第九章板壳结构有限元解析
板结构有限元分析实例详解
板结构有限元分析实例详解板结构是一种常见的结构形式,广泛应用于建筑、航空航天、机械、电子等领域。
板结构的特点是结构主要由板和边界构件组成,受到外加载荷作用时,产生弯曲和剪切变形。
为了评估板结构的强度和稳定性,可以使用有限元分析方法进行分析。
本文将以一座大跨度板结构为例,详解板结构有限元分析的步骤及其相关实例。
首先,我们需要对板结构进行几何建模。
通常情况下,板结构可以简化为二维平面问题。
我们可以使用专业的有限元分析软件,如ANSYS、ABAQUS等,进行几何建模。
在建模过程中,需要确定结构的几何形状、边界条件、加载方式等参数。
以一块长方形板作为例子,我们可以在软件中创建一个二维平面,并定义板的几何尺寸和材料属性。
接下来,我们需要对板结构进行网格划分。
有限元分析方法将结构划分为许多小的单元,然后对每个单元进行分析计算。
在板结构分析中,常用的单元类型包括矩形单元、三角形单元、四边形单元等。
我们可以根据实际需要选择适当的单元类型和网格密度,并利用软件自动生成板结构的网格。
然后,我们需要为板结构定义边界条件。
边界条件包括支撑条件和加载条件两个方面。
支撑条件描述了板结构受力的边界,通常包括固定支撑、滑动支撑、自由支撑等情况。
加载条件描述了外力或外载荷施加在板结构上的方式和大小。
在我们的例子中,假设板结构的四个边界均为固定支撑,我们可以在软件中设置相应的边界条件。
之后,我们需要为板结构定义材料属性。
板结构的材料属性包括弹性模量、泊松比、密度等参数。
这些参数描述了板结构在受力时的材料性能和特性。
我们需要根据实际的材料情况,为板结构指定合适的材料属性,并在软件中进行设置。
最后,我们可以对板结构进行有限元分析计算。
在软件中,我们可以选择合适的求解器和分析方法,进行结构的静力分析、动力分析、稳定性分析等。
通过有限元分析,我们可以得到板结构在受力状态下的变形、应力分布、应变分布等结果。
总之,通过板结构的有限元分析,我们可以对结构的强度、稳定性、振动等性能进行评估和优化。
7_板壳问题有限元分析
1 1 2 h 1 1 2
h
BiT DB j abd d dz
(6.17)
21 /44
薄板问题的有限元法
代入 D 、 Bi 和 B j 于是有
D 1 1 b2 T kij N i , N j , uN iT, N T, uN iT, N T, j j 1 1 a 2 ab +2(1- )N
2
24 /44
薄板问题的有限元法
k23 15H ab(i j )(i j ) b2 b2 k31 3Ha (2 3 5 2 ) j0 15 2 j 5i0 a a k32 15H ab(i j )(i j )
23 /44
薄板问题的有限元法
其中
b2 a2 a2 b2 k11 3H 0 15( 2 0 2 0 ) (14 4 5 2 5 2 ) 00 b b a a a2 a2 k12 3Hb (2 3 5 2 ) 0i 15 2 i 5 0i b b b2 b2 k13 3Ha (2 3 5 2 )i0 15 2 i 50 j a a a2 a2 k21 3Hb (2 3 5 2 ) 0 j 15 2 j 5 0i b b a2 k22 Hb 2(1 ) 0 (3 50 ) 5 2 (3 0 )(3 0 ) b
1 E D 2 1 0
薄板问题的有限元法
图 6.2 平板内力
10 /44
薄板问题的有限元法
设 M x 、 M y 和 M xy 表示单位宽度上的内力矩,于是有
2w 2 x Mx h h3 2 w h3 M M y h2 z dz D DC D 'C (6.5) 2 12 y 12 2 M xy 2w 2 xy
有限元-结构静力学分析
03
结果优化
