搞定空间几何体的外接球
高中数学 立体几何 2.(第二次修订版)八个有趣模型——搞定空间几何体的外接球与内切球(教师版)
八个有趣模型——搞定空间几何体的外接球与内切球当讲到付雨楼老师于2018年1月14日总第539期微文章,我如获至宝.为有了教学的实施,我以付老师的文章主基石、框架,增加了我个人的理解及例题,形成此文,仍用文原名,与各位同行分享.不当之处,敬请大家批评指正.一、有关定义1.球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球.2.外接球的定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.3.内切球的定义:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.二、外接球的有关知识与方法1.性质:性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等;性质2:经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆;性质3:过球心与小圆圆心的直线垂直于小圆所在的平面(类比:圆的垂径定理);性质4:球心在大圆面和小圆面上的射影是相应圆的圆心;性质5:在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心).初图1初图22.结论:结论1:长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心;结论2:若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆;结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处;结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径;结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球;结论7:圆锥体的外接球球心在圆锥的高所在的直线上;结论8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径;结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球.3.终极利器:勾股定理、正定理及余弦定理(解三角形求线段长度);三、内切球的有关知识与方法1.若球与平面相切,则切点与球心连线与切面垂直.(与直线切圆的结论有一致性).2.内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(类比:与多边形的内切圆).3.正多面体的内切球和外接球的球心重合.4.正棱锥的内切球和外接球球心都在高线上,但不一定重合.5.基本方法:(1)构造三角形利用相似比和勾股定理;(2)体积分割是求内切球半径的通用做法(等体积法). 四、与台体相关的,此略. 五、八大模型第一讲 柱体背景的模型类型一、墙角模型(三条棱两两垂直,不找球心的位置即可求出球半径)图1-1图1-2图1-3图1-4方法:找三条两两垂直的线段,直接用公式2222)2(c b a R ++=,即2222c b a R ++=,求出R 例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( C ) A .π16 B .π20 C .π24 D .π32 解: 162==h a V ,2=a ,24164442222=++=++=h a a R ,π24=S ,选C ;(2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 π9 解:933342=++=R ,ππ942==R S ;(3)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =,则正三棱锥ABC S -外接球的表面积是 .π36 解:引理:正三棱锥的对棱互相垂直.证明如下:如图(3)-1, 取BC AB ,的中点E D ,,连接CD AE ,,CD AE ,交于H ,连接SH , 则H 是底面正三角形ABC 的中心,∴⊥SH 平面ABC ,∴AB SH ⊥,ΘBC AC =,BD AD =,∴AB CD ⊥,∴⊥AB 平面SCD , ∴SC AB ⊥,同理:SA BC ⊥,SB AC ⊥,即正三棱锥的对棱互垂直,本题图如图(3)-2, ΘMN AM ⊥,MN SB //,∴SB AM ⊥,ΘSB AC ⊥,∴⊥SB 平面SAC , ∴SA SB ⊥,SC SB ⊥,ΘSA SB ⊥,SA BC ⊥, ∴⊥SA 平面SBC ,∴SC SA ⊥,故三棱锥ABC S -的三棱条侧棱两两互相垂直,(3)题-1(引理)AC(3)题-2(解答图)AC∴36)32()32()32()2(2222=++=R ,即3642=R ,∴正三棱锥ABC S -外接球的表面积是π36. (4)在四面体S ABC -中,ABC SA 平面⊥,,1,2,120====∠︒AB AC SA BAC 则该四面体的外接球的表面积为( D )π11.A π7.B π310.C π340.D 解:在ABC ∆中,7120cos 2222=⋅⋅-+=οBC AB AB AC BC ,7=BC ,ABC ∆的外接球直径为372237sin 2==∠=BAC BC r ,∴3404)372()2()2(2222=+=+=SA r R ,340π=S ,选D (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是 解:由已知得三条侧棱两两垂直,设三条侧棱长分别为c b a ,,(+∈R c b a ,,),则⎪⎩⎪⎨⎧===6812ac bc ab ,∴24=abc ,∴3=a ,4=b ,2=c ,29)2(2222=++=c b a R ,ππ2942==R S , (6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体外接球的体积为解:3)2(2222=++=c b a R ,432=R ,23=Rπππ2383334343=⋅==R V 球,类型二、对棱相等模型(补形为长方体) 题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(CD AB =,BC AD =,BD AC =) 第一步:画出一个长方体,标出三组互为异面直线的对棱; 第二步:设出长方体的长宽高分别为c b a ,,,x BC AD ==,y CD AB ==,z BD AC ==,列方程组,⎪⎩⎪⎨⎧=+=+=+222222222z a c y c b x b a ⇒2)2(2222222z y x c b a R ++=++=, (6)题图(6)题直观图P图2-1补充:图2-1中,abc abc abc V BCD A 31461=⨯-=-. 第三步:根据墙角模型,22222222z y x c b a R ++=++=,82222z y x R ++=,8222z y x R ++=,求出R .思考:如何求棱长为a 的正四面体体积,如何求其外接球体积?例2(1)如下图所示三棱锥A BCD -,其中5,6,7,AB CD AC BD AD BC ======则该三棱锥外接球的表面积为 .解:对棱相等,补形为长方体,如图2-1,设长宽高分别为c b a ,,,110493625)(2222=++=++c b a ,55222=++c b a ,5542=R ,π55=S(1)题图B(2)在三棱锥BCD A -中,2==CD AB ,3==BC AD ,4==BD AC ,则三棱锥BCD A -外接球的表面积为 .π229 解:如图2-1,设补形为长方体,三个长度为三对面的对角线长,设长宽高分别为c b a ,,,则922=+b a ,422=+c b ,1622=+a c ∴291649)(2222=++=++c b a ,291649)(2222=++=++c b a ,229222=++c b a ,22942=R ,π229=S (3)正四面体的各条棱长都为2,则该正面体外接球的体积为 (3)解答题解:正四面体对棱相等的模式,放入正方体中,32=R ,23=R ,ππ2383334=⋅=V (4)棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如下图,则图中三角形(正四面体的截面)的面积是 .(4)题解答图(4)题解:如解答图,将正四面体放入正方体中,截面为1PCO ∆,面积是2.类型三、汉堡模型(直棱柱的外接球、圆柱的外接球)图3-1图3-2 图3-3题设:如图3-1,图3-2,图3-3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)第一步:确定球心O 的位置,1O 是ABC ∆的外心,则⊥1OO 平面ABC ; 第二步:算出小圆1O 的半径r AO =1,h AA OO 212111==(h AA =1也是圆柱的高); 第三步:勾股定理:21212O O A O OA +=⇒222)2(r hR +=⇒22)2(hr R +=,解出R例3(1)一个正六棱柱的底面上正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为 解:设正六边形边长为a ,正六棱柱的高为h ,底面外接圆的半径为r ,则21=a ,正六棱柱的底面积为833)21(4362=⋅⋅=S ,89833===h Sh V 柱,∴3=h ,4)3(14222=+=R 也可1)21()23(222=+=R ),1=R ,球的体积为34π=球V ; (2)直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 . 解:32=BC ,4120sin 322==οr ,2=r ,5=R ,π20=S ; (3)已知EAB ∆所在的平面与矩形ABCD 所在的平面互相垂直,︒=∠===60,2,3AEB AD EB EA ,则多面体ABCD E -的外接球的表面积为 .π16 解:折叠型,法一:EAB ∆的外接圆半径为31=r ,11=OO ,231=+=R ;法二:231=M O ,21322==D O r ,4413432=+=R ,2=R ,π16=表S ; 法三:补形为直三棱柱,可改变直三棱柱的放置方式为立式,算法可同上,略.换一种方式,通过算圆柱的轴截面的对角线长来求球的直径:162)32()2(222=+=R ,π16=表S ;(4)在直三棱柱111C B A ABC -中,4,3,6,41====AA A AC AB π,则直三棱柱111C B A ABC -的外接球的表面积为 .π3160解:法一:282164236162=⋅⋅⋅-+=BC ,72=BC ,37423722==r ,372=r , 3404328)2(2122=+=+=AA r R ,π3160=表S ;法二:求圆柱的轴截面的对角线长得球直径,此略.第二讲 锥体背景的模型类型四、切瓜模型(两个大小圆面互相垂直且交于小圆直径——正弦定理求大圆直径是通法)图4-1图4-2图4-3图4-41.如图4-1,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点. 解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高);(3)题第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R ;事实上,ACP ∆的外接圆就是大圆,直接用正弦定理也可求解出R .2.如图4-2,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且AC PA ⊥,则 利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=3.如图4-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径) 21212O O C O OC +=⇔2122O O r R +=⇔2122O O R AC -=4.题设:如图4-4,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)第一步:易知球心O 必是PAC ∆的外心,即PAC ∆的外接圆是大圆,先求出小圆的直径r AC 2=; 第二步:在PAC ∆中,可根据正弦定理R CcB b A a 2sin sin sin ===,求出R . 例4 (1)正四棱锥的顶点都在同一球面上,若该棱锥的高为1,底面边长为32,则该球的表面积为 . 解:法一:由正弦定理(用大圆求外接球直径);法二:找球心联合勾股定理,72=R ,ππ4942==R S ;(2)正四棱锥ABCD S -的底面边长和各侧棱长都为2,各顶点都在同一球面上,则此球体积为 解:方法一:找球心的位置,易知1=r ,1=h ,r h =,故球心在正方形的中心ABCD 处,1=R ,34π=V 方法二:大圆是轴截面所的外接圆,即大圆是SAC ∆的外接圆,此处特殊,SAC Rt ∆的斜边是球半径,22=R ,1=R ,34π=V . (3)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( ) A .433 B .33 C .43 D .123解:高1==R h ,底面外接圆的半径为1=R ,直径为22=R ,设底面边长为a ,则260sin 2==οaR ,3=a ,433432==a S ,三棱锥的体积为4331==Sh V ; (4)在三棱锥ABC P -中,3===PC PB PA ,侧棱PA 与底面ABC 所成的角为ο60,则该三棱锥外接球的体积为( ) A .π B.3π C. 4π D.43π 解:选D ,由线面角的知识,得ABC ∆的顶点C B A ,,在以23=r 为半径的圆上,在圆锥中求解,1=R ; (5)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( )AA.6 BC.3 D.2解:36)33(12221=-=-=r R OO ,362=h ,62362433131=⋅⋅==Sh V 球 类型五、垂面模型(一条直线垂直于一个平面)1.题设:如图5,⊥PA 平面ABC ,求外接球半径.解题步骤:第一步:将ABC ∆画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ; 第二步:1O 为ABC ∆的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半径r D O =1(三角形的外接圆直径算法:利用正弦定理,得r C c B b A a 2sin sin sin ===),PA OO 211=; 第三步:利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=.2.题设:如图5-1至5-8这七个图形,P 的射影是ABC ∆的外心⇔三棱锥ABC P -的 三条侧棱相等⇔三棱锥ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的 顶点.图5-1图5-2图5-3图5-4图5-6图5-7图5-8解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R 方法二:小圆直径参与构造大圆,用正弦定理求大圆直径得球的直径. 例5 一个几何体的三视图如图所示,则该几何体外接球的表面积为( )C A .π3 B .π2 C .316πD .以上都不对解:选C , 法一:(勾股定理)利用球心的位置求球半径,球心在圆锥的高线上,221)3(R R =+-,32=R ,ππ31642==R S ;法二:(大圆法求外接球直径)如图,球心在圆锥的高线上,故圆锥的轴截面三角形PMN 的外接圆是大圆,于是3460sin 22==οR ,下略;第三讲 二面角背景的模型类型六、折叠模型题设:两个全等三角形或等腰三角形拼在一起,或菱形折叠(如图6)俯视图侧视图正视图解答图图6第一步:先画出如图6所示的图形,将BCD ∆画在小圆上,找出BCD ∆和BD A '∆的外心1H 和2H ; 第二步:过1H 和2H 分别作平面BCD 和平面BD A '的垂线,两垂线的交点即为球心O ,连接OC OE ,; 第三步:解1OEH ∆,算出1OH ,在1OCH Rt ∆中,勾股定理:22121OC CH OH =+ 注:易知21,,,H E H O 四点共面且四点共圆,证略.例6(1)三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 和△ABC 均为边长为2的正三角形,则三棱锥ABC P -外接球的半径为 . 解:如图,3460sin 22221===οr r ,3221==r r ,312=H O , 35343121222=+=+=r H O R ,315=R ; 法二:312=H O ,311=H O ,1=AH , 352121222=++==O O H O AH AO R ,315=R ; (2)在直角梯形ABCD 中,CD AB //,ο90=∠A ,ο45=∠C ,1==AD AB ,沿对角线BD 折成四面体BCD A -',使平面⊥'BD A 平面BCD ,若四面体BCD A -'的顶点在同一个球面上,则该项球的表面积为 π4(2)题-2(2)题-1→A(3)题解:如图,易知球心在BC 的中点处,π4=表S ;(1)题(3)在四面体ABC S -中,BC AB ⊥,2==BC AB ,二面角B AC S --的余弦值为33-,则四面体ABC S -的外接球表面积为 π6 解:如图,法一:33)2cos(cos 211-=+∠=∠πO OO B SO , 33sin 21=∠O OO ,36cos 21=∠O OO , 22cos 21211=∠=O OO O O OO ,232112=+=R ,ππ642==R S ; 法二:延长1BO 到D 使111r BO DO ==,由余弦定理得6=SB ,2=SD ,大圆直径为62==SB R ;(4)在边长为32的菱形ABCD 中,ο60=∠BAD ,沿对角线BD 折成二面角C BD A --为ο120的四面体ABCD ,则此四面体的外接球表面积为 π28解:如图,取BD 的中点M ,ABD ∆和CBD ∆的外接圆半径为221==r r ,ABD ∆和CBD ∆的外心21,O O 到弦BD 的距离(弦心距)为121==d d , 法一:四边形21MO OO 的外接圆直径2=OM ,7=R ,π28=S ;法二:31=OO ,7=R ;法三:作出CBD ∆的外接圆直径CE ,则3==CM AM , 4=CE ,1=ME ,7=AE ,33=AC ,72147227167cos -=⋅⋅-+=∠AEC ,7233sin =∠AEC ,72723333sin 2==∠=AEC AC R ,7=R ;(5)在四棱锥ABCD 中,ο120=∠BDA ,ο150=∠BDC ,2==BD AD ,3=CD ,二面角CBD A --(4)题图的平面角的大小为ο120,则此四面体的外接球的体积为解:如图,过两小圆圆心作相应小圆所在平面的垂线确定球心,→抽象化(5)题解答图-2(5)题解答图-11B32=AB ,22=r ,弦心距32=M O ,13=BC ,131=r ,弦心距321=M O , ∴2121=O O ,72120sin 21==οO O OM , 法一:∴292222=+==OM MD OD R ,29=R ,∴329116π=球V ; 法二:2522222=-=M O OM OO ,∴29222222=+==OO r OD R ,29=R ,∴329116π=球V . 类型七、两直角三角形拼接在一起(斜边相同,也可看作矩形沿对角线折起所得三棱锥)模型图7题设:如图7,ο90=∠=∠ACB APB ,求三棱锥ABC P -外接球半径(分析:取公共的斜边的中点O ,连接OC OP ,,则AB OP OC OB OA 21====,∴O 为三棱锥ABC P -外接球球心,然后在OCP 中求出半径),当看作矩形沿对角线折起所得三棱锥时与折起成的二面角大小无关,只要不是平角球半径都为定值.例7(1)在矩形ABCD 中,4=AB ,3=BC ,沿AC 将矩形ABCD 折成一个直二面角D AC B --,则四面体ABCD 的外接球的体积为( )A .π12125 B .π9125 C .