复变函数的积分习题与解答

合集下载

复变函数与积分变换课后习题答案详解

复变函数与积分变换课后习题答案详解

…复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)/——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππ2222e cos isin i i 442222-⎛⎫⎛⎫⎛⎫=-+-=+-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 3331313;;;.22n i i z i ⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解: ∵()()()()(){}332321i 31i 3113133133288-+⎛⎫-+⎡⎤⎡⎤==--⋅-⋅+⋅-⋅-⎪ ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴1i 3Re 12⎛⎫-+= ⎪ ⎪⎝⎭, 1i 3Im 02⎛⎫-+= ⎪ ⎪⎝⎭. ④解:∵()()()()()2332313133133i 1i 328⎡⎤--⋅-⋅-+⋅-⋅-⎛⎫⎢⎥-+⎣⎦= ⎪ ⎪⎝⎭()180i 18=+=∴1i 3Re 12⎛⎫-+= ⎪ ⎪⎝⎭, 1i 3Im 02⎛⎫-+= ⎪ ⎪⎝⎭. ⑤解: ∵()()1,2i 211i,knkn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩.∴当2n k =时,()()Re i 1k n =-,()Im i 0n =; 当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++ ①解:2i 415-+=+=.2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i 51365++=++=⋅=.()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 2222++== ()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈,则z x x ==.∴z z =.命题成立.5、设z ,w ∈,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式 3352π2π;;1;8π(13);.cos sin 7199i i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i 17e 5025i θ⋅--==其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e i i =③解:ππi i 1e e -==④解:()28π13i 16ππ3θ-==-.∴()2πi 38π13i 16πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3) 33i的平方根.⑴i 的三次根. 解:()133ππ2π2πππ22i cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ31cosisin i 662=+=+z .25531cos πisin πi 662=+=z39931cos πisin πi 662=+=-z⑵-1的三次根 解:()()1332π+π2ππ1cos πisin πcosisin 0,1,233k k k +-+=+=∴1ππ13cos isin 332=+=z2cos πisin π1=+=-z35513cos πisin π332=+=-z33i 的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i44ππ2π2π4433i 6e 6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬ ⎪⎝⎭⎩⎭,其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

复变函数与积分变换试题和答案

复变函数与积分变换试题和答案

复变函数与积分变换试题(一)一、填空(3分×10)1.得模ﻩﻩ、幅角ﻩ。

2.-8i得三个单根分别为:、、。

3.Lnz在得区域内连续。

4.得解极域为:ﻩﻩﻩﻩﻩ。

5.得导数ﻩﻩﻩﻩﻩ。

6. ﻩﻩ。

7.指数函数得映照特点就是:ﻩﻩﻩﻩﻩﻩﻩﻩﻩ。

8.幂函数得映照特点就是: ﻩﻩﻩﻩﻩﻩﻩ。

9.若=F [f(t)]、则= F ﻩﻩﻩﻩ。

10.若f(t)满足拉氏积分存在条件、则L [f(t)]= ﻩﻩﻩ。

二、(10分)已知、求函数使函数为解析函数、且f(0)=0。

三、(10分)应用留数得相关定理计算四、计算积分(5分×2)1.2.C:绕点i一周正向任意简单闭曲线。

五、(10分)求函数在以下各圆环内得罗朗展式。

1.2.六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。

(2)七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0得解y (t )。

八、(10分)就书中内容、函数在某区域内解析得具体判别方法有哪几种。

复变函数与积分变换试题答案(一)一、1.ﻩﻩ、ﻩ ﻩ2、ﻩ-i ﻩﻩ2iﻩ-i ﻩ3、ﻩZ 不取原点与负实轴 4、 空集5、ﻩ2z ﻩ6.0 7、将常形域映为角形域ﻩ8、 角形域映为角形域 9、ﻩ ﻩ10、 二、解:∵ﻩ ∴ ﻩ(5分)∵f (0)=0ﻩﻩﻩﻩc =0(3分)∴ﻩﻩ(2分)三、解:原式=(2分)ﻩ(2分)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) =四、1.解:原式ﻩ(3分) z 1=0 ﻩz2=1ﻩ=0ﻩﻩ(2分)2.解:原式=五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)( ﻩﻩ(2分) ﻩ2.解: (1分)ﻩ(2分)六、1.解:∵ﻩ(3分)ﻩ∴结论成立 (2)解:∵ﻩ(2分)ﻩ ∴与1构成傅氏对∴(2分)七、解:∵ﻩﻩ(3分)S (2)-(1):∴ (3分)∴八、解:①定义;②C-R 充要条件Th ; ③v 为u 得共扼函数ﻩ10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导就是f(z)在D 内解析得(ﻩ ﻩ)条件。

复变函数与积分变换五套试题及答案

复变函数与积分变换五套试题及答案

复变函数与积分变换试题(一)一、填空(3分×10)1.的模 ,幅角 。

)31ln(i --2.-8i 的三个单根分别为: ,,。

3.Ln z 在 的区域内连续。

4.的解极域为:。

z z f =)(5.的导数。

xyi y x z f 2)(22+-==')(z f 6.。

=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s 7.指数函数的映照特点是:。

8.幂函数的映照特点是:。

9.若=F [f (t )],则= F 。

)(ωF )(t f )][(1ω-f 10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。

二、(10分)已知,求函数使函数为解析函222121),(y x y x v +-=),(y x u ),(),()(y x iv y x u z f +=数,且f (0)=0。

三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2)1.⎰=-2||)1(z z z dz2. C :绕点i 一周正向任意简单闭曲线。

⎰-c i z z3)(cos 五、(10分)求函数在以下各圆环内的罗朗展式。

)(1)(i z z z f -=1.1||0<-<i z 2.+∞<-<||1i z 六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。

)(0t t -δo iwt e -(2))(2ωπδ=⎰∞+∞-ω-dt e t i 七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0的解y (t )。

⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。

复变函数与积分变换试题答案(一)一、1., 2.-i 2i -i22942ln π+ππk arctg 22ln 32+-333.Z 不取原点和负实轴 4. 空集5.2z 6.07.将常形域映为角形域8.角形域映为角形域9.10.⎰∞+∞-ωωπωωd e F i )(21⎰∞+-0)(dte tf st 二、解:∵∴(5分)yu x x v ∂∂-=-=∂∂xuy y v ∂∂==∂∂c xy u +=cxy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴(2分)222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--=三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z (2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π33=z ∞=4z 2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s =0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(∴原式=(2分) =23126⨯⨯i πi 63π-四、1.解:原式(3分)z 1=0z 2=1⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221=0(2分)]11[2+-=i π2.解:原式=iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-=1ich π-五、1.解:ni z z f ∑∞⎪⎫⎛--⋅=⋅⋅=⋅=1111111111)(分)(分)(分)((2分)11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)(2分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i 六、1.解:∵(3分)∴结论成立0)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(2)解:∵(2分)1)(2210==ωπδπ=ωω-ω-∞+∞-⎰t i t i e dw e ∴与1构成傅氏对)(2w πδ∴(2分))(2ωπδω=-∞+∞-⎰dt e t i 七、解:∵(3分)⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX S (2)-(1):∴(3分)⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s ∴cht e e t Y t t -=--=-121211)(八、解:①定义;②C-R 充要条件Th ;③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。

第三章 复变函数的积分习题与解答

第三章 复变函数的积分习题与解答

第三章 复变函数的积分习题与解答3.1 如果函数()f z 是在【1】单连通区域;【2】复通区域中的解析函数,问其积分值与路径有无关系?【答案 单连通 无关,复连通 有关】3.2 计算积分 3||2d 1z z z =-⎰的值【答案 0】 3.3 计算积分22d L z z a -⎰:其中0a >.设 L 分别为 (1)(1)||/2; ||; (3)||z a z a a z a a =-=+=【答案 (1)0;(2)πia ; (3)πia -】 3.4 计算积分 Im d C z z ⎰,其中积分曲线C 为(1)从原点到2i +的直线段;(2)上半圆周 ||1z =,起点为1,终点为1-;(3)圆周|| (0)z a R R -=>的正方向(逆时针方向)【答案 2(1)1i /2;(2)π/2;(3)πR +--】3.5 计算积分 d ||C z zz ⎰的值,(1)||2; (2)||4;z z ==【答案(1)4πi;(2)8πi 】3.6 计算积分的值 π2i 0cos d 2z z +⎰【答案 1/e e +】3.7计算下列积分的值 (1) ||1d cos z z z =⎰;(2)2||2d z ze z =⎰21||1||12i d d (3); (4)24()(2)z z z z z z z z ==++++⎰⎰ 【答案(1)0;(2) 0;(3) 0;(4) 4πi4i +】3.8 计算 2||2||232|i|1||1522||1|i|2(1)d ; (2)d ;3(1)(21)cos (3)d ; (4)d (i)(2)d (5)d ; (6)(4)z z z zz z z z z e z z z z z z z e z z z z z e z z z z z ==-===-=--+--+⎰⎰⎰⎰⎰⎰【答案 (1)0;(2)0;(3)πicosi -;(4)3πi 2-;(5)πi 12(6)π8-】3.9 计算积分(1)π61i i 000(1)sin d ; (2)ch3d ; (3)(1)d z z z z z z z e z --⎰⎰⎰【答案 13(1)sin1cos1; (2)i; (3)1cos1i[sin(1)1]--+-】3.10 计算复数 123cos (1)d C C z z z +⎰,其中1:||2C z =顺时针方向;2:||3C z =逆时针方向.(2)3||1d ()zz e z z a =-⎰,其中复常数||1a ≠【答案 (1) 0;(2)当||1,0;||1,πi a a a e ><】 3.11 设L 为不经过点b 和b -的简单正向(逆时针)曲线,b 为不等于零的任何复数,试就曲线L 与b 的各种可能计算积分的值.d ()()L z I z z b z b =+-⎰【答案 (1)L 不含b ±,则I=0;(2)L 含b ,πi b I =;L 含b -,πi b I =-;(3)两点在内部 0I =】3.12 已知 π3||2()d e h z z ξξξξ==-⎰,试求(i),(i)h h -,以及当||2z >时,()h z '的值.【 ()π(i);(i)i);||2,()0h i h z h z '=-=>=】3.13 计算积分 3d ()zC ze z z a -⎰,其中 常数a 在闭曲线C 内部 【答案 1(2)2aa e +】3.14 设 C 为正向圆周1=z ,且||1a ≠,证明:积分222π1||22π||1||1 (||1)|d ||| (||1)a z a a z z a a -=-<⎧⎪=⎨->⎪⎩⎰ 3.15 利用积分 ||1d 2z z z =+⎰的值,证明2π012cos d 054cos θθθ+=+⎰3.16 计算积分 2|||d |,(||)||z r z a r z a =≠-⎰(提示:令i i :|d |d ,r z c z re z z θ=⇒=注意到点2,r a a 是关于圆周||z r =的对称点)3.17.已知 2πsin 4()d f z z ζζζζ==-⎰求(12i),(1),(1)f f f '-. 3.18 计算积分(2)2||1cos d z z z z e z =⎰本章计算机仿真编程3.19 计算机仿真编程验证3.15的积分结果2π012cos d 054cos θθθ+=+⎰3.20 计算机仿真计算下列积分的值 (沿非闭合路径的积分)π63πi i i 2123πi 00(1)d ; (2)ch3d ; (3)(1)d ;z z I e z I z z I z e z --===-⎰⎰⎰i4211tan (4)d ,cos z I z z +=⎰其积分的路径为沿1到i 的直线段. (说明:沿闭合路径的积分可以利用留数的定义,留数定理来计算;而留数可以利用计算机仿真编程Matlab 直接求解)。

复变函数与积分变换习题册(含答案)