如果结果不满足设计要求,需要对有 限元模型进行优化设计,如改变梁的 截面尺寸、增加支撑等。
THANKS
谢谢您的观看
结构静力学的求解方法
解析法
解析法是通过数学方法求解结构在静载荷作用下的响应的求解方法。它通常 适用于具有简单几何形状和载荷条件的结构,如梁、板、壳等。
数值法
数值法是一种通过数值计算方法求解结构在静载荷作用下的响应的求解方法 。它通常适用于具有复杂几何形状和载荷条件的结构,如飞机、汽车等。
结构静力学的基本假设和简化
问题描述和基本方程
问题描述
弹性地基梁是支撑在弹性地基上的梁,受到垂直荷载的作用。该问题可描述为求 解地基反力和梁的挠度。
基本方程
该问题的基本方程包括梁的平衡方程、几何方程和物理方程。这些方程描述了梁 在受力后的变形和应力分布情况。
利用有限元法进行每个单元之间通过节点相连。每个节点具有三个自由度:沿 x、y、z方向的移动。
系统方程的建 立
将所有单元的平衡方程 和变形协调方程组合起 来,得到整个结构的系 统方程。
求解系统方程
利用数值方法(如高斯 消元法)求解系统方程 ,得到每个节点的位移 和应力。
结果分析和讨论
01
结果输出
输出每个节点的位移、应力、应变和 弯矩等结果。
02
结果评估
根据输出结果,对框架结构的强度、 刚度和稳定性进行评估,判断是否满 足设计要求。
连续性假设
结构静力学的基本假设是结构的材料是连续的, 即结构的内部没有空隙和缺陷。
各向同性假设
结构静力学的基本假设是结构的材料是各向同性 的,即结构的各个方向具有相同的材料性质。
均匀性假设
结构静力学的基本假设是结构的材料是均匀的, 即结构的各个部分具有相同的材料性质。
9有限元法在船体结构设计中的应用
第9章 有限元法在船体结构设计中的应用9.1概述近年来, 由于新型船舶的建造、船舶的大型化以及新结构、新材料不断出现,船舶结构的屈曲、弹塑性破坏、疲劳和断裂等问题日趋受到重视,迫使我们寻找新的、有效的船体结构分析方法。
有限元法是一种基于变分原理的把连续体离散化的数值解法,具有适应性强,效能较高等优点。
有限元法的实质是把求解区域分为有限个单元,这些单元只在求解区域的节点处和单元的边界上互相连接,这样求解区域被离散了,并且表示为有限个单元的组合体。
有关有限元的理论可参见有关教材。
应用有限元分析方法,可将船体结构离散为能精确模拟其承载模式和变形情况的有限个单元,可详尽地表述船体结构的微观细节,真实地表达出各个构件间的协调关系与变化,可以求出各个关心构件或区域的实际变形与应力。
这种方法是目前船体强度分析最准确、最完善的方法,也是在理性结构设计中,最能精确预报结构对载荷响应的结构分析方法。
有限元软件就是有限元方法的计算机程序或程序系统,有通用和专用两种。
自20世纪70年代后期,引入我国的各种大、中型专用和通用有限元著名软件有ABAQUS, ANSYS, ADINA, SAP, MARC, NASTRAN[24]等。
船舶行业中主流的有限元软件是NASTRAN,它具有开放式的、全模块化的组织结构使其不但拥有很强的分析功能而又保证很好的灵活性,使用者可针对自己的工程问题和系统需求通过模块选择、组合获得最佳的应用系统。
针对工程实际应用,NASTRAN中有近70余种单元独特的单元库。
所有这些单元可满足NASTRAN各种分析功能的需要,且保证求解的高精度和高可靠性。
模型建好后,NASTRAN即可进行分析,如动力分析、非线性分析、灵敏度分析、热分析等。
此外,NASTRAN的新版本中还增加了更为完善的梁单元库,同时新的基于P单元技术的界面单元的引入可有效地处理网格划分的不连续性(如实体单元与板壳单元的连接),并自动地进行MPC约束。
有限元教案_壳单元
其中:
11
单元分析(局部坐标系下) 单元分析(局部坐标系下)
则单元刚度方程可写成标准形式:
{F }
(e)
= K
(e)
