地震勘探仪器讲解

合集下载

地震勘察仪器原理与结构

地震勘察仪器原理与结构

地震勘察仪器原理与结构地震勘察仪器是一种用于探测和测量地震波以及地壳运动的工具。

它可以帮助地震学家和地质学家了解地震的产生机制、地壳的变动以及预测地震的可能性。

地震勘查仪器的原理和结构主要可以分为三个部分:传感器、信号处理和数据记录。

传感器是地震仪器的核心部件,它主要用于感测地震波的运动。

地震波是由地壳运动引起的地球表面的振动,可以分为纵波和横波两种,传感器需要能够准确地感知这些振动并将其转化为电信号。

一种常用的传感器是加速度传感器,它通过测量物体的加速度来感测地震波的振动情况。

加速度传感器通常由质量块、弹簧和电感器构成,质量块受到地震波的作用后产生振动,振动的大小和方向通过感应到的电流信号传输到信号处理器。

信号处理是地震仪器的第二个关键步骤,它用于将传感器收集到的信号转化为可以分析和研究的数据。

地震波的振动信号通常是微弱的,同时还受到环境噪声的干扰,因此需要对信号进行过滤和放大,以提高信号的质量和可靠性。

信号处理器通常由低噪声放大器、滤波器和模数转换器等组成。

低噪声放大器用于放大微小的信号,滤波器用于滤除噪声干扰,模数转换器将模拟信号转化为数字信号,以便于保存和处理。

数据记录是地震仪器的最后一个部分,它用于记录和保存信号处理后的数据。

数据记录器通常由数字存储设备和计算机系统组成。

数字存储设备可以将经过信号处理的数据保存为数字文件,以便后续的分析和研究。

计算机系统可以用于控制仪器的工作流程,同时还可以进行数据的实时处理和分析。

通过对保存的数据进行分析,地震学家和地质学家可以研究地下地壳的结构和性质,进一步了解地震的发生机理和可能性。

除了以上的主要部分,地震勘查仪器还可以包括其他一些辅助部件,如温度和湿度传感器,用于记录环境的温度和湿度变化,以及定位系统,用于记录地震发生的位置和时间等信息。

总结起来,地震勘查仪器的原理和结构主要包括传感器、信号处理和数据记录三个部分。

传感器用于感测地震波的振动,信号处理器将振动信号转化为可分析的数据,数据记录器用于保存和记录处理后的数据。

地震勘探仪器-地震

地震勘探仪器-地震
实时化与网络化
随着物联网和云计算技术的发展,地震勘探仪器将实现实时数据传输和处理,提高数据利 用效率和响应速度。同时,通过网络技术实现地震数据的共享和协同分析,提高地震研究 的协作性和开放性。
THANKS
感谢观看
地震勘探仪器-地震
• 地震勘探仪器概述 • 地震勘探仪器的工作原理 • 地震勘探仪器的分类与应用 • 地震勘探仪器的发展趋势与挑战 • 结论
01
地震勘探仪器概述
地震勘探仪器的定义与特点
• 定义:地震勘探仪器是一种用于探测地下地质构造和矿产资源的地球物 理仪器。它通过测量地球表面或近地表的地震波,分析地震波在地下的 传播规律和特征,推断地下岩层的性质、结构和构造,为地质勘探、矿 产资源开发、工程地质等领域提供重要的数据支持。
等方法。
中期发展
随着电子技术和计算机技术的不 断发展,地震勘探仪器逐渐实现 了数字化和自动化,提高了测量
精度和效率。
现代发展
现代地震勘探仪器采用了更先进 的技术和算法,如数字信号处理、 人工智能等,进一步提高了测量 精度和自动化程度,同时也拓展
了应用领域。
02
地震勘探仪器的工作原理
地震波的产生与传播
基础研究
地震勘探仪器可以揭示地球内部的结 构和演化,为地球科学基础研究提供 重要数据。
灾害防治
地震勘探仪器可以探测地下岩层的性质和 构造,为地质灾害防治提供数据支持,如 滑坡、泥石流等灾害的预测和防治。
地震勘探仪器的发展历程
早期发展
地震勘探仪器最早可以追溯到20 世纪初,当时的地震勘探技术比 较简单,主要采用敲击和听诊器
04
地震勘探仪器的发展趋势与挑战
高分辨率地震勘探技术的发展
总结词

