第中学生物理竞赛复赛理论考试试题
第24届全国中学生物理竞赛复赛试题及详解(WORD版)
第24届全国中学⽣物理竞赛复赛试题及详解(WORD版)第24届全国中学⽣物理竞赛复赛试卷(本题共七⼤题,满分160分)⼀、(20分)如图所⽰,⼀块长为m L 00.1=的光滑平板PQ 固定在轻质弹簧上端,弹簧的下端与地⾯固定连接。
平板被限制在两条竖直光滑的平⾏导轨之间(图中未画出竖直导轨),从⽽只能地竖直⽅向运动。
平板与弹簧构成的振动系统的振动周期s T 00.2=。
⼀⼩球B 放在光滑的⽔平台⾯上,台⾯的右侧边缘正好在平板P 端的正上⽅,到P 端的距离为m h 80.9=。
平板静⽌在其平衡位置。
⽔球B 与平板PQ 的质量相等。
现给⼩球⼀⽔平向右的速度0µ,使它从⽔平台⾯抛出。
已知⼩球B 与平板发⽣弹性碰撞,碰撞时间极短,且碰撞过程中重⼒可以忽略不计。
要使⼩球与平板PQ 发⽣⼀次碰撞⽽且只发⽣⼀次碰撞,0µ的值应在什么范围内?取2/8.9s m g =⼆、(25分)图中所⽰为⽤三⾓形刚性细杆AB 、BC 、CD 连成的平⾯连杆结构图。
AB 和CD 杆可分别绕过A 、D 的垂直于纸⾯的固定轴转动,A 、D 两点位于同⼀⽔平线上。
BC 杆的两端分别与AB 杆和CD 杆相连,可绕连接处转动(类似铰链)。
当AB 杆绕A 轴以恒定的⾓速度ω转到图中所⽰的位置时,AB 杆处于竖直位置。
BC 杆与CD 杆都与⽔平⽅向成45°⾓,已知AB 杆的长度为l ,BC 杆和CD 杆的长度由图给定。
求此时C 点加速度c a 的⼤⼩和⽅向(⽤与CD 杆之间的夹⾓表⽰)三、(20分)如图所⽰,⼀容器左侧装有活门1K ,右侧装有活塞B ,⼀厚度可以忽略的隔板M 将容器隔成a 、b 两室,M 上装有活门2K 。
容器、隔板、活塞及活门都是绝热的。
隔板和活塞可⽤销钉固定,拔掉销钉即可在容器内左右平移,移动时不受摩擦作⽤且不漏⽓。
整个容器置于压强为P 0、温度为T 0的⼤⽓中。
初始时将活塞B ⽤销钉固定在图⽰的位置,隔板M 固定在容器PQ 处,使a 、b 两室体积都等于V 0;1K 、2K 关闭。
第35届全国中学生物理竞赛复赛理论考试试题及参考答案
R1
r
R2
宇宙微波背景辐射温度为 T 2.73K 。 若单位时间内由球壳 量为 5.67 10 8 W m 2 K 4 , 内表面传递到球壳外表面的热量为 Q 44.0W ,求 (1)球壳外表面温度 T2 ;(2)球壳内表面温度 T1 ;(3)内球温度 T0 。 已知: 物体表面单位面积上的辐射功率与同温度下的黑体在该表面单位面积上的辐射功 率之比称为比辐射率。 当辐射照射到物体表面时, 物体表面单位面积吸收的辐射功率与照射 到物体单位面积上的辐射功率之比称为吸收比。 在热平衡状态下, 物体的吸收比恒等于该物 dT 体在同温度下的比辐射率。 当物体内某处在 z 方向 (热流方向) 每单位距离温度的增量为 dz dT 时, 物体内该处单位时间在 z 方向每单位面积流过的热量为 , 此即傅里叶热传导定律。 dz
式中 m 是小物体的质量。小物体相对于地球中心的角动量为
L mv0 R h
该物体能绕地球做周期运动,其能量应 E0 由此条件以及 E 的表达式,得
2GM 2GM ,即 v0 ① Rh Rh 物体能绕地球做持续的周期运动,不能坠落到地球表面。当物体初始速度 v0 降低到某 个值 v0min 时,物体运动的椭圆轨道将与地球表面相切,设这种情况下物体在与地球表面相
y
三、(40 分)如图,一质量为 M 、长为 l 的匀质细杆 AB 自由悬挂于 通过坐标原点 O 点的水平光滑转轴上(此时,杆的上端 A 未在图中标 , 杆可绕通过 O 点的轴在竖直平面 (即 x-y 平 出, 可视为与 O 点重合) 面, x 轴正方向水平向右)内转动; O 点相对于地面足够高,初始时 杆自然下垂; 一质量为 m 的弹丸以大小为 v0 的水平速度撞击杆的打击 中心(打击过程中轴对杆的水平作用力为零)并很快嵌入杆中。在杆 转半圈至竖直状态时立即撤除转轴。重力加速度大小为 g 。 (1)求杆的打击中心到 O 点的距离;
第届全国中学生物理竞赛复赛试题及答案
第26届全国中学生物理竞赛复赛试卷一、填空(问答)题(每题5分,共25分)有人设想了一种静电场:电场的方向都垂直于纸面并指向纸里,电场强度的大小自左向右逐渐增大,如图所示。
这种分布的静电场是否可能存在试述理由。
2.海尔-波普彗星轨道是长轴非常大的椭圆,近日点到太阳中心的距离为天文单位(1天文单位等于地日间的平均距离),则其近日点速率的上限与地球公转(轨道可视为圆周)速率之比约为(保留2位有效数字) 。
用测电笔接触市电相线,即使赤脚站在地上也不会触电,原因是;另一方面,即使穿绝缘性能良好的电工鞋操作,测电笔仍会发亮,原因是 。
4.在图示的复杂网络中,所有电源的电动势均为E 0,所有电阻器的电阻值均为R 0,所有电容器的电容均为C 0,则图示电容器A 极板上的电荷量为 。
5.如图,给静止在水平粗糙地面上的木块一初速度,使之开始运动。
一学生利用角动量定理来考察此木块以后的运动过程:“把参考点设于如图所示的地面上一点O ,此时摩擦力f 的力矩为0,从而地面木块的角动量将守恒,这样木块将不减速而作匀速运动。
”请指出上述推理的错误,并给出正确的解释:。
二、(20分)图示正方形轻质刚性水平桌面由四条完全相同的轻质细桌腿1、2、3、4支撑于桌角A 、B 、C 、D 处,桌腿竖直立在水平粗糙刚性地面上。
已知桌腿受力后将产生弹性微小形变。
现于桌面中心点O 至角A 的连线OA 上某点P 施加一竖直向下的力F ,令c OAOP ,求桌面对桌腿1的压力F 1。
三、(15分)1.一质量为m 的小球与一劲度系数为k 的弹簧相连组成一体系,置于光滑水平桌面上,弹簧的另一端与固定墙面相连,小球做一维自由振动。
试问在一沿此弹簧长度方向以速度u 作匀速运动的参考系里观察,此体系的机械能是否守恒,并说明理由。
2.若不考虑太阳和其他星体的作用,则地球-月球系统可看成孤立系统。
若把地球和月球都看作是质量均匀分布的球体,它们的质量分别为M 和m ,月心-地心间的距离为R ,万有引力恒量为G 。
物理竞赛复赛试题
物理竞赛复赛试题一、选择题(每题3分,共30分)1. 一个物体在水平面上以恒定速度运动,其动能的变化情况是:A. 逐渐增加B. 逐渐减少C. 不变D. 先增加后减少2. 根据牛顿第三定律,以下说法正确的是:A. 作用力和反作用力大小相等,方向相反B. 作用力和反作用力可以是不同性质的力C. 作用力和反作用力作用在同一个物体上D. 作用力和反作用力可以同时消失3. 一个理想气体在等压过程中,其温度和体积的关系是:A. 温度和体积成正比B. 温度和体积成反比C. 温度和体积无关D. 温度随体积的增加而减少4. 根据麦克斯韦方程组,以下描述正确的是:A. 电场总是由电荷产生B. 磁场可以由变化的电场产生C. 电场和磁场总是相互独立D. 电荷的存在必然伴随着磁场5. 一个物体从静止开始自由下落,其下落过程中的加速度是:A. 恒定的B. 逐渐增加C. 逐渐减少D. 先增加后减少6. 光的双缝干涉实验中,相邻明条纹之间的距离与以下哪个因素无关?A. 双缝间距B. 光的波长C. 观察屏与双缝的距离D. 光源的强度7. 根据热力学第一定律,以下说法正确的是:A. 能量可以在不同形式之间转换,但总量不变B. 能量守恒定律只适用于封闭系统C. 能量守恒定律不适用于开放系统D. 能量可以被创造或消失8. 一个物体在斜面上下滑,摩擦力对其做功的情况是:A. 总是做正功B. 总是做负功C. 有时做正功,有时做负功D. 从不对外做功9. 根据相对论,以下说法正确的是:A. 时间是绝对的B. 质量随着速度的增加而增加C. 长度随着速度的增加而增加D. 光速在所有惯性参考系中都是相同的10. 在电路中,欧姆定律描述的是:A. 电流与电压成正比,与电阻成反比B. 电流与电阻成正比,与电压成反比C. 电压与电流成正比,与电阻无关D. 电阻与电流成正比,与电压无关二、填空题(每题2分,共20分)11. 根据库仑定律,两个点电荷之间的力与它们的电荷量的乘积成正比,与它们之间的距离的________成反比。
第39届全国中学生物理竞赛复赛试题及答案
第39届全国中学生物理竞赛复赛试题(2022年9月17日上午9:00-12:00)考生必读1、考生考试前请务必认真阅读本须知。
2、本试题共7道题,4页,总分为320分。
3、如遇试题印刷不清楚情况,请务必向监考老师提出。
4、需要阅卷老师评阅的内容一定要写在答题纸上;写在试题纸和草稿纸上的解答一律不能得分。
一、(40分)迈克尔逊干涉仪是光学干涉仪中最常见的一种,发明者是美国物理学家阿尔伯特·亚伯拉罕·迈克尔逊。
最初设计迈克尔逊干涉仪的目的是为测量“以太”(假想的传播光的媒质)的漂移速度,目前它广泛应用于精密测量。
迈克尔逊干涉仪的光路图如图1a 所示:照明光为单色激光,入射光经过半反半透的镜子分为沿干涉仪的两个臂(反射臂和透射臂)传播的两束光。
半反半透镜与入射光轴方向之间的夹角为45°,反射臂和透射臂相互垂直。
在两个臂端上各放置与相应的臂垂直的反射镜,反射镜可以沿臂的方向移动。
反射和透射光线经反射镜反射,再次经过半反半透镜透射和反射,两束光在空间重叠,发生干涉。
如果照明光为发散光源,我们观察到的干涉条纹为同心圆环。
半反半透镜是在一个平整的石英基板上蒸镀一层薄金属膜制成,迈克尔逊干涉仪中参与叠加的两束光都经过半反半透镜的反射,一束光是在石英和金属界面上的反射,另一束光是在空气和金属界面上的反射。
因为反射界面不同,所以两束光反射时相位突变不同,两者的差异为ϕ∆,下面我们通过实验测量ϕ∆。
开始时,观察到干涉场中心是亮斑,干涉场最外侧是亮圆环,一共20个亮条纹(计及中心亮斑)。
现在缓慢调节一个臂的反射镜,让反射镜沿臂的方向平移,观察到干涉条纹发生明暗变化,并发现同心圆环条纹越来越稀疏。
干涉场中心明暗变化了23个周期,干涉场最外侧的明暗变化了20个周期。
(本题中,条纹数目均视为精确计数值,干涉仪两臂的长度在cm 量级。
)(1)求相位突变差异ϕ∆。
(2)反射镜移动后,可以观察到多少个干涉亮条纹(计及中心亮斑)?(3)使用此干涉仪测量某一透明液体的折射率,将扁平的石英空槽插入迈克尔逊干涉仪的一个臂,使得石英槽的表面与臂的方向垂直。
第36届全国中学生物理竞赛复赛试题
第36届全国中学生物理竞赛复赛试题第36届全国中学生物理竞赛复赛理论考试试题2019年9月21日一、如图a,一辆旅行车上有一个半径为R的三脚圆凳,三个相同凳脚的端点连线(均水平)构成边长为a的等边三角形,凳子质心位于其轴上的G点。
半径为r的一圆筒形薄壁茶杯放在凳面上,杯底中心位于凳面中心O点处,茶杯质量为m(远小于凳子质量),其中杯底质量为m/5,杯高为H(与杯高相比,杯底厚度可忽略)。
杯中盛有茶水,茶水密度为ρ。
重力加速度大小为g。
1.为了使茶水杯所盛茶水尽可能多并保持足够稳定,杯中茶水的最佳高度是多少?2.现该茶水杯的底面边缘刚好缓慢滑移到与圆凳的边缘内切于D点时静止,且OD⊥AC(见图b),求此时旅行车内底板对各凳脚的支持力相对于滑移前(该茶水杯位于凳面中心处)的改变。
二、农用平板车的简化模型如图a所示,两车轮的半径均为r(忽略内外半径差),质量均为m,两轮可绕过其中心的光滑细车轴转动;车平板长为l、质量为2m,平板的质心恰好位于车轮的轴上;两车把手(可视为细直杆)的长均为2l、质量均为m,且把手前端与平板对齐。
平板、把手和车轴固连成一个整体,车轮、平板和把手各自的质量分布都是均匀的。
重力加速度大小为g。
1.该平板车的车轮被一装置卡住而不能前后移动,但仍可绕车轴转动。
将把手提至水平位置由静止开始释放,求把手在与水平地面碰撞前的瞬间的转动角速度。
2.在把手与水平地面碰撞前的瞬间立即撤去卡住两车轮的装置,同时将车轮和轴锁死,在碰后的瞬间立即解锁,假设碰撞时间较短(但不为零),碰后把手末端在竖直方向不反弹。
已知把手与地面、车轮与地面之间的滑动摩擦系数均为μ(最大静摩擦力等于滑动摩擦力)。
求在车轮从开始运动直至静止的过程中,车轴移动的距离。
模型简化某模型如图a所示,由两个圆柱形固定导轨相互平行组成。
导轨的对称轴所在平面与水平面的夹角为θ,导轨的长为L,半径为b,每单位长度的电阻为λ,两导轨之间的最近距离为d。
全国中学生物理竞赛复赛试题及答案(全Word版)
第31届全国中学生物理竞赛复赛理论考试试题说明:所有答案 (包括填空)必须写在答题纸上,写在试题纸上无效。
