切线证明的常用方法ppt课件

合集下载

《切线的判定》课件

《切线的判定》课件

切线与过切点的半径所在的直 线相互垂直。
02
切线的判定方法
利用定义判定切线
总结词:直接验证
详细描述:根据切线的定义,如果直线与圆只有一个公共点,则该直线为圆的切 线。因此,可以通过验证直线与圆的交点数量来判断是否为切线。
利用切线的性质判定切线
总结词:半径垂直
详细描述:切线与过切点的半径垂直,因此,如果已知过切点的半径,可以通过验证直线与半径的夹角是否为直角来判断是 否为切线。
切线判定定理的变种
切线判定定理的变种
除了标准的切线判定定理,还存在一些变种,如利用切线的 性质来判断是否为切线,或者利用已知点和切线的性质来判 断未知点是否在曲线上。
切线判定定理的应用
切线判定定理在几何证明题中有着广泛的应用,如证明某直 线为圆的切线,或者判断某点是否在曲线上。这些应用都需 要熟练掌握切线判定定理及其变种。
04
切线判定定理的证明
定理的证明过程
第一步
根据题目已知条件,画 出图形,标出已知点和
未知点。
第二步
根据切线的定义,连接 已知点和未知点,并作
出过这两点的割线。
第三步
根据切线和割线的性质 ,证明割线与圆只有一 个交点,即证明割线是
圆的切线。
第四步
根据切线的判定定理, 如果一条割线满足上述 性质,则这条割线是圆
切线判定定理在其他领域的应用
物理学中的应用
在物理学中,切线判定定理可以应用于研究曲线运动和力的分析。例如,在分析物体在曲线轨道上的 运动时,可以利用切线判定定理来判断物体的运动轨迹是否与轨道相切。
工程学中的应用
在工程学中,切线判定定理可以应用于机械设计和流体力学等领域。例如,在机械设计中,可以利用 切线判定定理来判断曲轴是否与轴承相切,从而避免轴承的损坏。在流体力学中,可以利用切线判定 定理来判断流体是否沿着流线流动。

课件_人教版数学九上:切线的判定定理PPT课件_优秀版

课件_人教版数学九上:切线的判定定理PPT课件_优秀版

无交点,作垂直,证半径
有交点,连半径,证垂直
(2)无交点, 作垂直,证半径. 有交点,连半径,证垂直

有交点,连半径,证垂直
2、已知如图△ABC内接于⊙O,过点A作直线EF,AB为直径,还需添加的条件是_____.
DB
⊙O。求证:⊙O与AC相切。 二、圆心到直线的距离与半径作比较(d r法常用)
求证:AB是⊙O的切线.
(1)过半径的外端的直线是圆的切线( ) ∵ ∠1 = 45°,AT=AB 无交点,作垂直,证半径
例1、如图 AB是⊙O的直径,∠ABT=45°AT=AB,求证:AT 是⊙O的切线. 2、已知如图△ABC内接于⊙O,过点A作直线EF,AB为直径,还需添加的条件是_____. 例3、 如图,已知:O为∠BAC平分线上一 有交点,连半径,证垂直
2无、交已点知,如作图垂△直A,BC证内半接径于⊙O,过点A作O直线EF,AB为直径,还需添加O的条件是_____.
O
练(2)习无3交、点如, 图作,垂AB直是,证⊙半O的径直l. 径,点D在AB的r 延长线上,BD=OB,点C在⊙O上r, ∠CAB=30°. l
r
l

O

l
A
A
A
A
2、已知如图△ABC内接于⊙O,过点A作直线 EF,AB为直径,还需添加的条A件B是⊥_E_F___.使 得EF是⊙O的切线。
练习3、如图,AB是⊙O的直径,点D在AB的延 长线上,BD=OB,点C在⊙O上, ∠CAB=30°.
求证:DC是⊙O的切线. 有交点,连半径,证垂直
有交点,连半径,证垂直
(1)有交点,连半径,证垂直.
2、已知如图△ABC内接于⊙O,过点A作直线EF,AB为直径,还需添加的条件是_____.

圆的切线证明ppt课件

圆的切线证明ppt课件

A
o
E
C
D
B
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
例4
7
如图,在△ABC中,AB=AC,以AB为直径的⊙o交BC与D,交AC 于E,⊙o的切线BF交OD延长线于F,连结EF,求证:EF与⊙o 相切。
A
E
A
o
C E
B
D F
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
例2
4
如图,AB是⊙o的弦,点C是⊙o外一点,OC交AB于D, OA⊥OC,CD=CB.求证:CB是⊙o的切线。
A
oD
C
B
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
A o
P
2
切线 垂直 半径
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
例1
3
如图,⊙o中,AB是圆的一条直径,CD是⊙o的一条弦交AB于 点E,且AB垂直于CD,过点B做BF∥CD交AD延长线与F,求证: BF是⊙o的切线。
9
不知道直线与圆是否有公共点
做垂直 证半径
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
例5
10
如图,已知△ABC是等腰三角形,O是底边BC的中点, ⊙o与腰 AB相切与点D,求证: AC与⊙o相切。