地震监测仪器的使用方法

地震监测仪器的使用方法

地震监测仪器的使用方法地震是一种自然灾害,给人们的生命和财产带来了巨大的威胁。

因此,地震监测仪器的使用方法变得至关重要。

本文将介绍几种常见的地震监测仪器,并探讨如何正确使用它们。

一、地震仪地震仪是一种用于测量地震波的仪器。

它可以记录地震的震级、震源位置和震源深度等重要信息。

地震仪的使用方法相对简单,只需将其放置在平稳的地面上即可。

然后,通过仪器上的控制面板设置相关参数,如采样频率和记录时间等。

当地震发生时,地震仪会自动开始记录并生成地震波形图。

用户可以通过分析这些波形图来了解地震的特征。

二、地震速度仪地震速度仪是一种用于测量地震波传播速度的仪器。

它通过发送一系列震动信号并记录其传播时间来计算地震波的速度。

使用地震速度仪的方法较为复杂。

首先,需要将仪器放置在地震波传播路径上,并确保其与地面接触良好。

然后,通过仪器上的控制面板设置相关参数,如震动信号的频率和强度等。

接下来,启动仪器并等待一段时间,以便它收集足够的数据。

最后,通过分析数据来计算地震波的速度。

三、地震倾斜仪地震倾斜仪是一种用于测量地震引起的地面倾斜的仪器。

它可以帮助人们了解地震对土地结构的影响。

使用地震倾斜仪的方法相对简单。

首先,将仪器放置在需要监测的地面上,并确保其水平。

然后,通过仪器上的控制面板设置相关参数,如采样频率和记录时间等。

当地震发生时,地震倾斜仪会自动开始记录并生成倾斜角度的变化曲线。

通过分析这些曲线,人们可以了解地震引起的地面倾斜情况。

四、地震声仪地震声仪是一种用于测量地震产生的声音的仪器。

它可以记录地震引起的地面振动所产生的声音信号。

使用地震声仪的方法相对简单。

首先,将仪器放置在需要监测的地面上,并确保其与地面接触良好。

然后,通过仪器上的控制面板设置相关参数,如采样频率和记录时间等。

当地震发生时,地震声仪会自动开始记录并生成声音波形图。

通过分析这些波形图,人们可以了解地震的声音特征。

总结起来,地震监测仪器的使用方法可以分为放置、设置参数、记录数据和分析结果几个步骤。

地质勘探中的仪器设备

地质勘探中的仪器设备

地质勘探中的仪器设备地质勘探是指通过不同的方法,了解地球内部结构和地下资源分布的一种科学研究。

在地质勘探的过程中,仪器设备起到了至关重要的作用。

本文将就地质勘探中的仪器设备进行介绍。

一、地震勘探仪器地震勘探是一种通过测量地球中的地震波传播和反射来获取地下结构信息的方法。

地震仪器在地震震源和检波器之间进行的数据传输起到至关重要的作用。

常见的地震勘探仪器有地震震源、地震检波器和地震记录器等。

1. 地震震源地震震源是产生人工地震波的设备,通常是由爆炸物或震源车辆组成。

地震震源的形式多样,如压电源、炸药震源和振动源等。

通过产生地震波,地震震源可以帮助勘探者测量地下岩石的速度、密度和其他物理特性。

2. 地震检波器地震检波器是用于接收地震波传播过程中的反射或折射信号的仪器。

常见的地震检波器包括地震观测井、地震阵列和地震测深仪等。

地震检波器可以将地震信号转化为电信号,为勘探者提供参考依据。

3. 地震记录器地震记录器用于记录地震信号,并将其转化为地震图像或数字数据。

地震记录器可以通过多种方式储存数据,如磁带式地震记录器、数字地震记录器和地震数据采集系统等。

地震记录器的使用可以帮助勘探者分析地下结构和探测地下资源。

二、重力测量仪器重力测量是一种利用重力场的变化来推测地下岩石质量的方法。

通过重力测量仪器,勘探者可以测量地下岩石的密度和分布情况。

重力测量仪器主要包括重力计和全球导航卫星系统(GNSS)等。

重力计可以通过测量地面上的重力加速度变化来获得地下岩石的质量信息。

GNSS可以通过测量地表的重力场变化,推断地下岩石的密度分布情况。

三、电磁测量仪器电磁测量是一种通过测量地下岩石的电导率和介电常数来推测地下结构的方法。

电磁测量仪器主要包括电磁感应仪和电测深仪等。

电磁感应仪通过产生高频电磁场,测量地下岩石对电磁场的响应来推断地下构造。

电测深仪是一种用于探测地下电阻率的仪器,通过测量电流传输的速度和电流对电压的响应,可以推断地下岩石的电导率。

第四章浅层地震勘探仪器简介

第四章浅层地震勘探仪器简介
动。
① 方向特性:当振动方向与线圈轴线方 向一致时,产生最大输出电压,具有最 大的灵敏度。
图4.1 电动式检波器结构示意图
按检波器固有频率分:低频, < 10Hz ; 中 频 , 10 ~ 33Hz ; 高频,33~100Hz。
图示为100 Hz高频检波器的频 率特性曲线。曲线分三段。
第一段:线性段,f较低时, 输出随f的升高而增大;
放大倍数:输出信号振幅m1与输入信号振幅m2的比值。
M m1 m2
分贝(dB):用对数值表示放大倍数
M db 20 log10 M
100dB意思指:若有5μV的输入振幅,则可得到0.5V(即0.5×106μV)的输出。
2.动态范围 定义:测量信号振幅极大值与系统噪音水平的比值,用分贝
表示: [动态范围]=[ A ]dB a
3.数字地震仪的特点 (1)全数字化
全数字化:就是利用微机控制仪器来完成数据采集和信息处理。微机处 理是中心,而采集系统则属于外围设备。通过对计算机的操作就可实现对地 震仪的操作。这样可使地震仪的稳定性和可靠性大大提高。同时,仪器具有 操作简单、重量轻、体积小的优点。
(2)动态范围大
3.记录显示装置 一般用计算机记录和显示。 4.震源同步系统
一是激发地震波,二是与激发时间同步产生触发信号,使主机开始记时。 锤击:用两个弹簧片与导线连接作触发器; 炸药:爆炸使捆在炸药包上的导线炸断,产生触发信号。
第二节 数字叠加式浅震仪介绍
按叠加方式分:模拟叠加增强式,数字叠加增强式
一、几个基本概念 1.分贝
图 (a)、(b)、(c)、(d)、(e)分别对连续信号进行25、100、125、200、250Hz采样, 则输出频率分别为25、100、125、50、0Hz。显然,后两个采样不足,出现假频。

地震仪的简单介绍

地震仪的简单介绍

地震仪的简单介绍
地震仪是一种非常重要的地震监测仪器,被广泛应用于地震科学研究、地震工程和地震灾害预防等领域。

它的原理是基于惯性原理,利用悬挂重物的惯性来感应地面的振动,并转化为电信号记录下来。

由于地震仪具有高灵敏度、高精度和高稳定性的特点,因此它可以记录到微小的地震活动,并准确地测定地震的震源位置、震级和震源深度等信息。

同时,地震仪还可以用来研究地球的内部构造和地壳运动规律,为地震预测和预防提供科学依据。

根据不同的应用需求,地震仪的种类也多种多样。

短周期地震仪主要用于监测微震活动和远震P 波初至,长周期地震仪则被用于观测地震面波、研究地壳内部构造和确定地震参数等。

宽频带和超宽频带地震仪则能够提供更为全面和详细的地壳运动信息,为全球范围内的地震科学研究提供重要数据支持。

总之,地震仪是现代地震学和地震工程学的重要工具,为人类防范地震灾害和深入了解地球科学提供了重要的技术支持。

地震仪器设备简介

地震仪器设备简介
仪器野外设备简介
仪器中心
目录
一、仪器主机 二、采集站、电源站、交叉站部分 三、电缆及辅助部分 四、检波器部分
地球物理勘探设备 地震数据采集设备 地震仪器
采集设备
辅助设备 机械(震源)设备
中央记录系统 仪器
野外设备 (传输和采集)
爆炸机系统的编/译码器、震源 的扫描发生器/电子箱体
仪器车
大线、电台/检波器、采集站、 交差站
采集站的基本原理
• 前放
(放大模拟地震信号,提高抗干扰能力)、
前放增益:地震信号强度很弱,检波器输出的电信号一般为微伏级至
毫伏级左右,若这一信号直接送至A/D 转换,其结果将带来以下几个 问题: 由于信号幅度小、A/D转换精度低。 由于信号整体幅度较小,势必使A/D转换器的高位均为0,不能充分利用 24位A/D 转换器(实用20 位)资源。 也将损失相当部分的小信号,降低了信号的动态范围 采用线性提升整个信号幅度的方法,使A/D 转换器输入信号的最大幅度略 小于满标称幅度范围(目前仪器A/D转换器的参考电压一般为2.5V4.5V)。最大限度地提高信号的转换精度和最大限度地保证所记录信号 的动态范围。 注意:一方面由于地震信号很微弱,在送到A/D转换以前,必须进行放大, 以满足仪器的最小输入,从仪器本身的噪声中提取出来;另一方面, 一些干扰波的幅度很大,当上面附加有有效信号时,如果放大的倍数 太大,则会超出A/D的最大值导致溢出。因此选择前放增益需要考虑 当时的施工情况。 另外为防止野外可能出现的雷击破坏情况,在前置放大器前端信号入口 处加入电压抑制放电管、共模滤波器等电路以保护采集电路。
地震数据采集流程 地震数据的采集过程从时序上看是一个开环链路数据 接力传输流程 ,即从炮点能量激发开始仪器便进入采集状 态 ,此时地震波经检波器输入到采集站 ,地震数据就经由每 一个相关环节源源不断地传到主机并记录磁带直到完成整 个记录长度 ,其基本流程关系如图1 所示。