π6125 D .π3125解:(1)52==AC R ,25=R ,6125812534343πππ=⋅==R V ,选C(2)在矩形ABCD 中,2=AB ,3=BC ,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥BCDA -的外接球的表面积为 .解:BD 的中点是球心O ,132==BD R ,ππ1342==R S .第四讲 多面体的内切球问题模型类型八、锥体的内切球问题1.题设:如图8-1,三棱锥ABC P -上正三棱锥,求其内切球的半径. 第一步:先现出内切球的截面图,H E ,分别是两个三角形的外心;第二步:求BD DH 31=,r PH PO -=,PD 是侧面ABP ∆的高; 第三步:由POE ∆相似于PDH ∆,建立等式:PDPODH OE =,解出r 2.题设:如图8-2,四棱锥ABC P -是正四棱锥,求其内切球的半径第一步:先现出内切球的截面图,H O P ,,三点共线;第二步:求BC FH 21=,r PH PO -=,PF 是侧面PCD ∆的高;第三步:由POG ∆相似于PFH ∆,建立等式:PFPOHF OG =,解出3.题设:三棱锥ABC P -是任意三棱锥,求其的内切球半径方法:等体积法,即内切球球心与四个面构成的四个三棱锥的体积之和相等 第一步:先画出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r ,建立等式:PBC O PAC O PAB O ABC O ABC P V V V V V -----+++=⇒r S S S S r S r S r S r S V PBC PAC PAB ABC PBC PAC PAB ABC ABC P ⋅+++=⋅+⋅+⋅+⋅=∆∆∆∆-)(3131313131第三步:解出PBCO PAC O PAB O ABC O ABCP S S S S V r -----+++=3例8 (1)棱长为a 的正四面体的内切球表面积是 62a π,解:设正四面体内切球的半径为r ,将正四面体放入棱长为2a的正方体中(即补形为正方体),如图,则 2622313133aa V V ABC P =⋅==-正方体,又Θr a r a Sr V ABC P 223343314314=⋅⋅⋅=⋅=-, ∴263332a r a =,62a r =,∴内切球的表面积为(1)题D图8-1A图8-26422a r S ππ==表(注:还有别的方法,此略)(2)正四棱锥ABCD S -的底面边长为2,侧棱长为37解:如图,正四棱锥ABCD S -的高7=h ,正四棱锥ABCD S -的体积为374=-ABCD S V 侧面斜高221=h ,正四棱锥ABCD S -的表面积为284+=表S ,正四棱锥ABCD S -的体积为r r S V ABCDS ⋅+==-328431表, ∴3743284=⋅+r , 771427)122(7221728474-=-=+=+=r (3)三棱锥ABC P -中,底面ABC ∆是边长为2的正三角形,⊥PA 底面ABC ,2=PA ,则32解:如图,3=∆ABC S ,2==∆∆ACP ABP S S ,7=∆BCP S ,743++=表S ,三棱锥ABC P -的体积为332=-ABCP V , 另一表达体积的方式是r r S V ABC P ⋅++==-347331表, ∴3323473=⋅++r ,∴47332++=r习题: 1.若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( ) A.3 B.6 C.36 D.9 解:【A 】616164)2(2=++=R ,3=R【三棱锥有一侧棱垂直于底面,且底面是直角三角形】【共两种】2. 三棱锥ABC S -中,侧棱⊥SA 平面ABC ,底面ABC 是边长为3的正三角形,32=SA,则该三(2)题(3)题B棱锥的外接球体积等于 . 332π解:260sin 32==οr ,16124)2(2=+=R ,42=R ,2=R ,外接球体积332834ππ=⋅ 【外心法(加中垂线)找球心;正弦定理求球小圆半径】3.正三棱锥ABC S -中,底面ABC 是边长为3的正三角形,侧棱长为2,则该三棱锥的外接球体积等于 .解:ABC ∆外接圆的半径为 ,三棱锥ABC S -的直径为3460sin 22==οR ,外接球半径32=R , 或1)3(22+-=R R ,32=R ,外接球体积2733233834343πππ=⋅==R V , 4.三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 边长为2的正三角形,BC AB ⊥,则三棱锥ABC P -外接球的半径为 .解:PAC ∆的外接圆是大圆,3460sin 22==οR ,32=R , 5. 三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,3==PC PA ,BC AB ⊥,则三棱锥ABC P -外接球的半径为 .解:973324992cos 222=⋅⋅-+=⋅-+=∠PC PA AC PC PA P ,81216)97(1sin 22⋅=-=∠P ,924sin =∠P ,42922992422===R ,829=R 6. 三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,PC PA ⊥,BC AB ⊥,则三棱锥ABCP -外接球的半径为 .解:AC 是公共的斜边,AC 的中点是球心O ,球半径为1=R。
高中数学空间几何体的外接球专题(附经典例题与解析)
【知识点分析】: 一、 球的性质回顾如右图所示:O 为球心,O’为球O 的一个小圆的圆心,则此时OO’垂直于圆O’所在平面。
求外接球半径的原理是:在Rt △OAO ’中,OA 2=OO ’2+O ’A 2二、 常见平面几何图形的外接圆半径(r )的求法1、三角形:(1)等边三角形:等边三角形(正三角形),五心合一,即内心、外心、重心、垂心、中心重合于一点。
内心:内切圆圆心,各角角平分线的交点;外心:外接圆圆心,各边中垂线的交点;重心:各边中线的交点;垂心:各边垂线的交点;中心:正多边形特有。
从而等边三角形的外接圆半径通常结合重心的性质(2:1)进行求解:a a r 332332=⋅=(其中a 为等边三角形的边长)(2)直角三角形:结合直角三角形的性质:直角三角形斜边上的中线等于斜边的一半;可知:直角三角形的外接圆圆心位于斜边的中点处,r=2c 。
(3)等腰三角形: 结合等腰三角形中三线合一的性质可知:等腰三角形的外接圆圆心位于底边的高线(即中线)上。
由图可得:22)2()(a r h r +-=(4)非特殊三角形:非特殊三角形求解外接圆半径可使用正弦定理2sin sin sin a b c R C===A B 。
rrAD=h ,BD=12a B CO2、四边形常见具有外接圆的四边形有:正方形、矩形、等腰梯形,其中正方形与长方形半径求解方法转化为直角三角形,等腰梯形的外接圆圆心不在中学考察范围内。
外接圆圆心是在圆心到各个顶点距离相同的点;外接球球心则是球心到几何体各个顶点距离相同的点。
结论:几何体的外接球球心与底面外心的连线垂直于底面,(也即球心落在过底面外心的垂线上,)简单称之为:球心落在底面外心的正上方。
【相似题练习】2.半径为2的球的内接三棱锥P﹣ABC,PA=PB=PC=2,AB=AC=BC,则三棱锥的高为()A.3B.C.2D.3【知识点分析】:类型一:直(正)棱柱:上下两底面三角形的外心连线与侧棱平行与底面垂直,从而球心O 必位于上下两底面外心连线的中点处,即121'AA OO =,从而R 可求.【相似题练习】1.三棱柱ABC ﹣A 1B 1C 1中,底面ABC 是边长为2的正三角形,侧棱AA 1垂直于底面ABC ,且AA 1=4,则此三棱柱外接球的表面积为( )A .B .C .D .【知识点分析】:类型二:侧棱垂直底面的三棱锥,法一:补形法:该几何体可由正三棱柱沿平面PBC 切割得来,故可转化为原三棱柱的外接球;法二:先确定底面三角形ABC 的外心O’,从而球心位于O’的正上方,即OO’ ⊥平面ABC ,同时:OP=OA ,故,过O 作OM ⊥PA 于M ,此时M 必为PA 中点,从而四边形OMAO’为矩形,所以PA AM OO 21'==,在直角三角形OO’A 中有:222'OO r R +=.【相似题练习】2.已知在三棱锥P ﹣ABC 中,△ABC 是边长为2的正三角形,若PA ⊥底面ABC 且PA =2,则该三棱锥的外接球的表面积为( )A .32πB .28πC .24πD .20π3.在三棱锥P ﹣ABC 中,PA ⊥平面ABC ,PA =2,AB =4,AC =3,∠BAC =,则三棱锥P ﹣ABC 的外接球的半径R =( )A .B .C .D .【知识点分析】:类型三:正三棱锥:由底面正三角形边长可得r ,在直角三角形OO’A 中,222'OO r R +=,故只需确定OO’的长度即可,结合图形,OO’=PO’-OP=H-R ,代入222)(R H r R -+=即可求解.【相似题练习】3.正三棱锥P ﹣ABC 侧棱长为,侧棱与底面ABC 所成的角为60°,则该正三棱锥外接球半径为 .2.某几何体的三视图如图所示,其中网格纸上小正方形的边长为1,则该几何体的外接球的表面积为( )【知识点分析】:类型四:侧面垂直于底面的三棱锥:设△ABC和△PAB的外心分别为O’,O’’,则PM⊥AB,球心设为O,则OO’ ⊥平面ABC,OO’’⊥平面PAB,从而四边形OO’MO’’是矩形,可得:OO’=O’’M,在Rt△OO’C中用勾股定理求解.【讲透例题】1.在四面体A﹣BCD中,AB=5,BC=CD=3,DB=2,AC=4,∠ACD=60°,则该四面体的外接球的表面积为.解析:如图:取AB的中点O,在△ACD中,由余弦定理得:AD2=AC2+CD2﹣2×AC×CD cos60°=13,在△ABD中,∵AB2=BD2+AD2,∴∠ADB=90°,∴OA=OB=OD,在△ABC中,∵AB2=BC2+AC2,∴∠ACB=90°,∴OA=OB=OC,∴OA=OB=OC=OD,∴O为四面体ABCD的外接球的球心,其半径R=AB=,∴S球=4πR2=4π()2=25π.故答案为:25π.【相似题练习】4.在三棱锥P-ABC中,面PAB⊥面ABC,三角形ABC和三角形PAB均为等边三角形,且AB=3,求该几何体外接球半径.2.在边长为2的菱形ABCD中,,将菱形ABCD沿对角线AC折起,使得平面ABC⊥平面ACD,则所得三棱锥A﹣BCD的外接球表面积为()A.B.C.D.1.已知点A是以BC为直径的圆O上异于B,C的动点,P为平面ABC外一点,且平面PBC⊥平面ABC,BC=3,PB=2,PC=,则三棱锥P﹣ABC外接球的表面积为.5、如图,在四棱锥P﹣ABCD中,底面ABCD为长方形,PA⊥底面ABCD,AD=AP=2,AB=2,E为棱PD中点.(1)求证:PD⊥平面ABE;(2)求四棱锥P﹣ABCD外接球的体积.1.如图,在正四棱锥P﹣AMDE,底面AMDE的边长为2,侧棱PA=,B,C分别为AM,MD的中点.F为棱PE的中点,平面ABF与棱PD,PC,PM分别交于点G,H,K.(1)求证:AB∥FG;(2)求正四棱锥P﹣AMDE的外接球的表面积.1.如图,四凌锥P﹣ABCD而底面ABCD是矩形,侧面PAD是等腰直角三角形∠APD=90°,且平面PAD⊥平面ABCD.(Ⅰ)求证:平面PAD⊥平面PCD;(Ⅱ)在AD=2,AB=4,求三棱锥P﹣ABD的体积;(Ⅲ)在条件(Ⅱ)下,求四棱锥P﹣ABCD外接球的表面积.7、如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,已知其俯视图是正三角形,则该四棱锥的外接球的表面积是()A.B.C.19πD.22π课后作业:1.如图,一个正三棱柱的主视图是长为,宽为2的矩形,俯视图是边长为的正三角形,则它的外接球的表面积等于()A.16πB.12πC.8πD.4π2.某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的表面积为()A.πB.3πC.πD.π3.某四棱锥的三视图如图所示,则该棱锥的外接球的表面积为()A.3πB.C.6πD.12π4.四棱锥P﹣ABCD中,ABCD为矩形,AD=2,AB=2,PA=PD,∠APD=,且平面PAD⊥平面ABCD.(1)证明:PA⊥PC;(2)求四棱锥P﹣ABCD的外接球的体积.参考答案与解析12.(5分)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π【解答】解:由题意可知图形如图:⊙O1的面积为4π,可得O1A=2,则AO1=AB sin60°,,∴AB=BC=AC=OO1=2,外接球的半径为:R==4,球O的表面积:4×π×42=64π.故选:A.1.1.一个几何的三视图如图所示,它们都是腰长为1的等腰直角三角形,则该几何体的外接球的体积等于()A.B.C.πD.2π解析:由三视图可知:该几何体是一个如图所示的三棱锥,其中底面是一个两直角边都为1的直角三角形,PC⊥底面ABC,且PC=1.将此三棱锥恢复为棱长为1的正方体,可知该正方体的外接球的直径即为正方体的对角线,∴V外接球==.故选:B.1.半径为2的球的内接三棱锥P﹣ABC,PA=PB=PC=2,AB=AC=BC,则三棱锥的高为()A.3B.C.2D.3【解答】解:三棱锥P﹣ABC中,PA=PB=PC=2,AB=AC=BC,如图,过点p作PM⊥平面ABC的垂足为M,则球O的内接三棱锥P﹣ABC的球心O在PM所在直线上,∵球O的半径为2,∴OB=OP=2,∴由余弦定理得cos∠BPM==∴∠BPM=30°,∴在Rt△PMB中,∠PBM=60°,∴PM=PB sin∠PBM=3.故选:D.1.三棱柱ABC﹣A1B1C1中,底面ABC是边长为2的正三角形,侧棱AA1垂直于底面ABC,且AA1=4,则此三棱柱外接球的表面积为()A.B.C.D.【解答】解:∵正三棱柱ABC﹣A1B1C1的中,底面边长为2,高为4,由题意可得:三棱柱上下底面中心连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,∴正三棱柱ABC﹣A1B1C1的外接球的球心为O,外接球的半径为r,表面积为:4πr2.球心到底面的距离为2,底面中心到底面三角形的顶点的距离为:=,所以球的半径为r==.外接球的表面积为:4πr2=π故选:D.2.已知在三棱锥P﹣ABC中,△ABC是边长为2的正三角形,若PA⊥底面ABC且PA=2,则该三棱锥的外接球的表面积为()A.32πB.28πC.24πD.20π【解答】解:由正弦定理可知,正△ABC的外接圆的直径为,∵PA⊥平面ABC,所以,该三棱锥的外接球的直径为,则.因此,该三棱锥的外接球的表面积为4πR2=20π.故选:D.3.在三棱锥P﹣ABC中,PA⊥平面ABC,PA=2,AB=4,AC=3,∠BAC=,则三棱锥P﹣ABC的外接球的半径R=()A.B.C.D.【解答】解:∵AC=3,AB=4,∠BAC=,∴由余弦定理可得BC=,∴△ABC外接圆的半径r=,设球心到平面ABC的距离为d,则d=PA=1.由勾股定理可得R =,故选:D .3.正三棱锥P ﹣ABC 侧棱长为,侧棱与底面ABC 所成的角为60°,则该正三棱锥外接球半径为 1 . 【解答】解:过点P 作PH ⊥平面ABC 于H ,则∵AH 是PA 在平面ABC 内的射影 ∴∠PAH 是直线PA 与底面ABC 所成的角,得∠PAH =60°, ∴Rt △PAH 中,AH =PA cos60°=,PH =PA sin60°=设三棱锥外接球的球心为O ,∵PA =PB =PC ,∴P 在平面ABC 内的射影H 是△ABC 的外心由此可得,外接球心O 必定在PH 上,连接OA 、OB 、OC ∵△POA 中,OP =OA , ∴∠OAP =∠OPA =30°,可得PA =OA =,∴三棱锥外接球的半径R =OA =1故答案为:1.2.某几何体的三视图如图所示,其中网格纸上小正方形的边长为1,则该几何体的外接球的表面积为( )A .16πB .12πC .9πD .8π【解答】解:根据几何体的三视图转换为直观图为:该几何体为底面为等腰直角三角形,高为2的三棱锥体. 如图所示:所以该三棱锥体的外接球的球心为O ,外接球的半径为OA =r ,则:,解得.故S =.故选:C .4.在三棱锥P-ABC 中,面PAB ⊥面ABC ,三角形ABC 和三角形PAB 均为等边三角形,且AB=3,求该几何体外接球半径.由题可得:333,2331'''=====AB r PM M O OO ,所以215'22=+=OO r R2.在边长为2的菱形ABCD中,,将菱形ABCD沿对角线AC折起,使得平面ABC⊥平面ACD,则所得三棱锥A﹣BCD的外接球表面积为()A.B.C.D.【解答】解:∵在边长为2的菱形ABCD中,;如图,由已知可得,△ABC与△ACD均为等边三角形,取AC中点G,连接BG,DG,则BG⊥AC,∴DG=⇒cos∠GDA=⇒∠GDA=⇒∠ADC=;∵二面角B﹣AC﹣D为直二面角,则BG⊥平面ACD,分别取△BCD与△ABD的外心E,F,过E,F分别作两面的垂线,相交于O,则O为三棱锥A﹣BCD的外接球的球心,由△BCA与△ACD均为等边三角形且边长为2,可得OE=OF=DG=.∴DE=DG﹣GE=.∴OD===.∴三棱锥A﹣BCD的外接球的表面积为4π×R2=4π×()2=.故选:C.1.已知点A是以BC为直径的圆O上异于B,C的动点,P为平面ABC外一点,且平面PBC⊥平面ABC,BC=3,PB=2,PC=,则三棱锥P﹣ABC外接球的表面积为10π.【解答】解:因为O为△ABC外接圆的圆心,且平面PBC⊥平面ABC,过O作面ABC的垂线l,则垂线l一定在面PBC内,根据球的性质,球心一定在垂线l,∵球心O1一定在面PBC内,即球心O1也是△PBC外接圆的圆心,在△PBC中,由余弦定理得cos B=,⇒sin B=,由正弦定理得:,解得R=,∴三棱锥P﹣ABC外接球的表面积为s=4πR2=10π,故答案为:10π.1.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP=2,AB=2,E为棱PD 中点.(1)求证:PD⊥平面ABE;(2)求四棱锥P﹣ABCD外接球的体积.【解答】证明:(1)∵PA⊥底面ABCD,AB⊂底面ABCD,∴PA⊥AB,又∵底面ABCD为矩形,∴AB⊥AD,PA∩AD,又PA⊂平面PAD,AD⊂平面PAD,∴AB⊥平面PAD,又PD⊂平面PAD,∴AB⊥PD,AD=AP,E为PD中点,∴AE⊥PD,AE∩AB=A,AE⊂平面ABE,AB⊂平面ABE,∴PD⊥平面ABE.解:(II)四棱锥P﹣ABCD外接球球心是线段BD和线段PA的垂直平分线交点O,由已知BD===4,设C为BD中点,∴AM=2,OM=AP=1,∴OA===3,∴四棱锥P﹣ABCD外接球的体积是=36π.1.如图,在正四棱锥P﹣AMDE,底面AMDE的边长为2,侧棱PA=,B,C分别为AM,MD的中点.F为棱PE的中点,平面ABF与棱PD,PC,PM分别交于点G,H,K.(1)求证:AB∥FG;(2)求正四棱锥P﹣AMDE的外接球的表面积.【解答】(1)证明:在正方形AMDE中,因为B是AM的中点,所以AB∥DE.又因为AB⊄平面PDE,DE⊂平面PDE,所以AB∥平面PDE.因为AB⊂平面ABF,且平面ABF∩平面PDE=FG,所以AB∥FG.(2)解:连接AD,EM,相交于O′,易得AO′=,PO′=.由正四棱锥P﹣AMDE的对称性,得正四棱锥P﹣AMDE得外接球球心在线段PO′上,不妨设为O点.设OA=OP=R,则OO′=﹣R,∵AO2=AO′2+OO′2,∴R2=2+(﹣R)2,∴R=∴S=4πR2=,∴正四棱锥P﹣AMDE的外接球的表面积为.1.如图,四凌锥P﹣ABCD而底面ABCD是矩形,侧面PAD是等腰直角三角形∠APD=90°,且平面PAD⊥平面ABCD.(Ⅰ)求证:平面PAD⊥平面PCD;(Ⅱ)在AD=2,AB=4,求三棱锥P﹣ABD的体积;(Ⅲ)在条件(Ⅱ)下,求四棱锥P﹣ABCD外接球的表面积.【解答】解:(I)∵四边形ABCD是矩形,∴AD⊥CD,又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊂平面ABCD,∴CD⊥平面PAD,∵CD⊂平面PCD,∴平面PAD⊥平面PCD.(II)过P作PE⊥AD,垂足为E,∵△PAD是等腰直角三角形,∠APD=90°,∴PE==1.∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PE⊂平面PAD,PE⊥AD,∴PE⊥平面ABCD,∴V棱锥P﹣ABD=S△ABD•PE=••2•4•1=.(III)取BD中点M,过M作MN⊥平面ABCD,则球心O在直线MN上,连接AM,则AM==.∵PE⊥平面ABCD,∴MN∥PE.∵四棱锥P﹣ABCD内接于球,,∴OA==.∴S⊙O=4πOA2=20π.∴E为外心,∴OM=1.如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,已知其俯视图是正三角形,则该四棱锥的外接球的表面积是()A.B.C.19πD.22π【解答】解:几何体的直观图如图:是长方体的一部分,上底面PCD的外接圆的半径:O1D==,几何体的外接球的半径为:OD==,该四棱锥的外接球的表面积是:4=π.故选:A.课后作业答案:1.如图,一个正三棱柱的主视图是长为,宽为2的矩形,俯视图是边长为的正三角形,则它的外接球的表面积等于()A.16πB.12πC.8πD.4π【解答】解:设正三棱柱的外接球的半径为R,则∵俯视图是边长为的正三角形∴底面三角形外接圆的半径为=1,∵正三棱柱的高为2∴正三棱柱的外接球的半径为=∴正三棱柱的外接球的表面积等于4π×=8π故选:C.2.某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的表面积为()A.πB.3πC.πD.π【解答】解:由三视图可知:该四面体是正方体的一个内接正四面体.∴此四面体的外接球的直径为正方体的对角线长=.∴此四面体的外接球的表面积为表面积==3π.故选:B.3.某四棱锥的三视图如图所示,则该棱锥的外接球的表面积为()A.3πB.C.6πD.12π【解答】解:由题意可知,几何体的直观图如图:是四棱锥D1﹣ABCD,是棱长为1的正方体的一部分,外接球奇数正方体的外接球,取得直径是体对角线,r=,外接球的表面积为:4=3π.故选:A.4.四棱锥P﹣ABCD中,ABCD为矩形,AD=2,AB=2,PA=PD,∠APD=,且平面PAD⊥平面ABCD.(1)证明:PA⊥PC;(2)求四棱锥P﹣ABCD的外接球的体积.【解答】证明:(1)设AD的中点为E,则∵PA=PD,∴PE⊥AD,∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PE⊥平面ABCD,∵PA在平面ABCD内的射影为AE,AE⊥CD,∴PA⊥CD,∵PA⊥PD,CD∩PD=D,∴PA⊥平面PCD∴PA⊥PC;解:(2)连接AC交BD于F,球心O在底面的射影必为点F,取截面PEF,PE=,EF=1.假设OF=x,则由OA2=x2+4=1+得x=0,∴球的半径为2,∴四棱锥P﹣ABCD的外接球的体积为=.。