复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。

2、k 为任意整数,则34+k 的值为 。

3、复数i i (1)-的指数形式为 。

4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。

(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。

复变函数积分习题与解答

复变函数积分习题与解答

第三章复变函数的积分习题与解答假如函数f (z)是在【 1】单连通地域; 【 2】复通地域中的分析函数,问其积分值与路径有 没关系 【答案 单连通 没关,复连通 有关】idz计算积分 |z| 2z 3 1 的值【答案 0 】idz计算积分L z2a 2 : 此中 a 0.设 L 分别为(1) (1)| z |a / 2;| z a | a;(3) | z a |a【答案 (1)0πiπi;( 2) a ; (3) a】计算积分CIm zdz,此中积分曲线C 为(1)从原点到 2 i 的直线段;(2)上半圆周 | z| 1,起点为 1,终点为1;(3)圆周| za | R (R0)的正方向(逆时针方向)【答案(1)1 i / 2;(2) π/ 2;(3) πR 2 】izdz计算积分C | z | 的值,(1)| z | 2;(2) | z| 4;【答案 (1)4πi;(2)8 πi 】π 2i zdzcos计算积分的值2【答案 e 1/ e 】计算以下积分的值( 1)idz2(3)i |z|dz 4;(4)i |z| 1( zdz|z| 1cosz ;( 2) i|z| 2ze dz1z 22 z2i 1)(z 2)4πi【答案( 1) 0;( 2) 0 ;( 3) 0 ;( 4) 4 i 】计算e z(2)iz(1)i |z| 2z3 dz;|z| 2( z 1)2 (2 z 1) dz;(3)i|zcos zdz;(4)i |z|e zdz i| 1( z i) 31z 2(z2) (5)i |z|ez(6)idz1 z5dz;|zi| 2z 2 ( z 2 4)【答案 ( ) ;( ) ;( ) π icosi ;( )3πiπiπ 0 0 42;( )12 ( )8 】1 2 35 6计算积分(1)(1)1 6πi i 1)e z dzzsin zdz; (2) 0 ch3zdz; (3) 0 ( z 【答案(1)sin1 cos1; (2) 1 i;(3)1 cos1 i[sin(1) 1]】3计算复数(1)cos 3z dz ,此中 C 1:| z | 2顺时针方向;C 2:| z | 3逆时针方向.CC( 2)i|z|e zdz,此中复常数 | a | 11 ( z a)3【答案 ( 1) 0 ;( 2)当 | a | 1,0;| a | 1,πe ai 】设 L 为不经过点 b 和 b 的简单正向(逆时针)曲线,b 为不等于零的任何复数,试就曲线L 与 b 的各种可能计算积分的值.Ii L( z zb)dzb)( z(1) Lb ,则 I=0; ( 2)L 含 b , Iπi b ,Iπi【答案 不含 b; L 含 b;( 3)两点在内部 I0 】πh( z)i |e 3d已知 | 2,试求 h(i), h( i) ,以及当 | z | 2 时, h ( z) 的值 .z【h(i)π( 3 i); h( i) π(3 i);| z | 2, h ( z)0 】ize z计算积分C ( za)3dz,此中 常数 a 在闭曲线 C 内部1(2 a) e a【答案 2】设 C 为正向圆周z1,且 | a |1,证明:积分|dz |2 π(| a | 1)1 |a|222 π(| a | 1)i |z| 1 | z a |21|a|利用积分计算积分iidz|z| 1 z 2 的值,证明|dz | ,(| a | r ) |z| r| z a |22π1 2cosd 05 4cos(提示 :令 c : z re i|dz | i r z dz, 注意到点 a, r2a 是关于圆周| z |r的对称点). 已知sinπf ( z)4 d2z求 f (1 2i), f (1), f (1) .cos z计算积分(2) i |z| 1e z z 2dz本章计算机仿真编程2π1 2cos5d计算机仿真编程考据的积分结果 4cos计算机仿真计算以下积分的值(沿非闭合路径的积分)(1)I 13 πi (2) I 2 6πich3zdz;(3) I 3i zdz;e 2 zdz;0 ( z 1)eπii1tan z(4) I 4cos 2 dz,1 到 i 的直线段.1z 其积分的路径为沿( 说明: 沿闭合路径的积分可以利用留数的定义,留数定理来计算;而留数可以利用计算机仿真编程 Matlab 直接求解 )。

复变函数与积分变换习题册(含答案)

复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。

2、k 为任意整数,则34+k 的值为 。

3、复数i i (1)-的指数形式为 。

4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。

(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。

(完整版)第三章复变函数的积分(答案)

(完整版)第三章复变函数的积分(答案)

复变函数练习题 第三章 复变函数的积分系 专业 班 姓名 学号§1 复变函数积分的概念 §4 原函数与不定积分一.选择题1.设为从原点沿至的弧段,则[]C 2y x =1i +2()Cx iy dz +=⎰(A )(B ) (C ) (D )1566i -1566i -+1566i --1566i +2. 设是,从1到2的线段,则 []C (1)z i t =+t arg Czdz =⎰(A )(B )(C )(D )4π4i π(1)4i π+1i+3.设是从到的直线段,则[]C 012i π+z Cze dz =⎰(A )(B ) (C ) (D )12e π-12e π--12ei π+12eiπ-4.设在复平面处处解析且,则积分[]()f z ()2iif z dz i πππ-=⎰()iif z dz ππ--=⎰(A ) (B )(C )(D )不能确定2i π2i π-0二.填空题1.设为沿原点到点的直线段,则2。

C 0z =1z i =+2Czdz =⎰2.设为正向圆周,则C |4|1z -=2232(4)A Cz z dz z -+=-⎰10.i π三.解答题1.计算下列积分。

(1)323262121()02iziiz i i i edzee e ππππππ---==-=⎰(2)22222sin 1cos2sin 2224sin 2.244iiiii i zdzz z z dz i e e e e i i i i ππππππππππππππ------⎛⎫==- ⎪⎝⎭⎛⎫--=-=-=+⎪⎝⎭⎰⎰(3)110sin (sin cos )sin1cos1.z zdzz z z =-=-⎰(4)20222cos sin 1sin sin().222iiz z dzz i ππππ==⋅=-⎰2.计算积分的值,其中为正向圆周:||C z dz z ⎰A C (1)2200||22,022224.2i i i z Cz e e ie d id i θθππθθπθθπ-==≤≤⋅==⎰⎰积分曲线的方程为则原积分I =(2)2200||44,024448.4i i i z Cz e e ie d id i θθππθθπθθπ-==≤≤⋅==⎰⎰积分曲线的方程为则原积分I =3.分别沿与算出积分的值。

