【点睛】本题主要考查数轴上表示不等式的解集,熟练掌握数轴上表示不等式组的解集的方法是解题的关键.6. 如图,对正方体进行两次切割,得到如图⑤所示的几何体,则图⑤几何体的俯视图为( )A. B. C. D.【答案】A 【解析】【分析】根据俯视图的定义,即可进行解答.【详解】解:根据题意可得:从该几何体正上方看,棱AE 的投影为点E ,棱AB 的投影为线段BE ,棱AD 的投影为线段ED ,棱AC 的投影为正方形BCDE 的对角线,∴该几何体的俯视图为:,故选:A【点睛】本题主要考查了俯视图,解题的关键是熟练掌握俯视图的定义:从物体正上方看到的图形是俯视图.7. 长时间观看手机、电脑等电子产品对视力影响非常大.6月6日是“全国爱眼日”,为了解学生的视力情况,某学校从甲、乙两个班级各随机抽取8名学生进行调查,并将统计数据绘制成如图所示的折线统计图,则下列说法正确的是( )A. 甲班视力值平均数大于乙班视力值的平均数B.C. 甲班视力值的极差小于乙班视力值的极差D. 甲班视力值的方差小于乙班视力值的方差 【答案】D 【解析】【分析】根据平均数,中位数,极差,方差的定义分别求解即可. 【详解】甲班视力值分别为:4.7,5.0,4.7,4.8,4.7,4.7,4.6,4.4; 从小到大排列为:4.4,4.6,4.7,4.7,4.7,4.7,4.8,5.0;中位数为4.7 4.7=4.72+, 平均数为()14.4 4.6 4.7 4.7 4.7 4.7 4.85.0=4.78+++++++;极差为5.0 4.40.6−=方差为()()()()222221=0.30.10.10.3=0.0258S +++甲;乙班视力值分别为:4.8,4.7,4.7,5.0,4.6,4.5,4.9,4.4;的从小到大排列为:4.4,4.5,4.6,4.7,4.7,4.8,4.9,5.0,中位数为4.7 4.7=4.72+ 平均数为()14.4 4.5 4.6 4.7 4.7 4.8 4.95.0=4.78+++++++;极差为5.0 4.40.6−=方差为()()()()()()22222221=0.30.20.10.10.20.3=0.0358S +++++甲;甲、乙班视力值的平均数、中位数、极差都相等,甲班视力值的方差小于乙班视力值的方差,故D 选项正确 故选:D .【点睛】本题考查了折线统计图,求平均数,中位数,极差,方差,熟练掌握平均数,中位数,极差,方差的定义是解题的关键.8. 如图,在正方形中,阴影部分是以正方形的顶点及其对称中心为圆心,以正方形边长的一半为半径作弧形成的封闭图形.将一个小球在该正方形内自由滚动,小球随机地停在正方形内的某一点上.若小球停在阴影部分的概率为1P ,停在空白部分的概率为2P ,则1P 与2P 的大小关系为( )A. 12P P <B. 12P PC. 12P P >D. 无法判断【答案】C 【解析】【分析】根据题意可得阴影部分面积等于正方形面积的一半,进而即可求解. 【详解】解:如图所示,连接AE BD ,交于O , 由题意得,A B C D ,,,分别是正方形四条边的中点, ∴点O 为正方形的中心, ∴AOBF AODC S S =四边形四边形,根据题意,可得扇形OAB 的面积等于扇形CAD 的面积, ∴AOBF OAB AODC AOC S S S S −=−四边形扇形四边形扇形,∴阴影部分面积等于空白部分面积,即阴影部分面积等于正方形面积的一半 ∴12P P =, 故选:C .【点睛】本题考查了正方形的性质,扇形面积,几何概率,得出阴影部分面积等于正方形面积的一半是解题的关键.9. 如图,抛物线2y ax bx c ++的顶点A 的坐标为1,2m−,与x 轴的一个交点位于0合和1之间,则以下结论:①0abc >;②20b c +>;③若图象经过点()()123,,3,y y −,则12y y >;④若关于x 的一元二次方程230ax bx c ++−=无实数根,则3m <.其中正确结论的个数是( )A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】根据图象,分别得出a 、b 、c 的符号,即可判断①;根据对称轴得出a b =,再根据图象得出当1x =时,0y a b c =++<,即可判断②;分别计算两点到对称轴的距离,再根据该抛物线开口向下,在抛物线上的点离对称轴越远,函数值越小,即可判断③;将方程230ax bx c ++−=移项可得23ax bx c ++=,根据该方程无实数根,得出抛物线2y ax bx c ++与直线3y =没有交点,即可判断④.【详解】解:①∵该抛物线开口向下, ∴a<0,∵该抛物线的对称轴在y 轴左侧, ∴0b <,∵该抛物线于y 轴交于正半轴,∴0c >, ∴0abc >,故①正确,符合题意; ②∵1,2A m−, ∴该抛物线的对称轴为直线122b x a =-=-,则a b =, 当1x =时,y a bc =++,把a b =得:当1x =时,2y b c =+, 由图可知:当1x =时,0y <, ∴20b c +<,故②不正确,不符合题意; ③∵该抛物线的对称轴为直线12x =−, ∴()13,y −到对称轴的距离为()15322−−−=,()23,y 到对称轴的距离为17322−−= , ∵该抛物线开口向下,∵5722<, ∴12y y >,故③正确,符合题意;④将方程230ax bx c ++−=移项可得23ax bx c ++=, ∵230ax bx c ++−=无实数根,∴抛物线2y ax bx c ++与直线3y =没有交点, ∵1,2A m−, ∴3m <.