4.3 圆轴扭转时的变形计算

合集下载

圆 轴扭转时的变形和刚度计算

圆 轴扭转时的变形和刚度计算

a<[
]
60MP
a
可见强度满足要求。
目录
扭转\圆轴扭转时的变形和刚度计算
4)刚度校核。轴的单位长度最大扭转角为

max
Tmax GIp
180=
2.86103 N m
π 80109 P a 6.44106
m4
180 3.14
=0.318 / m 1.1 / m
可见刚度也满足要求。
目录
扭转\圆轴扭转时的变形和刚度计算
【例3.6】 一钢制传动圆轴。材料的切变模量G=79×103MPa,
许用切应力[τ]= 88.2 MPa,单位长度许用扭转角 0.5 /m,承受
的扭矩为T = 39.6 kN·m。试根据强度条件和刚度条件设计圆轴的直 径D。
【解】 1)按强度条件设计圆轴的直径。由强度条件
=Tmax W max
床的加工精度;机器的传动轴如有过大的扭转变形,将使机器在运
转时产生较大振动。因此,必须对轴的扭转变形加以限制,即使其
满足刚度条件:
=Tmax max GIp
式中:[ ]——单位长度许用扭转角,单位为rad/m,其数值是由轴
上荷载的性质及轴的工作条件等因素决定的,可从有关设计手册中
查到。在工程实际中,[ ]的单位通常为 /m ,因而刚度条件变为
Gπ2[ ]
3 21 8 0 3 9.6 1 03
79109 2 0.5 m 0.156m 156mm
故取D=160mm,显然轴能同时满足强度条件和刚度条件。
目录
力学
该轴的强度和刚度。
目录
扭转\圆轴扭转时的变形和刚度计算
【解】 1)计算外力偶矩。
M eA
9549

第四章 扭转(张新占主编 材料力学)

第四章 扭转(张新占主编 材料力学)

2M A M e M B 0 (2)
联立式(1)与式(2),得
Me MB 3
MA MB Me 3
26
4.6 等直圆轴扭转时的应变能
圆轴在外力偶作用下发生扭转变形,轴内将积蓄应变能。这种 应变能在数值上等于外力所做的功。
T1 在位移 d1上所做的功为 dW T1d1
PB M eB M eC 9549 n 796(N m) PA M eA 9549 1910(N m) n PD M eD 9549 318(N m) n
5
(2)求扭矩(扭矩按正方向假设) 1-1 截面
M M M
x
0
T1 M eB 0
T1 M eB 796N m
d1 85.3 mm
取 d1 85.3 mm。 BC段:同理,由扭转强度条件得 d2 67.4 mm ,由扭转刚度条件得
d 2 74.4 mm
取 d 2 74.4 mm。
23
(2)将轴改为空心圆轴后,根据强度条件和刚度条件确定轴的 外径D。 由强度条件得 D 96.3 mm 由刚度条件得 D 97.3 mm 取 D 97.3 mm ,则内径为
T Me
M e RdA RRd 2R 2
A 0
2
Me 2 2R
8
二、切应力互等定理
M
z
0
(dy)dx ( dx)dy
得到

切应力互等定理:在单元体在相互垂直的一对平面上,切应力 同时存在,数值相等,且都垂直于两个平面的交线,方向共同 指向或共同背离这一交线。 纯剪应力状态:单元体上四个侧面上只有切应力,而无正应力 作用

04、基本知识 怎样推导轴向拉压和扭转的应力公式、变形公式(供参考)

04、基本知识 怎样推导轴向拉压和扭转的应力公式、变形公式(供参考)

04、基本知识 怎样推导轴向拉压和扭转的应力公式、变形公式(供参考)同学们学习下面内容后,一定要向老师回信(****************),说出你对本资料的看法(收获、不懂的地方、资料有错的地方),以便考核你的平时成绩和改进我的工作。

回信请注明班级和学号的后面三位数。

1 * 问题的提出 ........................................................................................................................... 1 2 下面就用统一的步骤,研究轴向拉压和扭转的应力公式和变形公式。