复变函数与积分变换练习题带答案(1)

复变函数与积分变换练习题带答案(1)

f (t) = 1 + F () eitd 建立的 F () 与 f (t) 之间的对应称作傅里叶逆变换。
2π −
22.傅里叶逆变换是指由表达式 f (t) = 1 + F () eitd 建立起来的 F () 到 f (t) 之间
2π −
的对应.
23.若
f
(t)
= 3t2
+ tet
+ sint ,则函数
z2 − 3z + (z − 4)2
2dz
=
10πi
.
8. 设 C 为单位圆周 z = 1,则 d z 2 Cz
9. 设 C 为从 z = 0到 z =1+ i 的直线段,则 z d z = i 。 C
10. 设 C 为从 (0,1) 到 (1,1) 的直线段,则 z Re(z) d z = 1 + 1 i
|z
+i|=
(√)
3. 设 C 是一条简单正向闭曲线, f (z) 在以 C 为边界的有界闭区域 D 上解析, z0 为 D 内任
一点,那么
C
f (z) z − z0
d
z
=
2 if
( z0
)

(√)
4. 设 f (z) 在简单正向闭曲线 C 及其所围区域 D 内处处解析, 那么 f (z) 在 D 内具有 2 阶
解:
C
的方程为
x y
= =
t, t,0
t
1
,即,
z
=
t
+ it,0
t
1
,
dz =(1+i)dt
于是,原式= 1t(1+ i)dt = 1+ i .

(完整版)复变函数与积分变换习题答案

(完整版)复变函数与积分变换习题答案

一、将下列复数用代数式、三角式、指数式表示出来。

(1) i 解:2cossin22ii e i πππ==+(2) -1解:1cos sin i e i πππ-==+ (3)1+解:()/3122cos /3sin /3i e i πππ+==+ (4) 1cos sin i αα-+ 解:2221cos sin 2sin 2sincos2sin(sincos )2222222sincos()sin()2sin 222222i i i i i e πααααααααααπαπαα⎛⎫- ⎪⎝⎭-+=+=+⎛⎫=-+-= ⎪⎝⎭(5) 3z解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e +解:()1cos1sin1i i e ee e i +==+(7)11ii-+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++二、计算下列数值(1) 解:1ar 21ar 21ar 2 b i ctg k a bi ctg abi ctgaπ⎛⎫+ ⎪⎝⎭==⎧⎪=⎨⎪⎩(2)解:6226363463222i k i i i i e i ee e iπππππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭⎧=+⎪⎪⎪⎨====-+⎪⎪⎪=-⎩(3) i i 解:()2222ii k k i i e eππππ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭==(4)解:()1/2222ii k k eeππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭==(5) cos5α解:由于:()()552cos5i i e e ααα-+=,而:()()()()()()()()5555555555cos sin cos sin cos sin cos sin nni nn nni n n e i C i e i C i αααααααααα-=--==+==-=-∑∑所以:()()()()()()()()()()()555505555043253543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n nn n n n nn n C i i C i i C i ααααααααααααααααα--=--=⎡⎤=+-⎣⎦⎡⎤=+-⎣⎦=++=-+∑∑(6) sin5α解:由于:()()552sin 5i i ee ααα--=,所以:()()()()()()()()()()()()55550555505234245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n nn n n n nn n C i i i C i i i C i C i iααααααααααααααααα--=--=⎡⎤=--⎣⎦⎡⎤=--⎣⎦=++=-+∑∑ (7) cos cos2cos n ααα+++L L 解:()()221cos cos 2cos ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e e e e e e e e e e e e e e e ααααααααααααααααααααααα----------⎡⎤+++=+++++++⎣⎦⎡⎤--+--⎡⎤--⎢⎥=+=⎢⎥---⎢⎥⎣⎦⎣⎦+=L L L L L L (1)(1)22(1cos )12cos 22cos(1)2cos cos 1cos(1)cos 22(1cos )2(1cos )1sin()sin22 2sin2i i n i n in in e e e e n n n n n ααααααααααααααααα+-+-⎡⎤---++⎢⎥-⎣⎦⎡⎤--++--++==⎢⎥--⎣⎦+-=(8) sin sin 2sin n ααα+++L L 解:()()221sin sin 2sin ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e i e e e e e e e e e e i e e i e i αααααααααααααααααααααα---------⎡⎤+++=+++-+++⎣⎦⎡⎤-----⎡⎤--⎢⎥=-=⎢⎥---⎢⎥⎣⎦⎣⎦=L L L L L L (1)(1)112(1cos )12sin 2sin(1)2sin sin sin(1)sin 22(1cos )2(1cos )1cos()cos22 2sin2i n in i i n in e e e e e i i n i n n n i n αααααααααααααααααα+--+-⎡⎤--+-++-⎢⎥-⎣⎦⎡⎤-++-++==⎢⎥--⎣⎦-++=1.2 复变函数1、试证明函数f (z )=Arg(z ) (-π<Arg(z) ≤π),在负实轴上(包括原点)不连续。

复变函数的积分例题及解析

复变函数的积分例题及解析

复变函数的积分例题及解析复变函数的积分是数学中一个基础重要的部分。

它可以用来求解各种极限问题,如微积分中的各种重要问题。

本文将以复变函数的积分为主题,通过几个例题来说明复变函数的积分的解法。

首先说明的是复变函数的定义:它是对实数的函数,它的值是复数。

这意味着它可以把实数的函数映射到复数的函数,而积分就是求复变函数的定积分。

现在我们来看几个复变函数的积分例题:例题1:求下列复变函数的定积分:f(x)=2+2i解:根据定积分的定义,我们需要求出f(x)在一定区间内的积分,即∫ a b [2 + 2i]dx = 2 (b-a) + 2i (b-a)因此,给定复变函数f(x)=2+2i,其定积分为2(b-a)+2i(b-a)。

例题2:求下列复变函数的定积分:f(x)=3-3i解:根据定积分的定义,我们需要求出f(x)在一定区间内的积分,即∫ a b [3 - 3i]dx = 3 (b-a) - 3i (b-a)因此,给定复变函数f(x)=3-3i,其定积分为3(b-a)-3i(b-a)。