八个有趣模型——搞定空间几何体的外接球与内切球
八个有趣模型一一搞定空间几何体的外接球与内切球当讲到付雨楼老师于2018年1月14日总第539期微文章,我如获至宝.为有了教学的实施,我以付老师的文章主基石、框架,增加了我个人的理解及例题,形成此文,仍用文原名,与各位同行分享•不当之处,敬请大家批评指正•—、有关定义1•球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球2•外接球的定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球•3.内切球的定义:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球•二、外接球的有关知识与方法1.性质:性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等;性质2 :经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆;性质3:过球心与小圆圆心的直线垂直于小圆所在的平面(类比:圆的垂径定理);性质4:球心在大圆面和小圆面上的射影是相应圆的圆心;性质5 :在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心)2.结论:结论1 :长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心;结论2 :若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆;结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处;结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径;结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球;结论7:圆锥体的外接球球心在圆锥的高所在的直线上;结论&圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径;结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球3.终极利器:勾股定理、正定理及余弦定理(解三角形求线段长度);三、内切球的有关知识与方法1.若球与平面相切,则切点与球心连线与切面垂直•(与直线切圆的结论有一致性)2.内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等•(类比:与多边形的内切圆)•3.正多面体的内切球和外接球的球心重合4.正棱锥的内切球和外接球球心都在高线上,但不一定重合5.基本方法:(3)在正三棱锥 S ABC 中,M 、N 分别是棱SC 、BC 的中点,且 AMMN ,若侧棱SA 2・3则正三棱锥S ABC 外接球的表面积是解:引理:正三棱锥的对棱互相垂直 .证明如下:如图(3) -1 , 取AB,BC 的中点D,E ,连接AE,CD , AE,CD 交于H ,连接SH , 则H 是底面正三角形ABC 的中心,SH 平面ABC : ,SH AB ,AC BC , ADBD , CD AB ,AB 平面SCD ,AB SC ,同理: BC SA , ACSB , 即正三棱锥的对棱互垂直, 本题图如图(3) -2 ,AM MN ,SB//MN , AM SB , AC SB , SB平面SAC ,SB SA , SB SC , SB SA ,BC SA ,SA 平面SBC , SA SC ,故三棱锥 S ABC 的三棱条侧棱两两互相垂直,(2R )2 !(2、3)2r — r~(2、、3)2(2、、36 2即4R 2 36 ,正三棱锥S ABC 外接球的表面积是36(4)在四面体S ABC 中,SA 平面ABC , BAC 120 ,SA AC 2, AB 1,则该四面体的外接(1) 构造三角形利用相似比和勾股定理;(2) 体积分割是求内切球半径的通用做法( 等体积法) 四、 与台体相关的,此略• 五、 八大模型第一讲柱体背景的模型类型一、墙角模型(三条棱两两垂直,不找球心的位置即可求出球半径)方法:找三条两两垂直的线段,直接用公式 2(2R)..a 2 b 2 c 2,求出 R例1 ( 1)已知各顶点都在同一球面上的正四棱柱的高为 4,体积为16,则这个球的表面积是( A. 16 B . 20C . 24D . 32(2)若三棱锥的三个侧面两两垂直,且侧棱长均为,3,则其外接球的表面积是 _________________PbCB图1-1图1-2图1-3 图1-4C(3)题-1(引理)球的表面积为(求出R .球的表面积为 _________________ ,球的表面积为 ____________ . __________A11 B.7C.- 3(5) 如果三棱锥的三个侧面两两垂直,它们的面积分别为 (6) 已知某几何体的三视图如图所示,三视图是腰长为何体外接球的体积为 ________________D.40 6、4、3,那么它的外接球的表面积是1的等腰直角三角形和边长为 1的正方形,则该几类型二、对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等, 第一步:画出一个长方体,标出三组互为异面直线的对棱; 求外接球半径(AB第二步:设出长方体的长宽高分别为a,b,c , AD BC x ,AB CD AC BD z ,列方程组,2a b 2 2cb 22 c2a2 x2 y 2z2(2R) 2 . 2 2abcx 2补充: 2-1 中, V A BCDabc - abc6 -abc . 3第三步:根据墙角模型,2Ra 2b 2c 2R 2CD ,AD BC ,AC BD )2 2y __ j R 8 ,R2 2 2x y z { 8 ,例2( 1)如下图所示三棱锥A BCD ,其中 AB CD 5,ACBD 6, AD BC 7,则该三棱锥外接(2)在三棱锥A BCD 中,AB CD 2,AD BC 3,AC BD 4,则三棱锥A BCD 外接A(1)题图(3)正四面体的各条棱长都为 ______________________________ 2,则该正面体外接球的体积为(4) 棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如下图,则图中三 角形(正四面体的截面)的面积是类型三、汉堡模型(直棱柱的外接球、圆柱的外接球)图3-1 图3-2 图3-3题设:如图3-1,图3-2,图3-3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是 任意三角形) 第一步:确定球心 0的位置,01是 ABC 的外心,则001 平面ABC ; 11第二步:算出小圆 0<!的半径A01r ,001 AA 1h ( AA , h 也是圆柱的高);2 2 第三步:勾股定理: OA 2 01A 20102R 2(-)2 r 2 Rv r2(-)2,解出 R . 2V 2例3( 1)一个正六棱柱的底面上正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,9且该六棱柱的体积为 -,底面周长为3,则这个球的体积为 __________________________8(2)直三棱柱 ABC A 1B 1C 1的各顶点都在同一球面上,若ABAC AA 2, BAC120,则此球的表面积等于(3)已知 EAB 所在的平面与矩形 ABCD 所在的平面互相垂直,EA EB 3, AD 2,AEB 60,则多面体E ABCD 的外接球的表面积为.(4)在直三棱柱 ABC A 1B 1C 1 中,AB 4, AC 6, A孑AA 14, 则直三棱柱ABC A 1B 1C 1的外接球的表面积为r!,BccooAA2o第二讲锥体背景的模型1.如图4-1,平面PAC 心 三棱锥P ABC 的三条侧棱相等 锥的顶点.解题步骤:BC (即AC 为小圆的直径),且P 的射影是P ABC 的底面 ABC 在圆锥的底上,顶点确定球心 O 的位置,取 ABC 的外心01,则三点共线;图4-4图4-1图4-2 图4-3类型四、切瓜模型(两个大小圆面互相垂直且交于小圆直径一一正弦定理求大圆直径是通法) 平面ABC ,且AB三棱 ABC 的外 P 点也是圆第一步: 第二步: 先算出小圆 O i 的半径AO ir ,再算出棱锥的高 PO 1 h (也是圆锥的高);第三步: 勾股定理:OA 2 O 1A 2 O 1O 2R 2 (h R)2 r 2,解出 R ;事实上,2.如图 ACP 的外接圆就是大圆,直接用 正弦定理也可求解出R .4-2,平面PAC 平面ABC , 且AB BC (即AC 为小圆的直径),且PAAC ,则利用勾股定理求三棱锥的外接球半径:① (2R)2PA 2 (2r)2 2R PA 2 (2r)2② R 2 r 2 OO 12 OO 123.如图4-3,平面PAC平面 ABC , 且ABBC (即AC 为小圆的直径) OC 2 O 1C 2 O 1O 2R 2 r 2 O 1O 2AC 2 R 2 O 1O 2平面ABC ,且AB BC (即AC 为小圆的直径) PAC 的外接圆是大圆,先求出小圆的直径第二步:在 PAC中,可根据正弦定理 — b— 2R ,求出R . sin A sin B sin C 4.题设:如图 4-4,平面 第一步:易知球心 O 必是PAC PAC 的外心,即 aAC 2r ;例4 (1)正四棱锥的顶点都在同一球面上, 若该棱锥的高为1,底面边长为2 3 ,则该球的表面积为 (2)正四棱锥S ABCD 的底面边长和各侧棱长都为 2,各顶点都在同一球面上,则此球体积为(3) —个正三棱锥的四个顶点都在半径为三棱锥的体积是( )A .沁B .旦1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正^3 12(4)在三棱锥P ABC 中,PA PB PC . 3 ,侧棱PA 与底面ABC 所成的角为60 ,则该三棱锥外接球的体积为(类型五、垂面模型(一条直线垂直于一个平面) 1. 题设:如图5, PA 平面ABC ,求外接球半径解题步骤:第一步:将 ABC 画在小圆面上, A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心0 ;第二步:01为 ABC 的外心,所以 00^! 平面ABC ,算出小圆01的半径01D r (三角形的外接圆直 径算法:利用正弦定理,得 -^―-^―2r ),0011PA ;sin A sin B sinC2第三步:利用勾股定理求三棱锥的外接球半径:①(2R )2 PA 2 (2r )22R . PA 2 (2r )2 ;② R 2 r 2 0012R ... r 2 00:.2•题设:如图5-1至5-8这七个图形,P 的射影是 ABC 的外心 三棱锥P ABC 的 三条侧棱相等 三棱锥P ABC 的底面 ABC 在圆锥的底上,顶点 P 点也是圆锥的 顶点•33(5)已知三棱锥 S ABC 的所有顶点都在球 0的求面上,ABC 是边长为1的正三角形,SC 为球0的直径,且SC 2,则此棱锥的体积为( )A •二B .C.1!D.迈6 6 3 2A . B.C. 4D.P图5-1OCA Oi BPP图5-4OCA DBO i P图5-6图5-7图5-8解题步骤:第一步:确定球心0的位置,取ABC的外心O i,则P,O,O i三点共线;第二步:先算出小圆O i的半径AO i r,再算出棱锥的高PO i h (也是圆锥的高)第三步:勾股定理:OA2 O i A2 O i O2R2(h R)2 r2,解出R方法二:小圆直径参与构造大圆,用正弦定理求大圆直径得球的直径.例5 一个几何体的三视图如图所示,则该几何体外接球的表面积为A. 3B. 2C.i63D.以上都不对第三讲二面角背景的模型类型六、折叠模型题设:两个全等三角形或等腰三角形拼在一起,或菱形折叠(如图6)图6第一步:先画出如图6所示的图形,将BCD画在小圆上,找出BCD和ABD的外心H1和H2;第二步:过H i和H2分别作平面BCD和平面ABD的垂线,两垂线的交点即为球心0,连接OE,OC ;第三步:解OEH i,算出OH i,在Rt OCH i中,勾股定理:OH; CH; 0C2注:易知O,H i,E,H2四点共面且四点共圆,证略•例6( 1)三棱锥P ABC中,平面PAC 平面ABC,△ PAC和厶ABC均为边长为2的正三角形,贝U 三棱锥P ABC外接球的半径为____________________________ .(2)在直角梯形ABCD中,AB//CD , A 90 , C 45 , AB AD 1,沿对角线BD折成四面体A BCD,使平面ABD 平面BCD,若四面体A BCD的顶点在同一个球面上,则该项球的表面积为(3)在四面体S ABC中,AB BC , AB BC 匹,二面角S AC B的余弦值为—贝y四3 面体S ABC的外接球表面积为____________________(4)在边长为2..3的菱形ABCD中,BAD 60,沿对角线BD折成二面角A BD C为120的四面体ABCD,则此四面体的外接球表面积为 ____________________(5)在四棱锥ABCD 中,BDA 120 , BDC 150 , AD BD 2, CD . 3,二面角A BD C的平面角的大小为120,则此四面体的外接球的体积为 ________________类型七、两直角三角形拼接在一起(斜边相同,也可看作矩形沿对角线折起所得三棱锥)模型题设:如图7, APB ACB 90,求三棱锥P ABC 外接球半径(分析:取公共的斜边的中点O ,1连接OP,OC ,则OA OB OC OP -AB , O 为三棱锥P ABC 外接球球心,然后在 OCP 中 2求出半径),当看作矩形沿对角线折起所得三棱锥时与折起成的二面角大小无关,只要不是平角球半径都 为定值•例7 (1)在矩形ABCD 中,AB 4, BC则四面体ABCD 的外接球的体积为(3,沿AC 将矩形ABCD 折成一个直二面角 BAC D ,).125D6125 3A125DA . B.121259C(2)在矩形ABCD 中,AB 2, BC 3, 沿BD 将矩形ABCD 折叠,连接AC , 所得三棱锥A BCD的外接球的表面积为 ___________________第四讲多面体的内切球问题模型类型八、锥体的内切球问题第一步:先现出内切球的截面图,E,H 分别是两个三角形的外心;1第二步:求DH -BD , PO PH r , PD 是侧面 ABP 的高;3第三步:由 POE 相似于 PDH ,建立等式: 坐 竺,解出rDH PD2. 题设:如图8-2,四棱锥P ABC 是正四棱锥,求其内切球的半径3. 题设:三棱锥 P ABC 是任意三棱锥,求其的内切球半径方法:等体积法,即内切球球心与四个面构成的四个三棱锥的体积之和相等1.题设:如图8-1,三棱锥P ABC 上正三棱锥,求其内切球的半径第一步: 先现出内切球的截面图,P,O, H 三点共线;第二步: 求 1FH 丄 BC2 ,PO PH r , PF 是侧面PCD 的高;第三步:由POG 相似于 PFH OG ,建立等式:HF PO ,解出PFPCACB图8-1PGOHFC图8-2D第一步:先画出四个表面的面积和整个锥体体积;3V P ABCS O ABC S O PAB S O PACS O PBC 例8 ( 1)棱长为a 的正四面体的内切球表面积是 ________________________(2)正四棱锥S ABCD 的底面边长为2,侧棱长为3,则其内切球的半径为 _________________(3)三棱锥P ABC 中,底面 ABC 是边长为2的正三角形,PA 底面ABC ,PA 2, 则该三棱锥的内切球半径为 ___________________习题:1 •若三棱锥S ABC 的三条侧棱两两垂直,且SA 2,SB SC 4,则该三棱锥的外接球半径为 ()A. 3B. 6C. 36D. 9 2.三棱锥S ABC 中,侧棱SA 平面ABC ,底面ABC 是边长为..3的正三角形,SA 2 3,则该三 棱锥的外接球体积等于 . 3•正三棱锥S ABC 中,底面ABC 是边长为 3的正三角形,侧棱长为 2,则该三棱锥的外接球体积等 于4 •三棱锥P ABC 中,平面PAC 平面ABC ,△ PAC 边长为2的正三角形, AB BC ,则三棱锥 P ABC 外接球的半径为5. 三棱锥 P ABC 中,平面 PAC 平面ABC ,AC 2,PA PC 3,AB BC ,则三棱锥P ABC 外接球的半径为6. 三棱锥P ABC 中,平面PAC 平面ABC ,AC 2,PA PC ,AB BC ,则三棱锥P ABC第二步:设内切球的半径为 建立等式:V p ABC ABC V O PAB VO PAC V O PBC 1 V P ABC S ABC 3 11 PAB r S pAC 33 1 PBC 3 1 (S ABC S PAB S PAC S PBC ) r 3 第三步:解出r外接球的半径为_______ .。
破解外接球问题三法定义,构造,交轨