........................... 2 3 1.1 轴向拉压杆的应力公式推导 ............................................................................................ 2 4 1.2 轴向拉压杆的变形公式推导 ............................................................................................ 4 5 1.3 轴向拉压杆应力公式和变形公式的简要推导 ................................................................ 4 6 1.4 轴向拉压杆的强度条件、刚度条件的建立 .................................................................... 4 7 2.1 扭转轴的应力公式推导 .................................................................................................... 5 8 2.2 扭转轴的变形公式推导 .................................................................................................... 7 9 2.3 扭转轴应力公式和变形公式的简要推导 ........................................................................ 7 10 2.4 扭转的强度条件、刚度条件的建立 ............................................................................ 8 11 3. 轴向拉压、扭转、梁的弯曲剪切,应力公式和变形公式推导汇总表 .. (9)1* 问题的提出在材料力学里,分析杆件的强度和刚度是十分重要的,它们是材料力学的核心内容。

圆轴扭转的受力特点和变形特点

圆轴扭转的受力特点和变形特点

圆轴扭转的受力特点和变形特点
圆轴在受到扭矩作用时,其受力特点和变形特点与直轴不同。

下面我们来详细探讨一下圆轴扭转的受力特点和变形特点。

一、受力特点
在圆轴扭转过程中,受到的力主要是扭矩。

扭矩是使物体产生转动的力,其大小可以用公式T=FT*d来计算,其中T是扭矩,F是力,T是距离,d是轴的直径。

在圆轴扭转时,扭矩会使圆轴上的横截面产生剪切应力,剪切应力的大小与扭矩成正比。

二、变形特点
圆轴在受到扭矩作用时,会产生扭转变形。

这种变形主要表现为圆轴的各个横截面发生相对转动。

在圆轴扭转时,横截面之间的距离保持不变,因此不会出现拉伸或压缩变形。

同时,由于圆轴的刚度较大,所以扭转变形量相对较小。

三、影响圆轴扭转的因素
圆轴的扭转性能受到多种因素的影响,包括材料性质、截面形状、尺寸和边界条件等。

例如,圆轴的材料强度越高,其抵抗扭矩的能力就越强;截面形状和尺寸也会影响圆轴的扭转性能;边界条件如支撑条件和固定方式也会对圆轴的扭转性能产生影响。

四、圆轴扭转的应用
圆轴的扭转性能在机械工程中有着广泛的应用。

例如,在汽车和自行车中,车轴就是一种圆轴,它们需要承受来自轮子和车轮的扭矩。

在设计这些车轴时,需要考虑其受力特点和变形特点,以确保其具有足够的强度和刚度。

此外,在建筑工程和桥梁工程中,钢结构和钢筋混凝土结构的连接节点也需要利用圆轴的扭转性能来传递力和转矩。

圆轴的扭转工程力学

圆轴的扭转工程力学
杆件扭转时,其横截面上的内力,是一个在截面平面内的力
偶,其力偶矩T称为截面1-1上的扭矩。
扭矩的单位与外力偶矩的单位相同,常用的单位为牛米(N·m) 及千牛米(kN·m)。
下一页 返回
3.2 扭矩和扭矩图
扭矩的正负号用右手螺旋法则判定:将扭矩看做矢量,右手 的四指弯曲方向表示扭矩的转向,大拇指表示扭矩矢量的指 向。若扭矩矢量的方向离开截面,则扭矩为正(图7-3a、b); 反之,若扭矩矢量的方向指的截面,则扭矩为负(图7-3c、d)。 这样,同一截面左右两侧的扭转,不但数值相等,而且符号 相同。
第三章 圆轴扭转
3.1 扭转的概念和外力偶矩的计算 3.2 扭矩和扭矩图 3.3 圆轴扭转时的应力与强度条件 3.4 圆轴扭转时的变形及刚度条件 小 结
返回
3.1 扭转的概念和外力偶矩的计算
3.1.1 扭转的概念
机械中的轴类零件往往承受扭转作用。 杆件产生扭转变形的受力特点是:在垂直于杆件轴线的平面
3.3.2 圆截面极惯性矩IP及扭转截面系 数WP的计算
1. 实心圆截面
对实心圆截面,可取半径为ρ,宽度为dρ的圆环形微面积
(图3-6),dA=2πρdρ , 则实心圆截面的极惯性矩IP为
IP
A
2dA
D 0
/
2
2
3d
=
D 4
32
≈0.1D4
实心圆截面的抗扭截面系数WP为
WP
IP D/2
D 3
3.1.2 外力偶矩的计算
为了求出圆轴扭转时截面上的内力,必须先计算出轴上的外力偶
矩。在工程计算中,作用在轴上的外力偶矩的大小往往是不直接
给出的,通常是给出轴所传递的功率和轴的转速。第4章已述功率、