地质勘探中的地质勘探仪器

地质勘探中的地质勘探仪器

地质勘探中的地质勘探仪器地质勘探是指通过对地壳、地球内部及地球表面的各种物质和现象进行系统观测、测量和分析,以获取地质信息的一门科学技术。

地质勘探仪器作为地质勘探的工具,发挥着关键作用。

本文将介绍几种常见的地质勘探仪器。

一、地震仪地震仪是地质勘探中最常用的仪器之一。

地震勘探利用地震波的传播特性研究地球内部结构,探测油气矿藏、岩层构造等信息。

地震仪通过测量地震波的传播速度、振幅等参数,推断地下的地质情况。

二、地磁仪地磁仪用于测量地球磁场的变化,通过观测磁场强度和方向的变化,探测地下的矿产资源、构造特征等信息。

地磁仪常用于寻找地下金属矿床、勘探石油和天然气储层等。

三、重力仪重力仪测量地球表面某一点上物体受到的引力大小,通过观测引力变化来探测地下的密度变化。

重力勘探常用于寻找矿床、发现地下脉络和断层。

四、电磁仪电磁仪是利用地球的自然电磁信号或外加电磁信号,通过观测电磁场的变化来探测地下的物质分布和性质。

电磁勘探广泛应用于矿产资源勘查、地下水勘察等领域。

五、雷达仪雷达仪利用超声波或电磁波在地下的反射和传播特性,勘探地下介质的物理属性和构造特征。

雷达仪在城市规划、土壤调查、地下管道探测等方面具有重要作用。

六、地电仪地电仪是测量地下电磁场的仪器,通过测量地下电阻率的分布,推断地下结构特征和地下含水层分布情况。

地电勘探广泛应用于勘探地下水、找寻矿藏、勘查地震活动断层等。

地质勘探仪器的发展为地质勘探提供了强有力的支持,使得勘探工作变得更加高效、准确。

随着技术的进步,地质勘探仪器也在不断创新和改进。

总结:以上介绍的是地质勘探中常用的一些地质勘探仪器,包括地震仪、地磁仪、重力仪、电磁仪、雷达仪和地电仪。

这些仪器通过测量和观测地球的物理场和信号,来推断地下的地质情况,为矿产资源勘查、地下水勘察等工作提供了重要的支持。

随着科技的不断进步,地质勘探仪器的发展也在不断创新和完善,将进一步提高地质勘探的准确性和效率。

地震勘探仪器介绍讲义

地震勘探仪器介绍讲义

40GB
128MB
40dB
陷 波 器 :
72dB/
切 滤 波 器 陡 度 : 优 于
倍 频 程
截 滤 波 器 陡 度 : 软 件 滤 波
≥90dB
间 串 音 压 制 :
20K
入 阻 抗 :
0 9999ms
时 :

± 0.05%

度 :
±0.01ms
位 一 致 性 :
±0.2%
度 一 致 性 :
1μV
第一节 地震仪器主机
集中式逻辑控制型数字地震仪总框图
如SN338、DFS-V和MDS-10等
第一节 地震仪器主机
集中式数控地震仪框图
第一节 地震仪器主机
分布式遥测型数字地震仪
第一节 地震仪器主机
SK-1004遥测地震记录系统框图
第一节 地震仪器主机
分布式遥测系统布置模拟
第一节 地震仪器主机
10. 间 隔: 声波采样 :2.5μs~32000μs (以0.5μs为增量可选)。
1. 探测介质
1. 探测深度: 自动探测为100m以内,用户自定义探测深度不限。
2. 探测层数:≤5层;
2. 电 源
1. 供 电:内含有高能锂电池,可连续工作4小时以上;
2. 数据保持:掉电情况下,可保证数据1000小时不丢失;
5℃-+40℃
267×457×533.4mm
● 几 何 尺 寸 : 。过 冲 击 和 振 动 试 验 ;。 全 封 闭 结 构 , 小 雨 中 可 工 作 ,● 工 作 环 境 : 启 动 温 度 , 工 作 温待 时 消 耗 电 为 , 外 接 电 源 供 电 ;● 电 源 : , 采 集 时 每 道 增 加 ,控 制 触 发 门 槛 值 ;● 触 发 : 正 , 负 触 发 或 接 触 式 闭 路 , 软括和英寸的连续热敏打印机;●绘图仪:可驱动各种兼容的打印机,或;接口存入磁带记录,数据格式有,●数据存储:数据存储在内置硬盘上或通外接各道的数据采集;的软件控制本机各道和●软件:平台操作系统,采,和格式;●数据格式:标准格式,同时具备户需要设计检测结果显示方式;●本机检测:内置或外带检测系统,根据置;,测量检波器故障同时指出大线短路或短路●大线测试:实时监测排列上检波器的噪动覆盖;●滚动:全部工作道可通过软件实现辅助道或数据道;● 辅 助 道 : 可 以 通 过 程 序 设 置 任 意 工 作 道● 延 迟 : 至 一 步 到 位 ;源 ;● 智 能 型 自 触 发 : 可 供 天 然 地 震 观 察 和 可● 延 时 触 发 : 最 大 样 点 ;样 点 ;● 记 录 长 度 : 标 准 样 点 , 也 可 选先 导 相 关 器 ;器 , 还 可 选 用 于 伪 随 机 震 源 ( )相 关 器 : 内 置 用 于 可 控 震 源 的 高 速 硬 件 相

地震勘探仪器-地震

地震勘探仪器-地震

24/48 1024 16384 1M
USB
2048
PIII 500MHz
200μs 500μs 1ms
4096 8192
KDZ1114-3型便携式矿井地质探测仪
• • • •