㊀㊀㊀破解外接球问题三法:定义,构造,交轨◉湖北省大冶市实验高中㊀石晓皎㊀㊀摘要:理解并掌握一些相关的基本技巧方法,正确确定空间几何体的外接球的球心位置或球的半径,是破解空间几何体外接球问题的关键.结合几个常见的破解此类问题的技巧方法与策略,通过对相关实例的剖析,归纳总结题目类型与解题技巧,为数学教学与复习备考提供参考.关键词:空间几何体;外接球;定义;构造;交轨1引言空间几何体的外接球问题,其问题创设的形式各样,变化多端,是一类常考常新的综合应用问题.解决问题时,关键是利用空间几何体的结构特征,以及外接球的定义㊁性质等,确定空间几何体外接球的球心位置或球的半径.下面结合具体案例,从球的定义(定义法)㊁几何体的结构特征(构造法)以及球的性质(交轨法)等视角来分析与处理空间几何体的外接球问题,并巧妙归类与总结.2破解三法2.1定义法通过题目中所给的空间几何体的结构特征,结合球的定义确定其外接球的球心位置或半径.其实就是抓住球的定义本质进行求解.例1㊀[2022届吉林省白山市高三(上)期末数学试卷(文科)]已知四棱锥P GA B C D 的底面是矩形,P A ʅ平面A B C D ,A B =4,B C =2㊀5,P A =8,则四棱锥P GA B C D 外接球的表面积为(㊀㊀).A.72π㊀㊀B .144π㊀㊀C .50π㊀㊀D.100π分析:根据给定条件,取P C 中点O ,结合线面垂直的判定与性质,利用直角三角形的性质,结合球的定义来确定四棱锥P GA B C D 外接球的球心位置,进而构建关系式计算出球半径,代入球的表面积公式计算即可.图2解析:四棱锥P GA B C D 的底面是矩形,取P C 中点O ,连接A C ,O A ,O B ,O D ,如图1所示.因为P A ʅ平面A B C D ,B C ⊂平面A B C D ,则P A ʅB C .而A B ʅB C ,A B ɘP A =A ,A B ,P A ⊂平面P A B ,则有B C ʅ平面P A B .又P B ⊂平面P A B ,所以B C ʅP B .同理,可证C D ʅP D .而P A ʅA C ,因此O A =O B =O C =O D =12P C .结合球的定义,可知四棱锥P GA B C D 外接球的球心为O ,半径为O A .在矩形A B C D 中,A C 2=A B 2+B C 2,从而得P C =㊀A C 2+P A 2=㊀42+(2㊀5)2+82=10,即球半径O A =5,所以四棱锥P GA B C D 外接球的表面积为S =4πˑ52=100π.故选择答案:D .点评:定义法确定空间几何体外接球的球心位置或半径,其实就是抓住球的定义这一实质,利用球心到球面上任意一点的距离都相等,巧妙综合空间几何体的对称性㊁平面几何图形的基本性质等,结合球的定义巧妙构建相应的关系式,实现问题的化归与应用的目的.2.2构造法通过题目中所给的空间几何体的结构特征,巧妙构造立体几何模型,如所给空间几何体是柱体㊁锥体等,可构造长方体或正方体等特殊立几模型来转化与应用.例2㊀[2022届山西省高三(上)期末考试数学试卷(理科)]已知三棱锥P GA B C 的顶点P 在底面的射影O 为әA B C 的垂心,若әA B C 的面积为S әA B C ,әO B C 的面积为S әO B C ,әP B C 的面积为S әP B C ,满足S әA B C S әO B C =S 2әP B C ,当әP A B ,әP B C ,әP A C 的面积之和的最大值为8时,则三棱锥P GA B C 外接球的体积为(㊀㊀).A.4π3㊀㊀B .8π3㊀㊀C .16π3㊀㊀D.32π3分析:如图2,连接A O ,并延长交B C 于点D .由顶点P 在底面的射影O 为әA B C 的垂心,可得B C ʅP A ,A C ʅP B ,A B ʅP C .由S әA B C S әO B C =S әP B C 2,可得әP O D ʐәA P D ,P A ʅP D .即可得P A ,P B ,P C 两两互相垂直.通过构造立体几何模型法,利用三棱锥P GA B C 的外接球为以P A ,P B ,P C为棱的长方体的外接球,即可建立涉及外接球半径的关系式,结372022年11月上半月㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀解法探究复习备考Copyright ©博看网. All Rights Reserved.㊀㊀㊀合三角形的面积公式以及基本不等式的应用来转化与应用.图2解析:如图2所示,连接A O并延长交B C于点D,连结P D.由于顶点P在底面的射影O为әA B C的垂心,则知A DʅC B.又P Oʅ平面A B C,可得P OʅB C.又A DɘP O=O,所以B Cʅ平面A P D,可得B CʅA P,B CʅP D.同理A CʅP B.由SәA B C SәO B C=S2әP B C,可得A D O D=P D2.又øP D O=øP D A,则有әP O DʐәA P D,所以øA P D=øP O D=90ʎ,即P AʅP D.又P AʅB C,B CɘP D=D,所以A Pʅ平面P B C,而P B⊂平面P B C,故P AʅP B.又P BʅA C,且A PɘA C=A,所以P Bʅ平面A P C,而P B⊂平面A P C,故P BʅP C.所以P A,P B,P C两两互相垂直.所以三棱锥PGA B C的外接球为以P A,P B,P C为棱的长方体的外接球.设三棱锥PGA B C的外接球半径为R,则有P A2+P B2+P C2=4R2.故SәP A B+SәP B C+SәP A C=12P A P B+12P BP C+12P A P Cɤ14(P A2+P B2+P B2+P C2+P A2+P C2)=2R2=8,当且仅当P A=P B=P C时等号成立,此时R=2.所以,三棱锥PGA B C外接球的体积V=43πR3=32π3.故选择答案:D.点评:构造法确定空间几何体的外接球的球心位置或半径,其实就是借助补形思维,通过合理补形等方式构造特殊的空间几何体 正方体或长方体等,利用原几何体与所构造的特殊空间几何体的外接球一致,合理转化,快捷处理,进而利用正方体或长方体外接球的球心是其体对角线的中点(体对角线恰是该外接球的直径)来解决问题.2.3交轨法通过题目中所给空间几何体的结构特征,结合外接球的几何特征,从不同视角确定球心所在的直线,而满足条件的两条相交直线的交点就是对应的外接球球心.例3㊀(2020年陕西省西安市高考数学一模试卷理科)已知әA B C是以B C为斜边的直角三角形,P为平面A B C外一点,且平面P B Cʅ平面A B C,B C=3,P B=2㊀2,P C=㊀5,则三棱锥PGA B C外接球的表面积为.分析:根据题目条件,利用交轨法求解.先求出到A,B,C三点等距离的点的轨迹是直线MN,再求出到P,B两点等距离的点的轨迹是直线D E,则直线MN与直线D E的交点即是三棱锥PGA B C外接球的球心,进而结合余弦定理㊁正弦定理加以分析与求解,确定外接球的半径,即可求解对应的表面积.解析:设M为B C的中点,在平面P B C内过点M作MNʅB C交P B于点N.因为平面P B Cʅ平面A B C,所以MNʅ平面A B C.又三角形A B C是以B C为斜边的直角三角形,所以直线MN上任意一点到A,B,C三点的距离相等.在平面P B C内作线段P B的垂直平分线D E,设D E与MN的交点为O,则点O到P,A,B,C四点的距离都相等,即点O为三棱锥PGA B C外接球的球心,并且点O也是三角形P B C的外心.因此,三棱锥PGA B C外接球的半径与三角形P B C外接圆的半径相等.又P B=2㊀2,B C=3,P C=㊀5,所以在әP B C中,由余弦定理可得c o søP B C=8+9-52ˑ2㊀2ˑ3=㊀22,则s i nøP B C=㊀22.设三棱锥PGA B C外接球的半径为R,结合正弦定理有2R=㊀5㊀22=㊀10,即R=㊀102.所以,三棱锥PGA B C外接球的表面积S=4πR2=10π.故填答案:10π.点评:交轨法确定空间几何体外接球的球心位置或半径,其实就是借助球的相关性质: 球心O与截面圆的圆心O1的连线垂直于截面圆 球心O与弦中点的连线垂直于弦 等,利用满足条件的两条相交直线的交点直接确定空间几何体外接球的球心.3结语解决空间几何体的外接球问题,除了以上借助球的定义(定义法)㊁几何体的结构特征(构造法)以及球的性质(交轨法)等方法来解决外,还可以结合空间坐标法㊁向量法以及其他一些相关的技巧来处理,关键就是要 心中有图 ,正确进行空间想象,构建不同元素之间的联系,合理数学运算,巧妙逻辑推理,实现数学运算㊁直观想象以及逻辑推理等核心素养的培养与提升.Z47复习备考解法探究㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2022年11月上半月Copyright©博看网. All Rights Reserved.。
高中数学解题秘籍系列一篇文章攻克外接球
【高中数学解题秘籍系列】————一篇文章攻克外接球⚫外接球指一个空间几何图形的外接球,对于旋转体和多面体,外接球有不同的定义,广义理解为球将几何体包围,且几何体的顶点和弧面在此球上.正多面体各顶点同在一球面上,这个球叫做正多面体的外接球.⚫内切球球心到某几何体各面的距离相等且等于半径的球是几何体的内切球.如果一个球与简单多面体的各面或其延展部分都相切,且此球在多面体的内部,则称这个球为此多面体的内切球.一、外接球七大模型二、内切球万能公式(棱锥)①圆柱②直棱柱③侧棱垂直底面➢适用几何体:圆柱、直棱柱、一条侧棱垂直底面的棱锥.②和 ③ 可以通过补形转化为 ①,所以我们只需证明 ① 即可证明:设P 、O '分别为上下底面圆的圆心,O 为线段PO '的中点,( 2017•新课标 Ⅲ ) 已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .πB .3π4 C .π2D .π4由秒杀公式1得22222212=1442h R r r ⎛⎫+=+== ⎪⎝⎭,解得234r =, 因此圆柱的体积233πππ144V r h =⋅=⋅⋅=,故选B.( 2017•新课标 Ⅱ ) 长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则 球O 的表面积为 .由秒杀公式1得2222217=442h R r +=+=⎝⎭, 因此球O 的表面积为274π4π14π2S R ==⋅⋅=. 本题还可用秒杀公式4可得22222223217442a b c R ++++===,因此球O 的表面积为274π4π14π2S R ==⋅⋅=. 由此可知在选用公式的时候是比较灵活的,原因在于模型之间可以相互转化.典例例题1-1例题1-2( 2012•辽宁 ) 已知点P ,A ,B ,C ,D 是球O 表面上的点,PA ⊥平面ABCD ,四边形ABCD 是边长为PA =,则OAB △的面积为 .由秒杀公式1得(22222=12424h R r +=⋅+=⎝,解得R =OAB △为等边三角形,所以(2OAB S ==△( 2011•四川 ) 如图,半径为R 的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是 .由秒杀公式1得222=4h R r +,于是2224=2π=4π4π2π22h r h S r h r R+⋅⋅⋅=侧, 当且仅当2h r ==时不等式取“=”,于是 222=4π2π=2πSS R R R −−侧球.( 2010•辽宁 ) 已知S ,A ,B ,C 是球O 表面上的点,SA ⊥平面ABC ,AB BC ⊥,1SA AB ==,BC ,则球O 的表面积等于( )A .4πB .3πC .2πD .π由秒杀公式1得222221=144h R r +=+=⎝⎭, 解得1R =,则球O 的表面积为24π4πS R ==.故选A .( 2008•浙江 ) 如图,已知球O 的面上四点A ,B ,C ,D ,DA ⊥平面ABC ,AB BC ⊥,DA AB BC ==O 的体积等于 .由秒杀公式1得222229=444h R r +=+=⎝⎭, 解得32R =,则球O 的体积为 334439πππ3322V R ⎛⎫==⋅⋅= ⎪⎝⎭.①圆锥 ②正棱锥➢适用几何体:圆锥、顶点在底面的射影是底面外心的棱锥(正棱锥).② 可以通过补形转化为 ①,所以我们只需证明 ① 即可心O 为PO '上一点,于是在Rt OO A '△中有解得( 2018•新课标 Ⅲ ) 设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且面积为D ABC −体积的最大值为( ) A.B.C.D.依题意得,当三棱锥D ABC −为正三棱锥且hR 时,三棱锥D ABC −的体积最大,那么由秒杀公式2得22=42r h R h+=,①又因为ABC △为正三角形且面积为))1πsin23S =⋅⋅⋅=,解得r =①式解得2h =或6h =,又因为4hR =,所以6h =,于是()max 1=3D ABC V −⋅ 故选B .例题2-1典例( 2014•大纲版 ) 正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A .81π4B .16πC .9πD .27π4由秒杀公式2得2222+49==2244r h R h+=⋅, 因此22981π=4π=4π=44S R ⎛⎫⋅ ⎪⎝⎭, 故选A .( 2020•银川模拟 ) 已知圆锥的母线与底面所成的角等于60︒,且该圆锥内接于球O ,则球O 与圆锥的表面积之比等于( ) A .4:3B .3:4C .16:9D .9:16由秒杀公式2得22=2r h R h+,依题意得h =,因此R =, 于是2222224164ππ4π1633=ππππ23π9r r S R S r rl r r r r ⋅===++⋅球锥. 故选C .例题2-2例题2-3( 2018秋•太原期末 ) 在三棱锥P ABC −中,顶点P 在底面ABC 的投影G 是ABC △的外心,2PB BC ==,平面PBC 与底面ABC 所成的二面角的大小为60︒,则三棱锥P ABC −的外接球的表面积为 .如图所示,作BC 的中点M ,在Rt PMB △[1]中有PM ==依题意知60PMG ∠=︒[2],在Rt PGM △中有3sin 60cos602h PG PM GM PM ==︒==︒=, 于是在Rt BGM △中有r BG =, 由秒杀公式2可得224=23r h R h +=,因此264π4π9S R ==.[1] 因为顶点P 在底面ABC 的投影G 是ABC △的外心,所以PA PB PC ==. [2] 因为BC PM ⊥且BC GM ⊥,所以PMG ∠为二面角P BC A −−的平面角.( 2020•娄底模拟 ) 如图所示是某几何体的三视图,则该几何体的外接球的表面积为( )A .25π8B .25π4C .25π2 D .9π8由秒杀公式2得2222+=2r hR h+= 因此2225π=4π=4π=2S R ⋅⎝⎭, 故选C .( 2019秋•东莞市期末 ) 已知球O 是正四面体A BCD −的外接球,2BC =,点E 在线段BD 上,且3BD BE =,过点E 作球O 的截面,则所得截面圆面积的最小值是( )A .8π9B .11π18C .5π12 D .4π9依题意易知3r =,3h =,由秒杀公式2得2222+=2r h R h +=, 如图所示,在OBD △中,由余弦定理可得222cos 23OB BD ODOBD OB BD+−∠==⋅⋅, 那么在OBE △中,由余弦定理可得222112cos 18OE OB BE OB BE OBD =+−∠=, 当截面圆垂直OE 时面积最小,故截面圆的最小半径为3r '==, 因此截面圆面积的最小值为()288πππ99S r '==⋅=.故选A .( 学生答疑 ) 在《九章算术》卷商功中称正四棱锥为“方锥”. 现有一“方锥”的体积为若该“方锥”的五个顶点都在球O 的球面上,则球O 表面积的最小值为 A .18πB .27πC .36πD .75π由秒杀公式2得22=2r h R h+, 依题意得211=233V S h r h ⋅⋅=⋅⋅=底,即2r =2223263=32244h rh h h h R h h h ++==+⋅=4h”,即“h =”时不等式取“=”,因此 2min min 27=4π4π27π4S R =⋅=,故选B.➢适用几何体:三组线线垂直型三棱锥.证明:在三棱锥P ABC=,−中,AB AC APAB a,AC b、、两两垂直,= =,将三棱锥补成长方体,则长方体的体对角线PQ即为外接球的AP c直径,于是所以()22222R a b c=++,即( 2019•新课标 Ⅰ ) 已知三棱锥P ABC −的四个顶点在球O 的球面上,PA PB PC ==,ABC △是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为( ) A.B.C.D依题意得三棱锥P ABC −为正三棱锥,CE EF ⊥,因为//EF PB ,所以PB CE ⊥,由正三棱锥性质可得PB CA ⊥[1],又因为CE ⊂面PAC ,CA ⊂面PAC ,=CE CA C ,因此PB ⊥面PAC ,因此PA PB PC ,,两两垂直[2],由秒杀公式3得2222222++3===442a b cR ++, 于是3344=π=π332V R ⎛⎫⋅⋅⋅⋅ ⎪ ⎪⎝⎭, 故选D .[1] 设G 为AC 的中点,P 点在底面ABC 的投影为1O ,因为三棱锥P ABC −为正三棱锥, 所以1O 为ABC △的外心,故1B O G ,,三点共线,因为1AC PO AC BG ⊥⊥,,且 11PO BG O =,所以AC ⊥平面PGB ,又因为PB ⊂平面PGB ,故PB CA ⊥.[2] PAB PAC PBC ≅≅△△△.例题3-1典例( 2012•辽宁 ) 已知正三棱锥P ABC −,点P ,A ,B ,CPA ,PB ,PC 两两垂直,则球心到截面ABC 的距离为 .由秒杀公式3可得2222222344PA PB PC a b c R ++++===,由正三棱锥性质可得PA PB PC ==,解得2PA PB PC ===,则球心到截面ABC 的距离为OH ===.( 2008•福建 ) 是 .由秒杀公式3可得2222944a b c R ++===,故294π4π9π4S R ==⋅=. 例题3-3( 2020•山东学业考试 ) 在三棱锥P ABC −中,PA ,PB ,PC 两两垂直,且1PA =,2PB PC ==,则该三棱锥的外接球体的体积为( )A .9π2B .27π2C .9πD .36π由秒杀公式3可得22222221229444a b c R ++++===,于是334439πππ3322V R ⎛⎫==⋅=⎪⎝⎭. 故选A .( 2019春•湖南期末 ) 已知点P 在直径为2的球面上,过点P 作球的两两相互垂直的三条弦PA ,PB ,PC ,若PA PB =,则PA PB PC ++的最大值为( )A.B .4C.2+D .3由秒杀公式3可得22222222221444PA PB PC PB PC a b c R +++++====,即2224PB PC +=,因此()222PAPB PC PB PC⎡++=+=⎢⎣1PC =时,即3PB PC ==时不等式取“=”,故选A .例题3-5➢适用几何体:对棱长相等的三棱锥.证明:在三棱锥P ABC −中,PA BC x ==,PB AC y ==,PC AB z ==,将三棱锥P ABC −补成如图所示长方体,设DA a =,DB b =,DC c =,于是长方体的体对角线PD 即为三棱锥P ABC −外接球,因为222222222a b z a c y b c x ⎧+=⎪+=⎨⎪+=⎩,,, 所以()2222222x y z a b c ++=++,又因为那么即( 2020•红河州模拟 ) 在三棱锥A BCD −中,5AB CD AC BD ====,AD BC ==( )AB.C .132D .13由秒杀公式4得()((22222225+169==884x y z R +++=, 解得13=2R ,故选C .( 2016•蚌埠三模 ) 在四面体ABCD 中,2AB CD ==,AC BD AD BC ==== 面体的外接球的表面积为 .由秒杀公式4得()22222222+==188x y zR +++=,因此四面体外接球的表面积为24π4πS R ==.典例例题4-1例题4-2( 2019秋•路南区校级期中 ) 四面体ABCD 的四个顶点在同一球面上中,4AB BC CD DA ====,AC BD ==E 为AC 的中点,过E 作其外接球的截面,则截面面积的最大值与最小值的比为( ) A .5:4B2CD .5:2由秒杀公式4得()()(22222224+4==588x y z R +++=,在等腰OAE △中,OE ==当截面圆所在平面垂直OE 时面积最小,截面圆所在平面过球心O 时面积最大,因此22min maxπ2ππ5πS SR =⋅==⋅=,,于是max min 52S S =, 故选D .例题4-3➢适用几何体:两全等等腰三角形折叠式棱锥.证明:在三棱锥P ABC −中,PAB CAB ≅△△,CA CB =,1O ,2O 分别是ABC △和PBC △的外心,M 为线段AB 的中点,1OO ⊥平面ABC ,2OO ⊥中有那么,在Rt MBO △中有( 2019•齐齐哈尔一模 ) 在边长为2的菱形ABCD中,BD =,将菱形ABCD 沿对角线AC 对折,使二面角B AC D −−的余弦值为13,则所得三棱锥A BCD −的外接球的表面积为.