故④正确综上:正确的有:①③④,共三个. 故选:C .【点睛】本题主要考查了二次函数的图象和性质,解题的关键是掌握根据二次函数图象判断各系数的方法,熟练掌握二次函数的图象和性质.10. 如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A …,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A −−−,()32,1A −−,则顶点100A 的坐标为( )A ()31.34 B. ()31,34− C. ()32,35 D. ()32,0【答案】A 【解析】【分析】根据图象可得移动3次完成一个循环,从而可得出点坐标的规律()323n A n n −−,.【详解】解:∵()121A −,,()412A −,,()703A ,,()1014A ,, , ∴()323n A n n −−,,∵1003342=×−,则34n =,∴()1003134A ,, 故选:A .【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律.二、填空题11. “北斗系统”是我国自主建设运行的全球卫星导航系统,国内多个导航地图采用北斗优先定位.目前,北斗定位服务日均使用量已超过3600亿次.3600亿用科学记数法表示为________. 【答案】113.610×.【解析】【分析】科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 【详解】解:3600亿360000000000=,用科学记数法表示为113.610×. 故答案为:113.610×.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数,正确确定a 的值以及n 的值是解决问题的关键.12. 一杆古秤在称物时的状态如图所示,已知1102∠=°,则2∠的度数为_____.【答案】78°##78度 【解析】【分析】根据两直线平行,内错角相等,即可求解. AB DC ∥, ∴2BCD ∠=∠,∵1180BCD ∠+∠=°,1102∠=°, ∴180178BCD ∠=°−∠=°∴278∠=°.故答案为:78°.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.13. 如图,将一个量角器与一把无刻度直尺水平摆放,直尺的长边与量角器的外弧分别交于点A ,B ,C ,D ,连接AB ,则BAD ∠的度数为_______.【答案】52.5° 【解析】【分析】如图:连接,,,,,OA OB OC OD AD AB ,由题意可得:OA OB OC OD ===,502525AOB ∠=°−°=°,然后再根据等腰三角形的性质求得65OAB ∠=°、25OAD ∠=°,最后根据角的和差即可解答.【详解】解:如图:连接,,,,,OA OB OC OD AD AB ,由题意可得:OA OB OC OD ===,502525AOB ∠=°−°=°,15525130AOD ∠=°−°=°,∴()118077.52OABAOB ∠=°−∠=°,()1180252OAD AOB ∠=°−∠=°, ∴52.5OAB A BAD O D ∠∠−∠==°. 故答案为52.5°.【点睛】本题主要考查了角的度量、等腰三角形的性质等知识点,灵活运用等腰三角形的性质是解答本题的关键.14. 如图,利用课本上的计算器进行计算,其按键顺序及结果如下:①按键的结果为4;②按键的结果为8; ③按键的结果为0.5;④按键的结果为25.以上说法正确的序号是___________. 【答案】①③ 【解析】【分析】根据计算器按键,写出式子,进行计算即可.【详解】解:①4=;故①正确,符合题意; ②按键的结果为()3424+−=−;故②不正确,不符合题意;③按键的结果为()sin 4515sin 300.5°−°=°=;故③正确,符合题意; ④按键的结果为2132102−×=;故④不正确,不符合题意;综上:正确的有①③. 故答案为:①③.【点睛】本题主要考查了科学计算器是使用,解题的关键是熟练掌握和了解科学计算器各个按键的含义. 15. 如图,在直角坐标系中,A 与x 轴相切于点,B CB 为A 的直径,点C 在函数(0,0)ky k x x=>>的图象上,D 为y 轴上一点,ACD 的面积为6,则k 的值为________.【答案】24 【解析】【分析】设,k C a a,则,kOB a AC a==,则122k AC BC a ==,根据三角形的面积公式得出162ACD S AC OB =⋅= ,列出方程求解即可. 【详解】解:设,k C a a, ∵A 与x 轴相切于点B , ∴BC x ⊥轴,∴,kOB a AC a==,则点D 到BC 的距离为a , ∵CB 为A 的直径,∴122kAC BC a ==, ∴16224ACDk k S a a =⋅⋅== , 解得:24k =, 故答案为:24.【点睛】本题主要考查了切线的性质,反比例函数的图象和性质,解题的关键掌握切线的定义:经过半径外端且垂直于半径的直线是圆的切线,以及反比例函数图象上点的坐标特征.16. 