一、(12分)2013年6月20日,“神舟十号”女航天员王亚平在“天宫一号”目标飞行器里成功进行了我国首次太空授课. 授课中的一个实验展示了失重状态下液滴的表面张力引起的效应. 视频中可发现漂浮的液滴处于周期性的“脉动”中(平时在地球表面附近,重力的存在会导致液滴下降太快,以至于很难观察到液滴的这种“脉动”现象). 假设液滴处于完全失重状态,液滴的上述“脉动”可视为液滴形状的周期性的微小变化(振动),如图所示. (1)该液滴处于平衡状态时的形状是__________;(2)决定该液滴振动频率f 的主要物理量是________________________________________; (3)按后面括号中提示的方法导出液滴振动频率与上述物理量的关系式.(提示:例如,若认为,,a b c 是决定该液滴振动频率的相互独立的主要物理量,可将液滴振动频率f 与,,a b c 的关系式表示为αβγ∝f a b c ,其中指数,,αβγ是相应的待定常数.)二、(16分) 一种测量理想气体的摩尔热容比/p V C C γ≡的方法(Clement-Desormes 方法)如图所示:大瓶G 内装满某种理想气体,瓶盖上通有一个灌气(放气)开关H ,另接出一根U 形管作为压强计M .瓶内外的压强差通过U 形管右、左两管液面的高度差来确定. 初始时,瓶内外的温度相等,瓶内气体的压强比外面的大气压强稍高,记录此时U 形管液面的高度差i h .然后打开H ,放出少量气体,当瓶内外压强相等时,即刻关闭H . 等待瓶内外温度又相等时,记录此时U 形管液面的高度差f h .试由这两次记录的实验数据i h 和f h ,导出瓶内气体的摩尔热容比γ的表达式.(提示:放气过程时间很短,可视为无热量交换;且U 形管很细,可忽略由高差变化引起的瓶内气体在状态变化前后的体积变化)三、(20分)如图所示,一质量为m 、底边AB 长为b 、等腰边长为a 、质量均匀分布的等腰三角形平板,可绕过光滑铰链支点A 和B 的水平轴x 自由转动;图中原点O 位于AB 的中点,y 轴垂直于板面斜向上,z 轴在板面上从原点O 指向三角形顶点C . 今在平板上任一给定点000M (,0,)x z 加一垂直于板面的拉力Q .(1)若平衡时平板与竖直方向成的角度为ϕ,求拉力Q 以及铰链支点对三角形板的作用力N A 和N B ;(2)若在三角形平板上缓慢改变拉力Q 的作用点M 的位置,使平衡时平板与竖直方向成的角度仍保持为ϕ,则改变的作用点M 形成的轨迹满足什么条件时,可使铰链支点A 或B 对板作用力的垂直平板的分量在M 变动中保持不变?四、(24分)如图所示,半径为R 、质量为m 0的光滑均匀圆环,套在光滑竖直细轴OO '上,可沿OO '轴滑动或绕OO '轴旋转.圆环上串着两个质量均为m 的小球. 开始时让圆环以某一角速度绕OO '轴转动,两小球自圆环顶端同时从静止开始释放.(1)设开始时圆环绕OO '轴转动的角速度为ω0,在两小球从环顶下滑过程中,应满足什么条件,圆环才有可能沿OO '轴上滑?(2)若小球下滑至30θ=︒(θ是过小球的圆环半径与OO '轴的夹角)时,圆环就开始沿OO '轴上滑,求开始时圆环绕OO '轴转动的角速度ω0、在30θ=︒时圆环绕OO '轴转动的角速度ω和小球相对于圆环滑动的速率v .五、(20分)如图所示,现有一圆盘状发光体,其半径为5cm ,放置在一焦距为10cm 、半径为15cm 的凸透镜前,圆盘与凸透镜的距离为20cm ,透镜后放置一半径大小可调的圆形光阑和一个接收圆盘像的光屏.图中所有光学元件相对于光轴对称放置.请在几何光学近轴范围内考虑下列问题,并忽略像差和衍射效应.(1)未放置圆形光阑时, 给出圆盘像的位置、大小、形状;(2)若将圆形光阑放置于凸透镜后方6cm 处. 当圆形光阑的半径逐渐减小时,圆盘的像会有什么变化?是否存在某一光阑半径a r ,会使得此时圆盘像的半径变为(1)中圆盘像的半径的一半?若存在,请给出a r 的数值.(3)若将圆形光阑移至凸透镜后方18cm 处,回答(2)中的问题; (4)圆形光阑放置在哪些位置时,圆盘像的大小将与圆形光阑的半径有关? (5)若将图中的圆形光阑移至凸透镜前方6cm 处,回答(2)中的问题.六、(22分)如图所示,一电容器由固定在共同导电底座上的N +1片对顶双扇形薄金属板和固定在可旋转的导电对称轴上的N 片对顶双扇形薄金属板组成,所有顶点共轴,轴线与所有板面垂直,两组板面各自在垂直于轴线的平面上的投影重合,板面扇形半径均为R ,圆心角均为0θ(02πθπ≤<);固定金属板和可旋转的金属板相间排列,两相邻金属板之间距离均为s .此电容器的电容C 值与可旋转金属板的转角θ有关.已知静电力常量为k . (1)开始时两组金属板在垂直于轴线的平面上的投影重合,忽略边缘效应,求可旋转金属板的转角为θ(00θθθ-≤≤)时电容器的电容()C θ;(2)当电容器电容接近最大时,与电动势为E 的电源接通充电(充电过程中保持可旋转金属板的转角不变),稳定后断开电源,求此时电容器极板所带电荷量和驱动可旋转金属板的力矩; (3)假设02πθ=,考虑边缘效应后,第(1)问中的()C θ可视为在其最大值和最小值之间光滑变化的函数max min max min 11()()()cos222C C C C C θθ=++- 式中,max C 可由第(1)问的结果估算,而min C 是因边缘效应计入的,它与max C 的比值λ是已知的.若转轴以角速度m ω匀速转动,且m t θω=,在极板间加一交流电压0cos V V t ω=.试计算电容器在交流电压作用下能量在一个变化周期内的平均值,并给出该平均值取最大值时所对应的m ω.七、(26分)Z-箍缩作为惯性约束核聚变的一种可能方式,近年来受到特别重视,其原理如图所示.图中,长20 mm 、直径为5m μ的钨丝组成的两个共轴的圆柱面阵列,瞬间通以超强电流,钨丝阵列在安培力的作用下以极大的加速度向内运动, 即所谓自箍缩效应;钨丝的巨大动量转移到处于阵列中心的直径为毫米量级的氘氚靶球上,可以使靶球压缩后达到高温高密度状态,实现核聚变.设内圈有N 根钨丝(可视为长直导线)均匀地分布在半径为r 的圆周上,通有总电流7210A =⨯内I ;外圈有M 根钨丝,均匀地分布在半径为R 的圆周上,每根钨丝所通过的电流同内圈钨丝.已知通有电流i 的长直导线在距其r 处产生的磁感应强度大小为m ik r,式中比例常量772210T m/A 210N /A m k --=⨯⋅=⨯.(1)若不考虑外圈钨丝,计算内圈某一根通电钨丝中间长为L ∆的一小段钨丝所受到的安培力;(2)若不考虑外圈钨丝,内圈钨丝阵列熔化后形成了圆柱面,且箍缩为半径0.25cm r =的圆柱面时,求柱面上单位面积所受到的安培力,这相当于多少个大气压?(3)证明沿柱轴方向通有均匀电流的长圆柱面,圆柱面内磁场为零,即通有均匀电流外圈钨丝的存在不改变前述两小题的结果;(4)当1N >>时, 则通有均匀电流的内圈钨丝在外圈钨丝处的磁感应强度大小为m Ik R内,若要求外圈钨丝柱面每单位面积所受到的安培力大于内圈钨丝柱面每单位面积所受到的安培力,求外圈钨丝圆柱面的半径R 应满足的条件;(5)由安培环路定理可得沿柱轴方向通有均匀电流的长圆柱面外的磁场等于该圆柱面上所有电流移至圆柱轴后产生的磁场,请用其他方法证明此结论. (计算中可不考虑图中支架的影响)八、(20分)天文观测表明,远处的星系均离我们而去.著名的哈勃定律指出,星系离开我们的速度大小v =HD ,其中D 为星系与我们之间的距离,该距离通常以百万秒差距(Mpc )为单位;H 为哈勃常数,最新的测量结果为H =67.80km/(s ⋅Mpc).当星系离开我们远去时,它发出的光谱线的波长会变长(称为红移).红移量z 被定义为λλλ'-=z ,其中λ'是我们观测到的星系中某恒星发出的谱线的波长,而λ是实验室中测得的同种原子发出的相应的谱线的波长,该红移可用多普勒效应解释.绝大部分星系的红移量z 远小于1,即星系退行的速度远小于光速.在一次天文观测中发现从天鹰座的一个星系中射来的氢原子光谱中有两条谱线,它们的频率ν'分别为4.549⨯1014Hz 和6.141⨯1014Hz .由于这两条谱线处于可见光频率区间,可假设它们属于氢原子的巴尔末系,即为由n > 2的能级向k =2的能级跃迁而产生的光谱.(已知氢原子的基态能量013.60 eV =-E ,真空中光速82.99810m/s =⨯c ,普朗克常量346.62610J s -=⨯⋅h ,电子电荷量19 1.60210C -=⨯e )(1)该星系发出的光谱线对应于实验室中测出的氢原子的哪两条谱线?它们在实验室中的波长分别是多少?(2)求该星系发出的光谱线的红移量z 和该星系远离我们的速度大小v ; (3)求该星系与我们的距离D .第31届全国中学生物理竞赛复赛理论考试试题解答2014年9月20日一、(12分) (1)球形(2)液滴的半径r 、密度ρ和表面张力系数σ(或液滴的质量m 和表面张力系数σ) (3)解法一假设液滴振动频率与上述物理量的关系式为αβγρσ=f k r ①式中,比例系数k 是一个待定常数. 任一物理量a 可写成在某一单位制中的单位[]a 和相应的数值{}a 的乘积{}[]=a a a . 按照这一约定,①式在同一单位制中可写成 {}[]{}{}{}{}[][][]αβγαβγρσρσ=f f k r r由于取同一单位制,上述等式可分解为相互独立的数值等式和单位等式,因而 [][][][]αβγρσ=f r ② 力学的基本物理量有三个:质量m 、长度l 和时间t ,按照前述约定,在该单位制中有 {}[]=m m m ,{}[]=l l l ,{}[]=t t t 于是[][]-=f t 1 ③ [][]=r l ④ [][][]ρ-=m l 3 ⑤ [][][]σ-=m t 2 ⑥ 将③④⑤⑥式代入②式得[][]([][])([][])αβγ---=t l m l m t 132 即[][][][]αββγγ--+-=t l m t 132 ⑦ 由于在力学中[]m 、[]l 和[]t 三者之间的相互独立性,有30αβ-=, ⑧ 0βγ+=, ⑨ 21γ= ⑩ 解为311,,222αβγ=-=-= ⑪将⑪式代入①式得=f ⑫ 解法二假设液滴振动频率与上述物理量的关系式为αβγρσ=f k r ①式中,比例系数k 是一个待定常数. 任一物理量a 可写成在某一单位制中的单位[]a 和相应的数值{}a 的乘积{}[]=a a a . 在同一单位制中,①式两边的物理量的单位的乘积必须相等[][][][]αβγρσ=f r ②力学的基本物理量有三个:质量M 、长度L 和时间T ,对应的国际单位分别为千克(kg )、米(m )、秒(s ). 在国际单位制中,振动频率f 的单位[]f 为s -1,半径r 的单位[]r 为m ,密度ρ的单位[]ρ为3kg m -⋅,表面张力系数σ的单位[]σ为1212N m =kg (m s )m kg s ----⋅⋅⋅⋅=⋅,即有[]s -=f 1 ③ []m =r ④ []kg m ρ-=⋅3 ⑤ []kg s σ-=⋅2 ⑥ 若要使①式成立,必须满足()()s m kg m kg s (kg)m s βγαβγαβγ---+--=⋅⋅=⋅⋅13232 ⑦由于在力学中质量M 、长度L 和时间T 的单位三者之间的相互独立性,有 30αβ-=, ⑧ 0βγ+=, ⑨ 21γ= ⑩ 解为311,,222αβγ=-=-= ⑪将⑪式代入①式得f = ⑫评分标准:本题12分. 第(1)问2分,答案正确2分;第(2)问3分,答案正确3分;第(3)问7分,⑦式2分,⑪式3分,⑫式2分(答案为f 、f =f 的,也给这2分).二、(16分)解法一:瓶内理想气体经历如下两个气体过程:000000(,,,)(,,,)(,,,)−−−−−−−→−−−−−→i i f f f p V T N p V T N p V T N 放气(绝热膨胀)等容升温其中,000000(,,,),(,,,,,,)i i f f f p V T N p V T N p V T N )和(分别是瓶内气体在初态、中间态与末态的压强、体积、温度和摩尔数.根据理想气体方程pV NkT =,考虑到由于气体初、末态的体积和温度相等,有f f iip N p N =①另一方面,设V '是初态气体在保持其摩尔数不变的条件下绝热膨胀到压强为0p 时的体积,即000(,,,)(,,,)i i i p V T N p V T N '−−−−→绝热膨胀此绝热过程满足1/00i V p V p γ⎛⎫= ⎪'⎝⎭②由状态方程有0i p V N kT '=和00f p V N kT =,所以 0f iN V N V ='③联立①②③式得1/0fi i p p p p γ⎛⎫= ⎪⎝⎭④ 此即lnln i i fp p p p γ= ⑤由力学平衡条件有0i i p p gh ρ=+ ⑥0f f p p gh ρ=+ ⑦式中,00p gh ρ=为瓶外的大气压强,ρ是U 形管中液体的密度,g 是重力加速度的大小.由⑤⑥⑦式得00ln(1)ln(1)ln(1)if i h h h hh h γ+=+-+⑧利用近似关系式:1, ln(1)x x x +≈ 当,以及 00/1, /1i f h h h h ,有000///i ii f i fh h h h h h h h h γ==--⑨评分标准:本题16分.①②③⑤⑥⑦⑧⑨式各2分.解法二:若仅考虑留在容器内的气体:它首先经历了一个绝热膨胀过程ab ,再通过等容升温过程bc 达到末态100000(,,)(,,)(,,)−−−−−→−−−−−→i f p V T p V T p V T 绝热膨胀ab 等容升温bc其中,100000(,,),(,,,,)i f p V T p V T p V T )和(分别是留在瓶内的气体在初态、中间态和末态的压强、体积与温度.留在瓶内的气体先后满足绝热方程和等容过程方程1100ab: γγγγ----=i p T p T①00bc://=f p T p T② 由①②式得1/0fi i p p p p γ⎛⎫= ⎪⎝⎭③ 此即lnln i i fp p p p γ=④由力学平衡条件有0i i p p gh ρ=+⑤0f f p p gh ρ=+ ⑥式中,00p gh ρ=为瓶外的大气压强,ρ是U 形管中液体的密度,g 是重力加速度的大小.由④⑤⑥式得00ln(1)ln(1)ln(1)if i h h h hh h γ+=+-+⑦利用近似关系式:1, ln(1)x x x +≈ 当,以及 00/1, /1i f h h h h ,有000///i ii f i fh h h h h h h h h γ==--⑧评分标准:本题16分.①②式各3分,④⑤⑥⑦⑧式各2分.三、(20分)(1)平板受到重力C P 、拉力0M Q 、铰链对三角形板的作用力N A 和N B ,各力及其作用点的坐标分别为:C (0,sin ,cos )ϕϕ=--mg mg P ,(0,0,)h ;0M (0,,0)Q =Q , 00(,0,)x z ;A A A A (,,)x y z N N N =N , (,0,0)2b;B B B B (,,)x y z N N N =N ,(,0,0)2b- 式中h =是平板质心到x 轴的距离.