由秒杀公式5得因此三棱锥A BCD −的外接球表面积为234π4π6π2S R ==⋅=.典例例题5-1(2017•广西一模)在菱形ABCD中,60A=︒,AB=ABD∆的∆沿BD折起到PBD位置,若二面角P BD C−的外接球球心为O,BD的中−−的大小为120︒,三棱锥P BCD点为E,则(OE=)A.1B.2C D.由秒杀公式5得那么OE===,2故选B.( 原创 ) 已知空间四边形ABCD 中,2AB BD AD BC AC =====,若二面角C AB D −−的取值范围为π2π33⎡⎤⎢⎥⎣⎦,,则该几何体的外接球表面积的取值范围为 .由秒杀公式5得又因为π2π33α⎡⎤∈⎢⎥⎣⎦,,所以ππ263α⎡⎤∈⎢⎥⎣⎦,,那么tan 2α∈⎣,因此213793R ⎡⎤∈⎢⎥⎣⎦,,又因为2=4πS R ,故外接球表面积的取值范围为52π28π93⎡⎤⎢⎥⎣⎦,.➢适用几何体:面面垂直型棱锥.证明:在三棱锥P ABC −中,平面ABP ⊥平面ABC ,1O ,2O 分别是ABP △和ABC △的外心,且1OO ⊥平面ABP ,2OO ⊥平面ABC ,1r ,2r 分别是ABP △和ABC △外接圆的半径,l 为线段AB 的长度,在2O BM △中有即同理所以( 原创 ) 在三棱锥S ABC −中,ABC △是边长为3的等边三角形,SA =,SB =面角S AB C −−的大小为90︒,则此三棱锥的外接球的半径为 .由秒杀公式5得典例例题6-1( 2019•中卫一模 ) 一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几 何体的外接球的表面积为( ) A .16π3B .8π3C. D.由秒杀公式5得因此外接球的表面积为正视图侧视图俯视图( 2019•开福区校级模拟 ) 已知等腰ABC △的面积为4,AD 是底边BC 上的高,沿AD 将ABC △折成一个直二面角,则三棱锥A BCD −的外接球的表面积的最小值为 .设AD x BD y ==,,因为等腰ABC △的面积为4,则=4xy ,又因为12r r ==, 那么由秒杀公式5得2211242x ⋅2212x y =时,即x y ==时,不等式取“=”,故三棱锥A BCD −的外接球的表面积的最小值为2min min =4πS R .如图,三棱锥P ABC −的底面是边长为2的等边三角形,若PA PB =二面角P BA C −− 的大小为90︒,则三棱锥P ABC −的外接球的表面积等于 .由秒杀公式5得因此外接球的表面积为➢适用几何体:普通三棱锥.证明:在三棱锥P ABC −中,1O ,2O 分别是ABP △和ABC △的外心,二面角12P AB C O MO α−−=∠=,M 为AB 的中点,1O M m =,2O M n =,且1OO ⊥平面ABP ,2OO ⊥平面ABC , l 为线段AB 的长度,在四边形12OO MO 中,因为所以12OO MO 四点共圆,设四边形12OO MO 的外接圆的半径为r ,则因此( 2019秋•迎泽区校级月考 ) 在三棱锥S ABC −中,ABC △是边长为3的等边三角形,SA,SB =二面角S AB C −−的大小为120︒,则此三棱锥的外接球的半径为 . 由秒杀公式7得典例例题7-1( 2019春•孝感期末 ) 将边长为2的正三角形ABC 沿中线AD 折成60︒的二面角B AD C −−,则三棱锥A BDC −的外接球的表面积为 .由秒杀公式7得因此外接球的表面积为( 2015秋•绍兴校级期中) 如图,三棱锥P ABC −的底面是边长为2的等边三角形,若PA PB ==P BA C −−的大小为60︒,则三棱锥P ABC −的外接球的表面积等于 .由秒杀公式7得因此外接球的表面积为( 2017•葫芦岛模拟 ) 已知空间四边形ABCD 中,2AB BD AD ===,1BC =,CD =,若二面角A BD C −−的取值范围为π2π43⎡⎤⎢⎥⎣⎦,,则该几何体的外接球表面积的取值范围为 .由秒杀公式7得因为π2π43α⎡⎤∈⎢⎥⎣⎦,,所以21sin 12α⎡⎤∈⎢⎥⎣⎦,,因此24533R ⎡⎤∈⎢⎥⎣⎦,,因此外接球的表面积的取值范围为➢适用几何体:所有棱锥.证明:设PAB PAC PBC ABC △、△、△、△的面积分别为1234S S S S 、、、,则那么即( 2020•来宾模拟 )已知正三棱锥的底面边长为,侧棱长为,则该正三棱锥内切球的表面积为 .由秒杀公式8得所以外接球的表面积为典例例题8-1( 2020•浙江模拟 ) 几何体三视图如图所示,则该几何体的内切球表面积是 .由秒杀公式8得所以外接球的表面积为( 2020•娄底模拟 ) 如图所示是某几何体的三视图,则该几何体的内切球与外接球的半径之比为( )A .12B .23C .25 D .13由秒杀公式2得2222=2r hR h++==外, 由秒杀公式8得故该几何体的内切球与外接球的半径之比为故选C .。
立体几何外接内切球的八大模型
八个有趣模型——搞定空间几何体的外接球与内切球cab图1CP AB a bc图2PC BA a bc图3C BPAabc图4PCO2BA类型一、墙角模型(三条线两个垂直,不找球心的位置即可求出球半径)c ab图1CPA Babc 图2PCBAabc 图3CBPAa bc 图4PCO 2BA方法:找三条两两垂直的线段,直接用公式2222)2(c b a R ++=,即2222c b a R ++=,求出R例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( C )A .π16B .π20C .π24D .π32(2)若三棱锥的三个侧面两垂直,且侧棱长均为3,则其外接球的表面积是 π9 解:(1)162==h a V ,2=a ,24164442222=++=++=h a a R ,π24=S ,选C ; (2)933342=++=R ,ππ942==R S类型二、垂面模型(一条直线垂直于一个平面) 1.题设:如图5,⊥PA 平面ABC 解题步骤:第一步:将ABC ∆画在小圆面上,A 为小圆直径的一个端点,作小圆的直 径AD ,连接PD ,则PD 必过球心O ;第二步:1O 为ABC ∆的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半径r D O =1(三角形的外接圆直径算法:利用正弦定理,得r C c B b A a 2sin sin sin ===),PA OO 211=; 第三步:利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=图5ADPO 1OCB2.题设:如图6,7,8,P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱锥ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点图6PADO 1OCB图7-1PAO 1O CB图7-2PAO 1OCB图8PAO 1OCB图8-1DPOO 2ABC图8-2POO 2ABC图8-3DPOO 2AB解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R例2 一个几何体的三视图如右图所示,则该几何体外接球的表面积为( )C A .π3 B .π2 C .316πD .以上都不对 解:选C ,221)3(R R =+-,221323R R R =++-, 0324=-R ,32=R ,ππ31642==R S类型三、切瓜模型(两个平面互相垂直)图9-1ACBP图9-2AO 1OCBP图9-3PAO 1OCB图9-4AO 1OCBP1.题设:如图9-1,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)第一步:易知球心O 必是PAC ∆的外心,即PAC ∆的外接圆是大圆,先求出小圆的直径r AC 2=; 第二步:在PAC ∆中,可根据正弦定理R CcB b A a 2sin sin sin ===,求出R2.如图9-2,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径) 21212O O C O OC +=⇔2122O O r R +=⇔2122O O R AC -=3.如图9-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点 解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:21212O O A O OA+=⇒222)(r R h R +-=,解出R4.如图9-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且AC PA ⊥,则 利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R+=⇔212OO r R +=例3 (1)正四棱锥的顶点都在同一球面上,若该棱锥的高为1,底面边长为32,则该球的表面积为 。
八个模型全搞定空间几何的外接球和内切球问题(学生版)
1八个模型搞定空间几何体的外接球与内切球一、直棱柱模型1.已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是。
2.一个正六棱柱的底面上正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为。
3.直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于。
4.在直三棱柱ABC A B C 111中,AB 4,AC 6,,A 3AA 14则直三棱柱ABC A B C 111的外接球的表面积为。
5.若三棱锥S ABC 的三条侧棱两两垂直,且SA 2,SB SC 4,则该三棱锥的外接球半径为。
6.三棱锥S ABC 中,侧棱SA 平面ABC ,底面ABC的正三角形,SA ,则该三棱锥的外接球体积等于。
,则其外接球的表面积是。
8.在四面体S ABC -中,SA ABC 平面,,,,BAC SA AC AB 12021则该四面体的外接球的表面积为。
二、棱锥所有侧棱相等模型1、一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是。
2.正三棱锥S ABC 中,底面ABC侧棱长为2,则该三棱锥的外接球体积等于。
3、在三棱锥P ABC中,PA PB PC ,侧棱PA 与底面ABC 所成的角为60 ,2则该三棱锥外接球的体积为。
三、侧面与底面垂直模型1.三棱锥P ABC 中,平面PAC 平面ABC ,AC 2,PA PC 3,AB BC ,则三棱锥P ABC 外接球的半径为。
2.三棱锥P ABC 中,平面PAC 平面ABC ,△PAC 边长为2的正三角形,AB BC ,则三棱锥P ABC 外接球的半径为。
3.已知EAB 所在的平面与矩形ABCD 所在的平面互相垂直,,EA EB AD AEB 3260,则多面体E ABCD 的外接球的表面积为。
空间几何体的外接球与内切球解题方法
空间几何体的外接球与内切球一、有关定义1.球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球。
2.外接球的定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。
3.内切球的定义:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球。
二'外接球的有关知识与方法1.性质:性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等;性质2:经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆;性质3:过球心与小圆圆心的直线垂直于小圆所在的平面(类比:圆的垂径定理);性质4:球心在大圆面和小圆面上的射影是相应圆的圆心;性质5:在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心).2.结论:结论1:长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心;结论2:若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆;结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处;结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径;结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球;结论7:圆锥体的外接球球心在圆锥的高所在的直线上;结论8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径;结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球.3.终极利器:勾股定理、正弦定理及余弦定理(解三角形求线段长度);三、内切球的有关知识与方法1.若球与平面相切,则切点与球心连线与切面垂直。
(完整word版)搞定空间几何体的外接球(word文档良心出品)
图5-4图3-1专题3 搞定空间几何体的外接球与内切球一、基本方法:(1)定心:确定球心,构造直角三角形利用正余弦定理及勾股定理求解(222d r R +=);该方法是解决外接球问题的主要的通法,但对空间想象能力、作图能力要求较高;所以熟悉以下的几种模型才能准确快速的解决外接球问题。
(2)补形:补成长方体,利用长方体对角线求解(22224c b a R ++=);有些几何体比较难确定球心,而几何体刚好是长方体的一部分,其外接球与长方体的外接球是同一个球,故可利用长方体模型求解。
另外有些不规则的几何体还可以选择建系,设球心,利用球心到各顶点的距离相等求出球心坐标求解。
但该方法计算量大,高考一般不会考查。
高考中以模型一、二、三、四为主。
类型一:锥体模型(P 的射影是ABC ∆的外心即侧棱长相等)第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1;第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R类型二:柱体模型(直棱柱、圆柱)第一步:确定球心O 的位置,1O 是ABC ∆的外心,则⊥1OO 平面ABC ;第二步:算出小圆1O 的半径r AO =1,h AA OO 212111==; 第三步:勾股定理:21212O O A O OA +=⇒222)2(r h R +=⇒22)2(hr R +=,解出R第一步:将ABC ∆画在小圆面上,D 为小圆上任意的一点,;第二步:1O 为ABC ∆的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半径r D O =1(三角形的外接圆直径算法:利用正弦定理,得r C cB b A a 2sin sin sin ===),PA OO d 211==; 第三步:利用勾股定理求三棱锥的外接球半径:222d r R +=.图6类型四:长方体模型1.三条棱两两垂直,可补形为长方体图1-1图1-2图1-3方法:找三条两两垂直的线段,直接用公式2222)2(c b a R ++=,求出R 2.三棱锥(即四面体)中,三组对棱分别相等,亦可补形为长方体 第一步:画出一个长方体,标出三组互为异面直线的对棱;第二步:设出长方体的长宽高分别为c b a ,,,x BC AD ==,y CD AB ==,z BD AC ==,第三步:由22222222z y x c b a R ++=++=,求出R .类型五:二面角模型(两个三角形拼在一起,一般为两等腰三角形或直角三角形) 1.当两等腰三角形由公共底边折叠时,第一步:先画出如图所示的图形,将BCD ∆画在小圆上,找出∆BD A '∆的外心1H 和2H ;第二步:过1H 和2H 分别作其所在平面的垂线,两垂线的交点即为球心O ,连接OC OE ,;第三步:解1OEH ∆,算出1OH ,再由勾股定理:22121OC CH OH =+,求出球的半径R 。
空间几何体的外接球内切球问题
空间几何体的外接球内切球问题空间几何体的外接球、内切球问题自己总结供参考红岩外接球问题一.棱锥的外接球三棱锥都有外接球;底面有外接圆的任意棱锥都有外接球。
1.确定棱锥外接球球心的通法先找到棱锥底面的外接圆的圆心D ,过D 作底面的垂线DP交一侧棱的中垂面于O ,点O 即为外接球的球心。
练习:1.三棱锥S-ABC 的各顶点都在同一球面上,若SB ⊥平面ABC ,SB=6,AB=AC=2120BAC ∠=?,则此球的表面积等于。
2. 点A 、B 、C 、D 均在同一球面上,其中△ ABC 是正三角形,AD ⊥平面ABC ,AD=2AB=6则该球的体积为。
3.四面体ABCD 的四个顶点在同一球面上,AB=BC=CD=DA=3,32=AC ,6=BD ,则该球的表面积为()A .π14 B.π15 C.π16 D.π182.补成长方体或正方体,再利用体对角线是外接球直径这一结论求解。
练习:1.三棱锥O ABC -中,,,OA OB OC 两两垂直,且22OA OB OC a ===,则三棱锥O ABC -外接球的表面积为()A .26a π B .29a π C .212a π D .224a π2.已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,BC =O 表面积等于(A )4π (B )3π (C )2π (D )π3.,四个顶点在同一个球面上,则此球的表面积为( )A.3πB.4πD.6π4.3.公共边所对的两个角为直角确定球心法练习1.在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积为A.12512π B.1259π C.1256π D.1253π2.空间四边形ABCD中,1,AB BC AD DC ====ABCD 的外接球的表面积为4.利用轴截面截球为大圆确定球半径正四、六、八棱锥的外接球的一个轴截面为大圆,该圆的半径等于外接球的半径. 练习:1.正四棱锥S ABCD -S A B C D 、、、、都在同一球面上,则此球的体积为 .2.正六棱锥EF S ABCD -的底面边长为1S A B C D 、、、、、E 、F 都在同一球面上,则此球的表面积为 .3.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为_ C_ A_ O_ D _ BA B.13π C.23π D二.棱柱的外接球底面有外接圆的直棱柱才有外接球。
高中数学解题指导八个无敌模型全搞定空间几何的外接球和内切球问题
高中数学解题指导八个无敌模型全搞定空间几何的外接球和内切球问题八个有趣模型——搞定空间几何体的外接球与内切球类型一、墙角模型墙角模型是指三条线段两两垂直的几何体,通过公式(2R) = a + b + c,即2R = a^2 + b^2 + c^2,可以求出其外接球半径R。
例1:1)已知顶点都在同一球面上的正四棱柱的高为4,体积为16,求该球的表面积。
解:由V = ah = 16,得a = 2,4R = a + a + h = 4 + 4 + 16 = 24,S = 24π,答案为C。
2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,求其外接球的表面积。
解:由2R = a + b + c = 3 + 3 + 3 = 9,得R = 9/4,S =4πR^2 = 9π。
3)在正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且AM⊥MN,若侧棱SA = 23,求正三棱锥S-ABC外接球的表面积。
解:由墙角模型的特点可知,正三棱锥的对棱互垂直。
连接AB、BC的中点D、E,连接AE、CD,交于H,则H是底面正三角形ABC的中心。
由AM⊥MN,SB//MN,可得AM⊥SB,AC⊥SB,故SB⊥平面SAC,SB⊥SA,SB⊥SC,即SB⊥SA,BC⊥SA,故SA⊥平面SBC,SA⊥SC。
因此,三棱锥S-ABC的三棱条侧棱两两互相垂直,由2R^2 = 23^2 + 23^2 + 23^2 = 36,得R^2 = 9,S = 36π。
类型二、棱台模型棱台模型是指上底面和下底面都是正多边形,且两底面中心连线与侧棱垂直的几何体。
通过勾股定理和相似三角形,可以求出其外接球半径R和内切球半径r。