09圆轴扭转时的变形、应变能

09圆轴扭转时的变形、应变能
位置是?(其中ab∥AB∥ce)
B
b
e
A
a
c
d
ae. 因各条纵向纤维的应变相等,所以上边纤维长,伸长量也大。
2、图示直杆,其抗拉刚度为EA,试 求杆件的轴向变形△L,B点的位移
δB和C点的位移δC
A L
F
F
δB
=
∆LAB
=
FL EA
B
C
L
δC
=
δB
=
FL EA
3、塑性材料冷作硬化后,材料的力学性能 发生了变化。试判断以下结论哪一个是正确 的: (A)屈服应力提高,弹性模量降低; (B)屈服应力提高,塑性降低; (C)屈服应力不变,弹性模量不变; (D)屈服应力不变,塑性不变。 正确答案是( B )
lAB
A
lAC
ϕCA C
纯剪切应力状态下的应变能密度( τ ≤ τ p )
y
τ
dz γ dτ'

τ
dy
τp
O
b
τ' c
x
z
dx
O
γ
dW = 1 (τ d y d z)(γ d x)= 1τγ (d x d y d z)

=
dVε dV2 = dWdV=1τγ2
(d
x
d
y
d
z
2
)
=
1
τγ
dxd ydz 2
例题4-4
例题4-5
传动轴的转速为n=500r/min,主动轮A 输入功率 P1=400kW,从动轮C,B 分别输出功率P2=160kW,P3=240kW。 已知[τ]=70MPa,[φˊ]=1°/m,G=80GPa。

机械基础——轴的扭转变形和计算(教学教案)

机械基础——轴的扭转变形和计算(教学教案)

ab图14—17汽车传动轴轴的扭转变形和计算章节名称 轴的扭转变形和计算授课形式讲授课时2班级中专0101教学目的 掌握外力偶矩、转速和功率三者的关系,会计算轴的扭矩,知道圆轴扭转时 横截面上的应力分布规律。

教学重点 会计算轴的扭矩,知道圆轴扭转时 横截面上的应力分布规律。

教学难点 会计算轴的扭矩辅助手段课外作业课后体会机械中的轴类零件往往承受扭转,它 的受力特点是:在垂直于轴线的两个平面内受一对大小相等、方向相反的力偶作用,轴的各横截面都绕其轴线作相对转动,这种变形称为扭转变形。

一、圆轴扭转时横截面上内力的计算图14—18截面法求扭矩l 、外力偶矩:为了求出圆轴扭转时截面上的内力,必须先计算出轴上的外力偶矩,作用在轴上的外力偶矩往往不是直接给出的,而是根据给定的轴的传递功率和轴的转速算出来的,功率、转速和外力偶矩三者间的关系是:M =9550 P /n式中:P ——轴传递的功率(千瓦, KW) n ——轴的转速(转/分, r / min) M ——作用在轴上的外力偶矩(牛顿米,Nm)2、扭转时横截面上的内力——扭矩圆轴在外力偶矩的作用下,横截面上产生内力。

求内力的方法仍用截面法。

右图表示装有四个皮带轮的传动轴,在四个带轮上分别作用有主动力偶矩 M 1和从动力偶矩M 2、M 3、M 4,外力偶矩分别为 M 1=110Nm ,M 2=60Nm ,M 3=20Nm , M 4=30Nm 。

若计算 AB 段内任一截面上的内力,可假想沿该段内的任一截面1—1将轴截开,取左边部分为研究对象。

如图所示。

为了保证该段的平衡,必须以内力偶矩 Mn 1代替另一部分对被研究部分的作用, Mn 1称为扭矩。

扭矩的正负有如下规定:使右手拇指与截面法线的方向一致,若截面上的扭矩的转向与其它四指的转向相同,则扭矩取正号:反之取负号。

应用截面法时,一般都先假设截面上的扭矩为正。

扭矩的大小用平衡方程Σm=0求得,即AB 段内: Σm=0, M 1十Mn 1=0Mn 1=一M 1=一l10 Nm (设反)图14—19圆轴扭转变形图14—20圆轴的横截 面上剪应力的分布规律BC 段内: Σm =0 M 1—M 2+Mn 2=0 得 Mn 2=—50 Nm (设反) CD 段内: Σm =0 M 1—M 2—M 3十Mn 3=0 得 Mn 3=—30 Nm (设反) 为了清楚地看出各截面上的扭矩变化情况,以便确定危险截面,通常把扭矩随截面位置的变化绘成图形,称为扭矩图。