例题3:求下列复变函数的定积分:f(x)=4+4i解:根据定积分的定义,我们需要求出f(x)在一定区间内的积分,即∫ a b [4 + 4i]dx = 4 (b-a) + 4i (b-a)因此,给定复变函数f(x)=4+4i,其定积分为4(b-a)+4i(b-a)。

以上例题的解析说明了复变函数的积分方法,基本原理就是:给定复变函数f(x),在一定的区间内求出f(x)的定积分,并将它转换成实和虚的形式。

此外,复变函数的积分应用于许多领域,比如求解任意一般变量的定积分、求解不可积函数的定积分、求解零点函数的定积分等。

例如,有一个复变函数f(x)=x^2+2ix,它的定积分可以写成:∫ a b [x^2 + 2i]dx = 1/3 (b^3-a^3) + 2i(b-a)这个例子说明了复变函数的定积分可以用来求解各种变量的定积分问题。

复变函数与积分变换试题和答案

复变函数与积分变换试题和答案

复变函数与积分变换试题(一)1.一、填空(3 分×10)1.ln(-1- 3 i ) 的模 .幅角 。

2.-8i 的三个单根分别为: . . 。

3.Ln z 在的区域内连续。

4. f ( z ) = z 的解极域为: 。

5. f (z ) = x 2 - y 2 + 2xyi 的导数 f (z ) =。

7.指数函数的映照特点是: 。

8.幂函数的映照特点是: 。

9.若F () =F [f (t )].则 f (t )= F -1 f [()] 。

10.若f (t )满足拉氏积分存在条件.则 L [f (t )]=二、(10 分)-1x 2+ 1 y 2.求函数u (x ,y )使函数f (z )=u (x ,y )+iv (x ,y )为解析函数.且 f (0)=0。

、(10 分)应用留数的相关定理计算dz|z |=2 z 6(z -1)(z -3)四、计算积分(5 分×2)dz |z |=2 z ( z - 1)6. Re ssin 3z ,0 z 3已知v (x , y ) =2.c(z co-s i z)3 C:绕点i一周正向任意简单闭曲线。

五、(10 分)求函数f ( z) =z(z1-i)在以下各圆环内的罗朗展式。

1.0 | z - i | 12.1 | z - i | +六、证明以下命题:(5 分×2)(1)(t - t )与e-iwt o构成一对傅氏变换对。

+(2)+e-i t dt=2()-x + y + z = 1七、(10分)应用拉氏变换求方程组x + y+z = 0满足x(0)=y(0)=z(0)=0的解y + 4z = 0y(t)。

八、(10 分)就书中内容.函数在某区域内解析的具体判别方法有哪几种。

复变函数与积分变换试题答案(一)= 2i [-1+1] =02 分)一、1. 3. 8.二、解: 2 4 - ln 2 2 + 2. arctg 3 + 2k9 ln 2Z 不取原点和负实轴 角形域映为角形域 v u = - x = - x y 2. 2i 3 -i 、解: 四、 4. 空集 5. 2z 6. 1 +9. 1 +F ()e i d 2 -v =y =y f (z )=i - x + y +xy +c 7.将常形域映为角形域 10. 0+f (t )e -st dt ∵f (0)=0 c =0 ∴ f (z ) = xy - ( x - y ) = - ( x 2原式=(2 分) 2i Re s k =1 42 分)= -2i Re s k =3 Re sRe s,3z 6(z -1)(z -3),z 6(z -1)(z -3)u ∴ u = xy + c x 3 分) - y + 2xyi ) = z 6(z -1)(z -3) kz 6(z -1)(z -3) k(2分)3612= (2分)Re s 5 分) -2i z 2 2 分)z 3 z 1 = 0 z 2 =3 z 4 =1 = 1∴原式=(2分) 2i3 62=-36 i21.解:原式 = 2i Re s k =11 z (z -1),zk16(1-1)(1-3)z 2,0 z6 z z3 分) z 1=0z 2=1=0八、解:①定义; ②C-R 充要条件 Th ; ③v 为 u 的共扼函数 10 分1 +2)解:∵ 1+2()e -i t dw =e -i t2 -S (2)-(1):∴Y (t )=1-12e t -12e -t =1-cht2.解: 原式 = cos z 2! z =i = i (- cos z ) = -i cos i = -ich 1 五、1.解:f ( z ) (1分)( z - i ) z - i + i 1分)(z 1-i ) 11 i 1+ z-iin =01分)z1- i1in - 1n = i (z -i )n -1 = i (z -i )n2 分)n =0 n =-12. 解: f (z )1分)=(z 1- i )i + ( z - i )1分)11+1 分)1 (z - i )2n =01 1=1n (z -1i )n +2n =0 i n -i n (z -i )n -2 (2 分) n =0六、1.+ +(t -t )e -i tdt = e--i t t =t =e -it3 分) ∴结论成立++e -i t dt = 2() -(2 分)sX (s )+Y (s )+sZ (s )= 1S (1)X (s )+sY (s )+Z (s ) = 0 (2) (3 分) Y (s )+4sZ (s ) = 0(3)∴ 2( w ) 与 1 构成傅氏对七、解:∵∴Y (s )=s21-1s 2 -1= s - 2s -1+ s +13 分)=1=02 分)复变函数与积分变换试题(二)一、填空(3 分×10)7.若 z 0为 f (z )的 m 级极点.则Re s [ f (z ),z ]=( )。

复变函数与积分变换答案(马柏林)

复变函数与积分变换答案(马柏林)