第一节 地震仪器主机
● 显 示: 采用640×200大屏幕图形点阵液晶显示器; ● 打 印: 标准并行接口,可外接常用打印机; ● 键 盘: 64键,由数字键、功能键和子母键等; ● 操作界面: 全中文界面,有字符、专(通)用库、拼音、五笔等输入法;
第一节 地震仪器主机
地震勘探仪器发展史
• 公元132年,东汉时期杰出的自然科学家张衡就创造了世 界上第一台观测地震的仪器—候风地动仪(seismoscope)。 • 第一阶段为“模拟光点”记录阶段(1927~1952),采用电 子管元件,把波变成光点的摆动,记录在照像纸上。克拉 玛依油田、大庆油田、胜利油田、玉门油田等 • 第二阶段为“模拟磁带”记录阶段(1953~1963),这时把 磁带录音技术用于地震勘探,它由晶体管元件组装而成, 把接收的地震波录制在磁带上,在室内可以用模拟电子计 算机(基地回收仪),对资料进行处理,得到地震时间剖面, 使资料整理工作实现了半自动化,工作效率和精度也得到 了提高,资料也便于保存。大港油田、辽河油田、南阳油 田、中原油田和江苏油田等。
第一节 地震仪器主机
第一节 地震仪器主机
新型的数字地震仪器介绍
第一节 地震仪器主机
地面三维地震SN388仪器
第一节 地震仪器主机
矿井巷道超前探仪配套设备 TSP203隧道地质超前预报系统硬件组成
第一节 地震仪器主机
WZG-24A、48A工程地震仪
• • • • • • 256M U SEG-2 -10℃ 50℃ 90 RH -20℃ 60℃ DC12V 4A 48 5.5A 12Kg WZG-24A /15Kg WZG-48A 400mm×310mm×180mm 128MB 40GB 800×600 VGA TFT 体 重 电 储 工 数 移标接输显光硬内主 高 低 道 输 延 失 相 幅 噪 通 动 信 地 采 地样采 通 主 存 作 据 动准 入示 切截间入 位度 态号 脉 样 脉点样 道 要 机 真 频 、 转 一一 范 迭 动 、 动、点 技 积 量 源 温 温 格 存口口设屏驱盘存( 陷 滤 滤 串 阻 率测 数数术 时 音 度 度 式 储 备 波 波 音 抗 致 致 度 带围加换测 ::: : ::::工 波 :量 ::指 : : : : : : 双: 内不 器器压: :性性 ::增器量 器 业 标 强 : 为、、 串触 置小 控 : 陡 陡 制 ~ : : 全 频 样 : 于 制 度度: 一摸 样点 ( 状 屏 : : 并 点 样道 ~~ 电 级 位 态 ~ ~ 优软 、输 位 、、 若 点 微 于件 下 ( + + 子 双入点 干 、 机 为 阵 、 滤 盘 档 ) 道 精 波 : )时 多 、 口致 样 倍 档 为 % 、小液 点 频 可 鼠键晶 、 程 选 显 盘 标 ( ) 、 口、示 屏 光 、 样 键电( 点 盘鼠 、 、 口标 ) 等 真 彩 、 ) 50Hz 40dB 10μs 25μs 50μs 100μs 2ms 5ms 10ms 20ms 1ms 200ms A/D 24 32 144dB 0.1Hz • • • • • • • • • • • • • • • ±0.2% ±0.01ms ± 0.05% 0 9999ms 20K ≥90dB 4000Hz 1μV 72dB/ • • • •

地震勘探仪器使用教程

地震勘探仪器使用教程

地震勘探仪器使用教程胜利油田物探公司编写二OO五年三月目录第一章综述第一节地震勘探仪器的发展情况第二节地震勘探仪器的有关常用术语第二章 408UL地震仪第一节概述第二节主要窗口功能介绍第三节 408UL地震仪技术操作规程第三章 ARAM.ARIES地震仪第一节概述第二节系统结构及功能特点第三节仪器操作流程第四节 ARAM.ARIES地震仪技术操作规程附录1 采集设备维修维护的有关规定附录2 物探行业采集设备的配置标准要求第一章综述地震勘探工作基本包括激发地震波、接收记录地震波和处理解释地震资料三个方面。

每一项工作都需要使用特定的设备,才能完成预期的任务。

地震勘探仪器就是为了接收和记录地震波专门设计的一种集精密传感器技术、近代电子技术和计算机技术为一体的组合装置。

第一节地震勘探仪器的发展情况二十世纪九十年代初新型遥测地震仪器问世,在短短几年的时间里,新型遥测地震仪在品种和数量上获得突飞猛进的发展。

新型遥测地震仪器的标志是启用了频谱整形滤波器和24位的模数转换器等新技术。

新型遥测地震仪主要有:美国I/O公司推出的SYSTEM IMAGE 系统,美国FAIR FIELD公司推出的BOX系统,法国SERCEL公司推出的SN-388系统和408UL系统,加拿大GEO-X系统公司推出的ARAM.ARIES系统;日本地球科学综合研究所株式会社(JGI)推出的G.DAPS-4系统。

这些产品代表着当今国际上最先进的遥测地震数据采集系统,各有其独到之处。

本书主要对其中两种有代表性的新一代遥测地震仪的使用进行介绍。

几种主要型号地震仪的模拟性能指标对比第二节地震勘探仪器的有关常用术语一致性检查包括地震仪各通道的一致性检查(即内部脉冲测试)和接上检波器串的一致性检查(即外部脉冲测试)。