{δ }
(e)
12
坐标转换问题
由前面说明可见,单元刚度矩阵是对坐标x,y轴位于单元 平面内的(右手,局部)坐标系建立的,从柱面薄壳的离散可知 ,像杆系结构有限元分析一样,为进行整体分析,必须建立统 一的整体坐标系。局部坐标与整体坐标之间的关系为:
2
1.理论假设 . 与薄板问题相似,薄壳发生微小变形时,也可以忽略其沿 壳体厚度方向的挤压变形,且认为直法线假设仍然成立,即变 形后中面法线保持为直线且仍为中面的法线,与薄板不同的是, 壳体变形时中面不但发生弯曲,而且也将产生面内的伸缩变形。 2.折板假设 . 将壳体划分为有限个单元,它们都是曲面单元。但是,当 网格划分足够细时,曲面单元将足够扁平,可近似地视为平板 单元,它们拼成的折板体系可近似代替原来的光滑壳体结构。 常用的平板型壳体单元有矩形和三角形单元。
{F }
(e)
= [ K ]( e ) {δ }( e )
其中,整体坐标系下的单元刚度矩阵为:
[K ]
(e)
= [T ] K [T ]
T e
18
用平面壳体单元进行壳体分析的步骤
1. 离散化 ( 手工或自动 ) 并确定结点坐标 2. 作局部坐标下的单元分析 (1) 作平面应力单元分析 ; (2) 作平面弯曲单元分析 ; (3) 组成平面壳体单元特性公式。 3. 建立坐标变换矩阵 T 并求整体坐标下的单元特性 4. 按整体结点编码进行总刚集装 5 .引人约束条件 6. 解总刚度方程得壳体结构结点位移
4
弹性力学--纳维解法(板壳理论)
板壳理论课程设计对工科各专业说来,弹性力学的任务和材料力学、结构力学的任务一样,是分析各种结构或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度和刚度,并寻求或改进它们的计算方法。
然而,它们之间还存在着一些不同。
材力中,基本上只研究杆状结构,即长度远大于高度和宽度的构件。
而材料力学中主要研究的是这种构件在拉压、剪切、弯曲、扭转作用下的应力和位移。
结构力学中,主要是在材料力学的基础上研究杆状构件所组成的结构,即杆件系统。
至于非杆状结构,则是弹性力学的主要研究内容。
在弹性力学中,研究杆状结构一般都不用诸如一些关于构建的形变状态或应力分布的假定,因而得到的结果就比较精确。
从8个方程8个未知量,到圣维南原理、相容方程;从逆解法、半逆解法到差分法、变分法,邱老师的课讲的十分生动,同学们也听得十分认真。
到弹性力学下册,也就是板壳理论,主要是研究薄板的小挠度变形及其应力、应变。
求解四边简支矩形薄板在载荷下的挠度,以及矩形薄板的莱维法解及一般解法。
另外,变厚度矩形和圆形薄板的挠度求解问题。
差分法中引进了较为精确的边界条件以及在均布载荷和集中载荷下的不同解法。
在课程设计的过程中,在自学Matlab 的过程中完成了纳维解法中挠度表达式的表示和循环收敛过程,并且完成了差分法中不同网格划分下的差分方程化为矩阵形式后的求解过程。
除此之外,还学会了使用ABAQUS 创建板并定义厚度以减少同等情况下创建实体添加边界条件不准确对计算结果产生的影响。
尽管和差分法与精确解的误差分析相比,误差还是比较大,但相比于创建三维实体并在底边添加约束条件相比,误差还是减少了很多。
在计算过程中,先是采用厚度0.2m 薄板,有限元方法的误差过大,而当把薄板的厚度改为0.1m 时,误差变小。
两种厚度的薄板都进行了同样的计算。
四边简支的薄板在均布载荷作用下位移的最大值,薄板的尺寸为长宽高:110.1⨯⨯ ,均布载荷为21000/q N m = ,弹性模量E=205GPa ,泊松比=0.3μ, 分别用:纳维法、差分法以及有限元方法进行求解并比较求得的结果。
有限元静力分析基本原理
此外,随着大数据和人工智能技术的快速发展,有限元分析可以与这 些技术相结合,实现更加智能化、自动化的工程设计和管理。