如图1,在ABC 中,动点P 从点A 出发沿折线AB BC CA →→匀速运动至点A 后停止.设点P 的运动路程为x ,线段AP 的长度为y 2是y 与x 的函数关系的大致图象,其中点F 为曲线DE 的最低点,则ABC 的高CG 的长为_______.【解析】【分析】过点A 作AQ BC ⊥于点Q ,当点P 与Q 重合时,在图2中F 点表示当12AB BQ +=时,点P 到达点Q ,此时当P 在BC 上运动时,AP 最小,勾股定理求得AQ ,然后等面积法即可求解.【详解】如图过点A 作AQ BC ⊥于点Q ,当点P 与Q 重合时,在图2中F 点表示当12AB BQ +=时,点P 到达点Q ,此时当P 在BC 上运动时,AP 最小,∴7BC =,4,3BQ QC == 在Rt ABQ 中,8,4AB BQ ==∴AQ∵1122ABC S AB CG AQ BC =×=× ,∴BC AQ CG AB ×==,. 【点睛】本题考查了动点问题的函数图象,勾股定理,垂线段最短,从函数图象获取信息是解题的关键.三、解答题17. 先化简,再求值:2695222a a a a a −+÷++−−,其中a 是使不等式112a −≤成立的正整数. 【答案】33a a −+;12−【解析】【分析】先根据分式混合运算法则进行化简,然后求出不等式的解集,得出正整数a 的值,再代入数据计算即可.【详解】解:2695222a a a a a −+÷++ −−()()()23225222a a a a a a −+−=÷+ −−−()2234522a a a a−−+÷−−()()()232233a aa a a −−⋅−+−33a a −=+, 解不等式112a −≤得:3a ≤, ∵a 为正整数, ∴1a =,2,3,∵要使分式有意义20a −≠, ∴2a ≠,∵当3a =时,552320223a a ++=++=−−, ∴3a ≠,∴把1a =代入得:原式131132−==−+. 【点睛】本题主要考查了分式化简求作,分式有意义的条件,解不等式,解题的关键是熟练掌握分式混合运算法则,准确计算.18. “基础学科拔尖学生培养试验计划”简称“珠峰计划”,是国家为回应“钱学森之问”而推出的一项A ,B ,C ,D ,E 五所大学设有数学学科拔尖学生培养基地,并开设了暑期夏令营活动,参加活动的每名中学生只能选择其中一所大学.某市为了解中学生的参与情况,随机抽取部分学生进行调查,并将统计数据整理后,绘制了如下不完整的条形统计图和扇形统计图.(1)请将条形统计图补充完整;(2)在扇形统计图中,D 所在的扇形的圆心角的度数为_________;若该市有1000名中学生参加本次活动,则选择A 大学的大约有_________人;(3)甲、乙两位同学计划从A ,B ,C 三所大学中任选一所学校参加夏令营活动,请利用树状图或表格求两人恰好选取同一所大学的概率.【答案】(1)见解析(2)14.4°;200.(3)1 3【解析】【分析】(1)根据C的人数除以占比得到总人数,进而求得B的人数,补全统计图即可求解;(2)根据D的占比乘以360°得到圆心角的度数,根据1000乘以选择A的人数的占比即可求解;(3)根据列表法求概率即可求解.【小问1详解】解:总人数为1428%50÷=(人)∴选择B大学的人数为5010142816−−−−=,补全统计图如图所示,【小问2详解】在扇形统计图中,D所在的扇形的圆心角的度数为236014.4 50°×=°,选择A大学的大约有101000=20050×(人)故答案为:14.4°;200.【小问3详解】列表如下,共有9种等可能结果,其中有3种符合题意,∴甲、乙两人恰好选取同一所大学的概率为13.【点睛】本题主要考查了条形统计图和扇形统计图的综合运用,样本估计总体,列表法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19. 风电项目对于调整能源结构和转变经济发展方式具有重要意义.某电力部门在一处坡角为30°的坡地新安装了一架风力发电机,如图1.某校实践活动小组对该坡地上的这架风力发电机的塔杆高度进行了测量,图2为测量示意图.已知斜坡CD 长16米,在地面点A 处测得风力发电机塔杆顶端P 点的仰角为45°,利用无人机在点A 的正上方53米的点B 处测得P 点的俯角为18°,求该风力发电机塔杆PD 的高度.(参考数据:sin180.309≈°,cos180.951≈°,tan180.325≈°)【答案】该风力发电机塔杆PD 的高度为32米 【解析】【分析】过点P 作PF AB ⊥于点F ,延长PD 交AC 延长线于点E ,先根据含30°角直角三角形的性质得出8DE =,设PD x =米,则()8PD DE x =+=+米,进而得出()8AE x =+米,证明四边形FAEP 为矩形,则()8PFAE x ==+米,()8AFPE x ==+米,根据线段之间的和差关系得出()45BF AB AF s x =−=−米,最后根据tan18BFPF=°,列出方程求解即可.