圆轴扭转变形与刚计算

圆轴扭转变形与刚计算

2 dsdx
2G
l
T2
T2
8 2G dsdx
l

8
2G
ds


dx
T为常数的等截面杆
V

T 2l 2GI t
=W=T / 2
式中:
It

4 2 ds

Tl
GI t
27
三、开口薄壁杆的扭转应力
max
3T max
n
hi i 3
i 1

3Tl
n
G hi i 3
i 1
3
1
2
28
【例题5】 如图所示为相同尺寸的闭口钢管和开口 钢管,承受相同的扭矩T。设平均直径为d,壁厚为t,
试比较两者的强度和刚度。
d
t (a)
d
t (b)
29
T 2
Tl
GI t
4 2 I t ds

解:1. 对闭口薄圆环, A d 2 s d ,则
dT
t
t
(a)
(b)
相同的扭矩,由于应力分布不同导致了应力大 小差别。
33
课后练习
思考:
一等直圆杆,当受到轴向拉伸时,杆内会产生 切应变吗?当受到扭转时,杆内会产生正应变吗?
作业:
4-16 4-27 4-32 4-33
34
T1-T2=0
T1

T2

mG2 I p2 G1Ip1 G2 Ip2
T2
2
1
T1
16
§7.6 非圆截面杆的扭转
m
m
农业机械中的方轴
柴油机曲柄的受 扭截面为矩形

杆件的刚度计算

杆件的刚度计算

梁的变形及刚度计算
2、梁的挠曲线微分方程
假设梁的挠曲线方程为:
y f x
第六章推导弯曲正应力公式时已知
纯弯曲 1


M EI
不计剪力对变形的影响,上式可以推广到非纯弯曲的情况
非纯弯曲
1
( x )

M ( x ) EI
17
第二节
1
梁的变形及刚度计算
M ( x ) EI
( x )
ds ( x ) d , 且 1
L∕5 3L∕5 L∕5
B
M 0
qL2/8
M qL2/40
x
x
qL2/50
0 qL2/50
33
第三节 提高构件抵抗变形能力和 强度能力的主要措施 三、合理选择梁的截面形状
对于平面弯曲梁,从弯曲正应力强度考虑,比较合 理的截面形状是在截面面积A一定的前提下,使截面具有
尽可能大的弯曲截面系数WZ ,比值WZ/A越大,截面越经
20
第二节
梁的变形及刚度计算
(b )
EI y Pl Px
(3) 积分
EI y Plx
Pl 2
P 2
x C
2
(c )
EIy
x
2
P 6
x Cx D
3
(d )
(4)代入边界条件,确定积分常数 在 x = 0 处: A y A 0
yA 0
y
M
( x ) dx C
M
( x ) dx C dx D

积分常数 或 y 1 M ( x ) dxdx Cx D EI C和D的值可 用数学语言描述:它 通过梁支承处已知的变形条件来 们是弯矩M(x)的函数 确定,这个条件称为边界条件。

轴扭转计算

轴扭转计算

第5章扭转5.1 扭转的概念及外力偶矩的计算5.1.1、扭转的概念在工程实际中,有很多以扭转变形为主的杆件。

例如图示 5.1,常用的螺丝刀拧螺钉。

图5.1图示5.2,用手电钻钻孔,螺丝刀杆和钻头都是受扭的杆件。

图5.2图示5.3,载重汽车的传动轴。

图5.3图示5.4,挖掘机的传动轴。

图5.4图5.5所示,雨蓬由雨蓬梁和雨蓬板组成(图5.5a),雨蓬梁每米的长度上承受由雨蓬板传来均布力矩,根据平衡条件,雨蓬梁嵌固的两端必然产生大小相等、方向相反的反力矩(图5.5b),雨蓬梁处于受扭状态。