平板所受力和(对O 点的)力矩的平衡方程为A B x 0=+=∑xx FN N①A B sin 0ϕ=++-=∑yyyF Q N N mg② A B cos 0ϕ=+-=∑zzzF N N mg③ 0sin 0xM mgh Q z ϕ=-⋅=∑④ B A 022=-=∑y zz b bM N N⑤0A B 022zyy b bMQ x N N =⋅+-=∑⑥联立以上各式解得sin mgh Q z ϕ=, A B x x N N =-,000sin 21()2Ay mg h b x N b z z ϕ⎡⎤=-+⎢⎥⎣⎦,000sin 21()2By mg h b x N b z z ϕ⎡⎤=--⎢⎥⎣⎦A B 1cos 2z zN N mg ϕ==即0M 0sin (0,,0)mgh z ϕ=Q ,⑦0A A 002sin 1(,1(),cos )22x x mg h b N mg b z z ϕϕ⎡⎤=-+⎢⎥⎣⎦N ,⑧0B A 002sin 1(,1(),cos )22x x mg h b N mg b z z ϕϕ⎡⎤=---⎢⎥⎣⎦N⑨(2)如果希望在M(,0,)x z 点的位置从点000M (,0,)x z 缓慢改变的过程中,可以使铰链支点对板的作用力By N 保持不变,则需 sin 21()2By mg h b x N b z z ϕ⎡⎤=--=⎢⎥⎣⎦常量 ⑩M 点移动的起始位置为0M ,由⑩式得00022-=-b x b x z z z z⑪ 或00022b x b x z z z ⎛⎫-=- ⎪⎝⎭ ⑫这是过A(,0,0)2b点的直线. (*)因此,当力M Q 的作用点M 的位置沿通过A 点任一条射线(不包含A 点)在平板上缓慢改变时,铰链支点B 对板的作用力By N 保持不变. 同理,当力M Q 的作用点M 沿通过B 点任一条射线在平板上缓慢改变时,铰链支点A 对板的作用力Ay N 保持不变.评分标准:本题20分.第(1)问14分,①式1分,②③④⑤⑥式各2分,⑦⑧⑨式各1分;第(2)问6分,⑩⑫式各1分,(*) 2分,结论正确2分.四、(24分)(1)考虑小球沿径向的合加速度. 如图,设小球下滑至θ 角位置时,小球相对于圆环的速率为v ,圆环绕轴转动的角速度为ω .此时与速率v 对应的指向中心C 的小球加速度大小为21a R =v ①同时,对应于圆环角速度ω,指向OO '轴的小球加速度大小为2(sin )sin R a R ωωθθ= ②该加速度的指向中心C 的分量为22(sin )sin R a a R ωωθθ== ③该加速度的沿环面且与半径垂直的分量为23(sin )cos cot R a a Rωωθθθ== ④由①③式和加速度合成法则得小球下滑至θ 角位置时,其指向中心C 的合加速度大小为2212(sin )v ωθ=+=+R R a a a R R⑤在小球下滑至θ 角位置时,将圆环对小球的正压力分解成指向环心的方向的分量N 、垂直于环面的方向的分量T . 值得指出的是:由于不存在摩擦,圆环对小球的正压力沿环的切向的分量为零. 在运动过程中小球受到的作用力是N 、T 和mg . 这些力可分成相互垂直的三个方向上的分量:在径向的分量不改变小球速度的大小,亦不改变小球对转轴的角动量;沿环切向的分量即sin θmg 要改变小球速度的大小;在垂直于环面方向的分量即T 要改变小球对转轴的角动量,其反作用力将改变环对转轴的角动量,但与大圆环沿'OO 轴的竖直运动无关. 在指向环心的方向,由牛顿第二定律有22(sin )cos R R N mg ma mRωθθ++==v ⑥ 合外力矩为零,系统角动量守恒,有202(sin )L L m R θω=+ ⑦式中L 0和L 分别为圆环以角速度ω0和ω转动时的角动量.如图,考虑右半圆环相对于轴的角动量,在θ角位置处取角度增量∆θ, 圆心角∆θ所对圆弧l ∆的质量为m l λ∆=∆(02m Rλπ≡),其角动量为 2sin L m r l rR Rr z R S ωλωθλωλω∆=∆=∆=∆=∆ ⑧式中r 是圆环上θ 角位置到竖直轴OO '的距离,S ∆为两虚线间窄条的面积.⑧式说明,圆弧l ∆的角动量与S ∆成正比. 整个圆环(两个半圆环)的角动量为2200122222m R L L R m R R πωωπ=∆=⨯=∑ ⑨[或:由转动惯量的定义可知圆环绕竖直轴OO '的转动惯量J 等于其绕过垂直于圆环平面的对称轴的转动惯量的一半,即2012J m R = ⑧则角动量L 为2012L J m R ωω== ⑨ ]同理有200012L m R ω= ⑩力N 及其反作用力不做功;而T 及其反作用力的作用点无相对移动,做功之和为零;系统机械能守恒. 故22012(1cos )2[(sin )]2k k E E mgR m R θωθ-+⨯-=⨯+v ⑪式中0k E 和k E 分别为圆环以角速度0ω和ω转动时的动能.圆弧l ∆的动能为222111()sin 222k E m r l rR R S ωλωθλω∆=∆=∆=∆整个圆环(两个半圆环)的动能为22220011222224k k m R E E R m R R πωωπ=∆=⋅⋅⋅⋅=∑ ⑫ [或:圆环的转动动能为22201124k E J m R ωω== ⑫ ]同理有2200014k E m R ω= ⑬根据牛顿第三定律,圆环受到小球的竖直向上作用力大小为2cos N θ,当02cos N m g θ≥ ⑭时,圆环才能沿轴上滑.由⑥⑦⑨⑩⑪⑫ ⑬式可知,⑭式可写成2220000220cos 6cos 4cos 102(4sin )ωθθθθ⎡⎤-+--≤⎢⎥+⎣⎦m R m m m m gm m ⑮式中,g 是重力加速度的大小.(2)此时由题给条件可知当=30θ︒时,⑮式中等号成立,即有20020912()m m m m m ⎤⎛-+=- ⎥+⎝⎣⎦或00(m m ω=+ ⑯由⑦⑨⑩⑯式和题给条件得0000200+4sin +m m m m m m ωωωθ=== ⑰ 由⑪⑫⑬⑯⑰式和题给条件得v ⑱评分标准:本题24分.第(1)问18分,①②③④⑤式各1分,⑥⑦式各2分,⑨⑩式各1分,⑪式2分,⑫⑬式各1分,⑭式2分,⑮式1分;第(2)问6分,⑯⑰⑱式各2分.五、(20分)(1)设圆盘像到薄凸透镜的距离为v . 由题意知:20cm u =, 10cm f =,代入透镜成像公式111u f+=v ① 得像距为20cm =v ② 其横向放大率为1uβ=-=-v③ 可知圆盘像在凸透镜右边20cm ,半径为5cm ,为圆盘状,圆盘与其像大小一样. (2)如下图所示,连接A 、B 两点,连线AB 与光轴交点为C 点,由两个相似三角形AOC ∆与BB'C ∆的关系可求得C 点距离透镜为15cm. 1分若将圆形光阑放置于凸透镜后方6cm 处,此时圆形光阑在C 点左侧. 1分 当圆形光阑半径逐渐减小时,均应有光线能通过圆形光阑在B 点成像,因而圆盘像的形状及大小不变,而亮度变暗. 2分此时不存在圆形光阑半径a r 使得圆盘像大小的半径变为(1)中圆盘像大小的半径的一半.1分(3)若将圆形光阑移至凸透镜后方18cm 处,此时圆形光阑在C 点(距离透镜为15cm )的右侧. 由下图所示,此时有:CB'=BB'=5cm, R'B'=2cm, 利用两个相似三角形CRR'∆与CBB'∆的关系,得 CR'52RR'=BB'=5cm 3cm CB'5r -=⨯⨯= ④ 可见当圆盘半径3cm r =(光阑边缘与AB 相交)时,圆盘刚好能成完整像,但其亮度变暗. 4分若进一步减少光阑半径,圆盘像就会减小.当透镜上任何一点发出的光都无法透过光阑照在原先像的一半高度处时,圆盘像的半径就会减小为一半,如下图所示.此时光阑边缘与AE相交,AE 与光轴的交点为D ,由几何关系算得D 与像的轴上距离为207cm. 此时有 620D R '=c m , D E '=c m , E E '=2.5c m ,77利用两个相似三角形DRR'∆与DEE'∆的关系,得D R '20/72R R '=E E '= 2.5c m 0.75c m D E '20/7a r -=⨯⨯= ⑤ 可见当圆形光阑半径a r =0.75cm ,圆盘像大小的半径的确变为(1)中圆盘像大小的半径的一半. 3分(4)只要圆形光阑放在C 点(距离透镜为15cm )和光屏之间,圆盘像的大小便与圆形光阑半径有关. 2分(5)若将图中的圆形光阑移至凸透镜前方6cm 处,则当圆形光阑半径逐渐减小时,圆盘像的形状及大小不变,亮度变暗; 2分同时不存在圆形光阑半径使得圆盘像大小的半径变为(1)中圆盘像大小的半径的一半. 1分评分标准:第(1)问3分,正确给出圆盘像的位置、大小、形状,各1分;第(2)问5分,4个给分点分别为1、1、2、1分; 第(3)问7分,2个给分点分别为2、3分; 第(4)问2分,1个给分点为2分;第(5)问3分,2个给分点分别为2、1分.六、(22分)(1)整个电容器相当于2N 个相同的电容器并联,可旋转金属板的转角为θ时1()2()C NC θθ=①式中1()C θ为两相邻正、负极板之间的电容1()()4A C ksθθπ=②这里,()A θ是两相邻正负极板之间相互重迭的面积,有2000200200200012(2), 212(), 02()12(), 0212(2), 2R R A R R θπθθθπθθθπθθθθθπθθππθθθ⎧⨯--≤≤-⎪⎪⎪⨯+-≤≤⎪=⎨⎪⨯-≤≤-⎪⎪⎪⨯--<<⎩当当当当③由②③式得2000200120020001(2), 41(), 04()1(), 041(2), 4R ks R ksC R ks R ksθπθθθππθθθπθπθθθθπθπθππθθθπ⎧--≤≤-⎪⎪⎪+-≤≤⎪=⎨⎪-≤≤-⎪⎪⎪--<<⎩当当当当④由①④式得20002002002000(2), 2(), 02()(), 02(2), 2N R ks N R ks C N R ks N R ksθπθθθππθθθπθπθθθθπθπθππθθθπ⎧--≤≤-⎪⎪⎪+-≤≤⎪=⎨⎪-≤≤-⎪⎪⎪--<<⎩当当当当⑤(2)当电容器两极板加上直流电势差E 后,电容器所带电荷为()()θθ=Q C E⑥当0θ=时,电容器电容达到最大值max C ,由⑤式得20max2NR C ksθπ=⑦充电稳定后电容器所带电荷也达到最大值max Q ,由⑥式得20max2NR Q E ksθπ= ⑧断开电源,在转角θ取0θ=附近的任意值时,由⑤⑧式得,电容器内所储存的能量为2222max 0000() 2()4()θθθθπθθπθθ==-≤≤--Q NR E U C ks 当⑨设可旋转金属板所受力矩为()T θ(它是由若干作用在可旋转金属板上外力i F 产生的,不失普遍性,可认为i F 的方向垂直于转轴,其作用点到旋转轴的距离为i r ,其值i F 的正负与可旋转金属板所受力矩的正负一致),当金属板旋转θ∆(即从θ变为θθ+∆)后,电容器内所储存的能量增加U ∆,则由功能原理有()()()θθθθ∆=∆=∆=∆∑∑i i i i T Fr F l U⑩式中,由⑨⑩式得22200020()() 4()θθθθθπθθπθθ∆==-≤≤-∆-NR E U T ks 当⑪当电容器电容最大时,充电后转动可旋转金属板的力矩为2204θθπ=∆⎛⎫== ⎪∆⎝⎭U NR E T ks ⑫(3)当0cos V V t ω=,则其电容器所储存能量为 []222max min max min 02max min max min 020max min max min max min max min 2012111()()cos2cos 222111()()cos2(1cos2)422()()cos2()cos2()cos2cos28{(8m m m m U CV C C C C t V t C C C C t V t V C C C C t C C t C C t t V ωωωωωωωω=⎡⎤=++-⎢⎥⎣⎦⎡⎤=++-+⎢⎥⎣⎦=++++-+-=max min max min max min max min )()cos2()cos21()[cos2()cos2()]}2m m m C C C C t C C t C C t t ωωωωωω++++-+-++-⑬由于边缘效应引起的附加电容远小于max C ,因而可用⑦式估算max C .如果m ωω≠,利用⑦式和题设条件以及周期平均值公式cos2=0 cos2=0, cos2()=0, cos2()=0m m m t t t t ωωωωωω+-,⑭可得电容器所储存能量的周期平均值为2221max min 001(1)()832NR U C C V V ksλ+=+=⑮如果m ωω=,⑭式中第4式右端不是零,而是1.利用⑦式和题设条件以及周期平均值公式的前3式得电容器所储存能量的周期平均值为222222max min 0max min 0max min 00111(3)()()(3)8161664NR U C C V C C V C C V V ks λ+=++-=+= ⑯由于边缘效应引起的附加电容与忽略边缘效应的电容是并联的,因而max C 应比用⑦式估计max C 大;这一效应同样使得min 0C >;可假设实际的max min ()C C -近似等于用⑦式估计max C .如果m ωω≠,利用⑦式和题设条件以及周期平均值公式cos2=0 cos2=0, cos2()=0, cos2()=0m m m t t t t +-,⑰可得电容器所储存能量的周期平均值为2221max min 001(12)()832NR U C C V V ksλ+=+=⑱[如果m ωω=,⑭中第4式右端不是零,而是1.利用⑦式和题设条件以及周期平均值公式⑭的前3式得电容器所储存能量的周期平均值为 222222max min 0max min 0max min 00111(34)()()(3)8161664NR U C C V C C V C C V V ksλ+=++-=+= ⑲]212 U U U >因为,则最大值为,所对应的m ω为m ωω=⑳评分标准:本题22分.