前者主要检查地震仪各通道波形、振幅和相位的一致性。

后者检查包括检波器在内的各通道波形、振幅和相位的一致性。

三分量检波器能同时记录质点运动三个分量的检波器,即垂直分量(Z),径向分量(X)和切向分量(Y)。

地震勘探仪器使用教程

地震勘探仪器使用教程

地震勘探仪器使用教程一、地震勘探仪器的种类地震勘探仪器主要有地震仪、地震传感器和地震仪器的数据处理系统。

常见的地震仪有万向测震仪、动态应变仪、低频地震记录仪等。

地震传感器有地震传感器、水平加速度计等。

数据处理系统有数据记录器、数据处理软件等。

二、地震勘探仪器的使用准备1.了解地震勘探目的和要求,明确地震测量范围。

2.根据实际情况选择合适的地震勘探仪器,并对仪器进行仔细检查和校准。

3.配备合适的电源和数据储存设备。

4.确定测量位置,并对周围环境进行必要的处理,如清除杂物、平整地面等。

三、地震勘探仪器的使用步骤1.安装仪器:根据使用说明书,将地震传感器和地震仪安装在合适的位置上。

确保仪器稳固可靠,并采取必要的防护措施,如加装护罩、避免仪器受潮等。

2.设置参数:根据地震勘探要求,调整仪器的参数,如采样频率、测量范围等。

确保参数设置正确,以获得准确的数据。

3.开始测量:启动数据记录器,开始地震测量。

根据需要进行持续观测或单次观测。

如果需要进行多个测点的观测,需要在每个测点上进行相应的操作。

4.数据处理:测量结束后,将数据存储到电脑或其他数据处理设备中。

使用数据处理软件进行数据分析和处理,以获得有意义的结果。

5.分析和解释:根据处理后的数据,进行地震波分析和解释。

结合其他地质和地球物理数据,研究地球内部的构造和运动规律。

四、地震勘探仪器的使用注意事项1.注意安全:在使用地震仪器时,要注意安全措施,如佩戴防护眼镜、手套等。

避免仪器受损或操作人员受伤。

2.仔细校准:在使用地震仪器之前,要对仪器进行仔细的校准,确保其准确性和可靠性。

3.避免干扰:在进行地震测量时,要尽量避免外界干扰,如电磁干扰、机械震动等。

选择合适的测量时间和地点,减少干扰。

4.调整参数:根据实际需要,调整仪器的参数,以获得最佳的测量结果。

如果需要连续地震观测,要选择合适的数据记录间隔和观测时间。

5.数据处理技巧:在进行数据处理时,要熟练掌握数据处理软件的使用技巧,避免误操作和误解结果。

地震勘探仪器讲解

地震勘探仪器讲解

目前地震仪器一览
目前以24位ADC仪器作为绝对主体。 特点:稳定和可靠性高;系统软/硬件功能强、指标高、
指标差距不大,各有特色。 有线传输式的网络仪器: SERCEL 408UL ;428UL ;
IMAGE; I/O-SYSTEM IV; ARAM-ARIES;SI-2000 无线数据传输仪器:BOX;Vibtech-it 数据存储式独立型地震仪器:I/O-RSR、SYSTEM-IV(VR);
• 毕竟,地震数据采集系统与地震勘探方 法的发展的需求还是距离很大,地球物 理学家也一直抱怨仪器动态范围不够。 在高分辨率勘探地质任务面前更是越来
越显示出了它的不足。
数字化的核心部件 – 模数转换器
• 于是仪器研制人员又被迫回到数字化 的核心部件 – 模数转换器来考虑问题。 当时适合地震信号数字化成的传统模 数转换通常采用逐次比较设计方案, 连续变化的模拟信号按采样频率离散 为一系列保持平定的子样,对这些子 样用类似天平称重的方法,通过加减 一系列标准的电压码来测量子样。当 比较码值的总和电压与子样电压相等 时便实现了量化。
JGI-MS-2000;BGP-3S-1 全数字式:I/O-SYSTEM IV;Sercel-408DSU
硅微机械加速度计
• 经过 15 年研制开发而生产的数字加速度计包含 两个主要部件:硅微机械加速度计和专用混合集 成电路ASIC 。硅微机械加速度计由用弹簧悬挂的 在环绕支架上的运动惯性体组成。为此应用四片 6 英吋双面抛光单晶硅片制造,中间两层构成惯 性体、支架和中心电极;上下两层则构成外层电 极并用金属热压与支架形成一体。惯性体表面外 延层光刻制成硅弹簧,在惯性体和顶底盖表面制 成金属电极与连线,从而在惯性体表面与顶底盖 之间形成了电容器。整个芯体案大约 6.5MM × 5.5MM × 2MM,真空陶瓷封装。

地震勘探仪器简介

地震勘探仪器简介

• 2.集中式的数据采集系统
• 对于一个地震信号的记录通道,是把检波器接收的信号通过电缆输至 前放、瞬时浮点放大器(主放)、模数转换器(A/D)记录器等数据 采集部件,即把信号的处理(前放滤波)、数字化(主放、A/D转换) 和记录(格式编排与磁带记录)集中在中心站(主机),故常规地震 仪又称为集中式数据采集系统。对于模拟信号的处理电路是多路并行 通道,而其后的信号的数字化、编排等则是一路串行通道。
检波器
前放Leabharlann 滤波器多路开 关主放
模数转 换
传统的采集电路
检波器
前 放
模数转换
新一代仪器的采集电路
• 目前,大家所说的新一代遥测地震仪主 要是指第二种,这类仪器的主要标志是 去掉了以前仪器中的模拟滤波器、转换 开关、主放等模拟部件,出现了定点的 24位A/D转换器,该类仪器具有以下几方 面的优点:
• 1.提高了信号的保真度 • 由于去掉了模拟滤波器,就消除了该部件相位移所造成的零相位子波 畸变的问题。各地震道信号的相位与频率无关,也就是为线性相位或 零相位,从而提高了地震信号的保真度。 • 2.仪器的技术指标先进 • 由于取消了模拟滤波器、主放等模拟部件,使各地震道内的电路大为 简化,从而使各地震道内的性能指标(等效输入噪声、漂移、谐波畸 变、串音、动态范围等)得到了很大的提高。
三 新一代遥测地震仪
• 这里所指的新一代遥测地震仪是指1991年以后生 产的仪器,它又可分为两种类型。一种是1991年 美国的I/O公司生产的第一代System Two仪器,它 是一种有线遥测系统,与常规地震仪相比,它取 消了多路转换开关和浮点放大器,采用了24位的 A/D转换器,详见下图。另一种是舍塞尔公司在 1992年生产的SN388仪器和第二代System Two仪器, 这两种仪器与上一种仪器相比又取消了模拟滤波 部件。类似的仪器还有美国HGS公司1992年生产的 VISION,法佛尔德公司生产的Telseis Star等。