图5.5分析以上受扭杆件的特点,作用于垂直杆轴平面内的力偶使杆引起的变形,称扭转变形。

变形后杆件各横截面之间绕杆轴线相对转动了一个角度,称为扭转角,用 表示,如图5.6所示。

以扭转变形为主要变形的直杆称为轴。

图5.6本章着重讨论圆截面杆的扭转应力和变形计算。

5.1.2、外力偶矩的计算工程中常用的传动轴(图)是通过转动传递动力的构件,其外力偶矩一般不是直接给出的,通常已知轴所传递的功率和轴的转速。

根据理论力学中的公式,可导出外力偶矩、功率和转速之间的关系为:nN m 9550= (5.1) 式中 m----作用在轴上的外力偶矩,单位为m N ⋅;N-----轴传递的功率,单位为kW ;n------轴的转速,单位为r/min 。

图5.75.2 圆轴扭转时横截面上的内力及扭矩图5.2.1 扭矩已知受扭圆轴外力偶矩,可以利用截面法求任意横截面的内力。

图 5.8a 为受扭圆轴,设外力偶矩为e M ,求距A 端为x 的任意截面n m -上的内力。

假设在n m -截面将圆轴截开,取左部分为研究对象(图5.8b ),由平衡条件0=∑x M ,得内力偶矩T 和外力偶矩e M 的关系内力偶矩T 称为扭矩。

扭矩的正负号规定为:自截面的外法线向截面看,逆时针转向为正,顺时针转向为负。

图5.8图示5.8的b 和c ,从同一截面截出的扭矩均为正号。

第八章园轴的扭转_工程力学

第八章园轴的扭转_工程力学

第八章 圆轴的扭转工程构件一般可分为三类。

第四章已指出:杆是某一方向尺寸远大于其它二方向尺寸的构件,若杆件的轴线为直线,则称为直杆。

此外,若构件在某一方向的尺寸远小于其它二方向的尺寸,称之为板。

若构件在x 、y 、z 三个方向的尺寸具有相同的数量级,则称为块体。

本课程主要讨论直杆,这是一种最简单的构件。

如同4.4节所述,在空间任意力系的作用下,杆件截面内力的最一般情况是六个分量都不为零,其变形是很复杂的。

为了简化讨论,我们将杆的基本变形分成为三类,即拉压、扭转、弯曲,如图4.3所示。

前面已经讨论了在轴向载荷作用下杆的拉伸和压缩;现在再来研究杆的另一类基本变形,即扭转问题。

§8.1扭转的概念和实例工程中承受扭转的构件是很常见的。

如图8.1所示的汽车转向轴,驾驶员操纵方向盘将力偶作用于转向轴AB 的上端,转向轴的下端B 则受到来自转向器的阻抗力偶的作用,使转向轴AB 发生扭转。

又如图8.2中的传动轴,轮C 上作用着主动力偶矩,使轴转动;轮D 输出功率,受到阻力偶矩的作用,轴CD 也将发生扭转。

以上二例都是承受扭转的构件实例。

由于工程中承受扭转的构件大多为圆截面直杆,故称之为轴。

本章亦仅限于讨论直圆轴的扭转问题。

图8.2 传动轴图8.3所示为等截面直圆轴扭转问题的示意图。

扭转问题的受力特点是:在各垂直于轴线的平面内承受力偶作用。

如在图8.3中,圆轴AB 段两端垂直于轴线的平面内,各作用有一个外力偶M 0,此二力偶的力偶矩相等而转向相反,故是满足平衡方程的。

圆轴扭转问题的变形特点是:在上述外力偶系的作用下,圆轴各横截面将绕其轴线发生相对转动;任意两横截面间相对转过的角度,称为相对扭转角,以φ表示。

图8.3中,φAB 表示截面B 相对于截面A 的扭转角。

必须指出,工程中的传动轴,除受扭转作用外,往往还伴随有弯曲、拉伸(压缩)等其它形式的变形。

这类问题属于组合变形,将在以后研究。

§8.2 扭矩与扭矩图已知轴所传递的功率、转速,可利用6.3节提供的“功率、转速与传递的扭矩之关系”来计算作用于传动轴上的外力偶矩M 0。

材料力学课件 第四章扭转

材料力学课件 第四章扭转
4. 公式讨论: ① 仅适用于各向同性、线弹性材料,在小变形时的等圆截面
直杆。
② 式中:T—横截面上的扭矩,由截面法通过外力偶矩求得。
—该点到圆心的距离。
Ip—截面极惯性矩,纯几何量,无物理意义。
17
Ip A 2dA 单位:mm4,m4。
③ 尽管由实心圆截面杆推出,但同样适用于空心圆截面杆,
只是Ip值不同。
一、传动轴的外力偶矩 传递轴的传递功率、转数与外力偶矩的关系:
m
9.55
P n
(kN
m)
其中:P — 功率,千瓦(kW) n — 转速,转/分(rpm)
m
7.024
P n
(kN
m)
其中:P — 功率,马力(PS) n — 转速,转/分(rpm)