例2:1)已知棱台的上底面和下底面都是正三角形,上底边长为3,下底边长为6,侧棱长为5,求其外接球半径R和内切球半径r。
解:由勾股定理可得棱台的高为4√3.设外接球半径为R,内切球半径为r,则有R/r = (a + b + c)/(a + b - c) = (3 + 6 +5)/(3 + 6 - 5) = 7,解得R = 7r。
几类空间几何体的外接球问题的解法
解:要使函数存在2个零点,需使ìíîïïïïf (1)=1-a +b ≥0,f (2)=4-2a +b ≥0,Δ≥0,1≤a 2≤2,绘制如图3所示的可行域(可行域为箭头所指的曲边三角形).对z =(x -a )2+(y -b )2变形,可得z +94=a 2+æèöøb -322,则将问题转化为求点(0,32)到可行域内任意一点(a ,b )距离的平方的最值.从图3中可以看出点(0,32)到直线1-a +b =0的距离即为(0,32)到可行域内任意一点(a ,b )的最小距离,利用点到直线的距离公式d =||Ax 0+By 0+C A 2+B 2,得d =522.则≥522,解得z ≥78.所以a 2+b 2-3b 取值范围为éëöø78,+∞.对于目标函数为z =(x -a )2+(y -b )2型的目标函数,我们可以依据(x -a )2+(y -b )2的几何意义,把问题转化为求可行域内动点P (x ,y )与定点A (a ,b )距离的平方的最值,从而求出z 的范围.综上所述,利用线性规划模型解答含参二次函数问题有如下几个步骤:1.根据题意建立不等式组,将其视为线性约束条件;2.将所求目标设为目标函数,将其变形为直线的截距式、两点的距离;3.画出可行域;4.在可行域内寻找使得直线的纵截距、动点到定点的距离取最值的点;5.将最值点的坐标代入求得问题的答案.同学们在解题的过程中要注意根据题意建立线性规划模型,利用线性规划模型来提升解答含参二次函数问题的效率.(作者单位:宁夏育才中学)空间几何体的外接球问题是高考试卷中的重要题型,主要考查球空间几何体的性质、面积公式、体积公式.此类问题的难度系数较大,要求同学们具备较强的空间想象能力和逻辑思维能力.本文介绍几种常见空间几何体的外接球问题的题型及其解法,以帮助同学们破解此类问题.类型一:三条棱两两互相垂直的三棱锥的外接球问题该类型的三棱锥具有明显的特征:三条棱两两互相垂直.我们可以抓住该特征,将其看作长方体、正方体的一部分,构造出一个完整的长方体、正方体.将三条棱看作长方体、正方体的三条边,于是三棱锥的外接球的直径等于长方体、正方体的对角线.求出三棱锥的外接球的半径、直径,空间几何体的外接球问题便可顺利获解.类型二:一条侧棱垂直于一个底面的三棱锥的外接球问题我们可将该三棱锥看作直棱柱的一部分,将其补成一个直棱柱,再将其补成一个圆柱,如图1、2、3、4所示,那么三棱锥的外接球即为圆柱的外接球.直棱柱的上、下底面为三角形,且三角形的外接圆的直径为a sin A =b sin B =c sin C =2r ,上下底面的距离为OO 1=12PA(此时PA 垂直与底面),则有①(2R )2=PA 2+(2r )2,即2R =PA 2+(2r )2;②R 2=r 2+OO 12,即R =r 2+OO 12,这样便建立了PA 与三棱锥的外接球之间的关系,进方法集锦图341图5图6例2.已知三棱锥S-ABC的所有顶点都在球O 球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA ,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为_____.解:如图7,连接AO,OB,∵SC为球O的直径,∴O为SC的中点,∵SA=AC,SB=BC,∴AO SC,BO⊥SC,平面SCA∩平面SCB=SC的表面积为S=4πR=4π×3图7该三棱锥的两个平面相互垂直,根据已知条件证明AO⊥然后构造三角形,找出三棱锥的外接球半径与三棱锥的棱之间的关系,通过解三角形求得三根据球的表面积公式求得球由两个直角三角形构成的三棱锥的外接解答该类型问题的关键是抓住特征:.我们可以通过解直角三角形求得三图8由两个全等三角形或等腰三角形构成的三棱锥的外接球问题在求解该类型外接球问题时,我们要灵活运用全等三角形或等腰三角形的性质,关注中点为全等三角形或等腰三角形,和ΔA ′BD 的外心H 1和图9例3.三棱锥P -ABC △PAC 和△ABC 均为边长为棱锥外接球的半径.解:如图10,设O 1,O 2由题意可知O 2H =13由勾股定理可得R 2=8图11类型七:直棱柱、圆柱的外接球问题直棱柱、圆柱的外接球问题较为简单,球的球心为高线的中点,如图12所示,所以我们很容=1=1.再设小圆图12图13例4.已知三棱柱ABC -A 1B 1C 1的底面是边长为的正三角形,侧棱垂直于底面,且该三棱柱的外接球的表面积为12π,则该三棱柱的体积为______.解:设球半径为R ,上,下底面中心为M ,N ,由题意,外接球心为MN 的中点,设为O ,,得R =OA =3,由勾股定理可知,OM =1,。
关于球的历年高考真题空间几何体的外接球与内切球精品总结-- 学生版精品资料
搞定空间几何体的外接球与内切球一、有关定义1.球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球.2.外接球的定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.3.内切球的定义:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.二、外接球的有关知识与方法1.性质:性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等;性质2:经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆;性质3:过球心与小圆圆心的直线垂直于小圆所在的平面(类比:圆的垂径定理);性质4:球心在大圆面和小圆面上的射影是相应圆的圆心;性质5:在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心).初图1初图22.结论:结论1:长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心;结论2:若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆;结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处;结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径;结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球;结论7:圆锥体的外接球球心在圆锥的高所在的直线上;结论8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径;结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球.3.终极利器:勾股定理、正定理及余弦定理(解三角形求线段长度);三、内切球的有关知识与方法1.若球与平面相切,则切点与球心连线与切面垂直.(与直线切圆的结论有一致性).2.内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(类比:与多边形的内切圆).3.正多面体的内切球和外接球的球心重合.4.正棱锥的内切球和外接球球心都在高线上,但不一定重合.5.基本方法:(1)构造三角形利用相似比和勾股定理;(2)体积分割是求内切球半径的通用做法(等体积法).四、与台体相关的,此略.五、八大模型第一讲 柱体背景的模型类型一、墙角模型(三条棱两两垂直,不找球心的位置即可求出球半径)图1-1图1-2图1-3图1-4方法:找三条两两垂直的线段,直接用公式2222)2(c b a R ++=,即2222c b a R ++=,求出R 例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( ) A .π16 B .π20 C .π24 D .π32 (2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 (3)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =,则正三棱锥ABC S -外接球的表面积是 在四面体S ABC-中,ABCSA 平面⊥,,1,2,120====∠︒AB AC SA BAC 则该四面体的外接球的表面积为( )π11.A π7.B π310.C π340.D(5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是(6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体外接球的体积为类型二、对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(CD AB =,BC AD =,BD AC =)(6)题图(3)题-1(引理)AC图2-1第一步:画出一个长方体,标出三组互为异面直线的对棱; 第二步:设出长方体的长宽高分别为c b a ,,,x BC AD ==,y CD AB ==,z BD AC ==,列方程组,⎪⎩⎪⎨⎧=+=+=+222222222z a c y c b x b a ⇒2)2(2222222z y x c b a R ++=++=, 补充:图2-1中,abc abc abc V BCD A 31461=⨯-=-. 第三步:根据墙角模型,22222222z y x c b a R ++=++=,82222z y x R ++=,8222z y x R ++=,求出R .思考:如何求棱长为a 的正四面体体积,如何求其外接球体积?例2(1)如下图所示三棱锥A BCD -,其中5,6,7,AB CD AC BD AD BC ======则该三棱锥外接球的表面积为 .(1)题图B(2)在三棱锥BCD A -中,2==CD AB ,3==BC AD ,4==BD AC ,则三棱锥BCD A -外接球的表面积为 .(3)正四面体的各条棱长都为2,则该正面体外接球的体积为(3)解答题(4)棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如下图,则图中三角形(正四面体的截面)的面积是 .(4)题解答图(4)题类型三、汉堡模型(直棱柱的外接球、圆柱的外接球)图3-1图3-2图3-3题设:如图3-1,图3-2,图3-3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)第一步:确定球心O 的位置,1O 是ABC ∆的外心,则⊥1OO 平面ABC ; 第二步:算出小圆1O 的半径r AO =1,h AA OO 212111==(h AA =1也是圆柱的高); 第三步:勾股定理:21212O O A O OA +=⇒222)2(r hR +=⇒22)2(hr R +=,解出R例3(1)一个正六棱柱的底面上正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为 (2)直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 .(3)已知EAB ∆所在的平面与矩形ABCD 所在的平面互相垂直,︒=∠===60,2,3AEB AD EB EA ,则多面体ABCD E -的外接球的表面积为 (4)在直三棱柱111C B A ABC -中,4,3,6,41====AA A AC AB π,则直三棱柱111C B A ABC -的外接球的表面积为 .第二讲 锥体背景的模型类型四、切瓜模型(两个大小圆面互相垂直且交于小圆直径——正弦定理求大圆直径是通法)图4-1图4-2图4-3图4-41.如图4-1,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点. 解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高);第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R ;事实上,ACP ∆的外接圆就是大圆,直接用正弦定理也可求解出R .2.如图4-2,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且AC PA ⊥,则 利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=3.如图4-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)21212O O C O OC +=⇔2122O O r R +=⇔2122O O R AC -=4.题设:如图4-4,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)第一步:易知球心O 必是PAC ∆的外心,即PAC ∆的外接圆是大圆,先求出小圆的直径r AC 2=; 第二步:在PAC ∆中,可根据正弦定理R CcB b A a 2sin sin sin ===,求出R . 例4 (1)正四棱锥的顶点都在同一球面上,若该棱锥的高为1,底面边长为32,则该球的表面积为 .(2)正四棱锥ABCD S -的底面边长和各侧棱长都为2,各顶点都在同一球面上,则此球体积为 (3)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )A .433 B .33 C .43 D .123(4)在三棱锥ABC P -中,3===PC PB PA ,侧棱PA 与底面ABC 所成的角为ο60,则该三棱锥外接球的体积为( )A .π B.3πC. 4πD.43π(5)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( ) A.6 B.6 C.3 D.2类型五、垂面模型(一条直线垂直于一个平面)1.题设:如图5,⊥PA 平面ABC ,求外接球半径.解题步骤:第一步:将ABC ∆画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ; 第二步:1O 为ABC ∆的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半径r D O =1(三角形的外接圆直径算法:利用正弦定理,得r C c B b A a 2sin sin sin ===),PA OO 211=; 第三步:利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=.2.题设:如图5-1至5-8这七个图形,P 的射影是ABC ∆的外心⇔三棱锥ABC P -的 三条侧棱相等⇔三棱锥ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的 顶点.图5-1图5-2图5-3图5-4图5-6图5-7图5-8解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高);第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R方法二:小圆直径参与构造大圆,用正弦定理求大圆直径得球的直径. 例5 一个几何体的三视图如图所示,则该几何体外接球的表面积为( ) A .π3 B .π2 C .316πD .以上都不对第三讲 二面角背景的模型类型六、折叠模型题设:两个全等三角形或等腰三角形拼在一起,或菱形折叠(如图6)图6第一步:先画出如图6所示的图形,将BCD ∆画在小圆上,找出BCD ∆和BD A '∆的外心1H 和2H ; 第二步:过1H 和2H 分别作平面BCD 和平面BD A '的垂线,两垂线的交点即为球心O ,连接OC OE ,; 第三步:解1OEH ∆,算出1OH ,在1OCH Rt ∆中,勾股定理:22121OC CH OH =+注:易知21,,,H E H O 四点共面且四点共圆,证略.例6(1)三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 和俯视图侧视图正视图解答图△ABC 均为边长为2的正三角形,则三棱锥ABC P -外接球的半径为 .(2)在直角梯形ABCD 中,CD AB //,ο90=∠A ,ο45=∠C ,1==AD AB ,沿对角线BD 折成四面体BCD A -',使平面⊥'BD A 平面BCD ,若四面体BCD A -'的顶点在同一个球面上,则该项球的表面积为(2)题-2(2)题-1→A(3)题(3)在四面体ABC S -中,BC AB ⊥,2==BC AB ,二面角B AC S --的余弦值为33-,则四面体ABC S -的外接球表面积为(4)在边长为32的菱形ABCD 中,ο60=∠BAD ,沿对角线BD 折成二面角C BD A --为ο120的四面体ABCD ,则此四面体的外接球表面积为(5)在四棱锥ABCD 中,ο120=∠BDA ,ο150=∠BDC ,2==BD AD ,3=CD ,二面角CBD A --的平面角的大小为ο120,则此四面体的外接球的体积为类型七、两直角三角形拼接在一起(斜边相同,也可看作矩形沿对角线折起所得三棱锥)模型图7(4)题图例7(1)在矩形ABCD 中,4=AB ,3=BC ,沿AC 将矩形ABCD 折成一个直二面角D AC B --,则四面体ABCD 的外接球的体积为( )A .π12125 B .π9125 C .π6125 D .π3125(2)在矩形ABCD 中,2=AB ,3=BC ,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥BCDA -的外接球的表面积为 .第四讲 多面体的内切球问题模型类型八、锥体的内切球问题1.题设:如图8-1,三棱锥ABC P -上正三棱锥,求其内切球的半径. 第一步:先现出内切球的截面图,H E ,分别是两个三角形的外心;第二步:求BD DH 31=,r PH PO -=,PD 是侧面ABP ∆的高;第三步:由POE ∆相似于PDH ∆,建立等式:PDPODH OE =,解出r 2.题设:如图8-2,四棱锥ABC P -是正四棱锥,求其内切球的半径第一步:先现出内切球的截面图,H O P ,,三点共线;第二步:求BC FH 21=,r PH PO -=,PF 是侧面PCD ∆的高; 第三步:由POG ∆相似于PFH ∆,建立等式:PFPOHF OG =,解出3.题设:三棱锥ABC P -是任意三棱锥,求其的内切球半径方法:等体积法,即内切球球心与四个面构成的四个三棱锥的体积之和相等 第一步:先画出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r ,建立等式:PBC O PAC O PAB O ABC O ABC P V V V V V -----+++=⇒r S S S S r S r S r S r S V PBC PAC PAB ABC PBC PAC PAB ABC ABC P ⋅+++=⋅+⋅+⋅+⋅=∆∆∆∆-)(3131313131第三步:解出PBCO PAC O PAB O ABC O ABCP S S S S V r -----+++=3例8 (1)棱长为a 的正四面体的内切球表面积是(2)正四棱锥ABCD S -的底面边长为2,侧棱长为3,则其内切球的半径为(3)三棱锥ABC P -中,底面ABC ∆是边长为2的正三角形,⊥PA 底面ABC ,2=PA ,则该三棱锥的内切球半径为习题:1.若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( ) A.3 B.6 C.36 D.92. 三棱锥ABC S -中,侧棱⊥SA 平面ABC ,底面ABC 是边长为3的正三角形,32=SA ,则该三棱锥的外接球体积等B图8-1A图8-2于 .332π3.正三棱锥ABC S -中,底面ABC 是边长为3的正三角形,侧棱长为2,则该三棱锥的外接球体积等于 .4.三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 边长为2的正三角形,BC AB ⊥,则三棱锥ABC P -外接球的半径为 .5. 三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,3==PC PA ,BC AB ⊥,则三棱锥ABC P -外接球的半径为 . 6. 三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,PC PA ⊥,BC AB ⊥,则三棱锥ABC P -外接球的半径为 .。