地球物理勘探仪器的测量原理

地球物理勘探仪器的测量原理

地球物理勘探仪器的测量原理地球物理勘探是一种通过测量地球物理现象来了解地球内部结构和性质的科学方法。

在地球物理勘探中,仪器是不可或缺的工具,它们通过测量地球物理参数来获取有关地球内部的信息。

本文将介绍几种常见的地球物理勘探仪器及其测量原理。

一、地震仪地震仪是地球物理勘探中最常用的仪器之一。

它的测量原理基于地震波的传播和反射。

地震波是由地震源产生的能量波动,经过地球内部的传播后,会在地下的不同介质中发生反射、折射和散射。

地震仪通过测量地震波的传播时间和振幅变化来推断地下介质的性质和结构。

常见的地震仪包括地震记录仪和地震传感器。

二、重力仪重力仪是测量地球重力场的仪器。

它的测量原理基于物体在地球重力作用下的加速度差异。

重力仪通过测量物体的加速度变化来计算地球的重力场强度。

在地球物理勘探中,重力仪被广泛应用于测量地下物质的密度变化。

密度较大的物质会引起局部的重力异常,通过重力仪的测量可以推断出地下的密度分布情况。

三、磁力仪磁力仪是测量地球磁场的仪器。

地球具有一个磁场,磁力仪通过测量磁场的强度和方向来推断地下的磁性物质分布。

磁力仪的测量原理基于磁感应定律,当磁场中存在磁性物质时,它会产生磁感应强度的变化。

通过测量磁场的变化,可以获取地下磁性物质的分布情况。

磁力仪在地球物理勘探中广泛应用于寻找矿产资源和地下构造的研究。

四、电磁仪电磁仪是测量地球电磁场的仪器。

地球的电磁场是由地球内部的电流体所产生的,电磁仪通过测量地球电磁场的强度和频率来推断地下的电导率分布。

地下的电导率分布与地下介质的性质有关,通过电磁仪的测量可以获取地下介质的电导率信息。

电磁仪在地球物理勘探中被广泛应用于寻找地下水资源、矿产资源和地下构造的研究。

总结起来,地球物理勘探仪器的测量原理涉及地震波传播、重力场、磁场和电磁场的测量。

通过这些仪器的测量,可以获取地下介质的性质和结构信息,为地质勘探、资源勘探和环境调查等提供重要的科学依据。

随着技术的不断发展,地球物理勘探仪器的测量精度和分辨率将进一步提高,为我们对地球内部的认识提供更多的突破。

工程地震勘探仪器设备简介

工程地震勘探仪器设备简介

1/4, 1/2, 12 90Hz 等 300Hz 等 1, 2, 4ms 0.5-4000Hz 20 通频带内可调 0.5-4000Hz 通频带内可调 30s-2ms 138dB 大于 66dB
DHR-2400
美国 I/O 公司
24 122dB
北京水电物探 SWS-2 * 研 究 所 1-48
浮点大于 138dB
浮点 放大器
AUX
逻辑控制 自动增益 图 1.3.1 数字地震仪的方框图
回 放 系 统
打 印 CRT 显示
3.1.2 常用仪器及性能指标 常用于浅层及中浅层地震勘探和工程检测的仪器性能指标见表 1.3.1。表中所列仪器为 外国厂家生产的主流仪器和部分国产仪器, 从实际勘探考虑, 目前对地震仪的要求主要有下 述几点: ①可选择、可扩展的仪器道数和激发方式。 ②较宽的通频带以及灵活多样的滤波方式。 ③采用瞬时浮点增益放大器的主放,前置放大倍数可选。 ④较大的动态范围,A/D 转换器最好在 12 位以上,并具有信号增强功能。 ⑤范围较广的采样率,即从 s 级→ms 级。 ⑥灵活多样的存储、记录和显示方式。 ⑦带微机或微处理器及实时处理系统。 ⑧具有一机多用的性能。 表 1.3.1 中的主要参数说明如下: ①增益:即以分贝数表示的输出信号和输入信号的振幅之比。其表达式为: A K (dB) 20 lg 2 (1.3.1) A1 式中:A2 为输出信号的振幅,A1 为输入信号的振幅。 在主放中主要有两种增益形式, 其一为固定增益, 其增益值不能随信号的强弱自动跟踪 变化,只能手动预置;其二为瞬时自动增益,它克服了固定增益的弱点,对强弱信号自动给 予最佳的增益进行放大。 ②A/D 转换器: 它是一个将来自放大系统的模拟信号转换为数字信号的装置。 其输出为一系列用二进制

野外地震勘察仪器原理、结构与使用

野外地震勘察仪器原理、结构与使用

地震勘探仪器原理与结构5.1地震勘探仪器的任务、研究方法一、地震勘探仪器的任务、研究方法所谓地震勘探就是用人工方法激发地震波,研究地震波在地层中传播的规律,以查明地下的地质情况,为寻找油气田或其它勘探目的服务的一种物探方法。

与其它物探方法相比,地震勘探具有精度高、分辨率高、勘探深度大等优点,因此,已成为石油勘探中一种最有效的勘探方法。

在西方发达国家,石油勘探方面总投资的90%用于地震勘探。

在我国,自大庆油田发现以来,新发现的油田有90%是用地震勘探的方法找到的。

目前在我国的石油物探队伍中,绝大部分是地震队。

地震勘探基本上可分为野外数据采集、室内资料处理、地震资料解释三个阶段。

每一个阶段都需要使用一定的设备才能完成预期的任务。

没有这些设备作为工具和手段,地震勘探理论再完善也不能付诸实施,当然也就达不到勘探的目的。

地震勘探装备是地震勘探的物质基础。

事实上,一个国家勘探装备的状况,在很大程度上反映了这个国家的石油勘探水平。

地震勘探装备种类很多,涉及的范围很广。

其中直接用于野外地震数据采集的专用设备称之为地震勘探仪器。

地震勘探仪器的任务是将由震源激发的,并经地层传播反射回地表的地震波接收和记录下来。

从这个意义上来讲,地震勘探仪器主要包括检波器和记录仪器。

检波器接收地露波并把它转换成电信号,记录仪器对地震电信号进行放大滤波再把它记录下来,成为野外地震记录。

地震勘探第一阶段(野外数据采集阶段)的最终成果,就是地震勘探仪器产生的野外地震记录。

这些野外地震记录是地震勘探的资料处理和资料解释的原始依据和工作基础。

地震勘探仪器本身性能好坏和使用是否恰当,直接影响地震记录质量,也就必然影响到后期资料处理和资料解释工作,最终势必影响到地震勘探效果。

所以,地震勘探仪器是地震勘探装备中员基础的设备,也是最关键、最重要的设备。

正是由于地震勘探仪器在地震勘探中有很重要的地位和作用,所以地震勘探仪器原理历来是地震勘探这门学科中一个不可分割的内容。

地震勘探3-仪器与工作方法

地震勘探3-仪器与工作方法

目前地震仪的要求主要有以下几点:
(1)可选择、可扩展的仪器道数和激发方式; (2)较宽的通频带以及灵活多样的滤波方式; (3)前置放大倍数可选; (4)范围较广的采样率; (5)灵活多样的存储、记录和显示方式; (6)带微机或微处理器及实时处理系统; (7)具有一机多用的性能
浅 层 地 震 仪
2. 震源(source)
动圈式速度检波器
CDJ-Z 4-100赫垂直 检波器
CDJ-P 4-100赫水平 检波器
浅震仪及其野外工作布置
二、野外观测系统