m
7.121
P n
(kN
m)
其中:P — 功率,马力(HP) n — 转速,转/分(rpm)
22
[例2]有一阶梯形圆轴,如图(a)所示轴的直径分别d为1 50mm,d2 80mm 。扭转力偶矩分别为 Me1 0.8kN m ,Me2 1.2kN m ,M e3 2kN m。若 材料的许用切应力 [ ] 40MPa ,试校核该轴的强度。
解: 方法一(理论计算法) 用截面法求出圆轴各段的扭矩,如图(b)所示。 由扭矩图可见,CD段和DB段的直径相同,但DB段的扭矩大 于CD段,故这两段只要校核DB段的强度即可。AC段的扭矩 虽然也小于DB段,但其直径也比DB段小,故AC段的强度也 需要校核。
2GI p
W
U ;
64PR3n Gd 4
P K
;
K
Gd 4 64R3n
为弹簧常数。
36
[例3] 圆柱形密圈螺旋弹簧的平均直径为:D=125mm,簧丝直 径为:d =18mm,受拉力 P=500N 的作用,试求最大剪应力 的近似值和精确值;若 G =82GPa,欲使弹簧变形等于 6mm, 问:弹簧至少应有几圈?

圆轴扭转时的强度和刚度计算

圆轴扭转时的强度和刚度计算

A1 / A2 = [π (D 2 − d 2 ) / 4] /(πD 2 2 / 4) = (90 2 − 852 ) / 612 = 0.235
传动轴满足强度要求。 2)刚度校核 传动轴的极惯性矩为
I P = 0.1D 4 (1 − a 4 ) = {0.1 × 90 4 [1 − (85 / 90 ) 4 ]}mm 4 = 134 × 10 4 mm 4 θ max = 180 M n /(πGI P )
= (180 × 1500 × 10 3 / 80 × 10 3 × 134 × 10 4 π ) × 10 3 °/m
= 0.8°/m < [θ ]
传动轴满足刚度要求。 (2)计算实心轴的直径
1)按强度条件设计(设直径为D1)。若实心轴与空心轴强 度相同,当材料相同时,它们的抗扭截面系数应相等,即
W n = πD 13 / 16 = πD 3 (1 Βιβλιοθήκη a 4 ) / 16由此得
D 1 = D3 1 − a 4 = [90 × 3 1 − (85 / 90) 4 ]mm = 53mm
根据扭转刚度条件,可以解决三类问题, 即校核刚度、 设计截面和确定许可载荷 。
例6-5 汽车传动轴AB由45号无缝钢管制成,外径D=90mm,
[ 内径d=85mm,许用切应力 [τ ]=60MPa,θ ] =1.0°/m,工作时最
大力偶矩M =1500N·m,G =80GPa。 (1)试校核其强度及刚度。 (2)若将AB轴改为实心轴,试求其直径。 (3)比较空心轴和实心轴的重量。 解 (1)试校核其强度及刚度。 1) 强度校核 传动轴各截面上的扭矩均为
θ max = 180M n /(πGI P ) ≤ [θ ]
(6-13)

圆轴扭转时的变形、刚度计算

圆轴扭转时的变形、刚度计算

功率分别为 剪切弹性模
N A =10 kW,N B G=80GPa,若
=12 kW,N D=18
=50MPa,
kW。材料的
=0.3º/m,
试按强度条件和刚度条件设计此轴的直径。
解(1)求外力偶矩
MA MB
MC
d
M M
A B
9549 9549
NA
n NB
n
9549 10 318(N m) 300
工程力学
圆轴扭转时的变形、刚度计算
一、变形:(相对扭转角)
MT
GIP
d
dx
d
dx
MT GIP
d MT dx
GIP
MT dx L GIP —— T T (x) MT L
GIP —— T=常量
单位:弧度(rad)。 GIP——抗扭刚度。
MT L
GIP
——T=常量,且分段。
注意: “MT” 代入其“+、-”号
AB
MT 3 M D 573(N·m)
(Nm) MT
d
MC
MD
(a)
C
D
573 N∙m
x
MT max 700N m
318 N∙m
(b)
(3)按强度条件设计轴的直径:由强度条件 700N∙m
max
MT ,max Wp
[ ]
Wp
d 3
16

d 3 16M n max
16 700103 3
9549 12 382(N m) 300
A
B
C
MC
9549
NC n
9549 40 300
1273(N m)
MD