【详解】解:过点P 作PF AB ⊥于点F ,延长PD 交AC 延长线于点E ,根据题意可得:AB 、PD 垂直于水平面,30DCE ∠=°,45PAC ∠=°,18GBP ∠=°, ∴PE AE ⊥,∵16CD =米, ∴1116822DE CD ==×=(米), 设PD x =米,则()8PE PD DE x =+=+米,∵45PAC ∠=°,PE AE ⊥,∴()8tan 45PEAEx ==+°米,∵AB AE ⊥,PE AE ⊥,PF AB ⊥,∴四边形FAEP 为矩形,∴()8PFAE x ==+米,()8AFPE x ==+米,∵53AB =米,∴()()53845BF AB AF x x =−=−+=−米, ∵18GBP ∠=°, ∴18BPF ∠=°, ∴tan18BF PF =°,即450.3258xx−≈+, 解得:32x ≈,答:该风力发电机塔杆PD 的高度为32米.【点睛】本题主要考查了解直角三角形的实际应用,解题的关键是正确画出辅助线,构造直角三角形,熟练掌握解直角三角形的方法和步骤. 20. 【问题背景】如图1,数学实践课上,学习小组进行探究活动,老师要求大家对矩形ABCD 进行如下操作:①分别以点,B C 为圆心,以大于12BC 的长度为半径作弧,两弧相交于点E ,F ,作直线EF 交BC 于点O ,连接AO ;②将ABO 沿AO 翻折,点B 的对应点落在点P 处,作射线AP 交CD 于点Q .【问题提出】在矩形ABCD 中,53AD AB ==,,求线段CQ 的长.【问题解决】经过小组合作、探究、展示,其中的两个方案如下:方案一:连接OQ ,如图2.经过推理、计算可求出线段CQ 的长;方案二:将ABO 绕点O 旋转180°至RCO △处,如图3.经过推理、计算可求出线段CQ 的长. 请你任选其中一种方案求线段CQ 的长. 【答案】线段CQ 的长为2512. 【解析】【分析】方案一:连接OQ ,由翻折的不变性,知3AP AB ==, 2.5OPOB ==,证明()HL QPO QCO ≌△△,推出PQ CQ =,设PQCQ x ==,在Rt ADQ △中,利用勾股定理列式计算求解即可;方案二:将ABO 绕点O 旋转180°至RCO △处,证明OAQ R ∠=∠,推出QA QR =,设CQ x =,同方案一即可求解.【详解】解:方案一:连接OQ ,如图2.∵四边形ABCD 矩形,∴3AB CD ==,5ADBC ==, 由作图知12.52BOOC BC ===, 由翻折的不变性,知3AP AB ==, 2.5OP OB ==,90APO B ∠=∠=°,∴ 2.5OP OC ==,90QPO C ∠=∠=°,又OQ OQ =, ∴()HL QPO QCO ≌△△, ∴PQ CQ =,设PQCQ x ==,则3AQ x =+,3DQ x =−,是在Rt ADQ △中,222AD QD AQ +=,即()()222533x x +−=+, 解得2512x =, ∴线段CQ 的长为2512; 方案二:将ABO 绕点O 旋转180°至RCO △处,如图3.∵四边形ABCD 是矩形,∴3AB CD ==,5ADBC ==, 由作图知12.52BOOC BC ===, 由旋转的不变性,知3CR AB ==,BAO R ∠=∠,90B OCR ∠=∠=°, 则9090180OCR OCD ∠+∠=°+°=°, ∴D C R 、、共线,由翻折的不变性,知BAO OAQ ∠=∠, ∴OAQ R ∠=∠, ∴QA QR =,设CQ x =,则3QA QR x ==+,3DQ x =−,在Rt ADQ △中,222AD QD AQ +=,即()()222533x x +−=+, 解得2512x =, ∴线段CQ 的长为2512. 【点睛】本题考查了作线段的垂直平分线,翻折的性质,旋转的性质,勾股定理,全等三角形的判定和性质,等腰三角形的判定和性质,解题的关键是学会利用参数构建方程解决问题.21. 中华优秀传统文化源远流长、是中华文明的智慧结晶.《孙子算经》、《周髀算经》是我国古代较为普及的算书、许多问题浅显有趣.某书店的《孙子算经》单价是《周髀算经》单价的34,用600元购买《孙子算经》比购买《周髀算经》多买5本. (1)求两种图书的单价分别为多少元?(2)为等备“3.14数学节”活动,某校计划到该书店购买这两种图书共80本,且购买的《周髀算经》数量不少于《孙子算经》数量的一半.由于购买量大,书店打折优惠,两种图书均按八折出售.求两种图书分别购买多少本时费用最少?【答案】(1)《周髀算经》单价为40元,则《孙子算经》单价是30元;(2)当购买《周髀算经》27本,《孙子算经》53本时,购买两类图书总费用最少,最少总费用为2316元. 【解析】【分析】(1)设《周髀算经》单价为x 元,则《孙子算经》单价是34x 元,根据“用600元购买《孙子算经》比购买《周髀算经》多买5本”列分式方程,解之即可求解;(2)根据购买的《周髀算经》数量不少于《孙子算经》数量的一半列出不等式求出m 的取值范围,根据m 的取值范围结合函数解析式解答即可. 【小问1详解】解:设《周髀算经》单价为x 元,则《孙子算经》单价是34x 元, 依题意得,600600534x x=+, 解得40x =,经检验,40x =是原方程的解,且符合题意,340304×=, 答:《周髀算经》单价为40元,则《孙子算经》单价是30元; 【小问2详解】解:设购买的《周髀算经》数量m 本,则购买的《孙子算经》数量为()80m −本, 依题意得,()1802m m ≥−, 解得2263m ≥, 设购买《周髀算经》和《孙子算经》的总费用为y (元), 依题意得,()400.8300.88081920y m m m =×+×−=+,∵80k =>,∴y 随m 的增大而增大,∴当27m =时,有最小值,此时82719202316y =×+=(元), 802753−=(本)答:当购买《周髀算经》27本,《孙子算经》53本时,购买两类图书总费用最少,最少总费用为2316元.