1. 复级数1nn a∞=∑与1nn b∞=∑都发散,则级数1()nn n ab ∞=±∑和1n n n a b ∞=∑发散.这个命题是否成立?为什么?答.不一定.反例: 2211111111i ,i n n n n n n a b n n n n ∞∞∞∞=====+=-+∑∑∑∑发散但2112()i n n n n a b n ∞∞==+=⋅∑∑收敛 112()n nn n ab n∞∞==-=∑∑发散 241111[()]n n n n a b n n∞∞===-+∑∑收敛.2. 下列复数项级数是否收敛,是绝对收敛还是条件收敛?(1)2111i n n n +∞=+∑ (2)115i ()2nn ∞=+∑ (3) π1ei nn n∞=∑ (4) 1i ln nn n∞=∑ (5)cosi 2n n n ∞=∑解 (1) 211111i 1(1)i 1(1)i n n nn n n n n n n +∞∞∞===++-⋅-==+⋅∑∑∑ 因为11n n ∞=∑发散,所以2111i n n n +∞=+∑发散(2)1115i 2nnn n ∞∞==+=∑∑发散 又因为15i 15lim()lim(i)0222n nn n →∞→∞+=+≠ 所以115i()2nn ∞=+∑发散(3)πi11e 1nn n n n ∞∞===∑∑发散,又因为π111ππcosisin e 1ππ(cos isin )i nn n n n n n n n n n ∞∞∞===+==+∑∑∑收敛,所以不绝对收敛. (4)11i 1ln ln n n n n n∞∞===∑∑ 因为11ln 1n n >- 所以级数不绝对收敛.又因为当n=2k 时, 级数化为1(1)ln 2kk k∞=-∑收敛当n=2k+1时, 级数化为1(1)ln(21)kk k ∞=-+∑也收敛所以原级数条件收敛(5) 0000cosi 1e e 1e 11()()2222222n n n nnn n n n n n e -∞∞∞∞====+=⋅=+∑∑∑∑ 其中0e ()2nn ∞=∑ 发散,01()2n n e ∞=∑收敛 所以原级数发散.3.证明:若Re()0n a ≥,且1nn a∞=∑和21nn a∞=∑收敛,则级数21nn a∞=∑绝对收敛.证明:设2222i ,(i )2i n n n n n n n n n n a x y a x y x y x y =+=+=-+ 因为1nn a∞=∑和21nn a∞=∑收敛所以21111,,(),n nnn n n n n n n x y xy x y ∞∞∞∞====-∑∑∑∑收敛又因为Re()0n a ≥,所以0n x ≥且2lim lim 0n n n n x x →∞→∞== 当n 充分大时, 2n n x x <所以21nn x∞=∑收敛2222222()n n n n n n a x y x x y =+=--而212nn x∞=∑收敛,221()n n n xy ∞=-∑收敛所以21nn a∞=∑收敛,从而级数21nn a∞=∑绝对收敛.4.讨论级数1()n n n zz ∞+=-∑的敛散性解 因为部分和110()1nk k n n k s zz z ++==-=-∑,所以,1,1n z s <→-当时1,0n z s =→当时,1,n z s =-当时不存在.当i e z θ=而0θ≠时(即1,1z z =≠),cosn θ和sinn θ都没有极限,所以也不收敛.,n z s →∞当>1时.故当1z =和1z <时, 1()n n n zz ∞+=-∑收敛.5.幂级数(2)nnn C z ∞=-∑能否在z=0处收敛而在z=3处发散.解: 设1limn n nC C ρ+→∞=,则当12z ρ-<时,级数收敛,12z ρ->时发散.若在z=0处收敛,则12ρ>若在z=3处发散, 则11ρ<显然矛盾,所以幂级数0(2)nnn C z ∞=-∑不能在z=0处收敛而在z=3处发散6.下列说法是否正确?为什么?(1)每一个幂级数在它的收敛圆周上处处收敛.(2) 每一个幂级数的和函数在它的收敛圆内可能有奇点.答: (1) 不正确,因为幂级数在它的收敛圆周上可能收敛,也可能发散. (2) 不正确,因为收敛的幂级数的和函数在收敛圆周内是解析的.7.若0nn n C z ∞=∑的收敛半径为R,求0nn n n C z b ∞=∑的收敛半径。

第三章复变函数的积分(答案).doc

第三章复变函数的积分(答案).doc

复变函数练习题 第三章复变函数的积分系专业班姓名学号§1 复变函数积分的概念§4 原函数与不定积分一.选择题1.设 C 为从原点沿 y 2x 至 1 i 的弧段,则( x iy 2 ) dz[]C( A )1 5i( B ) 15 i( C ) 1 5 i( D )1 5i6 6 6 66 6 6 62. 设 C 是 z (1 i)t , t 从 1 到 2 的线段,则arg zdz[]C( A )( B ) i( C ) 4 (1 i)( D ) 1 i443.设 C 是从 0 到 1 i 的直线段,则 ze z dz[]2C(A )12 e (B ) 1e (C ) 1ei (D )1ei2224.设 f ( z) 在复平面处处解析且i2 i ,则积分i z)dz[ ]f ( z)dz f (ii(A ) 2 i( B ) 2i(C ) 0( D )不能确定二.填空题1. 设 C 为沿原点 z0到点 z 1 i 的直线段,则2 z dz 2。

C2. 设 C 为正向圆周 | z4 | 1 ,则z 23z 2dz10 i.C(z 4)2三.解答题1.计算下列积分。

( 1)3 ie 2 z dzi1 2 z 3 iei21 (e 6 i e2 i ) 02( 2)i2zdzsinii1 cos2z z sin2z ii 2 dz2 4iisin2 ie 2e 2 e 2e 22 ii.4i4( 3)1 zsin zdz0 (sin z zcos z)( 4)10 sin1 cos1.izcosz 2 dzsin z 2isin 21 sin( i )2 .2 0 2 22.计算积分zC 为正向圆周:dz 的值,其中C| z|( 1)| z | 2积分曲线 C 的方程为z 2e i , 0 2 则原积分2 2e i2ie i d 2I=2 2id4 i.0 0( 2)| z | 4积分曲线 C 的方程为z 4e i , 0 2 则原积分2 4e i4ie i d 2I=4 4id8 i .0 03.分别沿y x与y x21 i算出积分(i z )dz 的值。

复变函数积分复习题答案

复变函数积分复习题答案

复变函数积分复习题答案复变函数积分是复分析中的一个重要概念,它涉及到复数域上的积分运算。

以下是一些复变函数积分的复习题及其答案。

题目1:证明如果函数\( f(z) \)在简单闭曲线\( C \)内是解析的,则\( \oint_C f(z) \, dz = 0 \)。

答案:根据柯西积分定理,如果函数\( f(z) \)在简单闭曲线\( C \)内是解析的,那么沿\( C \)的积分\( \oint_C f(z) \, dz \)等于零。