THANKS
感谢观看
离散化
将连续的物理系统划分为有限个离散的单元, 每个单元具有一定的形状和大小。
集成
将所有单元的数学方程集成为一个整体的有 限元方程组。
单元分析
对每个离散单元进行数学建模,建立单元的 数学方程。
求解
通过求解有限元方程组,得到物理系统的近 似解。
有限元的数学基础
线性代数
01
有限元方法涉及大量的线性代数运算,如矩阵运算、线性方程
定不变的载荷作用下的响应。
它主要关注的是结构的平衡状态 和位移,而不考虑时间因素和动
态效应。
静力分析广泛应用于工程领域, 如建筑、机械、航空航天等,用 于评估结构的强度、刚度和稳定
性。
静力分析的基本步骤
建立数学模型
首先需要建立结构的数学模型,包括对结构的离散化、选 择合适的单元类型和确定边界条件等。
该方法基于离散化的思想,将 复杂的结构分解为简单的、相 互连接的单元,通过求解每个 单元的平衡方程来获得结构的
整体响应。
有限元静力分析在工程领域中 广泛应用于结构强度、刚度、 稳定性等方面的分析,为结构 设计提供了重要的理论依据和 实践指导。
随着计算机技术的发展,有限 元分析软件不断涌现,为工程 师提供了更加高效、精确的数 值分析工具。
施加载荷
根据实际工况,在结构上施加相应的载荷,包括重力、外 部力、压力等。
求解平衡方程
通过有限元方法,将连续的结构离散为有限个单元,并建 立平衡方程组。然后使用数值方法求解这个方程组,得到 各节点的位移和应力等结果。
船体结构有限元分析专题课件
SM m IN i n0 b
图2-3 PPT学习交流
11
• 本例命令流文件:Gird44.dat
•
fini • /clear • /title,gird 2002/9/22 • /prep7 • /view,1,0.75,0.54,0.38 • /ang,1,-101 • et,1,beam44 • mp,ex,1,2.06e8 • R,1,0.0112,1.0e-10,0.319e-
单元选取,网格划分要求,边界条件,载荷等。然后才能选用它们规 定的许用应力衡准。
PPT学习交流
1
1.船体结构模型通常可以划分成下列类型: (a) 船体梁整体模型(图1)
(b) 舱段模型(图2)
图1船体梁整体模型
图2 舱段模型
PPT学习交流
2
(c) 交叉梁系模型(板架)(图 3)
(d) 肋骨框架模型(图4)
0.3,0 • fini •
PPT学习交流
14
• §3 板梁组合结构计算示例
• 板梁组合结构计算需考虑梁的偏置。
• 当梁单元作为壳单元的加强部件时,梁单元与壳单元应共 享一个节点。壳单元节点位于壳中面上,而梁单元的节点 位于梁横截面形心处,因此,如果壳和梁共享节点,加强 梁与壳将重叠(图3-1a),这与实际结构不符,所以必须 将梁截面从节点位置处偏置(图3-1b)
3,0.13679,0.1,1.0e-10, • rmore, , , , , , , • rmore, , , , , , ,
FLST,2,4,4,ORDE,2 • FITEM,2,4,4,ORDE,2 • FITEM,2,1 • FITEM,2,-4 • LOWLAP,P51X • NUMMRG,KP, , , ,LOW • LPLOT • LSEL,ALL • LATT,1,1,1, ,100,
有限元板壳——王勖成
xi x i a a yi y i b b
广义应变
[ ] L w L N a
薄板应变能:
h /2 1 1 T T ' U dV D dzdA 2 V 2 A h/2 1 1 T T D dA M dA 2 A 2 A
泛函表达式:
1 w T p D dxdy Vn dS M n dS S S S 3 2 3 2 n
边界条件
(1)位移边界条件
S1 S2
w |s1 w
(2)混合边界条件