第(1)问6分,①②式各1分,③⑤式各2分;第(2)问9分,⑥⑦⑧⑨⑩式各1分(⑩式中没有求和号的,也同样给分;没有力的符号,也给分),⑪⑫式各2分;第(3)问7分,⑬⑭式各2分,⑮⑯⑳式各1分.七、(26分)(1)通有电流i 的钨丝(长直导线)在距其r 处产生的磁感应强度的大小为m iB k r=① 由右手螺旋定则可知,相应的磁感线是在垂直于钨丝的平面上以钨丝为对称轴的圆,磁感应强度的方向沿圆弧在该点的切向,它与电流i 的方向成右手螺旋.两根相距为d 的载流钨丝(如图(a ))间的安培力是相互吸引力,大小为2m k Li F B Li d∆=∆=② 考虑某根载流钨丝所受到的所有其他载流钨丝对它施加的安培力的合力.由系统的对称性可知,每根钨丝受到的合力方向都指向轴心;我们只要将其他钨丝对它的吸引力在径向的分量叠加即可.如图,设两根载流钨丝到轴心连线间的夹角为ϕ,则它们间的距离为2sin2d r ϕ=③由②③式可知,两根载流钨丝之间的安培力在径向的分量为22sin 2sin(/2)22m m r k Li k Li F r rϕϕ∆∆== ④它与ϕ无关,也就是说虽然处于圆周不同位置的载流钨丝对某根载流钨丝的安培力大小和方向均不同,但在径向方向上的分量大小却是一样的;而垂直于径向方向的力相互抵消.因此,某根载流钨丝所受到的所有其他载流钨丝对它施加的安培力的合力为222(1)(1)22-∆-∆==m m N k L I N k Li F r rN 内⑤其方向指向轴心. (2)由系统的对称性可知,所考虑的圆柱面上各处单位面积所受的安培力的合力大小相等,方向与柱轴垂直,且指向柱轴.所考虑的圆柱面,可视为由很多钨丝排布而成,N 很大,但总电流不变.圆柱面上ϕ∆角对应的柱面面积为s r L ϕ=∆∆⑥圆柱面上单位面积所受的安培力的合力为22(1)24m N N k Li N F P s r Lϕππ-∆∆==∆ ⑦由于1N ,有22(1)-=N N i I 内⑧ 由⑦⑧式得224π=m k I P r 内⑨ 代入题给数据得1221.0210N/m P =⨯ ⑩ 一个大气压约为5210N/m ,所以710atm P ≈⑪即相当于一千万大气压.(3)考虑均匀通电的长直圆柱面内任意一点A 的磁场强度. 根据对称性可知,其磁场如果不为零,方向一定在过A 点且平行于通电圆柱的横截面. 在A 点所在的通电圆柱的横截面(纸面上的圆)内,过A 点作两条相互间夹角为微小角度θ∆的直线,在圆上截取两段微小圆弧L 1和L 2,如图(b )所示. 由几何关系以及钨丝在圆周上排布的均匀性,通过L 1和L 2段的电流之比/I I 12等于它们到A 点的距离之比/l l 12:111222==I L l I L l ⑫ 式中,因此有1212=m m I I k k l l ⑬ 即通过两段微小圆弧在A 点产生的磁场大小相同,方向相反,相互抵消.整个圆周可以分为许多“对”这样的圆弧段,因此通电的外圈钨丝圆柱面在其内部产生的磁场为零,所以通电外圈钨丝的存在,不改变前述两小题的结果.(4)由题中给出的已知规律,内圈电流在外圈钨丝所在处的磁场为=m IB k R内 ⑭方向在外圈钨丝阵列与其横截面的交点构成的圆周的切线方向,由右手螺旋法则确定.外圈钨丝的任一根载流钨丝所受到的所有其他载流钨丝对它施加的安培力的合力为222(1)(2)+ 22-∆∆+=∆=m m m M k L I I k I k L I I I F L RM M R RM外外内外内外外 ⑮式中第一个等号右边的第一项可直接由⑤式类比而得到,第二项由⑭式和安培力公式得到.因此圆柱面上单位面积所受的安培力的合力为22(2)24ϕπϕπ+∆==∆∆外外内外外m F k I I I M P R L R ⑯ 若要求2222244ππ+>外内外内()m m k I I I k I R r ⑰ 只需满足<R r ⑱(5)考虑均匀通电的长直圆柱面外任意一点C 的磁场强度. 根据对称性可知,长直圆柱面上的均匀电流在该点的磁场方向一定在过C 点且平行于通电圆柱的横截面(纸面上的圆),与圆的径向垂直,满足右手螺旋法则. 在C 点所在的通电圆柱的横截面内,过C 点作两条相互间夹角为微小角度θ∆的直线,在圆上截取两段微小圆弧3L 和4L ,如图(c )所示. 由几何关系以及电流在圆周上排布的均匀性,穿过3L 和4L 段的电流之比34/I I 等于它们到C 点。
(完整版)第23届全国中学生物理竞赛复赛试题
第23届全国中学生物理竞赛复赛试卷一、(23分)有一竖直放置、两端封闭的长玻璃管,管内为真空,管内有一小球自某处自由下落(初速度为零),落到玻璃管底部时与底部发生弹性碰撞.以后小球将在玻璃管内不停地上下跳动。
现用支架固定一照相机,用以拍摄小球在空间的位置。
每隔一相等的确定的时间间隔T拍摄一张照片,照相机的曝光时间极短,可忽略不计。
从所拍到的照片发现,每张照片上小球都处于同一位置。
求小球开始下落处离玻璃管底部距离(用H表示)的可能值以及与各H值相应的照片中小球位置离玻璃管底部距离的可能值。
二、(25分)如图所示,一根质量可以忽略的细杆,长为2l,两端和中心处分别固连着质量为m的小球B、D和C,开始时静止在光滑的水平桌面上。
桌面上另有一质量为M的小球A,以一给定速度v沿垂直于杆DB的方间与右端小球B作弹性碰撞。
求刚碰后小球A,B,C,D的速度,并详细讨论以0后可能发生的运动情况。
三、(23分)有一带活塞的气缸,如图1所示。
缸内盛有一定质量的气体。
缸内还有一可随轴转动的叶片,转轴伸到气缸外,外界可使轴和叶片一起转动,叶片和轴以及气缸壁和活塞都是 绝热的,它们的热容量都不计。
轴穿过气缸处不漏气。
如果叶片和轴不转动,而令活塞缓慢移动,则在这种过程中,由实验测得,气体的压强p 和体积V 遵从以下的过程方程式k pVa=其中a ,k 均为常量, a >1(其值已知)。
可以由上式导出,在此过程中外界对气体做的功为 ⎥⎦⎤⎢⎣⎡--=--1112111a a V V a k W 式中2V 和1V ,分别表示末态和初态的体积。
如果保持活塞固定不动,而使叶片以角速度ω做匀角速转动,已知在这种过程中,气体的压强的改变量p ∆和经过的时间t ∆遵从以下的关系式ω⋅-=∆∆L Va t p 1 式中V 为气体的体积,L 表示气体对叶片阻力的力矩的大小。
上面并没有说气体是理想气体,现要求你不用理想气体的状态方程和理想气体的内能只与温度有关的知识,求出图2中气体原来所处的状态A 与另一已知状态B 之间的内能之差(结果要用状态A 、B 的压强A p 、B p 和体积A V 、B V 及常量a 表示)四、(25分)图1所示的电路具有把输人的交变电压变成直流电压并加以升压、输出的功能,称为整流倍压电路。
第届全国中学生物理竞赛复赛理论考试试题及答案
第32届全国中学生物理竞赛复赛理论考试试题2015年9月19日说明:所有解答必须写在答题纸上,写在试题纸上无效。
一、(15分)在太阳内部存在两个主要的核聚变反应过程:碳循环和质子-质子循环;其中碳循环是贝蒂在1938年提出的,碳循环反应过程如图所示。
图中p 、+e 和e ν分别表示质子、正电子和电子型中微子;粗箭头表示循环反应进行的先后次序。
当从循环图顶端开始,质子p 与12C 核发生反应生成13N 核,反应按粗箭头所示的次序进行,直到完成一个循环后,重新开始下一个循环。
已知+e 、p 和He 核的质量分别为0.511 MeV/c 2、1.0078 u 和4.0026 u (1u≈931.494 MeV/c 2),电子型中微子e ν的质量可以忽略。
(1)写出图中X 和Y 代表的核素;(2)写出一个碳循环所有的核反应方程式; (3)计算完成一个碳循环过程释放的核能。
二、(15分)如图,在光滑水平桌面上有一长为L 的轻杆,轻杆两端各固定一质量均为M 的小球A 和B 。
开始时细杆静止;有一质量为m 的小球C 以垂直于杆的速度0v 运动,与A 球碰撞。
将小球和细杆视为一个系统。
(1)求碰后系统的动能(用已知条件和球C 碰后的速度表出); (2)若碰后系统动能恰好达到极小值,求此时球C 的速度和系统的动能。
三、(20分)如图,一质量分布均匀、半径为r 的刚性薄圆环落到粗糙的水平地面前的瞬间,圆环质心速度v 0与竖直方向成θ(π3π22θ<<)角,并同时以角速度0ω(0ω的正方向如图中箭头所示)绕通过其质心O 、且垂直环面的轴转动。
已知圆环仅在其所在的竖直平面内运动,在弹起前刚好与地面无相对滑动,圆环与地面碰撞的恢复系数为k ,重力加速度大小为g 。
忽略空气阻力。
(1)求圆环与地面碰后圆环质心的速度和圆环转动的角速度; (2)求使圆环在与地面碰后能竖直弹起的条件和在此条件下圆环能上升的最大高度;(3)若让θ角可变,求圆环第二次落地点到首次落地点之间的水平距离s 随θ变化的函数关系式、s 的最大值以及s 取最大值时r 、0v 和0ω应满足的条件。
全国中学生物理竞赛复赛试题及答案(全Word版)
第31届全国中学生物理竞赛复赛理论考试试题说明:所有答案 (包括填空)必须写在答题纸上,写在试题纸上无效。
一、(12分)2013年6月20日,“神舟十号”女航天员王亚平在“天宫一号”目标飞行器里成功进行了我国首次太空授课. 授课中的一个实验展示了失重状态下液滴的表面张力引起的效应. 视频中可发现漂浮的液滴处于周期性的“脉动”中(平时在地球表面附近,重力的存在会导致液滴下降太快,以至于很难观察到液滴的这种“脉动”现象). 假设液滴处于完全失重状态,液滴的上述“脉动”可视为液滴形状的周期性的微小变化(振动),如图所示. (1)该液滴处于平衡状态时的形状是__________;(2)决定该液滴振动频率f 的主要物理量是________________________________________; (3)按后面括号中提示的方法导出液滴振动频率与上述物理量的关系式.(提示:例如,若认为,,a b c 是决定该液滴振动频率的相互独立的主要物理量,可将液滴振动频率f 与,,a b c 的关系式表示为αβγ∝f a b c ,其中指数,,αβγ是相应的待定常数.) 二、(16分) 一种测量理想气体的摩尔热容比/p V C C γ≡的方法(Clement-Desormes 方法)如图所示:大瓶G 内装满某种理想气体,瓶盖上通有一个灌气(放气)开关H ,另接出一根U 形管作为压强计M .瓶内外的压强差通过U 形管右、左两管液面的高度差来确定. 初始时,瓶内外的温度相等,瓶内气体的压强比外面的大气压强稍高,记录此时U 形管液面的高度差i h .然后打开H ,放出少量气体,当瓶内外压强相等时,即刻关闭H . 等待瓶内外温度又相等时,记录此时U 形管液面的高度差f h .试由这两次记录的实验数据i h 和f h ,导出瓶内气体的摩尔热容比γ的表达式.(提示:放气过程时间很短,可视为无热量交换;且U 形管很细,可忽略由高差变化引起的瓶内气体在状态变化前后的体积变化)三、(20分)如图所示,一质量为m 、底边AB 长为b 、等腰边长为a 、质量均匀分布的等腰三角形平板,可绕过光滑铰链支点A 和B 的水平轴x 自由转动;图中原点O 位于AB 的中点,y 轴垂直于板面斜向上,z 轴在板面上从原点O 指向三角形顶点C . 今在平板上任一给定点000M (,0,)x z加一垂直于板面的拉振动的液滴力Q .(1)若平衡时平板与竖直方向成的角度为ϕ,求拉力Q 以及铰链支点对三角形板的作用力N A 和N B ;(2)若在三角形平板上缓慢改变拉力Q 的作用点M 的位置,使平衡时平板与竖直方向成的角度仍保持为ϕ,则改变的作用点M 形成的轨迹满足什么条件时,可使铰链支点A 或B 对板作用力的垂直平板的分量在M 变动中保持不变?四、(24分)如图所示,半径为R 、质量为m 0的光滑均匀圆环,套在光滑竖直细轴OO '上,可沿OO '轴滑动或绕OO '轴旋转.圆环上串着两个质量均为m 的小球. 开始时让圆环以某一角速度绕OO '轴转动,两小球自圆环顶端同时从静止开始释放.(1)设开始时圆环绕OO '轴转动的角速度为ω0,在两小球从环顶下滑过程中,应满足什么条件,圆环才有可能沿OO '轴上滑?(2)若小球下滑至30θ=︒(θ是过小球的圆环半径与OO '轴的夹角)时,圆环就开始沿OO '轴上滑,求开始时圆环绕OO '轴转动的角速度ω0、在30θ=︒时圆环绕OO '轴转动的角速度ω和小球相对于圆环滑动的速率v .五、(20分)如图所示,现有一圆盘状发光体,其半径为5cm ,放置在一焦距为10cm 、半径为15cm 的凸透镜前,圆盘与凸透镜的距离为20cm ,透镜后放置一半径大小可调的圆形光阑和一个接收圆盘像的光屏.图中所有光学元件相对于光轴对称放置.请在几何光学近轴范围内考虑下列问题,并忽略像差和衍射效应.(1)未放置圆形光阑时, 给出圆盘像的位置、大小、形状;(2)若将圆形光阑放置于凸透镜后方6cm 处. 当圆形光阑的半径逐渐减小时,圆盘的像会有什么变化?是否存在某一光阑半径a r ,会使得此时圆盘像的半径变为(1)中圆盘像的半径的一半?若存在,请给出a r 的数值.(3)若将圆形光阑移至凸透镜后方18cm 处,回答(2)中的问题; (4)圆形光阑放置在哪些位置时,圆盘像的大小将与圆形光阑的半径有关?(5)若将图中的圆形光阑移至凸透镜前方6cm 处,回答(2)中的问题.六、(22分)如图所示,一电容器由固定在共同导电底座上的N +1片对顶双扇形薄金属板和固定在可旋转的导电对称轴上的N 片对顶双扇形薄金属板组成,所有顶点共轴,轴线与所有板面垂直,两组板面各自在垂直于轴线的平面上的投影重合,板面扇形半径均为R ,圆心角均为0θ(02πθπ≤<);固定金属板和可旋转的金属板相间排列,两相邻金属板之间距离均为s .此电容器的电容C 值与可旋转金属板的转角θ有关.已知静电力常量为k .