【点睛】本题主要考查分式方程的实际应用,一次函数的实际应用以及一元一次不等式的实际应用,根据题意表示出y 与x 之间的函数关系式以及列出不等式是解题的关键.22. 如图,在菱形ABCD 中,对角线,AC BD 相交于点,E O 经过,A D 两点,交对角线AC 于点F ,连接OF 交AD 于点G ,且AG GD =.(1)求证:AB 是O 的切线;(2)已知O 的半径与菱形的边长之比为5:8,求tan ADB ∠的值.【答案】(1)见解析 (2)tan 2ADB ∠=.【解析】【分析】(1)利用垂径定理得OF AD ⊥,利用菱形的性质得GAF BAF ∠=∠,利用半径相等得OAF OFA ∠=∠,即可证明90OAF BAF ∠+∠=°,据此即可证明结论成立;(2)设4AG GD a ==,由题意得:5:4OA AG =,求得5OA a =,由勾股定理得到3OG a =,求得2FG a =,利用菱形的性质求得ADB AFG ∠=∠,据此求解即可. 【小问1详解】证明:连接OA ,∵AG GD =,由垂径定理知OF AD ⊥,∴90OGA FGA ∠=∠=°,∵四边形ABCD 是菱形,∴GAF BAF ∠=∠,∴90GAF AFG BAF AFG ∠+∠=°=∠+∠,∵OA OF =,∴OAF OFA ∠=∠,∴90OAF BAF OAB ∠+∠=∠=°,又∵OA 为O 的半径,∴AB 是O 的切线;【小问2详解】解:∵四边形ABCD 是菱形,AG GD =,∴设4AG GD a ==,∵O 的半径与菱形的边长之比为5:8,∴在Rt OAG △中,:5:4OA AG =,∴5OA a =,3OG a ==,∴2FG OF OG a =−=,∵四边形ABCD 是菱形,∴BD AC ⊥,即90DEA FGA ∠=°=∠,∴ADB AFG ∠=∠, ∴4tan tan 22AG a ADB AFG FG a∠=∠===. 【点睛】本题考查了菱形的性质,垂径定理,切线的判定,求角的正切值,勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件.23. 如图,点C 为线段AB 上一点,分别以,AC BC 为等腰三角形的底边,在AB 的同侧作等腰ACD 和等腰BCE ,且A CBE ∠=∠.在线段EC 上取一点F ,使EF AD =,连接,BF DE .(1)如图1,求证:DE BF =;(2)如图2,若2AD BF =,的延长线恰好经过DE 的中点G ,求BE 的长.【答案】(1)见解析 (2)2BE =【解析】【分析】(1)证明CD BE ∥,推出DCE BEF ∠=∠,利用SAS 证明DCE FEB ≌△△即可证明结论成立; (2)取CF 的中点H ,连接GH ,证明GH 是FCD 的中位线,设BE a =,则122FH a =−,证明FGH FBE ∽△△,得到GH FH BE EF=,即2440a a −−=,解方程即可求解. 【小问1详解】 证明:∵等腰ACD 和等腰BCE ,∴AD CD =,EC EB =,A DCA ∠=∠,∵A CBE ∠=∠,∴DCA CBE ∠=∠,∴CD BE ∥,∴DCE BEF ∠=∠,∵EF AD =,∴EF CD =,在DCE △和FEB 中,CD EF DCE FEB EC = ∠=∠ =, ∴()SAS DCE FEB ≌△△,∴DE BF =;【小问2详解】解:取CF 的中点H ,连接GH ,∵点G 是DE 的中点,∴GH 是FCD 的中位线, ∴11122GH CD AD ===,GH CD ∥,设BE a =,则111222CH EH CE BE a ====, ∵2EF AD ==, ∴122FH a =−, ∵CD BE ∥,∴GH BE ∥,∴FGH FBE ∽△△, ∴GH FH BE EF =,即12122a a −=, 整理得2440a a −−=,解得2a =+(负值已舍),经检验2a =+是所列方程的解,且符合题意,∴2BE =【点睛】本题考查了相似三角形的判定和性质,解一元二次方程,三角形中位线定理,全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题.24. 如图,抛物线25y ax bx =++与x 轴交于,A B 两点,与y 轴交于点,4C AB =.抛物线的对称轴3x =与经过点A 的直线1y kx =−交于点D ,与x 轴交于点E .(1)求直线AD 及抛物线的表达式;(2)在抛物线上是否存在点M ,使得ADM △是以AD 为直角边的直角三角形?若存在,求出所有点M 的坐标;若不存在,请说明理由;(3)以点B 为圆心,画半径为2的圆,点P 为B 上一个动点,请求出12+PC PA 的最小值. 【答案】(1)直线AD 的解析式为1y x =−;抛物线解析式为265y x x =−+(2)存在,点M 的坐标为()4,3−或()0,5 或()5,0(3【解析】【分析】(1)根据对称轴3x =,4AB =,得到点A 及B 的坐标,再利用待定系数法求解析式即可;(2)先求出点D 的坐标,再分两种情况:①当90DAM ∠=°时,求出直线AM 的解析式为1y x =−+,解方程组2165y x y x x =−+ =−+ ,即可得到点M 的坐标;②当90ADM ∠=°时,求出直线DM 的解析式为5y x =−+,解方程组2565y x y x x =−+ =−+,即可得到点M 的坐标; (3)在AB 上取点F ,使1BF =,连接CF ,证得BF PB PB AB=,又PBF ABP ∠=∠,得到PBF ABP ∽,推出12PF PA =,进而得到当点C 、P 、F 三点共线时,12+PC PA 的值最小,即为线段CF 的长,利用勾股定理求出CF 即可.