w n s1
M n |s2 M n w |s2 w M ns 其中 (Qn ) Vn S s3 (3)力边界条件 2w 2w S3 M n |s3 M n M n |s2 D0 n 2 s 2
1 0 E [ D0 ] 1 0 1 2 1 0 0 2
内力:板单位宽度 上弯矩Mx 、 My和 Mxy ,为应力分量 在板截面上的合力 矩:
M x t [ M ] M y 2t z{ }dz 2 M xy
1-3项刚体位移
单元间法线导数 可能不连续
4-5项常应变 非协调元
将结点坐标和结点位移代入上式,可解出 a1~a12,再代入该式并整理得位移函数
w [ N ]{a}
式中形函数
e
[ N ] [ N1 N2 N3 N4 ]
[ N ]i [ Ni N xi N yi ]
1 N i (1 i )(1 i )(2 i i 2 2 8 1 N xi bi (1 i )(1 i )(1 2 ) ) (i 1,2,3,4 8 1 2 N yi a i (1 i )(1 i )(1 ) 8
有限元受力分析 结构梁 力 计算
目录.绪论 (2)第一章.有限元课程设计 (4)一.工程问题 (4)二.简化模型 (4)三.解析法求解 (5)四.ANSYS求解 (8)五.结果分析 (19)第二章.机械优化设计说明 (20)一.题目及解析 (20)二.黄金分割法计算框图 (23)三.C语言程序 (24)四.运行结果 (27)五.结果分析 (27)第三章.设计感言 (28)第四章.参考文献 (28)前言有限元法在解决圣维南扭转问题近似解时首先提出的。
有限元在弹性力学平面问题的第一个成功应用是由美国学者于1956年解决飞机结构强度时提出的、经过几十年得发展,有限元一惊成为现代结构分析得有效方法和主要手段。
它的应用已经从弹性力学的平面问题扩展到空间问题和板壳问题。
对于有限元法,从选择基本未知量的角度来看,他可以分为三种方法:位移法,力法,混合法。
从推导方法来看,它可以分为直线法,变分法,加权余数法。
但随后随着计算机的发展,有限元法如虎添翼。
国内外已有许多大型通用的有限元分析程序,并已经出现了将人工智能技术引入有限元分析软件,形成了比较完善得专家系统,逐步实现了有限元的智能化。
优化设计是现代设计方法的重要内容之一。
它以数学规划为理论基础以电子计算机为工具,在充分考虑多种设计约束的前提下,寻求满足预订目标的最佳设计。
优化设计理论于方法用于工程设计是在六十年代后期开始的,特别是今年来,随着有限元素法,可靠性设计,计算机辅助设计的理论与发展及优化设计方法的综合应用使整个工程设计过程逐步向自动化集成化智能化发展,其前景使令人鼓舞的。
因而工程设计工作者必须适应这种发展变化,学习,掌握和应用优化设计理论与方法。
今年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的机械制造都已离不开有限元分析计算,其再机械制造,材料加工,航空航天,汽车,土木建筑,电子电器,国防军土,船舶,铁道,石化能源,科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃,主要表现在以下几个方面:增加产品和工程的可靠性在产品的设计阶段发现潜在的问题经过分析计算,采用优化设计方案,降低原材料成本缩短产品投向市场的时间模拟试验方案,减少试验次数,从而减少试验经费ANSYS软件致力于耦合场的分析计算,能够进行结构,流体,热,电磁四种场的计算,已博得了世界上数千家用户的钟爱。
有限元分析课件
物理模拟方法简介
(1)缝隙法 为了定性地了解接触面压力分布,可在模具的相应部分留有垂直于模
面的窄缝或小孔,根据流入窄缝或小孔的模拟材料外形或高度,定性地判定 接触面正压力分布。
物理模拟方法简介