在地震勘探现场采集中,为了压制干扰波和 确保对有效波进行追踪,激发点和接收点之 间的排列及各排列的位置都应保持一定的相 对关系,这种激发点和接收点之间以及排列 和排列之间的位置关系,称之为观测系统。 不同的方法采取不同的观测系统。
(5)可控震源
2.
检波器
检波器又称拾震器,是把地震波到达所引起地面 微弱震动转换成电信号的换能装置。主要由线圈、 弹簧片和磁钢将发生相对运动而产生和震动周期 相对应的感应电流信号,通过专门仪器可将这信 号放大并记录下来,从而拾取到地震波,这类检 波器输出的信号电压和其震动时的速度有关,因 此又称速度检波器。
O5
O6
D’
4
8
12
16
20
24
D
三、影响采集质量的因素 有效波与干扰波
在数据采集中,埋置于地面的检波器可接收 来自于地下多种波的扰动,其中只有可用于解决 所提出的地质任务的波才称为有效波,所有妨碍 有效波识别和追踪的其它波称为干扰波。
除正确地选用震源、仪器和合理地布置观测系 统外,其它采集条件和工作参数的选择也很重要。 如测线的布置,覆盖次数和道间距的确定以及仪器 的增益、通频带和扫描时间等参数的选定等都会直 接影响野外数据采集工作的质量。 因此,一个新工区在进行正式工作之前,应作 一定的试验研究工作,对区内各种干扰波和有效波 的分布特点进行研究,分析各种波在时空域中的相 对关系,以及它们在频率和视速度方面的差异。

勘测仪器原理知识点总结

勘测仪器原理知识点总结

勘测仪器原理知识点总结一、引言勘测仪器是指用于测量地球表面和地下的各种物理量和特性的仪器,通常用于地质勘探、地图测绘、土地利用规划以及地下资源勘察等领域。

勘测仪器通过测量地面或地下的各种物理参数,可以帮助人们更加全面和准确地了解地球的形态、结构和物性,为人类社会的发展和资源利用提供重要的科学依据。

本文将从地震勘测仪器、地电勘测仪器、地磁勘测仪器等角度出发,系统总结勘测仪器的原理知识点,并结合具体的应用案例进行分析。

二、地震勘测仪器原理地震勘测仪器是利用地震波在地下传播的特性,测量地下介质的物理参数,如速度、密度、弹性模量等,以了解地下结构和岩石性质的仪器。

地震勘测仪器主要包括地震仪、地震检波器、数据采集系统等部分。

地震勘测仪器的工作原理主要包括地震波的发射、传播和接收三个环节。

1. 发射地震波地震勘测仪器通过地震仪产生人工地震波,通常采用爆破或振动器震源。

在进行地震勘测前,需要根据勘测区域的地质条件和勘测目标的深度,选取合适的震源能量和震源类型。

通过不同形式的震源能量和震源类型,可以产生不同频率和波长的地震波,从而实现对地下某一深度范围内的物理参数进行检测。

2. 地震波的传播地震波在地下传播时会受到地下介质的物理参数的影响,这些影响会导致地震波的速度、波形和能量发生变化。

地震波在地下传播过程中,主要包括纵波和横波两种类型,它们的传播速度和能量损失程度也各不相同。

利用这些差异性,地震勘测仪器可以根据地震波在地下传播的情况,推断出地下介质的物理参数。

3. 接收地震波地震检波器是地震波的接受器,在接收地震波的过程中,地震检波器可以将地震波的能量转换成电信号,再经过放大和数字化处理,最终通过数据采集系统记录和存储。

地震波接收的信号质量和检波器的灵敏度和频率响应特性密切相关,因此地震检波器的选择和布设布局对勘测成果的质量具有重要影响。

应用案例:地震勘测仪器在矿产勘察中的应用地震勘测仪器在矿产勘察中具有广泛的应用,特别是在矿区的地质构造、矿床预测和矿体勘查等方面。

勘测师行业工作中的地球物理勘测方法与仪器

勘测师行业工作中的地球物理勘测方法与仪器

勘测师行业工作中的地球物理勘测方法与仪器地球物理勘测是勘测师行业中一种常用的工作方法,通过使用各类仪器设备,对地下的物理性质进行探测和分析,以便更好地了解地下构造与地质特征。

本文将介绍勘测师行业工作中常用的地球物理勘测方法与仪器。

一、地震勘测方法与仪器地震勘测是地球物理勘测中最常用的方法之一,它利用地震波在地壳中传播的特点,通过记录地震波的传播速度、振幅和反射、折射等现象,来推断地下岩石的性质和分布。