第5节 圆轴扭转时的变形和刚度计算

第5节 圆轴扭转时的变形和刚度计算
第六章 圆轴的扭转
第五节 圆轴扭转时的变形和刚度计算
一、扭转变形 扭转角:圆轴扭转时,两横截 面相对转过的角度称为这两截 面的相对扭转角。 T d dx l l GI P
A M BO


M
若在圆轴的l长度内,T、G、IP 均为常数, Tl GI P 则圆轴两端截面的相对扭转角为:

A空 A实 4
(D d )
2 2

4
45
2
1245 0 . 61 2025
可见空心圆轴所用材料只占实心轴所用材料 的61%,节约了材料。
T2 M
B
A C D
M
468Nm
468 1168 700 N m
3-3截面的扭矩
T3 M
C
350 N m
绘出的扭矩图如图所示。显然AC段扭矩最大, 由于是等截面圆轴,故危险截面在AC段内。
第六章 圆轴的扭转
3) 强度校核
max
T 700 16 Pa 3 9 WP 45 10
第六章 圆轴的扭转
例6-3 传动轴如图所示,已知轴的直径d=45mm, 转速n =300r/min。主动轮A输入的功率PA=36.7KW; 从动轮B、C、D输出的功率分别为PB=14.7KW,PC= PD=11KW。轴材料的剪切弹性模量G=80GPa,许用切 应力[ ]=40MPa,单位长度的许用扭转角[ ]=1.5/m, 试校核轴的强度和刚度。
T 700 16 38 . 4 MPa 3 4 WP D (1 )
700 16
4 6
3
(1 0 . 7 ) 38 . 4 10
m 0 . 049 m 49 mm

材料力学课件:第3章 圆轴扭转时的应力变形分析与强度刚度计算计算

材料力学课件:第3章 圆轴扭转时的应力变形分析与强度刚度计算计算
韧性材料:不耐剪,最大剪应力所处截面是”最短木板”! 破坏方式是被剪断!
脆性材料:不耐拉,最大拉应力所处截面是”最短木板”! 破坏方式是被拉断!
承受扭转时圆轴的强度设计 与刚度设计
扭转强度设计
承受扭转时圆轴的强度设计 与刚度设计
扭转强度设计
与拉伸强度设计相类似,扭转强度设计时,首先需要根 据扭矩图和横截面的尺寸判断可能的危险截面;然后根据 危险截面上的应力分布确定危险点(即最大剪应力作用 点);最后利用试验结果直接建立扭转时的强度设计准则。
承受扭转时圆轴的强度设计 与刚度设计
扭转实验与扭转破坏现象
韧性材料与脆性材料扭 转破坏时,其试样断口有着 明显的区别。韧性材料试样 最后沿横截面剪断,断口比 较光滑、平整。
铸铁试样扭转破坏时沿 45°螺旋面断开,断口呈细 小颗粒状。
经济学术语中的“木桶效应”,是说对于一个沿口 不齐的木桶而言,它盛水的多少并不在于木桶上那 块最长的木板,而在于木桶上最短的那块木板。
已知:钢制空心圆轴的外直径D=100 mm,内直径d=50 mm。若要求轴在2 m长度内的最大相对扭转角不超过1.5(),材 料的切变模量G=80.4 GPa。
试: 1. 求该轴所能承受的最大扭矩; 2. 确定此时轴内最大剪应力。
解: 1.确定轴所能承受的最大扭矩 根据刚度设计准则,有
承受扭转时圆轴的强度设计 与刚度设计

max
Mx WP
=16M x πd13
=16
1.5kN πd13
m
103
=50.9
106
Pa
据此,实心轴的直径
d1=3
16 1.5kN m 103=53.1103 m=53.1mm π 50.9 106 Pa
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档