(2)硬度法 冷变形时,变形程度越大硬化越强,硬度越高,因此可根据硬度
的分布,判别变形不均匀的程度。根据下图能判断出,圆柱体镦粗时变 形可分为三个区,中心区是大变形区,侧面鼓形是中等变形区,上下接 触面是小变形区。
物理模拟方法简介
(4)叠层法 叠层法是利用易变形材料(铅和塑性泥等)制成薄
片,然后叠成试样进行模拟实验的方法。 为了研究挤压时的变形流动情况,可以用颜色
不同的塑性泥层制成试样进行挤压,然后沿子午面切 开,由不同颜色的各层位置变化来观察变形区的情况, 此外,用铅制成薄片重叠成圆柱体进行镦粗,不仅可 观察变形流动,还可以把变形后的铅层分开,通过测 量各层不同部位的尺寸变化,计算出变形体内的应变 分布。
形状、尺寸精度和组织性能的产品的加工方法,称为金属塑性成形,也称为金 属塑性加工或金属压力加工。
如果不考虑切头、去尾、火耗等损失,那么金属材料的体积、质量在塑 性成形前后可看做没有发生变化,因此塑性成形是无屑或少屑的金属加工方法。
塑性成形方法与分类
1、根据加工时工件受力和变形方式的不同,金属塑 性成形方法可分为锻造、挤压、轧制、拉拔、冲压 等。 2、根据金属变形特征的不同,又可将金属塑性成形 分为:体积成形(或称块料成形)和板料成形(冲 压)两大类。 3、金属塑性成形按照加工时工件的温度又可分为热 塑性成形、冷塑性成形和温塑性成形。
物理模拟方法简介
(5)坐标网格法(Coordinate Grid Method) 是研究金属塑性变形分布应用最广泛的一种方法,
有限元板壳单元
a33
=
Ha2
⎡ ⎢2 ⎣
(1 −
μ
)η0
(3
+
5ξ0
)
+
5
b2 a2
(3
+
ξ0
)(3
+η0
)⎤⎥
⎦
式中
H
=
D 60ab
,ξ0
= ξiξ j ,η0
= ηiη j
7.3 基于Mindlin板理论的四边形单元
基于Kirchhoff 薄板理论的薄板矩形单元忽略了 剪切变形的影响。由于Kirchhoff 板理论要求挠 度的导数连续,给构造协调单元带来了不少麻 烦。为此,采用考虑剪切变形的Mindlin 板理论 来克服。这种方法比较简单,精度较好,并且 能利用等参变换,得到任意四边形甚至曲边四 边形单元,因而实用价值较高。
(2)单元应变场的表达
由弹性力学几何方程有:
式中
[ ] ⎧ε
⎪
x
⎫ ⎪
⎧⎪ w' xx
⎨ε y ⎬ = −z ⎨w' yy
⎫ ⎪ ⎬=z
B1 B2 B3
B4
δe
⎪⎩γ
xy
⎪ ⎭
⎪⎩2w'
xy
⎪ ⎭
Bi
=
−
⎧ ⎪
Ni
'
xx
⎨ Ni' yy
⎩⎪2 Ni ' xy
⎫ ⎪ ⎬ ⎪ ⎭
=
−
⎧ ⎪⎪ ⎨
Ni Ni
w、ψ x 和ψ y 来描述板内的变形,即
⎧ε
⎪
x
⎫ ⎪
⎧ψ
⎪
x
'
x
结构力学及有限元
法国米约大桥夜景
确定计算简图的原则: 半铰结点 1.能反映实际结构的主要力学特性; 2.分析计算尽可能简便 铰结点 简化内容:
1.杆件的简化: 2.结点的简化: 杆件 杆件的轴线 刚结点 铰结点 半铰结点(组合结点)
§2 . 杆件结构的计算简图
计算简图:
在结构分析当中用来代替实际结构的计算模型(图形)
确定计算简图的原则: 简化内容:
确定计算简图的原则: 简化内容:
1.能反映实际结构的主要力学特性; 2.分析计算尽可能简便 杆件 杆件的轴线 刚结点 铰结点 半铰结点(组合结点) 固定铰支座 可动较支座 固定端支座 滑动支座(定向支座) 空间结构 平面结构
1.杆件的简化: 2.结点的简化: 3.支座的简化: 4.体系的简化:
§2 . 杆件结构的计算简图
第二章
§1
结构的几何组成分析
. 几何组成分析 §1-1 . 基本概念
一.几何不变体系与几何可变体系
二.任务 研究结构的刚度,强度,稳定性的
计算原理和计算方法
三.内容 结构组成;内力,位移,临界力计算.