这是因为\( f(z) \)在\( C \)内是全纯的,即它满足柯西-黎曼方程,并且没有奇点。

题目2:计算积分\( \oint_C \frac{1}{z-1} \, dz \),其中\( C \)是单位圆\( |z| = 1 \)。

答案:这个积分可以看作是\( \frac{1}{z-a} \)形式的积分,其中\( a = 1 \)。

根据柯西积分公式,我们知道\( \oint_C \frac{1}{z-a} \, dz = 2\pi i \),当\( a \)在\( C \)内部时。

因为\( a = 1 \)在单位圆\( C \)内部,所以\( \oint_C \frac{1}{z-1} \, dz =2\pi i \)。

题目3:证明如果\( f(z) \)在\( C \)内是解析的,并且\( C \)是简单闭曲线,那么\( \oint_C f(z) \, dz = 0 \)。

答案:这个结论是柯西积分定理的直接结果。

柯西积分定理指出,如果\( f(z) \)在\( C \)内是解析的,并且\( C \)是简单闭曲线,那么\( \oint_C f(z) \, dz \)等于零。

这是因为\( f(z) \)在\( C \)内没有奇点,积分的路径\( C \)可以被任意地收缩到一个点,而不改变积分的值。

题目4:计算积分\( \oint_C \frac{e^z}{z^2+1} \, dz \),其中\( C \)是半径为2的圆。

复变函数的积分例题及解析

复变函数的积分例题及解析

复变函数的积分例题及解析复变函数是指可以用复数表示的函数,其积分也是复变函数的重要研究内容。

积分是分析物理原理和计算质量等方面的重要工具,也是数学理论极端深入的重要研究标题。

下面将介绍一些常见的复变函数积分的例题及其解析。

# 例题1:求函数$f(z)=(z^2-1)^2$的积分该函数的积分可以用$f(z)dz$表示,把该函数的变量$z$代入即得:$$begin{aligned}int f(z)dz &= int (z^2-1)^2 dz&= int (z^4 -2z^2 + 1)dz&=frac{z^5}{5} - frac{z^3}{3} + z + Cend{aligned}$$式中$C$是任意常数。

# 例题2:求函数$f(z)=frac{1}{z^4+1}$的积分同样,将函数的变量$z$代入到函数式中,即得:$$begin{aligned}int f(z)dz &= int frac{1}{z^4+1} dz&= frac{1}{3}int frac{3}{z^4+1} dz&= frac{1}{3}int frac{z^4 + 1 -1}{z^4+1} dz&=frac{z^3}{3} + frac{1}{2}ln|z^4+1| + Cend{aligned}$$式中$C$是任意常数。

# 例题3:求函数$f(z)=e^zsin(z^2)$的积分将函数中$z$代入,即得:$$begin{aligned}int f(z)dz &= int e^zsin(z^2) dz&= int e^z (sin z cos z) z dz&=e^z sin z cos z frac{z^2}{2} - int frac{e^z cos z cos z z^2}{2} dz&= e^z sin z cos z frac{z^2}{2} - int frac{e^z cos^2 z z}{2} dz&= e^z sin z cos z frac{z^2}{2} - frac{e^z cos^2 z z^2}{4} - frac{1}{4}int e^z dz&= e^z sin z cos z frac{z^2}{2} - frac{e^z cos^2 z z^2}{4} - frac{e^z}{4} + Cend{aligned}$$其中$C$是任意常数。

复变函数的积分例题及解析

复变函数的积分例题及解析

复变函数的积分例题及解析例题1:计算复变函数 f(z) = z^3 的积分∮ γ f(z) dz,其中γ为以原点为圆心、半径为R的逆时针方向正向的圆周。

解析:根据复变函数的积分定义,可以将复变函数积分转化为对参数t的实函数积分。

即∮ γ f(z) dz = ∫ f(γ(t)) γ'(t) dt。

对于本题中的γ(t) = Rcos(t) + iRsin(t),γ'(t) = -Rsin(t) + iRcos(t)。

因此:∮ γ f(z) dz = ∫ [Rcos(t) + iRsin(t)]^3 [-Rsin(t) +iRcos(t)] dt= ∫[(R^3cos^3(t) + 3Rcos^2(t)iRsin(t) +3Rcos(t)i^2R^2sin^2(t) + i^3R^3sin^3(t))(-Rsin(t) + iRcos(t))]dt= ∫[-R^4cos^3(t)sin(t) - 3R^2cos^2(t)sin^2(t) +3R^2cos(t)sin^3(t) - iR^4cos(t)sin^3(t) + iR^2cos(t)sin^2(t) - iRsin^4(t) + R^4cos^4(t) + 3R^2cos^3(t)sin^2(t) -3R^2cos(t)sin^4(t) + iR^4cos^3(t)sin(t) - iR^2cos^3(t)sin(t) +iR^4cos(t)sin^3(t)] dt= ∫[-4R^4cos^3(t)sin(t) - 3R^2cos^2(t)sin^2(t) +6R^2cos(t)sin^3(t) - 3R^2cos(t)sin^4(t) + R^4cos^4(t) +6R^2cos^3(t)sin^2(t) + i(R^4cos(t)sin^3(t) - R^2cos(t)sin^2(t) + R^4cos^3(t)sin(t) - R^2cos^3(t)sin(t))] dt对上式分别对t进行积分,积分得到:∮ γ f(z) dz = ∫[-4R^4cos^3(t)sin(t)] dt -∫[3R^2cos^2(t)sin^2(t)] dt + ∫[6R^2cos(t)sin^3(t)] dt -∫[3R^2cos(t)sin^4(t)] dt + ∫[R^4cos^4(t)] dt +∫[6R^2cos^3(t)sin^2(t)] dt + i[∫(R^4cos(t)sin^3(t)) dt -∫(R^2cos(t)sin^2(t)) dt + ∫(R^4cos^3(t)sin(t)) dt -∫(R^2cos^3(t)sin(t)) dt]=0-0+0-0+π*R^4/2+0+i[0-0+0-0]=π*R^4/2因此,复变函数f(z)=z^3在以原点为圆心、半径为R的逆时针方向正向的圆周上的积分值为π*R^4/2例题2:计算复变函数 f(z) = e^z 的积分∮ γ f(z) dz,其中γ为沿单位圆的逆时针方向正向的圆周。