切线的判定与性质ppt课件

切线的判定与性质ppt课件

证明:过O作 OC⊥AB,垂足为C.
因为OA=OB=5cm ,AB=8cm,
所以AC=BC=4cm.
在Rt∆AOC 中 OC= √OA2-AC2=3 cm
又因为O的直径为6cm
故 OC的 长 等 于 ☉ O的 半 径 3 cm.
∴ AB 与☉O相切
10
例1 如图,已知:直线AB经过⊙O上的点C,
并且OA=OB,CA=CB。
求证: AB是⊙O的切线.
A
F
E
B
O
C
14
3、如图,AB是⊙O的直径,点D在AB的延长线 上,BD=OB,点C在⊙O上, ∠CAB=30°.
求证:DC是⊙O的切线.
C A OBD
15
如图,如果直线l是⊙O的切线,切点为A, 那么半径OA与直线l是不是一定垂直呢?
∵ l是⊙O的切线,切点为A O
∴ l ⊥OA
直线是圆的切线.
(2)根据圆心到直线的距离来判定,即与圆心的 距离等于圆的半径的直线是圆的切线.
(3)根据切线的判定定理来判定.
其中(2)和(3)本质相同,只是表达形式不同
.解题时,灵活选用其中之一.
21
切线的性质定理: 圆的 切线垂直于过切点的半径。
O
l
A
22
证明:连结0C ∵0A=0B ,CA=CB , ∴0C是等腰三角形0AB底边AB上
的中线.
. ∴AB⊥OC. 直线AB经过半径0C的外端 C 并且垂直于半径0C , 所以 AB是⊙O的切线.
分析:因为已知条件没给出AB和⊙O 有公共点,所以可过圆心O作
OC⊥AB,垂足为C.只需证明OC等 于⊙O的半径3厘米即可.
(1)如果已知直线经过圆上一点,则连结这点和圆 心,得到辅助半径,再证所作半径与这直线垂直.

切线的判定PPT课件

切线的判定PPT课件

?
代表阶级利益:地主阶级

宣传手段:前者著书,后者实践办厂;
实践效果 结果 作用
洋务运动的影响
1、引进西方先进科技和工具 2、培养科技人员和技术工人 3、刺激民族资本主义发展 4、一定程度抵制外国经济扩张 5、在改革封建教育制度上打开了缺口
失败标志:甲午中日战争的失败 失败原因:单纯引进西方先进技术和设备,而
② 梁启超
A. 代表作:《变法通议》 B. 主张:
抨击 ……2 宣传 ……3 今日策中国者,必曰兴民权。 (1873——1929) 变法之本,在育人才,人才之兴,在开学 校,学校之立,在变科举,而一切要其大 成,在变官制。
3、维新思想的传播 ——与封建顽固势力的论战
① 原因:维新思想传播遭到封建顽固势力反对
实践 掀起洋务运动 影响
掀起维新变法 思想启蒙
思考: 维新变法思想的性质、目的、失败原因
求证:直线AB是⊙O的切线. O
证明:连结OC(如图)
∵ OA=OB,CA=CB
A
C
B
∴ OC是等腰三角形OAB底边AB上的中线
∴ AB⊥OC
∵ OC是⊙O的半径
∴ AB是⊙O的切线.
〖例2〗
已知:O为∠BAC平分线上一点,OD⊥AB于D,
以O为圆心,OD为半径作⊙O.
求证:⊙O与AC相切.
证明:过O作OE⊥AC于E
用判定O定理时,要注O意直线须具备O以
l下两个r 条件,缺一不可r : l
l r
(1)直线经过半径的外端;
(2)A直线与这条半A径垂直。 A
1.已知⊙A的直径为6,点A的坐标
为(-3,-4),则⊙A与x 轴的位
置关系是_相__离__,⊙A与y 轴的位置
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
变式练习
例:如图,在△ABC中,以AB为直径的⊙O交 AC于点M,弦MN∥BC交AB于点E,且ME=1, AM=2,AE= 3.求证:BC是⊙O的切线;
证明:∵在△AME中,AM=2,ME=1,AE= 3, ∴AM2=ME2+AE2, ∴△AME是直角三角形,∴∠AEM=90°, 又∵MN∥BC, ∴∠ABC=90°, ∴AB⊥BC, 而AB为直径, ∴BC是⊙O的切线;
优翼微课

初中数学知识点精讲课程
切线证明的常用方法
1
1、圆的切线的判定方法有三种: ①.定义法:直线l 与圆只有唯一的公共点 ②.距离法:圆心O与直线l 的距离d=r ③.切线的判定定理:经过半径的外端并且垂直于这条半径的直 线是圆的切线。 2、切线的证明方法: ①.圆与直线的公共点没有标明字母,则过圆心作直线的垂线段 为辅助线,再证垂线段的长等于半径的长。简记为:作垂直,证 半径。 ②.圆与直线的公共点标明字母,则连这个点和圆心得到辅助半 径,再证所作半径与这条直线垂直。简记为:连半径,证垂直。
5
典例精讲
类型二:无切点,作垂直,证半径
例:如图,点O在∠APB的平分线上,⊙O与PA相切于点C. 求证:直线PB也与⊙O相切; 证明:过点O作OD⊥PB于点D,连接OC, ∵PA切⊙O于点C, ∴OC⊥PA, 又∵点O在∠APB的角平分线上, ∴OC=OD,即OD的长等于⊙O的半径, ∴PB与⊙O相切;
6
课堂小结
切线证明的常用 方法
有切点,连半径, 证垂直
无切点,作垂 直,证半径
7
2
典例精讲
类型一: 有切点,连半径,证垂直
如图,⊙O是△ABC的外接圆,BC为⊙O直径, 作∠CAD=∠B,且点D在BC的延长线上.求证: 直线AD是⊙O的切线.
3ห้องสมุดไป่ตู้
典例精讲
类型一: 有切点,连半径,证垂直
证明:连结OA,如图, ∵BC为⊙O直径,∴∠BAC=90°, ∴∠B+∠ACB=90°, 而OC=OA,∴∠ACB=∠OAC, ∴∠B+∠OAC=90°, ∵∠CAD=∠B, ∴∠CAD+∠OAC=90°,即∠OAD=90°, ∴OA⊥AD, ∴直线AD是⊙O的切线.
相关文档
最新文档