坐落在法国南部塔恩河谷的米约大桥2004年12月14日竣工,它是目 前世界上最高的大桥,桥面与地面最底处垂直距离达270米。而斜拉索 最高点离地有343米,比埃菲尔铁还要高出23米。尽管全长达2.46公里, 但只用7个桥墩支撑。
计算简图:
在结构分析当中用来代替实际结构的计算模型(图形)
确定计算简图的原则: 简化内容:
1.能反映实际结构的主要力学特性; 2.分析计算尽可能简便 杆件 杆件的轴线 刚结点 铰结点 半铰结点(组合结点) 固定铰支座 可动较支座 固定端支座 滑动支座(定向支座) 空间结构 平面结构 集中力、集中力偶、分布荷载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
薄板三角形单元
进行一系列的推导后,可得到
形函数的具体计算式为:
薄板三角形单元
建立了位移模式之后,那么剩下的工作就并不复杂:位移模式→ 应变离散→ 应力离散→刚度矩阵→载荷向量→约束处理→求解。
但位移模式是建立在面积坐标上的,相关的计算怎么进行?
导数间的关系为
单元数 (1/4板)
2×2 4×4 6×6 理论解
四边固定
板中心挠度 wD/PL2
边中点弯矩 M/P
0.00614
-0.1178
0.00580
-0.1233
0.00571
-0.1245
0.00560
-0.1257
薄板三角形单元
三角形单元能较好地适应斜边界,实 际中广泛应用。单元的结点位移仍然 为结点处的挠度wi和绕x,y轴的转角
壳体:壳体的变形除了横向弯曲变形外,同时存在中面变形。 因此可以认为壳体是平面应力问题和平板弯曲问题的组合。当 然,对于厚壳结构,仍需要横向剪切变形的影响。
薄板结构有限元
薄板基础理论知识
薄平板,取其中性面为坐标面,z轴垂直于中性面。其中 t 为 板厚。当板受有垂直于板中性面的外力时,板的中性面将发 生弯扭变形,从而变成一个曲面。板变形的同时,在板的横 截面上将存在内力——弯矩和扭矩。
Mxy=Myx
内力列向量为
薄板基础理论知识
内力可以根据应力进行计算得到
使用记号
平面应力问题 中的弹性矩阵
于是
薄板基础理论知识
进行反向回代,可以得到
在板的上、下表面处,z=±0.5t,于是应力为
薄板基础理论知识
如果薄板在z方向承受分布荷载
此时薄板内部产生应力 则可以采用虚功原理
与之平衡,
假设发生虚位移 , 应力做的虚功为
x
θx1 1
3 那么
y
θy1 w1
z
2
薄板三角形单元
应用实例
四边简支板的中心挠度系数计算
单元数 (1/4板)
2×2
4×4
板中心挠度wD/qL4 0.004249 0.004153
8×8 解析解
0.004098 0.004042
薄板基础理论知识
对于薄板问题采用如下假设: (1)直法线假设:薄板中面法线 变形后仍保持为法线且长度不变。 (2)忽略板中面的法线应力分量, 且不计其引起的应变。 (3)薄板中面内的各点没有平行 于中面的位移,即中面不变形。
由第(2)条可知挠度w与z无关,
由第(1)条可知 zx和 yz等于零,另外根据第(3)条中面无变形
四次项的选取为了保证坐标的对称性,且曲率与扭率同阶次。 利用12个结点位移条件,由广义坐标法可建立形函数,显然 十分麻烦。因此形函数的建立采用拉格朗日插值函数形成, 完成这项工作首先需要将其转化为一个2×2的正方形,对于 矩形单元,这项操作并不困难。
薄板矩形单元