(1)开始时两组金属板在垂直于轴线的平面上的投影重合,忽略边缘效应,求可旋转金属板的转角为θ(00θθθ-≤≤)时电容器的电容()C θ;(2)当电容器电容接近最大时,与电动势为E 的电源接通充电(充电过程中保持可旋转金属板的转角不变),稳定后断开电源,求此时电容器极板所带电荷量和驱动可旋转金属板的力矩; (3)假设02πθ=,考虑边缘效应后,第(1)问中的()C θ可视为在其最大值和最小值之间光滑变化的函数max min max min 11()()()cos222C C C C C θθ=++- 式中,max C 可由第(1)问的结果估算,而min C 是因边缘效应计入的,它与max C 的比值λ是已知的.若转轴以角速度m ω匀速转动,且m t θω=,在极板间加一交流电压0cos V V t ω=.试计算电容器在交流电压作用下能量在一个变化周期内的平均值,并给出该平均值取最大值时所对应的m ω.七、(26分)Z-箍缩作为惯性约束核聚变的一种可能方式,近年来受到特别重视,其原理如图所示.图中,长20 mm 、直径为5m μ的钨丝组成的两个共轴的圆柱面阵列,瞬间通以超强电流,钨丝阵列在安培力的作用下以极大的加速度向内运动, 即所谓自箍缩效应;钨丝的巨大动量转移到处于阵列中心的直径为毫米量级的氘氚靶球上,可以使靶球压缩后达到高温高密度状态,实现核聚变.设内圈有N 根钨丝(可视为长直导线)均匀地分布在半径为r 的圆周上,通有总电流7210A =⨯内I ;外圈有M 根钨丝,均匀地分布在半径为R 的圆周上,每根钨丝所通过的电流同内圈钨丝.已知通有电流i 的长直导线在距其r 处产生的磁感应强度大小为m ik r,式中比例常量772210T m/A 210N /A m k --=⨯⋅=⨯.(1)若不考虑外圈钨丝,计算内圈某一根通电钨丝中间长为L ∆的一小段钨丝所受到的安N 片可旋转金属板培力;(2)若不考虑外圈钨丝,内圈钨丝阵列熔化后形成了圆柱面,且箍缩为半径0.25cm r =的圆柱面时,求柱面上单位面积所受到的安培力,这相当于多少个大气压?(3)证明沿柱轴方向通有均匀电流的长圆柱面,圆柱面内磁场为零,即通有均匀电流外圈钨丝的存在不改变前述两小题的结果;(4)当1N >>时, 则通有均匀电流的内圈钨丝在外圈钨丝处的磁感应强度大小为m Ik R内,若要求外圈钨丝柱面每单位面积所受到的安培力大于内圈钨丝柱面每单位面积所受到的安培力,求外圈钨丝圆柱面的半径R 应满足的条件;(5)由安培环路定理可得沿柱轴方向通有均匀电流的长圆柱面外的磁场等于该圆柱面上所有电流移至圆柱轴后产生的磁场,请用其他方法证明此结论. (计算中可不考虑图中支架的影响)八、(20分)天文观测表明,远处的星系均离我们而去.著名的哈勃定律指出,星系离开我们的速度大小v =HD ,其中D 为星系与我们之间的距离,该距离通常以百万秒差距(Mpc )为单位;H 为哈勃常数,最新的测量结果为H =67.80km/(s ⋅Mpc).当星系离开我们远去时,它发出的光谱线的波长会变长(称为红移).红移量z 被定义为λλλ'-=z ,其中λ'是我们观测到的星系中某恒星发出的谱线的波长,而λ是实验室中测得的同种原子发出的相应的谱线的波长,该红移可用多普勒效应解释.绝大部分星系的红移量z 远小于1,即星系退行的速度远小于光速.在一次天文观测中发现从天鹰座的一个星系中射来的氢原子光谱中有两条谱线,它们的频率ν'分别为4.549⨯1014Hz 和6.141⨯1014Hz .由于这两条谱线处于可见光频率区间,可假设它们属于氢原子的巴尔末系,即为由n > 2的能级向k =2的能级跃迁而产生的光谱.(已知氢原子的基态能量013.60 eV =-E ,真空中光速82.99810m/s =⨯c ,普朗克常量346.62610J s -=⨯⋅h ,电子电荷量19 1.60210C -=⨯e )(1)该星系发出的光谱线对应于实验室中测出的氢原子的哪两条谱线?它们在实验室中的波长分别是多少?(2)求该星系发出的光谱线的红移量z 和该星系远离我们的速度大小v ;金属极板 外圈钨丝内圈钨丝 支架(3)求该星系与我们的距离D .第31届全国中学生物理竞赛复赛理论考试试题解答2014年9月20日一、(12分) (1)球形(2)液滴的半径r 、密度ρ和表面张力系数σ(或液滴的质量m 和表面张力系数σ) (3)解法一假设液滴振动频率与上述物理量的关系式为αβγρσ=f k r ①式中,比例系数k 是一个待定常数. 任一物理量a 可写成在某一单位制中的单位[]a 和相应的数值{}a 的乘积{}[]=a a a . 按照这一约定,①式在同一单位制中可写成 {}[]{}{}{}{}[][][]αβγαβγρσρσ=f f k r r由于取同一单位制,上述等式可分解为相互独立的数值等式和单位等式,因而 [][][][]αβγρσ=f r ② 力学的基本物理量有三个:质量m 、长度l 和时间t ,按照前述约定,在该单位制中有 {}[]=m m m ,{}[]=l l l ,{}[]=t t t 于是[][]-=f t 1 ③ [][]=r l ④ [][][]ρ-=m l 3 ⑤ [][][]σ-=m t 2 ⑥ 将③④⑤⑥式代入②式得[][]([][])([][])αβγ---=t l m l m t 132 即[][][][]αββγγ--+-=t l m t 132 ⑦由于在力学中[]m 、[]l 和[]t 三者之间的相互独立性,有30αβ-=, ⑧ 0βγ+=, ⑨ 21γ= ⑩ 解为311,,222αβγ=-=-= ⑪将⑪式代入①式得=f ⑫ 解法二假设液滴振动频率与上述物理量的关系式为αβγρσ=f k r ①式中,比例系数k 是一个待定常数. 任一物理量a 可写成在某一单位制中的单位[]a 和相应的数值{}a 的乘积{}[]=a a a . 在同一单位制中,①式两边的物理量的单位的乘积必须相等[][][][]αβγρσ=f r ②力学的基本物理量有三个:质量M 、长度L 和时间T ,对应的国际单位分别为千克(kg )、米(m )、秒(s ). 在国际单位制中,振动频率f 的单位[]f 为s -1,半径r 的单位[]r 为m ,密度ρ的单位[]ρ为3kg m -⋅,表面张力系数σ的单位[]σ为1212N m =kg (m s )m kg s ----⋅⋅⋅⋅=⋅,即有[]s -=f 1 ③ []m =r ④ []kg m ρ-=⋅3 ⑤ []kg s σ-=⋅2 ⑥ 若要使①式成立,必须满足()()s m kg m kg s (kg)m s βγαβγαβγ---+--=⋅⋅=⋅⋅13232 ⑦由于在力学中质量M 、长度L 和时间T 的单位三者之间的相互独立性,有 30αβ-=, ⑧ 0βγ+=, ⑨ 21γ= ⑩解为311,,222αβγ=-=-= ⑪将⑪式代入①式得f = ⑫评分标准:本题12分. 第(1)问2分,答案正确2分;第(2)问3分,答案正确3分;第(3)问7分,⑦式2分,⑪式3分,⑫式2分(答案为f、f =f 的,也给这2分).二、(16分)解法一:瓶内理想气体经历如下两个气体过程:000000(,,,)(,,,)(,,,)−−−−−−−→−−−−−→i i f f f p V T N p V T N p V T N 放气(绝热膨胀)等容升温其中,000000(,,,),(,,,,,,)i i f f f p V T N p V T N p V T N )和(分别是瓶内气体在初态、中间态与末态的压强、体积、温度和摩尔数.根据理想气体方程pV NkT =,考虑到由于气体初、末态的体积和温度相等,有f f iip N p N =①另一方面,设V '是初态气体在保持其摩尔数不变的条件下绝热膨胀到压强为0p 时的体积,即000(,,,)(,,,)i i i p V T N p V T N '−−−−→绝热膨胀此绝热过程满足1/00i V p V p γ⎛⎫= ⎪'⎝⎭②由状态方程有0i p V N kT '=和00f p V N kT =,所以 0f iN V N V ='③联立①②③式得1/0fi i p p p p γ⎛⎫= ⎪⎝⎭④ 此即lnln i i fp p p γ=⑤由力学平衡条件有0i i p p gh ρ=+ ⑥0f f p p gh ρ=+ ⑦式中,00p gh ρ=为瓶外的大气压强,ρ是U 形管中液体的密度,g 是重力加速度的大小.由⑤⑥⑦式得00ln(1)ln(1)ln(1)if i h h h hh h γ+=+-+⑧利用近似关系式:1, ln(1)x x x +≈ 当,以及 00/1, /1i f h h h h ,有000///i ii f i fh h h h h h h h h γ==--⑨评分标准:本题16分.①②③⑤⑥⑦⑧⑨式各2分.解法二:若仅考虑留在容器内的气体:它首先经历了一个绝热膨胀过程ab ,再通过等容升温过程bc 达到末态100000(,,)(,,)(,,)−−−−−→−−−−−→i f p V T p V T p V T 绝热膨胀ab 等容升温bc其中,100000(,,),(,,,,)i f p V T p V T p V T )和(分别是留在瓶内的气体在初态、中间态和末态的压强、体积与温度.留在瓶内的气体先后满足绝热方程和等容过程方程1100ab: γγγγ----=i p T p T①00bc://=f p T p T② 由①②式得1/0fi i p p p p γ⎛⎫= ⎪⎝⎭③ 此即lnln i i fp p p p γ=④由力学平衡条件有0i i p p gh ρ=+ ⑤0f f p p gh ρ=+ ⑥式中,00p gh ρ=为瓶外的大气压强,ρ是U 形管中液体的密度,g 是重力加速度的大小.由④⑤⑥式得00ln(1)ln(1)ln(1)if i h h h hh h γ+=+-+⑦利用近似关系式:1, ln(1)x x x +≈ 当,以及 00/1, /1i f h h h h ,有000///i ii f i fh h h h h h h h h γ==--⑧评分标准:本题16分.①②式各3分,④⑤⑥⑦⑧式各2分.三、(20分)(1)平板受到重力C P 、拉力0M Q 、铰链对三角形板的作用力N A 和N B ,各力及其作用点的坐标分别为:C (0,sin ,cos )ϕϕ=--mg mg P ,(0,0,)h ;0M (0,,0)Q =Q , 00(,0,)x z ;A A A A (,,)x y z N N N =N , (,0,0)2b;B B B B (,,)x y z N N N =N ,(,0,0)2b- 式中h =是平板质心到x 轴的距离.平板所受力和(对O 点的)力矩的平衡方程为A B x0=+=∑xxF N N① A B sin 0ϕ=++-=∑yyyF Q N N mg② A B cos 0ϕ=+-=∑zzzF N N mg③ 0sin 0xM mgh Q z ϕ=-⋅=∑④ B A 022=-=∑y zz b bM N N⑤0A B 022z yy b bM Q x N N =⋅+-=∑⑥联立以上各式解得sin mgh Q z ϕ=, A B x x N N =-,000sin 21()2Ay mg h b x N b z z ϕ⎡⎤=-+⎢⎥⎣⎦,000sin 21()2By mg h b x N b z z ϕ⎡⎤=--⎢⎥⎣⎦A B 1cos 2z zN N mg ϕ==即0M 0sin (0,,0)mgh z ϕ=Q ,⑦0A A 002sin 1(,1(),cos )22x x mg h b N mg b z z ϕϕ⎡⎤=-+⎢⎥⎣⎦N ,⑧0B A 002sin 1(,1(),cos )22x x mg h b N mg b z z ϕϕ⎡⎤=---⎢⎥⎣⎦N⑨(2)如果希望在M(,0,)x z 点的位置从点000M (,0,)x z 缓慢改变的过程中,可以使铰链支点对板的作用力By N 保持不变,则需 sin 21()2By mg h b x N b z z ϕ⎡⎤=--=⎢⎥⎣⎦常量 ⑩M 点移动的起始位置为0M ,由⑩式得 00022-=-b x b x z z z z⑪ 或00022b x b x z z z ⎛⎫-=- ⎪⎝⎭ ⑫这是过A(,0,0)2b点的直线. (*)因此,当力M Q 的作用点M 的位置沿通过A 点任一条射线(不包含A 点)在平板上缓慢改变时,铰链支点B 对板的作用力By N 保持不变. 同理,当力M Q 的作用点M 沿通过B 点任一条射线在平板上缓慢改变时,铰链支点A 对板的作用力Ay N 保持不变.评分标准:本题20分.第(1)问14分,①式1分,②③④⑤⑥式各2分,⑦⑧⑨式各1分;第(2)问6分,⑩⑫式各1分,(*) 2分,结论正确2分.四、(24分)(1)考虑小球沿径向的合加速度. 如图,设小球下滑至θ 角位置时,小球相对于圆环的速率为v ,圆环绕轴转动的角速度为ω .此时与速率v 对应的指向中心C 的小球加速度大小为 21a R=v① 同时,对应于圆环角速度ω,指向OO '轴的小球加速度大小为2(sin )sin R a R ωωθθ= ②该加速度的指向中心C 的分量为22(sin )sin R a a R ωωθθ== ③该加速度的沿环面且与半径垂直的分量为23(sin )cos cot R a a Rωωθθθ== ④由①③式和加速度合成法则得小球下滑至θ 角位置时,其指向中心C 的合加速度大小为2212(sin )v ωθ=+=+R R a a a R R⑤在小球下滑至θ 角位置时,将圆环对小球的正压力分解成指向环心的方向的分量N 、垂直于环面的方向的分量T . 值得指出的是:由于不存在摩擦,圆环对小球的正压力沿环的切向的分量为零. 在运动过程中小球受到的作用力是N 、T 和mg . 这些力可分成相互垂直的三个方向上的分量:在径向的分量不改变小球速度的大小,亦不改变小球对转轴的角动量;沿环切向的分量即sin θmg 要改变小球速度的大小;在垂直于环面方向的分量即T 要改变小球对转轴的角动量,其反作用力将改变环对转轴的角动量,但与大圆环沿'OO 轴的竖直运动无关. 