【小问1详解】解:∵抛物线的对称轴3x =,4AB =,∴()()1,0,5,0A B ,将 1,0A 代入直线1y kx =−10k −=,解得1k =,∴直线AD 的解析式为1y x =−;将()()1,0,5,0A B 代入25y ax bx =++,得5025550a b a b ++= ++= ,解得16a b = =−, ∴抛物线的解析式为265y x x =−+;【小问2详解】存在点M ,∵直线AD 的解析式为1y x =−,抛物线对称轴3x =与x 轴交于点E .∴当3x =时,12y x =−=,∴()3,2D ,①当90DAM ∠=°时,设直线AM 的解析式为y x c =−+,将点A 坐标代入, 得10c −+=,解得1c =,∴直线AM 的解析式为1y x =−+, 解方程组2165y x y x x =−+ =−+ , 得10x y = =或43x y = =− , ∴点M 的坐标为()4,3−;②当90ADM ∠=°时,设直线DM 的解析式为y x d =−+,将()3,2D 代入, 得32d −+=,解得5d =,∴直线DM 的解析式为5y x =−+, 解方程组2565y x y x x =−+ =−+, 解得05x y = = 或50x y = =, ∴点M 的坐标为()0,5 或()5,0综上,点M 的坐标为()4,3−或()0,5 或()5,0;【小问3详解】如图,在AB 上取点F ,使1BF =,连接CF ,∵2PB =, ∴12BF PB =, ∵2142PB AB ==,、 ∴BF PB PB AB=, 又∵PBF ABP ∠=∠,∴PBF ABP ∽, ∴12PF BF PAPB ==,即12PF PA =, ∴12PC PA PC PF CF +=+≥, ∴当点C 、P 、F 三点共线时,12+PC PA 的值最小,即为线段CF 的长, ∵5,1514OC OF OB ==−=−=,∴CF∴12+PC PA【点睛】此题是一次函数,二次函数及圆的综合题,掌握待定系数法求函数解析式,直角三角形的性质,勾股定理,相似三角形的判定和性质,求两图象的交点坐标,正确掌握各知识点是解题的关键.。
精品解析:2024年1月普通高等学校招生全国统一考试适应性测试(九省联考)数学试题(原卷版)
2024年1月普通高等学校招生全国统一考试适应性测试(九省联考)数学试题注意事项:].答卷前,考生务必将自己的考生号、姓名、考点学校、考场号及座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 样本数据16,24,14,10,20,30,12,14,40的中位数为( )A. 14B. 16C. 18D. 202. 椭圆2221(1)x y a a+=>的离心率为12,则=a ( )A. B. C. D. 23. 记等差数列{}n a 的前n 项和为3712,6,17n S a a a +==,则16S =( )A. 120B. 140C. 160D. 1804. 设,αβ是两个平面,,m l 是两条直线,则下列命题为真命题的是( )A. 若,,m l αβαβ⊥∥∥,则m l ⊥B. 若,,m l m l αβ⊂⊂∥,则αβ∥C. 若,,m l l αβαβ= ∥∥,则m l ∥ D. 若,,m l m l αβ⊥⊥∥,则αβ⊥5. 甲、乙、丙等5人站成一排,且甲不在两端,乙和丙之间恰有2人,则不同排法共有( )A. 20种B. 16种C. 12种D. 8种6. 已知Q 为直线:210l x y ++=上的动点,点P 满足()1,3QP =- ,记P 的轨迹为E ,则( )A. EB. E 是一条与l 相交的直线C. E 上的点到lD. E 是两条平行直线7. 已知3ππ,π,tan24tan 44θθθ⎛⎫⎛⎫∈=-+ ⎪ ⎪⎝⎭⎝⎭,则21sin22cos sin2θθθ+=+( )A. 14 B. 34 C. 1 D. 328. 设双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,过坐标原点的直线与C 交于,A B 两点,211222,4F B F A F A F B a =⋅= ,则C 的离心率为( )A. B. 2C.D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知函数()3π3πsin 2cos 244f x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则( )A. 函数π4f x ⎛⎫- ⎪⎝⎭偶函数B. 曲线()y f x =对称轴为π,Zx k k =∈C. ()f x 在区间ππ,32⎛⎫ ⎪⎝⎭单调递增D. ()f x 的最小值为2-10. 已知复数,z w 均不为0,则( )A. 22||z z =B. 22||z z z z =C. z z w w -=- D. z z w w=11. 