下面开始尝试建立形函数。 建立的形函数形式如下:
则薄板内部会发生虚应变
外力做的虚功为 在后面我们会利用虚功原理来建立有限元控制方程。
薄板矩形单元
设局部编号1、2、3、4,
x 、y方向长度分别为2a、
2b的矩形板单元如图所示。 每个结点的位移分量为
每个结点的载荷分量为 则一个单元的位移向量和载荷向量为
薄板矩形单元
下面开始尝试建立形函数。 一个单元有12个位移分量,那么 位移函数应该为
单元刚度矩阵由16个子矩阵组成,其表示如下
薄板矩形单元
具体的元素计算为:
式中:
薄板矩形单元
结点载荷向量的计算: 假设板单元受横向均布载荷p作用,则 等效结点力为 积分展开,得
如果承受的分布荷载随位置(x,y)变化,积分工作量较大
薄板矩形单元
应用实例
受中心集中力的四边支承板的计算结果 (边长为1,厚度为0.01,弹模为1,泊松比为0.3)
第九章 板壳结构有限元
板壳结构基本知识
板壳结构在工程上应用十分广泛。在设计分析中采用板壳单元 进行结构分析,可以得到足够的精度和良好的效果。
板壳结构基本知识
厚度方向的尺寸小于长度和宽度方向尺寸的结构。其中,表面 为平面的成为板,表面为曲面的称为壳。
1 ~ 1 h1~1 100 80 b 8 5
平板:分薄板和厚板。载荷作用在垂直于板面的方向。对于薄 板小挠度问题,它的变形完全由横向变形确定;对于薄板大挠 度问题,则属于几何非线性问题。对于厚板,应考虑横向剪切 变形的影响。
每个分块的
薄板矩形单元
薄板矩形单元形函数的性质 对N1有: N1(1)=1;N1(j)=0,j=2,3,4 另外,N1对x,y的偏导数在各结点 处均为零。??? 于是,位移函数可表达为:
薄板矩形单元
薄板矩形单元应变离散
薄板矩形单元
薄板矩形单元应力离散 那么,相应的,内力矩
薄板矩形单元
薄板矩形单元的单元刚度矩阵,其形式也为通用的 展开进行积分
确定,因此离散时,网格划分有局限性。
Adini方案
舍去了二次项xy,致使常扭率无法保证,单元过刚、位移偏小,因此分析
结果只有一阶精度。
Bell方案
增加单元内部位移参数——三角形形心挠度。整体分析前需要消去内部自 由度(静力凝聚), Zienkiewicz指出这种单元不能保证收敛。
薄板三角形单元
Zienkiewicz采用面积坐标解决了直角坐标下遇到的困难。 面积坐标 采用面积坐标表达的位移模式为:
薄板基础理论知识
薄板弯曲问题只需要考虑三个分量。
根据几何方程,应变可表示为
对于薄板问题, 一般采用形变分量表示
x向曲率 y向曲率应力问题的弹性矩阵:
薄板基础理论知识
图示为板的一个微元体。为方便计,取x和 y的方向的宽度均为1。在垂直于x轴的横截 面上的正应力σx可合成为一个力偶,从而 构成该横截面上的弯矩(单位宽度上的弯 矩)Mx。 同理,在垂直于y轴的横截面上的正应力σy 合成弯矩My,剪应力τxy合成扭矩Mxy,剪 应力τyx合成扭矩Myx,由于剪应力互等
θxi、θyi,独立变量为wi。三角形单元 y
位移模式应包含9个参数。
θx1 1
θy1
z
w1
x 3
2
如果在直角坐标系下建立位移模式,则完全三次多项式需要 10个参数
若以此为基础构造位移函数,则必须去掉一项。无法保证对称。
薄板三角形单元
三角形单元采用直角坐标系建立位移模式的尝试: Tocher方案
单元有两边分别平行于x轴和y轴时,上述位移模式中的待定系数将无法