第三章_复变函数的积分(答案)

第三章_复变函数的积分(答案)
1 2 i z 1 z 0
2
解法二: I 2 i
(2) C :| z i |
3 ; 2
1 I 2 i 0 2 i i. 2
解法二: I 2 i
1 1 2 i 2 i i i z 1 z 0 z( z i ) z i
复变函数练习题
第三章
复变函数的积分 学号
系 专业 班 姓名 § 1 复变函数积分的概念 § 4 原函数与不定积分 一.选择题 1.设 C 为从原点沿 y x 至 1 i 的弧段,则
2

C
( x iy 2 )dz
1 5 i 6 6
(D)
[
]
(A)
1 5 i 6 6
(B)
1 5 i 6 6

2
1 1 1 + dz = (2 i 2 i ) 2 i. C z 1 z +1 2
解法二: 被积函数
z 在 C 内部具有两个奇点z 1, z 1
分别作两个以 1, -1 为心,充分小的长度为半径的圆周 C1、 C2, 且 C1 和 C2 含于 C 内部。由复合闭路定理,

C C

C
Ln zdz (ln R i arg z 2 i )dz i arg zdz i Riei d 2 R i.
16
复变函数练习题
第三章
复变函数的积分 学号
系 专业 班 姓名 § 5 柯西积分公式 § 6 解析函数的高阶导数 一.选择题。 1.设 C 是正向圆周 x y 2 x 0 ,则
(C)
1 5 i 6 6
[ ]
2. 设 C 是 z (1 i )t , t 从 1 到 2 的线段,则 (A)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 复变函数的积分习题与解答
如果函数()f z 是在【1】单连通区域;【2】复通区域中的解析函数,问其积分值与路径有无关系
【答案 单连通 无关,复连通 有关】
计算积分
||z ⎰i
【答案 0】 计算积分
22d L z z a -⎰i :其中0a >.设 L 分别为 (1)(1)||/2; ||; (3)||z a z a a z a a =-=+=
【答案 (1)0;(2)πi
a ; (3)πi
a -】 计算积分 Im d C z z ⎰,其中积分曲线C 为
(1)从原点到2i +的直线段;
(2)上半圆周 ||1z =,起点为1,终点为1-;
(3)圆周|| (0)z a R R -=>的正方向(逆时针方向)
【答案 2
(1)1i /2;(2)π/2;(3)πR +--】 计算积分 d ||C z z z ⎰i 的值,
(1)||2; (2)||4;z z ==
【答案(1)4πi;(2)8πi 】
计算积分的值 π2i 0
cos d 2z z +⎰
【答案 1/e e +】
计算下列积分的值 (1) ||1d cos z z z =⎰i ;(2)2||2d z ze z =⎰i
21||1||12i d d (3); (4)24()(2)z z z z z z z z ==++++⎰⎰i i 【答案(1)0;(2) 0;(3) 0;(4) 4πi
4i +】
计算
2||2||232|i|1||1522||1|i|2(1)d ; (2)d ;3(1)(21)cos (3)d ; (4)d (i)(2)d (5)d ; (6)(4)z z z z
z z z z z e z z z z z z z e z z
z z z e z z z z z ==-===-=--+--+⎰⎰⎰⎰⎰⎰i i
i i i i
【答案 (1)0;(2)0;(3)πicosi -;(4)3πi 2-;(5)πi 12(6)π8-】
计算积分
(1)π61i i 000(1)sin d ; (2)ch3d ; (3)(1)d z z z z z z z e z --⎰⎰⎰
【答案 1
3(1)sin1cos1; (2)i; (3)1cos1i[sin(1)1]--+-】
计算复数 123cos (1)d C C z z z +⎰Ñ,其中1:||2C z =顺时针方向;2:||3C z =逆时针方向.
(2)3||1d ()z
z e z z a =-⎰i ,其中复常数||1a ≠
【答案 (1) 0;(2)当
||1,0;||1,πi a a a e ><】 设L 为不经过点b 和b -的简单正向(逆时针)曲线,b 为不等于零的任何复数,试就曲线L 与b 的各种可能计算积分的值.
d ()()L z I z
z b z b =+-⎰i
【答案 (1)L 不含b ±,则I=0;(2)L 含b ,πi b I =
;L 含b -,πi b I =-;(3)两点在内部 0I =】
已知 π3||2()d e h z z ξξξ
ξ==-⎰i ,试求(i),(i)h h -,以及当||2z >时,()h z '的值.

()π(i);(i)i);||2,()0h i h z h z '=-=>=】
计算积分 3d ()z
C ze z z a -⎰i ,其中 常数a 在闭曲线C 内部
【答案 1(2)2a
a e +】
设 C 为正向圆周1=z ,且||1a ≠,证明:积分
222π1||22
π||1||1 (||1)|d ||| (||1)a z a a z z a a -=-<⎧⎪=⎨->⎪⎩⎰i
利用积分 ||1d 2z z z =+⎰i 的值,证明2π012cos d 054cos θθθ+=+⎰
计算积分 2|||d |,(||)||z r z a r z a =≠-⎰i
(提示:令
i i :|d |d ,r z c z re z z θ=⇒=注意到点2,r a a 是关于圆周||z r =的对称点)
.已知
2πsin 4()d f z z ζζζζ==-⎰
求(12i),(1),(1)f f f '-. 计算积分(2)2||1cos d z z z z e z =⎰i
本章计算机仿真编程
计算机仿真编程验证的积分结果2π0
12cos d 054cos θθθ+=+⎰
计算机仿真计算下列积分的值 (沿非闭合路径的积分) π63πi i i 2123πi 00(1)d ; (2)ch3d ; (3)(1)d ;z z I e z I z z I z e z --===-⎰⎰⎰
i
4211tan (4)d ,cos z I z z +=⎰其积分的路径为沿1到i 的直线段. (说明:沿闭合路径的积分可以利用留数的定义,留数定理来计算;而留数可以利用计算机仿真编程Matlab 直接求解)。

相关文档
最新文档