已知函数()f x 的定义域为R ,且102f ⎛⎫≠ ⎪⎝⎭,若()()()4f x y f x f y xy ++=,则( )A. 102f ⎛⎫-= ⎪⎝⎭ B. 122f ⎛⎫=- ⎪⎝⎭C. 函数12f x ⎛⎫- ⎪⎝⎭是偶函数 D. 函数12f x ⎛⎫+ ⎪⎝⎭是减函数三、填空题:本题共3小题,每小题5分,共15分.12. 已知集合{}{}2,0,2,4,3A B x x m =-=-≤,若A B A = ,则m 的最小值为__________.13. 已知轴截面为正三角形的圆锥MM '的高与球O 的直径相等,则圆锥MM '的体积与球O 的体积的比值为的是__________,圆锥MM '的表面积与球O 的表面积的比值是__________.14. 以max M 表示数集M 中最大的数.设01a b c <<<<,已知2b a ≥或1a b +≤,则{}max ,,1b a c b c ---的最小值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数()2ln 2f x x x ax =+++在点()()22f ,处的切线与直线230x y +=垂直.(1)求a ;(2)求()f x 的单调区间和极值.16. 盒中有标记数字1,2,3,4的小球各2个,随机一次取出3个小球.(1)求取出3个小球上的数字两两不同的概率;(2)记取出的3个小球上的最小数字为X ,求X 的分布列及数学期望()E X .17. 如图,平行六面体1111ABCD A B C D -中,底面ABCD 是边长为2的正方形,O 为AC 与BD 的交点,11112,,45AA C CB C CD C CO =∠=∠∠=︒.(1)证明:1C O ⊥平面ABCD ;(2)求二面角1B AA D --正弦值.18. 已知抛物线2:4C y x =的焦点为F ,过F 的直线l 交C 于,A B 两点,过F 与l 垂直的直线交C 于,D E 两点,其中,B D 在x 轴上方,,M N 分别为,AB DE 的中点.(1)证明:直线MN 过定点;(2)设G 为直线AE 与直线BD 交点,求GMN V 面积的最小值.19. 离散对数在密码学中有重要的应用.设p 是素数,集合{}1,2,,1X p =- ,若,,u v X m ∈∈N ,记u v ⊗为uv 除以p 的余数,,m u ⊗为m u 除以p 的余数;设a X ∈,2,2,1,,,,p a a a ⊗-⊗ 两两不同,若{}(),0,1,,2n a b n p ⊗=∈- ,则称n 是以a 为底b 的离散对数,记为log()a n p b =.的的的(1)若11,2p a ==,求1,p a -⊗;(2)对{}12,0,1,,2m m p ∈- ,记12m m ⊕为12m m +除以1p -的余数(当12m m +能被1p -整除时,120m m ⊕=).证明:()log()log()log()a a a p b c p b p c ⊗=⊕,其中,b c X ∈;(3)已知log()a n p b =.对{},1,2,,2x X k p ∈∈- ,令,,12,k k y a y x b ⊗⊗==⊗.证明:()2,21n p x y y -⊗=⊗.。
精品解析:2021年山东省高考化学试题(山东卷)(原卷版)
已知:Ⅰ. +
Ⅱ.
回答下列问题:
(1)A的结构简式为___;符合下列条件的A的同分异构体有___种。
①含有酚羟基②不能发生银镜反应③含有四种化学环境的氢
(2)检验B中是否含有A的试剂为___;B→C的反应类型为___。
(3)C→D的化学方程式为__;E中含氧官能团共___种。
A.<-1 B.-1~0 C.0~1 D.>1
(2)为研究上述反应体系 平衡关系,向某反应容器中加入1.0molTAME,控制温度为353K,测得TAME的平衡转化率为α。已知反应Ⅲ的平衡常数Kx3=9.0,则平衡体系中B的物质的量为___mol,反应Ⅰ的平衡常数Kx1=___。同温同压下,再向该容器中注入惰性溶剂四氢呋喃稀释,反应Ⅰ的化学平衡将__(填“正向移动”“逆向移动”或“不移动”)平衡时,A与CH3OH物质的量浓度之比c(A):c(CH3OH)=___。
A. >
B.M点,c(Cl-) +c(OH-)+c(R-)=2c(H2R+)+c(Na+)+c(H+)
C.O点,pH=
D P点,c(Na+)>c(Cl-)>c(OH-)>c(H+)
三、非选择题:本题共5小题,共60分。
16.非金属氟化物在生产、生活和科研中应用广泛。回答下列问题:
(1)基态F原子核外电子的运动状态有__种。
烧杯、锥形瓶、胶头滴管、酸式滴定管
待测NaOH溶液、已知浓度的盐酸、甲基橙试剂
D
制备乙酸乙酯
试管、量筒、导管、酒精灯
冰醋酸、无水乙醇、饱和Na2CO3溶液
A. AB. BC. CD. D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年山东省潍坊市中考数学试卷
一、选择题
1. |1﹣|=()
A. 1﹣
B. ﹣1
C. 1+
D. ﹣1﹣
2. 生物学家发现了某种花粉的直径约为0.0000036毫米,数据0.0000036用科学记数法表示正确的是()
A. 3.6×10﹣5
B. 0.36×10﹣5
C. 3.6×10﹣6
D. 0.36×10﹣6
3. 如图所示的几何体的左视图是()
学。
科。
网...学。
科。
网...