空间立体几何中的外接球问题
Җ㊀新疆㊀苏伦高娃㊀㊀球是一种重要几何体,由于球自身的完美对称性,常常与一些简单几何体(如柱㊁锥㊁台)结合,求外接球的表面积㊁体积,这是高考考查的重点和难点.这一类问题,学生的得分率较低,大部分学生都不知道如何下手,归根结底在于学生对空间问题的想象能力㊁推理能力和计算能力都有所欠缺.对此本文来谈谈笔者是如何在教学过程中引导学生解决此类问题的.预备知识:1)球心和截面圆心的连线垂直于截面;2)球心到截面的距离d 与球的半径R 及截面的半径r 满足:R 2=d 2+r 2;3)圆的直径所对的圆周角为直角.1㊀正方体或长方体的外接球例1㊀已知各顶点都在同一个球面上的长方体的三条棱长分别为1,2,3,则此球的表面积为.要求球的表面积,只需求出长方体外接球的半径,所以应先确定球心的位置,求出球的半径.因为外接球球心就是长方体体对角线的中点,半径是长方体体对角线长的一半,即R =12+22+322=142,求得外接球的半径后,代入球的表面积公式S =4πR 2,可得球的表面积为14π.问题:在上题中,以长方体中任意不共面的四个顶点为顶点,可以构成什么样的几何体?有哪几种?它们的外接球是怎样的笔者在这个环节中提前准备了学案,给学生充分的时间去构造空间四面体(如图1).通过直观感受和交流讨论,学生能够顺利推出四面体的外接球和长方体的外接球是同一个球,从而四面体的外接球问题可转化为长方体的外接球问题进行求解.图1例2㊀«九章算术»中,将底面为长方形且由一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P GA B C 为鳖臑,P A ʅ平面A B C ,P A =A B =2,A C =4,三棱锥P GAB C 的四个顶点都在球O 的球面上,则球O 的表面积为.本题的求解思想就是将三棱锥P GA B C 放入长方体中,如图2,三棱锥的外接球就是长方体的外接球.因为P A =A B =2,A C =4,әA B C 为直角三角形,所以B C =42-22=23.设外接球的半径为R ,由题意得2R =22+22+(23)2=25,故球的表面积为20π.图2特别地,当长方体为正方体时,还可以利用正方体的性质求解外接球问题.例3㊀已知三棱锥P GA B C 中,P A ,P B ,P C 两两垂直,且长度相等.若点P ,A ,B ,C 都在半径为1的球面上,则球心到平面A B C 的距离为.图3如图3,因为P A ,P B ,P C 两两垂直,故正三棱锥P GA B C 的外接球就是以P A ,P B ,P C 为棱的正方体的外接球.球心在正方体体对角线的中点上,根据正方体的性质,平面P B C具有很多良好的性质,如体对角线P D ʅ平面A B C ,垂足是P D 的一个三等分点,所以球心到平面A B C 的距离为半径的13.42㊀求与棱柱外接球有关的计算问题例4㊀设正三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为.㊀图4如图4所示,P 为三棱柱底面中心,O 为球心,易知A P =23ˑ32a =33a ,O P =12a ,则球的半径满足R 2=A O 2=A P 2+O P 2,即R 2=(33a )2+(12a )2=712a 2,所以S 球=4πR 2=73πa 2,球的表面积为73πa 2.3㊀求与棱锥外接球有关的计算问题例5㊀已知球O 是三棱锥S GA B C 的外接球,әA B C 是边长为1的等边三角形,S C 是球O 的一条直径,S C =2,则三棱锥S GA B C 的体积为.因为三棱锥S GA B C 和三棱锥OGA B C 有共同的底面A B C ,球心O 为S C 的中点,所以三棱锥S GA B C 的高为三棱锥O GA B C 高的2倍,即V S GA B C =2V O GA B C .㊀图5如图5所示,三棱锥O GA B C 的棱长都是1,取等边әA B C 的中心D ,点D 即为底面A B C 外接圆(即截面圆)的圆心,球心O 在点D的正上方,则O D ʅ平面A B C .因为S әA B C =12ˑ1ˑs i n60ʎ=34,截面圆半径r =C D =33,因为球的半径R =O C =1,则O D =12-(33)2=63,所以V S GA B C =2ˑ13ˑ34ˑ63=26.从近几年的高考试题来看,经常出现与外接球有关的问题,本文结合笔者在教学过程中的做法,推广出与外接球有关问题的具体解法,以便学生比较容易地掌握球的性质及与外接球有关的计算问题.(作者单位:新疆乌鲁木齐第十中学)Җ㊀山东㊀刘㊀丽㊀㊀数列是一种特殊的函数,所以一些数列问题中也存在着包括周期性在内的和函数基本性质相关的问题.有些数列问题,表面上看似与周期性无关,实际上隐含着周期性,若不加以分析,很难找到求解策略,而一旦找到数列中的周期性,问题往往便迎刃而解了.本文结合实例论述巧借周期性,妙解数列题.1㊀求解和式递推数列中的项例1㊀在数列{a n }中,a 1=1,a 2=3,对所有自然数n 都有a n +2=|a n +1|-a n ,则a 2019的值为.由题意和递推关系式a n +2=|a n +1|-a n ,结合a 1=1,a 2=3,易求得a 3=2,a 4=-1,a 5=-1,a 6=2,a 7=3,a 8=1,a 9=-2,a 10=1,a 11=3,a 12=2, ,于是归纳可知数列{a n }具有周期性,其周期为9,所以a 2019=a 224ˑ9+3=a 3=2.利用条件中的和式递推关系式加以归纳处理,这是破解此类和式递推数列周期性问题的技巧.根据数列的和式递推关系式进行逐个推导,求解难度比较大,计算比较烦琐,有时还无从下手.而通过递推关系式分析后结合相应的规律归纳其周期性,一般中见特殊,可使问题快速获解.2㊀求解分式递推数列中的项例2㊀已知数列{a n }满足a 1=1,a 2=2,且对任何自然数n 都有a n +2=3+a n-1-3a n,则a 2019的值为.由于a n +2=3+a n-1-3a n,那么a n +4=3+a n +2-1-3a n +2=3+3+a n-1-3a n-1-3ˑ3+a n-1-3a n=3(-1-3a n )+(3+a n )-1(-1-3a n )-3ˑ(3+a n )=-8a n-8=a n ,5。
考点27 空间几何体的外接球(解析版)
考点27 空间几何体的外接球1.墙角模型(1)使用范围:3组或3条棱两两垂直;或可在长方体中画出该图且各顶点与长方体的顶点重合(2)推导过程:长方体的体对角线就是外接球的直径(2)秒杀公式:222222a b c3aR(a b c R(a44++==、、为长方体的长宽高)正方体的边长)(4)图示过程(3)秒杀公式:2.汉堡模型(1)使用范围:有一条侧棱垂直与底面的柱体或椎体(2)推导过程第一步:取底面的外心O1,,过外心做高的的平行且长度相等,在该线上中点为球心的位置第二步:根据勾股定理可得2 22h R r4=+(3)秒杀公式:2 22h R r4=+(4)图示过程知识理解3.斗笠模型(1)使用范围:正棱锥或顶点的投影在底面的外心上(2)推导过程第一步:取底面的外心O1,,连接顶点与外心,该线为空间几何体的高h 第二步:在h上取一点作为球心O第三步:根据勾股定理22 222r h R(h R)r R2h+ =-+⇔=(3)秒杀公式:22r h R2h+ =(4)图示过程4.切瓜模型(1)使用范围:有两个平面互相垂直的棱锥(2)推导过程:第一步:分别在两个互相垂直的平面上取外心F、N,过两个外心做两个垂面的垂线,两条垂线的交点即为球心O,取BC的中点为M,连接FM、MN、OF、ON第二步:22222222212l ONMF OA AN ON AN MF R r r4∴=+=+∴=+-为矩形由勾股可得(3)秒杀公式:2 22212l R r r4 =+-(4)图示过程考向一墙角模型【例1】(2021·平罗中学高三期末)已知长方体的两个底面是边长为1的正方形,长方体的一条体对角线与底面成45角,则此长方体的外接球表面积为()A.4πB.6πC.12πD.24π【答案】A【解析】记该长方体为1111ABCD A B C D-,1BD为该长方体的一条体对角线,其与底面所成角为45,因为在长方体1111ABCD A B C D-中,侧棱1DD⊥底面ABCD,则1D BD∠为1BD与底面所成角,即145D BD∠=,因为长方体的两个底面是边长为1的正方形,所以222BD AD AB=+=,则12DD BD==,所以1222BD=+=,又长方体的外接球直径等于其体对角线的长,即该长方体外接球的直径为12222R BD==+=,所以此长方体的外接球表面积为244S Rππ==.故选:A.考向分析【举一反三】1.(2020·天津静海区·高三月考)若棱长为2的正方体的顶点都在同一球面上,则该球的表面积为( ) A .12π B .24πC .36πD .144π【答案】A【解析】因为正方体的外接球的直径2R =,所以棱长为2的正方体外接球的直径2R ==, 所以该球的表面积2412R ππ=.故选:A.2.(2020·河南高三月考)已知长方体''''ABCD A B C D -中,''A B =''1B C =,'A B 与平面''ACC A)A .4πB .16πC .163π D .323π 【答案】B【解析】作BE AC ⊥,垂足为E ,连接'A E ,BE . 因为平面ABC ⊥平面''ACC A ,平面ABC平面''ACC A AC =,BE ⊂平面ABC ,所以BE ⊥平面''ACC A ,所以'BA E ∠是'A B 与平面''ACC A 所成的平面角.又2BE ==,'A B ==所以sin ''BE BA E A B ∠===,解得'AA =.4=. 设长方体的外接球的半径为R ,则24R =,解得2R =.所以该长方体的外接球的表面积为2244216S R πππ==⨯=.故选B .3.(2020·四川泸州市·高三一模)已知四棱锥A BCDE -中,四边形BCDE 是边长为2的正方形,3AB =且AB ⊥平面BCDE ,则该四棱锥外接球的表面积为( ) A .4π B .174πC .17πD .8π【答案】C【解析】由题意,四棱锥A BCDE -中,四边形BCDE 是边长为2的正方形, 3AB =且AB ⊥平面BCDE ,可把四棱锥A BCDE -放置在如图所示的一个长方体内, 其中长方体的长、宽、高分别为2,2,3,则四棱锥A BCDE -的外接球和长方体的外接球表示同一个球,设四棱锥A BCDE -的外接球的半径为R 2R =,解得2R =,所以该四棱锥外接球的表面积为22=4=417S R πππ⨯=. 故选:C.考向二 汉堡包模型【例2】(2021·陕西西安市·高三一模)三棱柱111ABC A B C -中,棱1AB AC AA 、、两两垂直,12AA =,底面ABC 是面积为2的等腰直角三角形,若该三棱柱的顶点都在同一个球O 的表面上,则球O 的表面积为( ) A .8 B .10πC .12πD .π【答案】C【解析】底面ABC 是面积为2的等腰直角三角形,所以直角边长为2,所以三棱柱111ABC A B C -可以补充成边长为2的正方体,其外接球半径为:2=,所以球O 的表面积为2412ππ=,故选:C 【举一反三】1.(2021·陕西咸阳市·高三一模)在直三棱柱111ABC A B C -中,2AB BC ==,2ABC π∠=,若该直三棱柱的外接球表面积为16π,则此直三棱柱的高为( ).A .4B .3C .D .【答案】D【解析】因为2ABC π∠=,所以将直三棱柱111ABC A B C -补成长方体1111ABCD A B C D -,则直三棱柱的外接球就是长方体的外接球,外接球的直径等于长方体的体对角线,设球的半径为R ,则2416R ππ=,解得2R =,设直三棱柱的高为h ,则2222422R h =++,即2168h =+,解得h =,所以直三棱柱的高为 D2.(2021·山西吕梁市·高三一模)四面体A BCD -中,DC ⊥面ABC ,3AB BC ==,120ABC ∠=︒,8DC =,则四面体A BCD -外接球的表面积为( )A .100πB .50πC .25πD .91π【答案】A【解析】设ABC 外接圆的圆心为1O ,四面体A BCD -外接球的球心为O ,半径为R 连接11,,O C OO OC由正弦定理可得12sin BCO C BAC =∠,即1332sin 30O C ︒==,1142OO DC ==5R OC ====即四面体A BCD -外接球的表面积为245100S ππ=⨯= 故选:A3.(2021·山东德州市·高三期末)如图,在四棱锥P ABCD -中,底面ABCD 为菱形,PD ⊥底面ABCD ,O 为对角线AC 与BD 的交点,若2PD =,3APD BAD π∠=∠=,则三棱锥P AOD -的外接球表面积为_________.【答案】16π.【解析】取PA 中点M ,DA 中点E ,连接,ME EO ,则//ME PD ,因为PD ⊥底面ABCD ,所以ME ⊥平面ABCD ,ABCD 是菱形,则AO OD ⊥,所以E 是AOD △的外心,又PD ⊥底面ABCD ,AD ⊂平面ABCD ,所以PD AD ⊥,所以M 到,,,P A D O 四点距离相等,即为三棱锥P AOD -的外接球球心. 又2PD =,3APD π∠=,所以24cos3PA π==,所以2MA MP ==,所以三棱锥P AOD -的外接球表面积为24216S ππ=⨯=. 故答案为:16π.考向三 斗笠模型【例3】正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A .814πB .16πC .9πD .274π【答案】A【解析】正四棱锥P-ABCD 的外接球的球心在它的高1PO 上, 记为O ,PO=AO=R ,14PO =,1OO =4-R ,在Rt △1AOO 中,1AO =由勾股定理()2224R R =+-得94R =, ∴球的表面积814S π=,故选A.【举一反三】1.(2020·江西吉安市·高三其他模拟)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A .812πB .814πC .815πD .817π【答案】B【解析】如图示:正四棱锥S ABCD -中,高4SN =,底面正方形边长2AB =,设正四棱锥的外接球半径为R ,底面正四边形外接圆半径为r 则r BN ==由OS OB =得:()2224R R =+-,解得:94R =,∴2814ππ4V R ==. 故选:B.2.(2021·安徽芜湖市·高三期末)已知正四棱锥的体积为18,侧棱与底面所成的角为45,则该正四棱锥外接球的表面积为___________. 【答案】36π【解析】如下图所示,设正四棱锥P ABCD -的底面ABCD 的中心为E ,连接PE 、AC 、BD ,设正四棱锥P ABCD -的底面边长为a ,则AC BD ==,由于E 为正四棱锥P ABCD -的底面ABCD 的中心,则PE ⊥平面ABCD , 由于正四棱锥P ABCD -的侧棱与底面所成的角为45,则45PAC PCA ∠=∠=, 所以,PAC △是以APC ∠为直角的等腰直角三角形, 同理可知,PBD △是以BPD ∠为直角的等腰直角三角形,E 为AC 的中点,122PE AC a ==,2ABCD S a =正方形,23111833P ABCD ABCD V S PE a -=⋅=⨯==正方形,解得a =,23PE ==,由直角三角形的性质可得1122PE AC BD ==,即PE AE BE CE DE ====,所以,E 为正四棱锥P ABCD -外接球的球心, 球E 的半径为3r PE ==,该球的表面积为2436r ππ=. 故答案为:36π.3.(2020·秦皇岛市抚宁区第一中学)已知正三棱锥S ABC -的侧棱长为6,则该正三棱锥外接球的表面积是________.【答案】64π【解析】过点S 作SE ⊥平面ABC 于点E ,记球心为O .∵在正三棱锥S ABC -中,底面边长为6,侧棱长为∴2632BE =⨯=∴6SE ==.∵球心O 到四个顶点的距离相等,均等于该正三棱锥外接球的半径长R ,∴OB R =,6OE R =-.在Rt BOE 中,222OB BE OE =+,即()22126R R =+-,解得4R =,∴外接球的表面积为2464S R ππ==.故答案为:64π.考向四 切瓜模型【例4】(2021·江西高三其他模拟)已知三棱锥A -BCD 中,侧面ABC ⊥底面BCD ,三角形ABC 是边长为3的正三角形,三角形BCD 是直角三角形,且∠BCD =90°,CD =2,则此三棱锥外接球的体积等于( )A .323πB .643πC .16πD .32π【答案】A【解析】三棱锥A BCD -中,侧面ABC ⊥底面BCD ,把该三棱锥放入长方体中,如图所示;设三棱锥外接球的球心为O ,取BC 的中点M ,BD 的中点N ,三角形ABC 的重心G ,连接OG ,则AM AB ==,2233AG AM ===,112OG CD ==,所以三棱锥外接球的半径为2R OA ===, 所以三棱锥外接球的体积为3344232333R V πππ⨯===.故选:A . 【举一反三】1.(2020·内蒙古赤峰市·高三月考)已知三棱锥P ABC -中,1PA =,3PB =,AB =CA CB ==面PAB ⊥面ABC ,则此三棱锥的外接球的表面积为( )A .143πB .283πC .11πD .12π【答案】B【解析】如图,1PA =,3PB =,AB =∴222PA AB PB +=,2PAB π∠=,所以ABP △的外接圆的圆心为斜边PB 的中点N ,CA CB ==∴ABC 为等腰三角形.取AB 的中点D ,连接CD ,DN ,∴CD AB ⊥,AD BD ==∴CD ==又 面PAB ⊥面ABC ,面PAB ⋂面ABC AB =,CD ⊂面ABC ,∴CD ⊥面PAB ,过点N 作CD 的平行线,则球心O 一定在该直线上.设ABC 的外接圆的圆心为1O ,,则1O 点在CD 上,连接1OO ,由球的性质则,1OO ⊥平面ABC ,则1O OND 为矩形.在ABC中,cos 5CAB ∠==,则sin 5CAB ∠= 所以ABC的外接圆的半径12sin BC O A CAB ===∠所以1O A =1O D ===则1ON O D ==所以球的半径为3OP ===所以三棱锥的外接球的表面积为221284493πππ=⨯=⎝⎭故选:B2.(2020·四川泸州市·高三一模)已知三棱锥A BCD -中,BAC 和BDC 是边长为2的等边三角形,且平面ABC ⊥平面BCD ,该三棱锥外接球的表面积为( )A .4πB .163πC .8πD .203π 【答案】D【解析】取BD 的中点E ,连接,AE DE ,则,AE BC DE BC ⊥⊥,因为平面ABC ⊥平面BCD ,所以可证得AE ⊥平面BCD ,DE ⊥平面ABC ,取BCD △的外心F ,作//FM AE ,则,,,F M E A 四点共面,取ABC 的外心H ,过点H 作EF 的平行线交FM 于点O ,因为EF 垂直平面ABC ,则HO ⊥平面ABC ,所以点O 到,,,A B C D 四点的距离相等,所以点O 为三棱锥A BCD -外接球的球心,连接OC ,可求得OF HE DF ===,所以2222145333R OD OF DF ==+=+=,所以外接球的表面积为22043S R ππ==. 故选:D.3.(2021·全国高三专题练习)已知三棱锥A BCD -中,平面ABD ⊥平面BCD ,且ABD △和BCD △都是边长为2的等边三角形,则该三棱锥的外接球表面积为( )A .4πB .163πC .8πD .203π 【答案】D【解析】如图,由已知可得,ABD △与BCD △均为等边三角形,取BD 中点G ,连接AG ,CG ,则AG BD ⊥,∵平面ABD ⊥平面BCD ,则AG ⊥平面BCD ,分别取ABD △与BCD △的外心,E F ,过,E F 分别作两面的垂线,相交于O ,则O 为三棱锥A BCD -的外接球的球心,由ABD △与BCD △均为边长为2的等边三角形,可得11233OE OF CG ===⨯=,223CE ∴==,3R OC ∴====, ∴三棱锥A −BCD的外接球的表面积为2220443R πππ⨯=⨯=.故选:D.1.