在指向环心的方向,由牛顿第二定律有22(sin )cos R R N mg ma mRωθθ++==v ⑥ 合外力矩为零,系统角动量守恒,有202(sin )L L m R θω=+ ⑦式中L 0和L 分别为圆环以角速度ω0和ω转动时的角动量.如图,考虑右半圆环相对于轴的角动量,在θ角位置处取角度增量∆θ, 圆心角∆θ所对圆弧l ∆的质量为m l λ∆=∆(02m Rλπ≡),其角动量为 2sin L m r l rR Rr z R S ωλωθλωλω∆=∆=∆=∆=∆ ⑧式中r 是圆环上θ 角位置到竖直轴OO '的距离,S ∆为两虚线间窄条的面积.⑧式说明,圆弧l ∆的角动量与S ∆成正比. 整个圆环(两个半圆环)的角动量为2200122222m R L L R m R R πωωπ=∆=⨯=∑ ⑨l[或:由转动惯量的定义可知圆环绕竖直轴OO '的转动惯量J 等于其绕过垂直于圆环平面的对称轴的转动惯量的一半,即2012J m R = ⑧则角动量L 为2012L J m R ωω== ⑨ ]同理有200012L m R ω= ⑩力N 及其反作用力不做功;而T 及其反作用力的作用点无相对移动,做功之和为零;系统机械能守恒. 故22012(1cos )2[(sin )]2k k E E mgR m R θωθ-+⨯-=⨯+v ⑪式中0k E 和k E 分别为圆环以角速度0ω和ω转动时的动能.圆弧l ∆的动能为222111()sin 222k E m r l rR R S ωλωθλω∆=∆=∆=∆整个圆环(两个半圆环)的动能为22220011222224k k m R E E R m R R πωωπ=∆=⋅⋅⋅⋅=∑ ⑫ [或:圆环的转动动能为22201124k E J m R ωω== ⑫ ]同理有2200014k E m R ω= ⑬根据牛顿第三定律,圆环受到小球的竖直向上作用力大小为2cos N θ,当02cos N m g θ≥ ⑭时,圆环才能沿轴上滑.由⑥⑦⑨⑩⑪⑫ ⑬式可知,⑭式可写成2220000220cos 6cos 4cos 102(4sin )ωθθθθ⎡⎤-+--≤⎢⎥+⎣⎦m R m m m m gm m ⑮式中,g 是重力加速度的大小.(2)此时由题给条件可知当=30θ︒时,⑮式中等号成立,即有2020912()m m m m m ⎤⎛-+=- ⎥+⎝⎣⎦或00(m m ω=+ ⑯由⑦⑨⑩⑯式和题给条件得0000200+4sin +m m m m m m ωωωθ=== ⑰ 由⑪⑫⑬⑯⑰式和题给条件得v ⑱评分标准:本题24分.第(1)问18分,①②③④⑤式各1分,⑥⑦式各2分,⑨⑩式各1分,⑪式2分,⑫⑬式各1分,⑭式2分,⑮式1分;第(2)问6分,⑯⑰⑱式各2分.五、(20分)(1)设圆盘像到薄凸透镜的距离为v . 由题意知:20cm u =, 10cm f =,代入透镜成像公式111u f+=v ① 得像距为20cm =v ② 其横向放大率为1uβ=-=-v③ 可知圆盘像在凸透镜右边20cm ,半径为5cm ,为圆盘状,圆盘与其像大小一样. (2)如下图所示,连接A 、B 两点,连线AB 与光轴交点为C 点,由两个相似三角形AOC ∆与BB'C ∆的关系可求得C 点距离透镜为15cm. 1分若将圆形光阑放置于凸透镜后方6cm 处,此时圆形光阑在C 点左侧. 1分 当圆形光阑半径逐渐减小时,均应有光线能通过圆形光阑在B 点成像,因而圆盘像的形状及大小不变,而亮度变暗. 2分此时不存在圆形光阑半径a r 使得圆盘像大小的半径变为(1)中圆盘像大小的半径的一半.1分(3)若将圆形光阑移至凸透镜后方18cm 处,此时圆形光阑在C 点(距离透镜为15cm )的右侧. 由下图所示,此时有:CB'=BB'=5cm, R'B'=2cm, 利用两个相似三角形CRR'∆与CBB'∆的关系,得 CR'52RR'=BB'=5cm 3cm CB'5r -=⨯⨯= ④ 可见当圆盘半径3cm r =(光阑边缘与AB 相交)时,圆盘刚好能成完整像,但其亮度变暗. 4分若进一步减少光阑半径,圆盘像就会减小.当透镜上任何一点发出的光都无法透过光阑照在原先像的一半高度处时,圆盘像的半径就会减小为一半,如下图所示.此时光阑边缘与AE相交,AE 与光轴的交点为D ,由几何关系算得D 与像的轴上距离为207cm. 此时有620D R '=c m , D E '=c m , E E '=2.5c m ,77利用两个相似三角形DRR'∆与DEE'∆的关系,得D R '20/72R R '=E E '= 2.5c m 0.75c m D E '20/7a r -=⨯⨯= ⑤ 可见当圆形光阑半径a r =0.75cm ,圆盘像大小的半径的确变为(1)中圆盘像大小的半径的一半. 3分(4)只要圆形光阑放在C 点(距离透镜为15cm )和光屏之间,圆盘像的大小便与圆形光阑半径有关. 2分(5)若将图中的圆形光阑移至凸透镜前方6cm处,则当圆形光阑半径逐渐减小时,圆盘像ACO BB' CRBR'B'DRER' E'的形状及大小不变,亮度变暗; 2分同时不存在圆形光阑半径使得圆盘像大小的半径变为(1)中圆盘像大小的半径的一半. 1分评分标准:第(1)问3分,正确给出圆盘像的位置、大小、形状,各1分;第(2)问5分,4个给分点分别为1、1、2、1分; 第(3)问7分,2个给分点分别为2、3分; 第(4)问2分,1个给分点为2分;第(5)问3分,2个给分点分别为2、1分.六、(22分)(1)整个电容器相当于2N 个相同的电容器并联,可旋转金属板的转角为θ时1()2()C NC θθ=①式中1()C θ为两相邻正、负极板之间的电容1()()4A C ksθθπ=②这里,()A θ是两相邻正负极板之间相互重迭的面积,有2000200200200012(2), 212(), 02()12(), 0212(2), 2R R A R R θπθθθπθθθπθθθθθπθθππθθθ⎧⨯--≤≤-⎪⎪⎪⨯+-≤≤⎪=⎨⎪⨯-≤≤-⎪⎪⎪⨯--<<⎩当当当当③由②③式得2000200120020001(2), 41(), 04()1(), 041(2), 4R ks R ksC R ks R ksθπθθθππθθθπθπθθθθπθπθππθθθπ⎧--≤≤-⎪⎪⎪+-≤≤⎪=⎨⎪-≤≤-⎪⎪⎪--<<⎩当当当当④由①④式得20002002002000(2), 2(), 02()(), 02(2), 2N R ks N R ks C N R ks N R ksθπθθθππθθθπθπθθθθπθπθππθθθπ⎧--≤≤-⎪⎪⎪+-≤≤⎪=⎨⎪-≤≤-⎪⎪⎪--<<⎩当当当当⑤(2)当电容器两极板加上直流电势差E 后,电容器所带电荷为()()θθ=Q C E⑥当0θ=时,电容器电容达到最大值max C ,由⑤式得20max2NR C ksθπ=⑦充电稳定后电容器所带电荷也达到最大值max Q ,由⑥式得20max2NR Q E ksθπ= ⑧断开电源,在转角θ取0θ=附近的任意值时,由⑤⑧式得,电容器内所储存的能量为2222max 0000() 2()4()θθθθπθθπθθ==-≤≤--Q NR E U C ks 当⑨设可旋转金属板所受力矩为()T θ(它是由若干作用在可旋转金属板上外力i F 产生的,不失普遍性,可认为i F 的方向垂直于转轴,其作用点到旋转轴的距离为i r ,其值i F 的正负与可旋转金属板所受力矩的正负一致),当金属板旋转θ∆(即从θ变为θθ+∆)后,电容器内所储存的能量增加U ∆,则由功能原理有()()()θθθθ∆=∆=∆=∆∑∑i i i i T Fr F l U⑩式中,由⑨⑩式得22200020()() 4()θθθθθπθθπθθ∆==-≤≤-∆-NR E U T ks 当⑪当电容器电容最大时,充电后转动可旋转金属板的力矩为2204θθπ=∆⎛⎫== ⎪∆⎝⎭U NR E T ks ⑫(3)当0cos V V t ω=,则其电容器所储存能量为[]222max min max min 02max min max min 020max min max min max min max min 2012111()()cos2cos 222111()()cos2(1cos2)422()()cos2()cos2()cos2cos28{(8m m m m U CV C C C C t V t C C C C t V t V C C C C t C C t C C t t V ωωωωωωωω=⎡⎤=++-⎢⎥⎣⎦⎡⎤=++-+⎢⎥⎣⎦=++++-+-=max min max min max min max min )()cos2()cos21()[cos2()cos2()]}2m m m C C C C t C C t C C t t ωωωωωω++++-+-++-⑬由于边缘效应引起的附加电容远小于max C ,因而可用⑦式估算max C .如果m ωω≠,利用⑦式和题设条件以及周期平均值公式cos2=0 cos2=0, cos2()=0, cos2()=0m m m t t t t ωωωωωω+-,⑭可得电容器所储存能量的周期平均值为2221max min 001(1)()832NR U C C V V ksλ+=+=⑮如果m ωω=,⑭式中第4式右端不是零,而是1.利用⑦式和题设条件以及周期平均值公式的前3式得电容器所储存能量的周期平均值为222222max min 0max min 0max min 00111(3)()()(3)8161664NR U C C V C C V C C V V ks λ+=++-=+= ⑯由于边缘效应引起的附加电容与忽略边缘效应的电容是并联的,因而max C 应比用⑦式估计max C 大;这一效应同样使得min 0C >;可假设实际的max min ()C C -近似等于用⑦式估计max C .如果m ωω≠,利用⑦式和题设条件以及周期平均值公式cos2=0 cos2=0, cos2()=0, cos2()=0m m m t t t t ωωωωωω+-,⑰可得电容器所储存能量的周期平均值为2221max min 001(12)()832NR U C C V V ksλ+=+=⑱[如果m ωω=,⑭中第4式右端不是零,而是1.利用⑦式和题设条件以及周期平均值公式⑭的前3式得电容器所储存能量的周期平均值为 222222max min 0max min 0max min 00111(34)()()(3)8161664NR U C C V C C V C C V V ksλ+=++-=+= ⑲]212 U U U >因为,则最大值为,所对应的m ω为m ωω=⑳评分标准:本题22分.第(1)问6分,①②式各1分,③⑤式各2分;第(2)问9分,⑥⑦⑧⑨⑩式各1分(⑩式中没有求和号的,也同样给分;没有力的符号,也给分),⑪⑫式各2分;第(3)问7分,⑬⑭式各2分,⑮⑯⑳式各1分.七、(26分)(1)通有电流i 的钨丝(长直导线)在距其r 处产生的磁感应强度的大小为m iB k r=① 由右手螺旋定则可知,相应的磁感线是在垂直于钨丝的平面上以钨丝为对称轴的圆,磁感应强度的方向沿圆弧在该点的切向,它与电流i 的方向成右手螺旋. 两根相距为d 的载流钨丝(如图(a ))间的安培力是相互吸引力,大小为2m k Li F B Li d∆=∆=② 考虑某根载流钨丝所受到的所有其他载流钨丝对它施加的安培力的合力.由系统的对称性可知,每根钨丝受到的合力方向都指向轴心;我们只要将其他钨丝对它的吸引力在径向的分量叠加即可.如图,设两根载流钨丝到轴心连线间的夹角为ϕ,则它们间的距离为2sin2d r ϕ=③由②③式可知,两根载流钨丝之间的安培力在径向的分量为22sin 2sin(/2)22m m r k Li k Li F r rϕϕ∆∆== ④它与ϕ无关,也就是说虽然处于圆周不同位置的载流钨丝对某根载流钨丝的安培力大小和方向均不同,但在径向方向上的分量大小却是一样的;而垂直于径向方向的力相互抵消.因此,某根载流钨丝所受到的所有其他载流钨丝对它施加的安培力的合力为222(1)(1)22-∆-∆==m m N k L I N k Li F r rN 内⑤ 其方向指向轴心. (2)由系统的对称性可知,所考虑的圆柱面上各处单位面积所受的安培力的合力大小相等,方向与柱轴垂直,且指向柱轴.所考虑的圆柱面,可视为由很多钨丝排布而成,N 很大,但总电流不变.圆柱面上ϕ∆角对应的柱面面积为s r L ϕ=∆∆⑥ 圆柱面上单位面积所受的安培力的合力为22(1)24m N N k Li N F P s r Lϕππ-∆∆==∆⑦由于1N ,有22(1)-=N N i I 内 ⑧ 由⑦⑧式得224π=m k I P r 内⑨ 代入题给数据得1221.0210N/m P =⨯ ⑩一个大气压约为5210N/m ,所以图(a)710atm P ≈⑪ 即相当于一千万大气压.(3)考虑均匀通电的长直圆柱面内任意一点A 的磁场强度. 根据对称性可知,其磁场如果不为零,方向一定在过A 点且平行于通电圆柱的横截面. 在A 点所在的通电圆柱的横截面(纸面上的圆)内,过A 点作两条相互间夹角为微小角度θ∆的直线,在圆上截取两段微小圆弧L 1和L 2,如图(b )所示. 由几何关系以及钨丝在圆周上排布的均匀性,通过L 1和L 2段的电流之比/I I 12等于它们到A 点的距离之比/l l 12:111222==I L l I L l ⑫ 式中,因此有1212=m m I I k k l l ⑬ 即通过两段微小圆弧在A 点产生的磁场大小相同,方向相反,相互抵消.整个圆周可以分为许多“对”这样的圆弧段,因此通电的外圈钨丝圆柱面在其内部产生的磁场为零,所以通电外圈钨丝的存在,不改变前述两小题的结果.(4)由题中给出的已知规律,内圈电流在外圈钨丝所在处的磁场为=m IB k R内⑭ 方向在外圈钨丝阵列与其横截面的交点构成的圆周的切线方向,由右手螺旋法则确定.外圈钨丝的任一根载流钨丝所受到的所有其他载流钨丝对它施加的安培力的合力为222(1)(2)+ 22-∆∆+=∆=m m m M k L I I k I k L I I I F L RM M R RM外外内外内外外 ⑮式中第一个等号右边的第一项可直接由⑤式类比而得到,第二项由⑭式和安培力公式得到.因此圆柱面上单位面积所受的安培力的合力为22(2)24ϕπϕπ+∆==∆∆外外内外外m F k I I I M P R L R ⑯ 若要求2222244ππ+>外内外内()m m k I I I k I R r⑰ 只需满足<R r ⑱(5)考虑均匀通电的长直圆柱面外任意一点C 的磁场强度. 根据对称性可知,长直圆柱面上的均匀电流在该点的磁场方向一定在过C 点且平行于通电圆柱的横截面(纸面上的圆),与圆的径向垂直,满足右手螺旋法则. 在C 点所在的通电圆柱的横截面内,过C 点作两条相互间夹角为微小角度θ∆的直线,在圆上截取两段微小圆弧3L 和4L ,如图(c )所示. 由几何关系以及电流在圆周上排布的均匀性,穿过3L 和4L 段的电流之比34/I I 等于它们到C 点的距离之比34/l l :333444I L l I L l == ⑲ 式中,33CL l =,44CL l =,CO l =. 由此得33443434I I I I l l l l +==+ ⑳考虑到磁场分布的对称性,全部电流在C 点的磁感应强度应与CO 垂直. 穿过3L 和4L 段的电流在C 点产生的磁感应强度的垂直于CO 的分量之和为。