A. B. C. D.
4. 下列计算正确的是()
A. a2•a3=a6
B. a3÷a=a3
C. a﹣(b﹣a)=2a﹣b
D. (﹣a)3=﹣a3
5. 把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()
A. 45°
B. 60°
C. 75°
D. 82.5°
6. 如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:
(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;
(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;
(3)连接BD,BC.
下列说法不正确的是()
A. ∠CBD=30°
B. S△BDC=AB2
C. 点C是△ABD的外心
D. sin2A+cos2D=l
7. 某篮球队10名队员的年龄结构如表,已知该队队员年龄的中位数为21.5,则众数与方差分别为()
A. 22,3
B. 22,4
C. 21,3
D. 21,4
8. 在平面直角坐标系中,点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为()
A. (2m,2n)
B. (2m,2n)或(﹣2m,﹣2n)
C. (m,n)
D. (m,n)或(﹣m,﹣n)
9. 已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为﹣1,则h的值为()
A. 3或6
B. 1或6
C. 1或3
D. 4或6
10. 在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,﹣300°)或
P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是()
A. Q(3,240°)
B. Q(3,﹣120°)
C. Q(3,600°)
D. Q(3,﹣500°)
11. 已知关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1,x2.若+=4m,则m的值是()
A. 2
B. ﹣1
C. 2或﹣1
D. 不存在
12. 如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米/秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()
A. B. C. D.
二、填空题
13. 因式分解:(x+2)x﹣x﹣2=_____.
14. 当m=_____时,解分式方程=会出现增根.
15. 用教材中的计算器进行计算,开机后依次按下,把显示结果输入如图的程序中,则输出的结果是_____.
16. 如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为_____.
17. 如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是_____.
18. 如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30°方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行_____小时即可到达.(结果保留根号)
三、解答题
19. 如图,直线y=3x﹣5与反比例函数y=的图象相交A(2,m),B(n,﹣6)两点,连接OA,OB.(1)求k和n的值;
(2)求△AOB的面积.
20. 如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,BF⊥AM于点F,连接BE.(1)求证:AE=BF;
(2)已知AF=2,四边形ABED的面积为24,求∠EBF的正弦值.
21. 为进一步提高全民“节约用水”意识,某学校组织学生进行家庭月用水量情况调查活动,小莹随机抽查了所住小区n户家庭的月用水量,绘制了下面不完整的统计图.
(1)求n并补全条形统计图;
(2)求这n户家庭的月平均用水量;并估计小莹所住小区420户家庭中月用水量低于月平均用水量的家庭户数;
(3)从月用水量为5m3和和9m3的家庭中任选两户进行用水情况问卷调查,求选出的两户中月用水量为5m3和9m3恰好各有一户家庭的概率.
22. 如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.
(1)求证:AE与⊙O相切于点A;
(2)若AE∥BC,BC=2,AC=2,求AD的长.
23. 为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有A,B两种型号的挖掘机,已知3台A型和5台B型挖掘机同时施工一小时挖土165立方米;4台A型和7台B型挖掘机同时施工一小时挖土225立方米.每台A型挖掘机一小时的施工费用为300元,每台B型挖掘机一小时的施工费用为180元.
(1)分别求每台A型,B型挖掘机一小时挖土多少立方米?
(2)若不同数量的A型和B型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元,问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?
24. 如图1,在▱ABCD中,DH⊥AB于点H,CD的垂直平分线交CD于点E,交AB于点
F,AB=6,DH=4,BF:FA=1:5.
(1)如图2,作FG⊥AD于点G,交DH于点M,将△DGM沿DC方向平移,得到△CG′M′,连接M′B.
①求四边形BHMM′的面积;
②直线EF上有一动点N,求△DNM周长的最小值.
(2)如图3,延长CB交EF于点Q,过点Q作QK∥AB,过CD边上的动点P作PK∥EF,并与QK交于点K,将△PKQ沿直线PQ翻折,使点K的对应点K′恰好落在直线AB上,求线段CP的长.
25. 如图1,抛物线y1=ax2﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.
(1)求抛物线y2的解析式;
(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;
(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.。