(2020·江西高三其他模拟(理))在三棱锥P ABC -中,AB AC ==120BAC ∠=,PB PC ==PA = )A .40πB .20πC .80πD .60π【答案】A【解析】在BAC 中,2222cos 24BC AB AC AB AC BAC =+-⋅⋅⋅∠=,即BC =PB PC ==∴PBC 为等边三角形根据题意,有如下示意图:强化练习如图,设ABC 的外接圆的圆心为1O ,连接1O C ,1O A ,1BC O A H ⋂=,连接PH.由题意可得AH BC ⊥,且112AH O A ==12BH BC ==∴由上知:PH BC ⊥且PH ==,又222PH AH PA +=, ∴PH AH ⊥,由AH BC H =,PH ⊥平面ABC.设O 为三棱锥P ABC -外接球的球心,连接1OO ,OP ,OC 过O 作OD PH ⊥,垂足为D ,则外接球的半径R 满足()22222111()R OO CO PH OO OD =+=-+,1A C B O == 1OD O H AH ===,代入解得1OO =210R =,∴三棱锥P ABC -外接球的表面积为2440R ππ=.故选:A.2.(2020·四川泸州市·高三一模)已知四棱锥A BCDE -中,AB ⊥平面BCDE ,底面BCDE 是边长为2的正方形,且3AB =,则该四棱锥外接球的表面积为( )A .4πB .174πC .17πD .8π【答案】C【解析】由题意,四棱锥A BCDE -中,四边形BCDE 是边长为2的正方形,3AB =且AB ⊥平面BCDE , 可把四棱锥A BCDE -放置在如图所示的一个长方体内,其中长方体的长、宽、高分别为2,2,3,则四棱锥A BCDE -的外接球和长方体的外接球表示同一个球,设四棱锥A BCDE -的外接球的半径为R ,2R =,解得R =,所以该四棱锥外接球的表面积为22=4=4(172S R πππ⨯=.故选:C. 3.(2020·四川宜宾市·高三一模)已知点P ,A ,B ,C 在同一个球的球表面上,PA ⊥平面ABC ,AB ⊥AC ,PB BC PC =2,则该球的表面积为( )A .6πB .8πC .12πD .16π 【答案】A【解析】如图,三棱锥P ABC -补体在长方体中,三棱锥的外接球就是补体后长方体的外接球,长方体的外接球的直径2R ====即R =, 则该球的表面积246S R ππ==.故选:A4.(2020·广东广州市·高三月考)在长方体1111ABCD A B C D -中,1AB CC ==1BC =,点M 在正方形11CDD C 内,1C M ⊥平面1ACM ,则三棱锥11M ACC -的外接球表面积为( )A .11π2B .7πC .11πD .14π【答案】C【解析】长方体1AC 中,11A D ⊥平面11CDD C ,1C M ⊂平面11CDD C ,∴111C M A D ⊥,又1C M ⊥平面1ACM ,1AC ⊂平面1ACM ,∴11C M AC ⊥, ∵1111AC AD A =,∴1C M ⊥平面11A CD ,而1CD ⊂平面11A CD ,∴11C M CD ⊥, 11CDD C 是正方形,∴M 是1CD 与1C D 交点,即为1CD 的中点,也是1C D 的中点. 1C MC △是直角三角形,设E 是1CC 中点,F 是1BB 中点,则由//EF BC 可得EF ⊥平面1MCC (长方体中棱与相交面垂直),E 是1C MC △的外心,三棱锥11A MCC -的外接球球心O 在直线EF 上(线段EF 或EF 的延长线上).设OE h =,则22222(1)22h h ⎛⎛+=++- ⎝⎭⎝⎭,解得32h =,∴外接球半径为2r ==, 表面积为21144114S r πππ==⨯=. 故选:C .5.(2020·全国高三月考)三棱柱111ABC A B C -中,1AA ⊥平面ABC ,AC AB ⊥,1AC =,AB =12AA =,则该三棱柱111ABC A B C -的外接球的体积为( )A B C D .8π【答案】B【解析】如图,取BC 中点1O ,连1BC 交1B C 于点O ,AC AB ⊥,1O ∴为Rt ABC 的外接圆圆心, 3AB =,1AC =,2BC ∴=,ABC ∴外接圆半径为12BC =, 111////OO CC AA ,1AA ⊥平面ABC ,1OO ∴⊥平面ABC ,又1112BB OO ==,∴点O 为三棱柱111ABC A B C -的外接球球心,∴外接球半径R OB ===∴外接球体积3433V R π==. 故选:B.6.(2020·江西赣州市·高三)四面体A BCD -中,AB ⊥底面BCD ,AB BD =1CB CD ==,则四面体A BCD -的外接球表面积为( )A .3πB .4πC .6πD .12π【答案】B 【解析】如图,在四面体A BCD -中,AB ⊥底面BCD ,AB BD ==1CB CD ==,可得90BCD ∠=︒,补形为长方体,则过一个顶点的三条棱长分别为1,1,2=,则三棱锥A BCD -的外接球的半径为1.其表面积为2414ππ⨯=.故选:B .7.(2021·天津滨海新区·高三月考)直三棱柱111ABC A B C -的所有顶点都在同一球面上,且2AB AC ==,90BAC ∠=︒,1AA = )A .40πB .32πC .10πD .8π 【答案】A【解析】如图所示,直三棱柱111ABC A B C -的所有顶点都在同一球面上,且2AB AC ==,90BAC ∠=︒,1AA =∴可将直三棱柱111ABC A B C -补成长方体,其中2AB AC BM CM ====,11AA BB ==1CB ====r .∴球的表面积为224440S r πππ==⨯=.故选: A.8.(2020·江苏南通市·高三期中)正三棱锥S ABC -中,2SA =,AB =积为( )A .B .4πC .12πD .6π【答案】C【解析】正三棱锥S ABC -中,2SA =,AB =所以222SA SB AB +=, 故SA SB ⊥,同理可得SA SC ⊥, SB SC ⊥, 以,,SA SB SC 为棱构造正方体, 则该棱锥外接球即为该正方体的外接球, 如图,所以2222(2)22212R =++=, 故球的表面积为2412S R ππ==, 故选:C9.(2021·安徽宣城市·高三期末(文))在三棱锥P ABC -中,PA ⊥平面ABC ,1204BAC AP AB AC ∠====,则三棱锥P ABC -的外接球的表面积是( )A .18πB .36πC .40πD .72π【答案】D【解析】如图所示,1204BAC AB AC ∠===,,取BC 中点M ,连接AM 并延长到N 使AM =MN ,则四边形ABNC 是两个等边三角形组成的菱形,AN =BN =CN ,点N 是ABC 的外接圆圆心,过N 作平面ABC 的垂线NG ,则球心一定在垂线NG 上,因为PA ⊥平面ABC ,则PA //NG ,PA 与NG 共面,在面内作PA 的中垂线,交NG 于O ,则O 是外接球球心,半径R =OA ,Rt AON 中,12ON AP ==,4AN =,故R ==故外接球的表面积2441872S R πππ==⨯=. 故选:D.10.(2020·江苏南京市第二十九中学高三期中)已知直三棱柱111ABC A B C -的顶点都在球O 上,且4AB =,16AA =,30ACB ∠=︒,则此直三棱柱的外接球O 的表面积是( )A .25πB .50πC .100πD .500π3【答案】C【解析】如图所示:设点O '为ABC 外接圆的圆心, 因为30ACB ∠=︒,所以60AO B '∠=,又O A O B r ''==, 所以AO B '△是等边三角形, 所以4r O A O B AB ''====,又直三棱柱111ABC A B C -的顶点都在球O 上,所以外接球的半径为5R ==, 所以直三棱柱的外接球O 的表面积是24100S R ππ==, 故选:C11.(2021·平凉市庄浪县第一中学高三其他模拟(理))已知90ABC ∠=︒,PA ⊥平面ABC ,若1PA AB BC ===,则四面体PABC 的外接球(顶点都在球面上)的体积为( )A .π BC .2πD .2【答案】D【解析】取PC 的中点O ,连接OA ,OB ,由题意得PA BC ⊥,又因为,AC BC PC AC A ⊥⋂=,所以BC ⊥平面PAC ,所以BC PB ⊥,在1,2Rt PBC OB PC ∆=, 同理12OA PC =,所以12OA OB OC PC ===,因此P ,A ,B ,C 四点在以O 为球心的球面上,在Rt ABC ∆中,AC ==在Rt PAC ∆中,PC ==O 的半径12R PC ==34322π⎛= ⎝⎭, 故选:D.12.(2020·甘肃省民乐县第一中学高三其他模拟(理))在四棱锥P ABCD -中,//BC AD ,AD AB ⊥,AB =6AD =,4BC =,PA PB PD ===P BCD -外接球的表面积为( ) A .60π B .40πC .100πD .80π【答案】D【解析】如图,取AD 的两个三等分点1O 、E ,连接BD 、1O C 、CE , 设1BDO C H =,连接PH 、AH .则1123AO AD ==,14O D BC ∴==,又//BC AD ,1//BC O D ∴,所以,四边形1BCDO 为平行四边形,1O CBD H =,H ∴为BD 的中点,所以,1122AH BH DH BD =====由勾股定理可得14O B ===,则11O B O D =,在1Rt O AB △中,11tan ABAO B AO ∠==13AO B π∴∠=, //BC AD ,13CBO π∴∠=,又11BC O D O B ==,则1O BC △为等边三角形,1114O C O B O D ∴===,则1O 是BCD 的外接圆的圆心.因为PA PB PD ===H 为BD 的中点,PHBD ∴⊥,PA PB =,AH BH =,PH PH =,PAH PBH ∴≅△△,2PHA PHB π∴∠=∠=,PH AH ∴⊥,又PH BD ⊥,AHBD H =,PH ∴⊥平面ABCD ,且6PH ===.设O 为三棱锥P BCD -外接球的球心,连接1OO 、OP 、OD ,过O 作OF PH ⊥,垂足为F ,则外接球的半径R 满足()2222211146R OO OO O H =+=-+, 设1OO x =,则()221664x x +=-+,解得2x =,从而222420R x =+=,故三棱锥P BCD -外接球的表面积为2480R ππ=. 故选:D.13.(2021·固原市第五中学高三期末(理))已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为24,则这个球的体积为____________.【答案】【解析】设正方体边长a ,正方体外接球的半径为R , 由正方体的表面积为24,所以2624a =,则2a =,又R =,所以R ,所以外接球的体积为:334433R ππ==.故答案为:.14.(2021·安徽池州市·高三期末(理))已知四棱锥A BCDE -的底面BCDE 是边长为2的正方形,DE ⊥平面ABE ,2AE =,AC =A BCDE -的外接球的表面积为___________. 【答案】283π【解析】如图所示:∵DE ⊥平面ABE ,BC ⊥平面ABE , ∴90ABC ∠=︒,则有222AB BC AC +=, 解得2AB =,又2AE =,构造正三棱柱ABE A CD '-,其上下底面边长为2,高为2, 则其外接球的球心是上下中心连线的中点, 设外接球半径R ,则22222113713R O E OO ⎛=+=+= ⎝⎭, 所以外接球的表面积为23428S R ππ==. 故答案为:283π15.(2021·吉林四平市·高三期末)已知直三棱柱1111,2,2,ABC A BC AB AC BC AA -====其外接球的体积为____.【解析】已知AB =AC ,∴三角形ABC 为等腰三角形,取M 为BC 的中点,连接AM ,则AM ⊥BC ,由已知得BC =BM =,又2,60AB BAM =∴∠=︒,∴120BAC ∠=︒,再由正弦定理42sin BC rA ===,(r 为三角形ABC 外接圆半径),r =2, 设两底面的外接圆的圆心分别为12,O O ,外接球球心O 为12O O的中点,外接球的半径R OA ===所以球的体积为343R π=,. 16.(2021·河南郑州市·高三一模)已知A BCD -是球О的内接三棱锥,6,9,AB AC BC BD CD AD ======则球О的表面积为_______________________.【答案】84π【解析】取BC ,AD 的中点,M N ,因为6,9,AB AC BC BD CD AD ======所以AM BC ⊥,DM BC ⊥,所以BC ⊥平面AMD ,MN 既是BC ,又是AD 的垂直平分线,所以三棱锥A BCD -的外接球的球心在MN 上,且平面AMD ⊥平面BCD ,点E 是BCD △的中心,:1:2ME ED =,OE MD ⊥,且OEMN O =,AM DM ==,9AD =,所以MN ==,OMEADN,所以92OE ME OE DN MN =⇒=,解得:3OE =,则三棱锥外接球半径R OD ====,则球O 的表面积2484S R ππ==.故答案为:84π17.(2021·石嘴山市第三中学高三月考)在三棱锥D ABC -中,CD ⊥底面ABC ,,5,4AC BC AB BD BC ⊥===,则此三棱锥的外接球的表面积为______.【答案】34π【解析】因为CD ⊥底面ABC ,所以CD AC ⊥,CD BC ⊥,又AC BC ⊥,所以三棱锥D ABC -的外接球就是以,,CD CA CB为棱的长方体的外接球,其直径为长方体的对角线,因为3CD ===,3AC ===,所以外接球的直径2R ===, 所以外接球的表面积为243434R πππ=⨯=. 故答案为:34π18.(2020·梅河口市第五中学高三月考)已知三棱锥A BCD-中,2AB CD AC BD ====,AD BC ==__________.【解析】由题可知,该三棱锥是由长方体的面对角线构成,如图,设长方体的棱长分别为,,a b c ,则2222225,4,3a b b c a c +=+=+=, 则2226a b c ++=, 设球半径为R ,则2R ==R =,则球的体积为343R π=..19.(2020·山西高三月考(文))已知正三棱柱111ABC A B C -的体积为54,6AB =,记三棱柱111ABC A B C -的外接球为球1O ,则外接球1O 的表面积是__________. 【答案】60π【解析】因为正三棱柱111ABC A B C -的底面积216sin 602S =⨯⨯︒=底面外接圆半径62sin 60r ==︒所以正三棱柱111ABC A B C -的高Vh S==所以外接球1O 的半径R ==,则24π60πS R ==, 故答案为:60π.20.(2020·济南市·山东省实验中学高三月考)在三棱锥P ABC -中,侧棱PA ⊥底面,120,1ABC BAC AB AC ∠===且2,PA BC =则该三棱锥的外接球的体积为__________. 【答案】323π【解析】在ABC 中,由余弦定理可知:BC ===因为120,1BAC AB AC ∠===,所以ABC 是顶角为钝角的等腰三角形, 设ABC 的外接圆的直径为AD ,由正弦定理可知:2sin sin120BC AD BAC ︒===∠,因为侧棱PA ⊥底面ABC , 2PA BC ==, 所以三棱锥P ABC -的外接球的直径为PD ,由勾股定理可知:4P D ===,所以三棱锥P ABC -的外接球的半径为:1422R =⨯=, 所以三棱锥P ABC -的外接球的体积为:3344322.333V R πππ==⨯= 故答案为:323π。
空间几何体外接球问题7种题型总结
空间几何体外接球问题7种题型总结
x
一、空间几何体外接球问题整体总结
空间几何体外接球问题是典型的几何形体在三维空间运动的概
念测试,其考查的内容主要有以下几种:
1、计算特定几何体外接球的半径:可以根据给定的几何体的表面积和体积来计算出它的外接球的半径;
2、定义外接球:通过给出几何体的表面积或体积来定义几何体的外接球;
3、求任意两个外接球的重叠面积:计算出两个球体的表面积和体积,利用这些参数来求出两个外接球的重叠面积;
4、求几何体到某点的最近距离:在给定的几何体的某点的情况下,根据外接球的半径来计算出该点到外接球的最近距离;
5、求几何体的体积:根据给定的外接球的半径和体积,计算出几何体的体积;
6、求两个外接球的重叠体积:根据两个外接球的表面积和体积,来计算出它们重叠的体积;
7、求几何体到某球体的最近距离:通过给定的几何体和某个球体,可以根据它们的外接球的半径来求出它们之间的最近距离。
二、总结
空间几何体外接球问题可以用来考查考生对几何形体的运动、距离和体积的理解程度,考生需要熟练掌握外接球的定义、半径的计算、
重叠面积和体积的求解以及几何体到某点和某球体最近距离的求解
等基本方法。
通过练习这些方法,考生可以提高解题的速度和准确度,从而帮助考生在备考考试的过程中更好的掌握考试知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图5-4
图3-1
专题3 搞定空间几何体的外接球与内切球
一、基本方法:
(1)定心:确定球心,构造直角三角形利用正余弦定理及勾股定理求解(2
22d r R +=);该方法是解决外接球问题的主要的通法,但对空间想象能力、作图能力要求较高;所以熟悉以下的几种模型才能准确快速的解决外接球问题。
(2)补形:补成长方体,利用长方体对角线求解(2
2224c b a R ++=);有些几何体比较难确定球心,而几何体刚好是长方体的一部分,其外接球与长方体的外接球是同一个球,故可利用长方体模型求解。
另外有些不规则的几何体还可以选择建系,设球心,利用球心到各顶点的距离相等求出球心坐标求解。
但该方法计算量大,高考一般不会考查。
高考中以模型一、二、三、四为主。
类型一:锥体模型(P 的射影是ABC ∆的外心即侧棱长相等)
第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线; 第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1; 第三步:勾股定理:2
12
12
O O A O OA +=⇒2
2
2
)(r R h R +-=,解出R 类型二:柱体模型(直棱柱、圆柱)
第一步:确定球心O 的位置,1O 是ABC ∆的外心,则⊥1OO 平面ABC ;
第二步:算出小圆1O 的半径r AO =1,h AA OO 2
1211
1==; 第三步:勾股定理:21212O O A O OA +=⇒2
22)2
(r h R +=
⇒22)2
(h
r R +=,解出R
第一步:将ABC ∆画在小圆面上,D 为小圆上任意的一点,;
第二步:1O 为ABC ∆的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半
径r D O =1(三角形的外接圆直径算法:利用正弦定理,得
r C c
B b A a 2sin sin sin ===),PA OO d 2
11==; 第三步:利用勾股定理求三棱锥的外接球半径:2
2
2
d r R +=. 类型四:长方体模型
图6
1.三条棱两两垂直,可补形为长方体
方法:找三条两两垂直的线段,直接用公式2
222)2(c b a R ++=,求出R 2.三棱锥(即四面体)中,三组对棱分别相等,亦可补形为长方体 第一步:画出一个长方体,标出三组互为异面直线的对棱;
第二步:设出长方体的长宽高分别为c b a ,,,x BC AD ==,
y CD AB ==,z BD AC ==,
第三步:由2
22
222
22z y x c b a R ++=
++=,求出R .
类型五:二面角模型(两个三角形拼在一起,一般为两等腰三角形或直角三角形) 1.当两等腰三角形由公共底边折叠时,
第一步:先画出如图所示的图形,将BCD ∆画在小圆上,找出∆BD A '∆的外心1H 和2H ;
第二步:过1H 和2H 分别作其所在平面的垂线,两垂线的交点即为球心O ,连接OC OE ,;
第三步:解1OEH ∆,算出1OH ,再由勾股定理:2
2121OC CH OH =+,求出球的半径R 。
2. 当两直角三角形由公共斜边折叠时,其公共斜边就是外接球的直径。
类型六:内切球问题 1.正棱锥的内切球.
第一步:先现出内切球的截面图,H E ,分别是两个三角形的外心;
第二步:由POE ∆相似于PDH ∆,建立等式:PD
PO
DH OE =
,解出r 2.任意多面体的内切球:等体积法,
第一步:先求出多面体的表面积和体积; 第二步:解出表
S V
r 3=
图8-1
A
图2-1。