第28届全国中学生物理竞赛复赛试题及参考答案(WORD精校版)
第28届全国中学生物理竞赛复赛试题一、(20分)如图所示,哈雷彗星绕太阳S 沿椭圆轨道逆时针方向运动,其周期T 为76.1年,1986年它过近日点P 0时与太阳S 的距离r 0=0.590AU ,AU 是天文单位,它等于地球与太阳的平均距离,经过一段时间,彗星到达轨道上的P 点,SP 与SP 0的夹角θP =72.0°。
已知:1AU=1.50×1011m ,引力常量G=6.67×10-11Nm 2/kg 2,太阳质量m S =1.99×1030kg ,试求P 到太阳S 的距离r P 及彗星过P 点时速度的大小及方向(用速度方向与SP 0的夹角表示)。
二、(20分)质量均匀分布的刚性杆AB 、CD 如图放置,A 点与水平地面接触,与地面间的静摩擦系数为μA ,B 、D 两点与光滑竖直墙面接触,杆AB 和CD 接触处的静摩擦系数为μC ,两杆的质量均为m ,长度均为l 。
1、已知系统平衡时AB 杆与墙面夹角为θ,求CD 杆与墙面夹角α应该满足的条件(用α及已知量满足的方程式表示)。
2、若μA =1.00,μC =0.866,θ=60.0°。
求系统平衡时α的取值范围(用数值计算求出)。
三、(25分)在人造卫星绕星球运行的过程中,为了保持其对称转轴稳定在规定指向,一种最简单的办法就是让卫星在其运行过程中同时绕自身的对称轴转,但有时为了改变卫星的指向,又要求减慢或者消除卫星的旋转,减慢或者消除卫星旋转的一种方法就是所谓消旋法,其原理如图所示。
一半径为R ,质量为M 的薄壁圆筒,,其横截面如图所示,图中O 是圆筒的对称轴,两条足够长的不可伸长的结实的长度相等的轻绳的一端分别固定在圆筒表面上的Q 、Q ′(位于圆筒直径两端)处,另一端各拴有一个质量为2m的小球,正常情况下,绳绕在圆筒外表面上,两小球用插销分别锁定在圆筒表面上的P 0、P 0′处,与卫星形成一体,绕卫星的对称轴旋转,卫星自转的角速度为ω0。
第33届全国中学生物理竞赛复赛试题(附答案)
第33届全国中学生物理竞赛复赛理论考试试题解答一、(20分)如图,上、下两个平凸透光柱面的半径分别为1R 、2R ,且两柱面外切;其剖面(平面)分别平行于各自的轴线,且相互平行;各自过切点的母线相互垂直。
取两柱面切点O 为直角坐标系O-XYZ 的原点,下侧柱面过切点O 的母线为X 轴,上侧柱面过切点O 的母线为Y 轴。
一束在真空中波长为λ的可见光沿Z 轴负方向傍轴入射,分别从上、下柱面反射回来的光线会发生干涉;借助于光学读数显微镜,逆着Z 轴方向,可观测到原点附近上方柱面上的干涉条纹在X-Y 平面的投影。
1R 和2R 远大于傍轴光线干涉区域所对应的两柱面间最大间隙。
空气折射率为0 1.00n =。
试推导第k 级亮纹在X-Y 平面的投影的曲线方程。
已知:a. 在两种均匀、各向同性的介质的分界面两侧,折射率较大(小)的介质为光密(疏)介质;光线在光密(疏)介质的表面反射时,反射波存在(不存在)半波损失。
任何情形下,折射波不存在半波损失。
伴随半波损失将产生大小为π的相位突变。
b. sin , 1x x x ≈<<当。
二、(20分)某秋天清晨,气温为4.0C ︒,一加水员到实验园区给一内径为2.00 m 、高为2.00 m 的圆柱形不锈钢蒸馏水罐加水。
罐体导热良好。
罐外有一内径为4.00 cm 的透明圆柱形观察柱,底部与罐相连(连接处很短),顶部与大气相通,如图所示。
加完水后,加水员在水面上覆盖一层轻质防蒸发膜(不溶于水,与罐壁无摩擦),并密闭了罐顶的加水口。
此时加水员通过观察柱上的刻度看到罐内水高为1.00 m 。
(1)从清晨到中午,气温缓慢升至24.0C ︒,问此时观察柱内水位为多少?假设中间无人用水,水的蒸发及罐和观察柱体积随温度的变化可忽略。
(2)从密闭水罐后至中午,罐内空气对外做的功和吸收的热量分别为多少?求这个过程中罐内空气的热容量。
已知罐外气压始终为标准大气压50 1.0110Pa p =⨯,水在4.0C ︒时的密度为330 1.0010kg m ρ-=⨯⋅,水在温度变化过程中的平均体积膨胀系数为413.0310K κ--=⨯,重力加速度大小为29.80m s g -=⋅,绝对零度为273.15C -︒。
第届全国中学生物理竞赛复赛试题及答案
第23届全国中学生物理竞赛复赛试卷一、(23分)有一竖直放置、两端封闭的长玻璃管,管内为真空,管内有一小球自某处自由下落(初速度为零),落到玻璃管底部时与底部发生弹性碰撞.以后小球将在玻璃管内不停地上下跳动。
现用支架固定一照相机,用以拍摄小球在空间的位置。
每隔一相等的确定的时间间隔T拍摄一张照片,照相机的曝光时间极短,可忽略不计。
从所拍到的照片发现,每张照片上小球都处于同一位置。
求小球开始下落处离玻璃管底部距离(用H表示)的可能值以及与各H值相应的照片中小球位置离玻璃管底部距离的可能值。
二、(25分)如图所示,一根质量可以忽略的细杆,长为2l,两端和中心处分别固连着质量为m的小球B、D和C,开始时静止在光滑的水平桌面上。
桌面上另有一质量为M的小球A,以一给定速度v沿垂直于杆DB的方间与右端小球B作弹性碰撞。
求刚碰后小球A,B,C,D的速度,并详细讨论以后可能发生的运动情况。
三、(23分)有一带活塞的气缸,如图1所示。
缸内盛有一定质量的气体。
缸内还有一可随轴转动的叶片,转轴伸到气缸外,外界可使轴和叶片一起转动,叶片和轴以及气缸壁和活塞都是绝热的,它们的热容量都不计。
轴穿过气缸处不漏气。
如果叶片和轴不转动,而令活塞缓慢移动,则在这种过程中,由实验测得,气体的压强p和体积V遵从以下的过程方程式图1其中a,k均为常量, a>1(其值已知)。
可以由上式导出,在此过程中外界对气体做的功为式中2V 和1V ,分别表示末态和初态的体积。
如果保持活塞固定不动,而使叶片以角速度ω做匀角速转动,已知在这种过程中,气体的压强的改变量p ∆和经过的时间t ∆遵从以 图2 下的关系式式中V 为气体的体积,L 表示气体对叶片阻力的力矩的大小。
上面并没有说气体是理想气体,现要求你不用理想气体的状态方程和理想气体的内能只与温度有关的知识,求出图2中气体原来所处的状态A 与另一已知状态B 之间的内能之差(结果要用状态A 、B 的压强A p 、B p 和体积A V 、B V 及常量a 表示) 四、(25分)图1所示的电路具有把输人的交变电压变成直流电压并加以升压、输出的功能,称为整流倍压电路。
第31届全国中学生物理竞赛复赛试题及答案
第31届全国中学生物理竞赛复赛试题及答案31届全国中学生物理竞赛复赛理论考试试题解答一、(12分)题目一:球形液滴的振动频率假设球形液滴振动频率与其半径r、密度ρ和表面张力系数σ之间的关系式为f=kρσr,其中k是常数。
根据单位分析法,可以得到单位等式[f]=[ρ][σ][r]。
力学的基本物理量包括质量m、长度l和时间t,分别对应的单位是千克(kg)、米(m)和秒(s)。
根据单位等式,[f]=[t]^-1,[r]=[l],[ρ]=[m][l]^-3,[σ]=[m][t]^-2.将这些单位代入单位等式,得到[t]^-1=[l]^-3[m]^[ρ][t]^-2[σ],即[t]^-1=[l]^[ρ][m]^[σ][t]^-2.由此可以得到三个未知量的关系式:α-3β=0,β+γ=0,2γ=1.解得α=-1,β=-1,γ=1/2.解法二:假设球形液滴振动频率与其半径r、密度ρ和表面张力系数σ之间的关系式为f=kρσr,其中k是常数。
根据单位分析法,可以得到单位等式[f]=[ρ][σ][r]。
在国际单位制中,振动频率的单位是赫兹(Hz),半径r的单位是米(m),密度ρ的单位是千克每立方米(kg/m^3),表面张力系数σ的单位是牛每米(N/m)=千克每秒平方(m/s^2)。
根据单位等式,[f]=s^-1,[r]=m,[ρ]=kg/m^3,[σ]=kg/s^-2.将这些单位代入单位等式,得到[s]^-1=[m][ρ][σ],即[s]^-1=[m][kg/m^3][kg/s^-2]。
将这个式子代入f=kρσr,得到k=f/ρσr。
1.(V。
T)。
(p。
V。
T)和(pf。
V。
T)分别表示气体在初态、中间态和末态的压强、体积和温度。
留在瓶内的气体先后满足绝热方程和等容过程方程:p1 * V1^γ = p2 * V2^γ (绝热方程)V1 = V2 * (p1/p2) (等容过程方程)联立以上两式可得:p1/T1 = p2/T2 = pf/Tf由此得到以下式子:p1/pf = (p1/pf)^(1/γ)ln(p1/pf) = ln(p1) - ln(pf) = (1/γ) * ln(p1/pf)pf = p1 / (e^(γ * ln(p1/pf)))2.根据力学平衡条件,有:pi = p + ρghipf = p + ρghf其中,p是瓶外大气压强,ρ是U型管中液体的密度,g 是重力加速度大小。
(完整版)第34届全国中学生物理竞赛复赛试题.doc
第 34 届全国中学生物理竞赛复赛理论考试试题解答2017 年 9 月 16 日一、( 40 分)一个半径为 r 、质量为 m 的均质实心小圆柱被置于一个半径为 R 、质量为 M 的薄圆筒中,圆筒和小圆柱的中心轴均水平,横截面如图所示。
重力加速度大小为g 。
试在下述两种情形下,求小圆柱质心在其平衡位置附近做微振动的频率:(1)圆筒固定,小圆柱在圆筒内底部附近作无滑滚动;(2)圆筒可绕其固定的光滑中心细轴转动,小圆柱仍在圆筒内R 底部附近作无滑滚动。
二、( 40 分)星体 P (行星或彗星)绕太阳运动的轨迹为圆锥曲线rkP1 cosC式中, r 是 P 到太阳 S 的距离,是矢径 SP 相对于极r轴 SA 的夹角(以逆时针方向为正) ,kL 22,L 是 BAGMmS10 11 m 3 kg 1 s 2 为 P 相对于太阳的角动量, G 6.67 R E引 力 常 量 , M 1.99 1030 kg为 太 阳 的 质 量 ,D2 EL 2为偏心率, m 和 E 分别为 P 的质量12M 2 3G m和机械能。
假设有一颗彗星绕太阳运动的轨道为抛物线,地球绕太阳运动的轨道可近似为圆,两轨道相交于 C 、 D 两点,如图所示。
已知地球轨道半径R E 1.49 1011 m ,彗星轨道近日点 A 到太阳的距离为地球轨道半径的三分之一,不考虑地球和彗星之间的相互影响。
求彗 星(1)先后两次穿过地球轨道所用的时间;(2)经过 C 、 D 两点时速度的大小。
已知积分公式 xdx 2 3/21/2x a x a2a x a C ,式中 C 是任意常数。
3三、( 40 分)一质量为 M 的载重卡车 A 的水平车板上载有一质量为m 的重物 B,在水平直公路上以速度v0做匀速直线运动,重物与车厢前壁间的距离为L (L0 )。
因发生紧急情况,卡车突然制动。
已知卡车车轮与地面间的动摩擦因数和最大静摩擦因数均为BLA1 ,重物与车厢底板间的动摩擦因数和最大静摩擦因数均为 2 (2 1 )。
2024年9月第41届全国中学生物理竞赛复赛试题参考解答
第41届全国中学生物理竞赛复赛试题参考解答(2024年9月21日9:00-12:00)一、(45分) (1)(1.1)记质量为M 的振子偏离平衡位置的位移为x (向左为正),单摆的偏转角为θ(向左为正),摆臂上的张力为T ,按牛顿第二定律,摆锤在水平方向上的运动方程为m ẍ+lθcos θ−lθ sin θ =−T sin θ ①在竖直方向上的运动方程为m −l sin θθ−lθ cos θ =m g −T cos θ ② 利用小幅度振动条件,保留到小量θ的领头阶,有sin cos 1 , ③将③式代入①②式,并保留到小量θ的领头阶,得T mg ④ ẍ+lθ+g θ=0⑤【注: 利用悬点不动的非惯性系也可更方便地得到上述结果。
在悬点不动的非惯性系中,摆锤额外受到横向的惯性力−mẍ,有角向运动方程mlθ=−m g sin θ−mẍcosθ ①′ 同时也有径向运动方程2θcosθsin ml mx g T m ②′进一步利用小摆幅条件,保留到小量θ的领头阶,即得⑤④式。
】质量为M 的振子在水平方向上做一维运动, 由牛顿第二定律得Mẍ=−kx +T sin θ+H cos ωt ⑥由③④⑥式得Mẍ+kx −m g θ=H cos ωt ⑦只考虑系统在强迫力下的稳定振动,稳定振动的圆频率为ω,设cos(x x A t ) ⑧ cos()l B t ⑨其中φ 、φ 是稳定振动与所受强迫力之间的位相差。