在地震勘测中,常用的仪器有地震仪、地震记录仪等。

地震仪是一种测量地震波传播速度的仪器,它通过测量地震波的到达时间和震中距离,来计算地震波的传播速度。

地震记录仪则用于记录地震波的振幅和波形,通过分析地震记录,可以获得地下岩石的界面信息。

二、电磁勘测方法与仪器电磁勘测是另一种常用的地球物理勘测方法,它利用地下物质对电磁场的响应,来推断地下的物性参数。

常见的电磁勘测方法包括电阻率法、磁法和电磁波测深法等。

在电磁勘测中,常用的仪器有电磁测深仪、电磁感应仪等。

电磁测深仪是一种测量地下电磁场分布的仪器,它利用电磁感应原理,通过测量地下电阻率差异,来确定地下构造的变化。

电磁感应仪则用于测量地下物质对电磁波的响应,通过分析电磁波的反射、透射等现象,可以推断地下物质的性质。

三、重力与磁力勘测方法与仪器重力和磁力勘测是利用地球重力场和地磁场的变化,来推断地下物质性质的方法。

重力勘测主要用于测量地下岩石的密度差异,从而推断地下岩石的分布情况。

磁力勘测则主要用于测量地下岩石的磁性差异,以此推断地下岩石的性质和构造。

常用的仪器有重力仪和磁力计。

重力仪是一种测量地球重力场的仪器,它通过测量地球重力场的强度和方向,来推断地下岩石的密度分布情况。

磁力计则是一种测量地磁场强度和方向的仪器,通过分析地磁场的变化,可以推断地下岩石的磁性特征。

综上所述,地球物理勘测方法与仪器在勘测师行业中起着重要的作用。

地震勘测、电磁勘测、重力与磁力勘测是常用的地球物理勘测方法,而地震仪、地震记录仪、电磁测深仪、电磁感应仪、重力仪和磁力计是常见的地球物理勘测仪器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地震勘探仪器 -应用技术分析与发展
2012年7月
地球物理勘探数字化
• 自数字计算机问世以来的半个多世纪中, 人们越发地强调用数字精确地量化各种 物理量,用数字来传递一切信息,因此 各行各业纷纷发展数字化技术,从而带 动了微电子和计算机技术的飞速发展。 地球物理勘探从六十年代提出数字化, 先行官便是数字地震仪。
无线遥测地震仪采集技术
• 除了有线遥测地震仪,最初的无线遥测地 震仪采集技术则体现在美国公司的OPSEIS 5586 和TELESEIS以及法国地球科学院的 MYRISEIS,这几种仪器中,无线遥测以在 空中传播的电磁波作为数据传输介质,采 集道容量已不受限制,人们也常称这种地 震仪为万道地震仪,但数据传输率还是有 限的,每放一炮,数传时间较长,牺牲了 野外生产效率,采用多频窄带并行传输数 据,但仪器庞杂,可靠性受到一定影响。
数据传输采纳网络结构
• 法国 SERCEL 的 408UL 的数据传输也采纳 了网络结构,将采集系统的各个部分均视 为网络结点。形成“地震区域网络”,灵 活可靠地实现地震数据的传输交换,而这 一切都有幸于计算机网络通讯技术的飞速 发展以及 TCP/IP、IPX 等先进重要通讯协 议对信息高速公路的贡献
遥测地震仪快速发展
• 二十世纪后八年的遥测地震仪的发展, 更加现代化,更加快速,更加全球化, 日本、德国、俄罗斯和我国也都各自 造出了技术水平较高的 24 位遥测地 震仪,无线遥测仪器则有 OPSEISEAGLE 和 BOX,而 BOX 仪器 的新技 术应用和制造工艺更是表现得极为优 秀。
数字地震仪三次更新换代
瞬时浮点放大器的弊端
• 随后人们开始认识到瞬时浮点放大器 的弊端,既是对在低频大信号上叠加 的高频小信号起平滑作用而不利于高 频信号的采集。恰好在这个时候微电 子器件中 Δ—Σ 过采样模数转换器 问世,从而使此问题迎刃而解。Δ— Σ 模数转换器的理论在七十年代就已 提出.
• 这种模数转换技术可以使用易于制造的
• 美国I/O 公司的 SYSTEMⅡ,SYSTEM 2000,IMAGE,法国 SERCEL 公司的 SN388,408UL 等优质品牌的遥测数 字地震仪迅速占领了市场,基本上 满足了地球物理勘探的需求。值得 一提的是加拿大 GEO-X 公司推出了 具有网络数传结构的 ARAM-24 仪器, 随后又更新推出 ARAM-ARIES 型号。
• 毕竟,地震数据采集系统与地震勘探方 法的发展的需求还是距离很大,地球物 理学家也一直抱怨仪器动态范围不够。 在高分辨率勘探地质任务面前更– 模数转换器
• 于是仪器研制人员又被迫回到数字化 的核心部件 – 模数转换器来考虑问题。 当时适合地震信号数字化成的传统模 数转换通常采用逐次比较设计方案, 连续变化的模拟信号按采样频率离散 为一系列保持平定的子样,对这些子 样用类似天平称重的方法,通过加减 一系列标准的电压码来测量子样。当 比较码值的总和电压与子样电压相等 时便实现了量化。
微电子工业和计算机工业最新技术
• 二十世纪六十年代初到九十年代初的三十 年中,地震勘探数字化取得了惊人的进展, 微电子工业和计算机工业中飞速发展的高 新技术作出了突出贡献,令人叹为观止的 新型仪器层出不穷。从起初的 24 道发展 到了千道以上,数字计算机控制、数据传 输和数据实时分析处理都体现出了当时的 最新技术。
地球物理学家要求提高采集道数
当地球物理学家迫切要求提高采集道数以适应三维 勘探需要时,多年来应运而生的就是千道,万道, 甚至是十万道仪器开发问市。同时,增加道容量 的需求,提高信噪比和瞬时动态范围以及进一步 彻底数字化的设计思想,便使数字地震仪从集中 式采集系统结构转向了分布式节点型采集系统结 构。
• 这种传统模数转换所用的线路包括电压 码生成、子样保持、以及比较等均为模 拟线路,而模拟线路的精度要靠复杂严 格的制造工艺来有限度地保证,而且受 时效和温度变化的影响很大,例如产生 标准电压码所用衰减电路的精密电阻, 选用材料苛刻,且需极为复杂严格的工 艺制造。因此传统的十六位模数转化器 最优线性度只能达到万分之一,畸变最 好指标也不过是万分之五,动态范围大 约 80dB 左右。
• 这四十年大体分为三个阶段,三次 更新换代:
• 1962 — 1980,集中式 48 道 120 道数字地震仪;
• 1980—1992,16位遥测地震仪; • 1992—2007,24位遥测地震仪。
• 由于油气能源的需求,以及地震勘探工 作日益加剧的高成本、高风险、高难度, 人们不断寻求高保真地采集地震数据以 解决地质任务的装备与方法。更新换代 的步伐越来越快。一直努力寻求彻底数 字化,不断地革除复杂的模拟部件,代 之以先进的、高精度的数字化装置。在 不到八年的时间里,便完成了 Δ—Σ 24位遥测数字地震仪的更新换代。
宽容限模拟元件,但需要快速和非常复
杂的数字信号处理。仅仅由于应用了与
微处理机芯片同步发展的微电子超大规 模计算芯片才使 Δ—Σ 模数转换器得 以投入使用。动态达 120dB 的Δ—Σ 模数转换器使仪器研制者彻底停用了瞬
时浮点放大器这一模拟部件,也去除了
繁琐的各种模拟滤波器
瞬时动态范围的新概念
• 瞬时动态范围的新概念:即在同一 采样间隔内能够记录到的不同频率 的最大信号与最小信号之比。1992 年I/O 公司率先造出了采用 Δ— Σ 模数转换器进行数字化的系统 Ⅱ仪器。在随后的八年中,地震数 据采集系统又经历了一次更新换代
地震信号传感器
• 关键是地震信号传感器这一环节在半个世 纪以来确实一直徘徊不前,未能摆脱动圈 式机电转换的机理。比如地震队成千上万 使用的 GS-20DX 检波器是三十年前研制的 产品,七十年代初,当数字地震仪推广使 用时,为了与数字地震仪相配套,人们曾 把 GS-20DX 检波器称为“数字检波器”, 顾名思义完全牵强附会,只不过是这种检 波器性能指标比以往检波器要高,频带要 宽,质量控制严格,可以配合数字仪使用。 但确实是一种不折不扣的机电模拟产品。
新技术数传
• .然而随之而来的各种新推出的遥测地震仪, 由于不断引入电子工业中的有线数据传输 和无线数据传输(电台)等新技术却大有 作为。人们对扁平道馈采集线设备、双扭线、同轴电 缆、光导纤维等各种有线传输介质都在遥 测数字地震仪中作了尝试,并为提高数传 速率增加单线道容量,保证可靠稳定性等 方面作了大量努力。
相关文档
最新文档