将⑧⑨式代入方程⑤⑦后,所得出的两个方程对任意时间 t 均成立,故有00x ,⑩进而有22M m k A m B H⑪ 22200A B⑫由⑪⑫式得2202222200()()()HA k M m⑬222222222000()()H B A k M m⑭其中(1.2)由⑬式可知,当没有阻尼器时(这时0m ),有2HA k M ⑮即当风的频率为⑯时,大楼受迫振动幅度最大。
当风的频率取⑮式所示的值、但有阻尼器时,由⑬式得k g H H kl Mg M l A g k gkm m l M⑰为了调节阻尼器的参数m 、l 使得A 最小,可取Mgl k, ⑱或m 尽可能大。
第23届全国中学生物理竞赛复赛试卷和参考答案
第23届全国中学生物理竞赛复赛试卷 一、(23分)有一竖直放置、两端封闭的长玻璃管,管内为真空,管内有一小球自某处自由下落(初速度为零),落到玻璃管底部时与底部发生弹性碰撞.以后小球将在玻璃管内不停地上下跳动。
现用支架固定一照相机,用以拍摄小球在空间的位置。
每隔一相等的确定的时间间隔T 拍摄一张照片,照相机的曝光时间极短,可忽略不计。
从所拍到的照片发现,每张照片上小球都处于同一位置。
求小球开始下落处离玻璃管底部距离(用H 表示)的可能值以及与各H 值相应的照片中小球位置离玻璃管底部距离的可能值。
二、(25分)如图所示,一根质量可以忽略的细杆,长为2l ,两端和中心处分别固连着质量为m 的小球B 、D 和C ,开始时静止在光滑的水平桌面上。
桌面上另有一质量为M 的小球A ,以一给定速度0v 沿垂直于杆DB 的方间与右端小球B 作弹性碰撞。
求刚碰后小球A,B,C,D 的速度,并详细讨论以后可能发生的运动情况。
三、(23分)有一带活塞的气缸,如图1所示。
缸内盛有一定质量的气体。
缸内还有一可随轴转动的叶片,转轴伸到气缸外,外界可使轴和叶片一起转动,叶片和轴以及气缸壁和活塞都是绝热的,它们的热容量都不计。
轴穿过气缸处不漏气。
如果叶片和轴不转动,而令活塞缓慢移动,则在这种过程中,由实验测得,气体的压强p 和体积V 遵从以下的过程方程式 图1k pV a =其中a ,k 均为常量, a >1(其值已知)。
可以由上式导出,在此过程中外界对气体做的功为⎥⎦⎤⎢⎣⎡--=--1112111a a V V a k W 式中2V 和1V ,分别表示末态和初态的体积。
如果保持活塞固定不动,而使叶片以角速度ω做匀角速转动,已知在这种过程中,气体的压强的改变量p ∆和经过的时间t ∆遵从以 图2下的关系式ω⋅-=∆∆L Va t p 1 式中V 为气体的体积,L 表示气体对叶片阻力的力矩的大小。
上面并没有说气体是理想气体,现要求你不用理想气体的状态方程和理想气体的内能只与温度有关的知识,求出图2中气体原来所处的状态A 与另一已知状态B 之间的内能之差(结果要用状态A 、B 的压强A p 、B p 和体积A V 、B V 及常量a 表示) 图1四、(25分)图1所示的电路具有把输人的交变电压变成直流电压并加以升压、输出的功能,称为整流倍压电路。
第41届全国中学生物理竞赛复赛试题及答案
第41届全国中学生物理竞赛复赛试题(2024年9月21日上午9:00-12:00)考生须知1、 考生考试前请务必认真阅读本须知。
2、 本试题共7道题,5页,总分为320分。
3、 如遇试题印刷不清楚的情况,请务必及时向监考老师提出。
4、 需要阅卷老师评阅的内容一定要写在答题纸上;写在试题纸和草稿纸上的解答一律不给分。
一、(45分)高层建筑(大楼)在风的作用下会发生晃动。
在特定条件下,大楼的晃动幅度会变得较大,影响到安全。
(1)为了减小晃动幅度,通常会在高层建筑上加装阻尼器,例如悬点固定在大楼上、摆锤质量为m 、摆臂长度为l 的摆,摆臂是刚性的,质量可以忽略;大楼在风作用下的运动可简化为谐振子的强迫振动,谐振子的质量为M ,恢复力等效为劲度系数为k 的弹簧,大楼在运动过程中可视为刚体。
整个摆和谐振子系统如图1a 所示,系统的总质量为m 与M 之和。
风可视为水平方向上的强迫力F (向左为正),它随时间t 的变化为cosωF t H t其中振幅H 和频率ω均为常量。
重力加速度大小为g 。
为简单起见,只考虑摆和谐振子的小幅度振动 (因而摆便成为单摆)。
(1.1)求谐振子因强迫力F 的作用产生的稳定振动的振幅;(1.2)指出在没有阻尼器的情况下,风的频率为多大时,大楼受迫振动的振幅最大?对此频率的风,阻尼器应满足何种条件会最大限度地减小大楼的受迫振动?(2)若风的频率为第(1.2)问中求出的风的频率的√0.99倍,在没有阻尼器的情况下,求此时大楼受迫振动的振幅有多大? 若安装的阻尼器参数l 符合第 (1.2)问中得到的条件,为了使得大楼在此风的作用下的受迫振动的振幅减到无阻尼器时的1%, 阻尼器的质量m 应该为M 的多少倍?(3)实际的阻尼器还装有其他装置以提供阻尼力,通常做法是将摆锤浸泡在固定于建筑物上的油池中 (相对于建筑物的质量,油的质量可以忽略;油池质量可视为已包含在大楼的质量之内)。
已知当摆锤与油的相对速度为 v 时,摆锤受到的阻尼力为f v其中γ为常量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年第35届全国中学生物理竞赛复赛理论考试试题
2018年9月22日
一,(40分)假设地球是一个质量分布各向同性的球体。
从地球上空离地面高度为h 的空间站发射一个小物体,该物体相对于地球以某一初速度运动,初速度方向与其到地心的连线垂直。
已知地球半径为R ,质量为M ,引力常量为G 。
地球自转及地球大气的影响可忽略。
(1)若该物体能绕地球做周期运动,其初速度的大小应满足什么条件?
(2)若该物体的初速度大小为v 0,且能落到地面,求其落地时速度的大小和方向(即速度与其水平分量之间的夹角),以及它从开始发射直至落地所需的时间。
已知对于2
040c b ac <∆=->, 有
322()b C c =-- ,式中C 为积分常数。
二,(40分)如图,一劲度系数为k 的轻弹簧左端固定,右端连一质量为m 的小球,弹簧水平水平,它处于自然状态时小球位于坐标原点O ;小球课在水平地面上滑动,它与地面之间的摩擦因数为μ。
初始时小球速度为0,将此时弹簧相对于其原长的伸长记为-A 0 (A 0>0但是它并不是已知量)。
重力加速度大小为g ,假设最大静摩擦力等于滑动摩擦力
(1)如果小球至多只能向右运动,求小球最终静止的位置,和此种情形下 A 0 应满足的条件;
(2)如果小球完成第一次向右运动至原点右边后,至多只能向左运动,求小球最终静止的位置,和此种情形下 A 0 应满足的条件;
(3)如果小球只能完成n 次往返运动(向右经过原点,然后向左经过原点,算 1 次往返)
(4)如果小球只能完成n 次往返运动,求小球从开始运动直至最终静止的过程中运动的总路程。
三、(40 分)如图,一质量为M 、长为l 的匀质细杆AB 自由悬挂于通过坐标原点O 点的水平光滑转轴上(此时,杆的上端A 未在图中标出,可视为与O 点重合),杆可绕通过O 点的轴在竖直平面(即 x -y 平面, x 轴正方向水平向右)内转动;O 点相对于地面足够高,初始时杆自然下垂;一质量为m 的弹丸以大小为v 0 的水平速度撞击杆的打击中心(打击过程中轴对杆的水平作用力为零)并很快嵌入杆中。
在杆转半圈至竖直状态时立即撤除转轴。
重力加速度大小为 g 。
(1)求杆的打击中心到O 点的距离;
(2)求撤除转轴前,杆被撞击后转过θ (0θπ<< )角时转轴对杆的作用力
(3)以撤除转轴的瞬间为计时零点,求撤除转轴后直至杆着地前,杆端 B 的位置随时间t 变化的表达式 ()B x t 和 ()B y t ;
(4)求在撤除转轴后,杆再转半圈时O 、B 两点的高度差。
四、(40 分)Ioffe-Pritchard 磁阱可用来束缚原子的运动,其主要部分如图所示。
四根均通有恒定电流 I 的长直导线 1、2、3、4 都垂直于 x -y 平面,它们与 x -y 平面的交点是边长为2a 、中心在原点O 的正方形的顶点,导线 1、2 所在平面与 x 轴平行,各导线中电流方向已在图中标出。
整个装置置于匀强磁场00B B k = (k 为 z 轴正方向单位矢量)中。
已知真空磁导率为0μ 。
(2)电流在原点附近产生的总磁场的近似表达式,保留至线性项;
(3)将某原子放入磁阱中,该原子在磁阱中所受磁作用的束缚势能正比于其所在位置的总磁感应强度tot B 的大小,即磁作用束缚势能tot V B μ= ,μ 为正的常量。
求该原子在原点O 附近所受磁场的作用力;
(4)在磁阱中运动的原子最容易从 x -y 平面上什么位置逸出?求刚好能够逸出磁阱的原子的动能。
五、(40 分)塞曼发现了钠光D 线在磁场中分裂成三条,洛仑兹根据经典电磁理论对此做出了解释,他们因此荣获 1902 年诺贝尔物理学奖。
假定原子中的价电子(质量为m ,电荷量为?e ,0e > )受到一指向原子中心的等效线性回复力20m r ω-(r 为价电子相对于原子中心的位矢)作用,做固有圆频率为?0 的简谐振动,发出圆频率为?0 的光。
现将该原子置于沿 z 轴正方向的匀强磁场中,磁感应强度大小为 B (为方便起见,将 B 参数化为2L m B e
ω= ) (1)选一绕磁场方向匀角速转动的参考系,使价电子在该参考系中做简谐振动,导出该电子运动的动力学方程在直角坐标系中的分量形式并求出其解
(2)将(1)问中解在直角坐标系中的分量形式变换至实验室参考系的直角坐标系;
(3)证明在实验室参考系中原子发出的圆频率为?0 的谱线在磁场中一分为三;并对弱磁场(即0L ωω=)情形,求出三条谱线的频率间隔。
已知:在转动角速度为ω的转动参考系中,运动电子受到的惯性力除惯性离心力外还受到科里奥利力作用,当电子相对于转动参考系运动速度为v ? 时,作用于电子的科里奥利力为2c f m v ω'=-⨯。
六、(40 分)如图,太空中有一由同心的内球和球壳构成的实验装置,内球和球壳内表面之间为真空。
内球半径为
r = m ,温度保持恒定,比辐射率为e = ;球壳的导热系数为21111.0010J m s K κ----=⨯⋅⋅⋅ ,内、外半径分
别为 R 1 = 、 R 2 = m ,外表面可视为黑体;该实验装置已处于热稳定状态,此时球壳内表面比辐射率为 E= 。
斯特藩常量为8245.6710s W m K ---=⋅⨯⋅,宇宙微波背景辐射温度为T = 。
若单位时间内由球壳内表面传递到球壳外表面的热量为Q = ,求(1)球壳外表面温度T 2 ;(2)球壳内表面温度T 1 ;(3)内球温度T 0 。
已知:物体表面单位面积上的辐射功率与同温度下的黑体在该表面单位面积上的辐射功率之比称为比辐射率。
当辐射照射到物体表面时,物体表面单位面积吸收的辐射功率与照射到物体单位面积上的辐射功率之比称为吸收比。
在热平衡状态下,物体的吸收比恒等于该物体在同温度下的比辐射率。
当物体内某处在 z 方向(热流方向)每单位距离温度的增量为dT dz 时,物体内该处单位时间在 z 方向每单位面积流过的热量为dT K dz
-,此即傅里叶热传导定律
七、(40 分)用波长为633 nm 的激光水平照射竖直圆珠笔中的小弹簧,在距离弹簧 m 的光屏(与激光水平照射方向垂直)上形成衍射图像,如图 a 所示。
其右图与 1952 年拍摄的首张DNA 分子双螺旋结构X 射线衍射图像(图 b )十分相似。
利用图 a 右图中给出的尺寸信息,通过测量估算弹簧钢丝的直径d 1 、弹簧圈的半径 R 和弹簧的螺距 p ;图 b 是用波长为 nm 的平行X 射线照射DNA 分子样品后,在距离样品 cm 的照相底片上拍摄的。
假设 DNA 分子与底片平行,且均与X 射线照射方向垂直。
根据图 b 中给出的尺寸信息,试估算DNA 螺旋结构的半径 R ' 和螺距p '。
说明:由光学原理可知,弹簧上两段互成角度的细铁丝的衍射、干涉图像与两条成同样角度、相同宽度的狭缝的衍射、干涉图像一致。
八、(40 分)1958 年穆斯堡尔发现的原子核无反冲共振吸收效应(即穆斯堡尔效应)可用于测量光子频率极微小的变化,穆斯堡尔因此荣获 1961 年诺贝尔物理学奖。
类似于原子的能级结构,原子核也具有分立的能级,并能通过吸收或放出光子在能级间跃迁。
原子核在吸收和放出光子时会有反冲,部分能量转化为原子核的动能(即反冲能)。
此外,原子核的激发态相对于其基态的能量差并不是一个确定值,而是在以 E 0 为中心、宽度为2Γ 的范围内取值的。
对于 57Fe 从第一激发态到基态的跃迁,150 2.3110E J -=⨯ ,1303.210E -Γ=⨯ 。
已知质量
269.510Fe m kg -=⨯ ,普朗克常量346.610h J s -=⨯⋅ ,真空中的光速c= ⅹ108 m/ s 。
(1)忽略激发态的能级宽度,求反冲能,以及在考虑核反冲和不考虑核反冲的情形下,57Fe 从第一激发态跃迁到基
态发出的光子的频率之差;
(2)忽略激发态的能级宽度,求反冲能,以及在考虑核反冲和不考虑核反冲的情形下,57Fe 从基态跃迁到激发态吸
收的光子的频率之差;
(3)考虑激发态的能级宽度,处于第一激发态的静止原子核57 Fe * 跃迁到基态时发出的光子能否被另一个静止的
基态原子核57 Fe 吸收而跃迁到第一激发态57 Fe * (如发生则称为共振吸收)?并说明理由。
(4)现将57Fe 原子核置于晶体中,该原子核在跃迁过程中不发生反冲。
现有两块这样的晶体,其中一块静止晶体中处于第一激发态的原子核57 Fe*发射光子,另一块以速度V运动的晶体中处于基态的原子核57Fe 吸收光子。
当速度V的大小处于什么范围时,会发生共振吸收?如果由于某种原因,到达吸收晶体处的光子频率发生了微小变化,
其相对变化为10-10,试设想如何测量这个变化(给出原理和相关计算)?。