第7章参数估计习题及答案

合集下载

贾俊平《统计学》(第7版)考点归纳和课后习题详解(含考研真题)(第7章 参数估计)【圣才出品】

贾俊平《统计学》(第7版)考点归纳和课后习题详解(含考研真题)(第7章 参数估计)【圣才出品】

第7章参数估计7.1 考点归纳【知识框架】【考点提示】(1)置信区间的含义理解(选择题、简答题考点);(2)估计量的三个评价标准(判断题、填空题、简答题考点);(3)区间估计的步骤(简答题考点)、总体参数的区间估计选择恰当的统计量(计算题考点);(4)必要样本容量的影响因素、计算(简答题、计算题考点)。

【核心考点】考点一:参数估计的基本原理1.置信区间(1)置信水平为95%的置信区间的含义:用某种方法构造的所有区间中有95%的区间包含总体参数的真值。

(2)置信度愈高(即估计的可靠性愈高),则置信区间相应也愈宽(即估计准确性愈低)。

(3)置信区间的特点:置信区间受样本影响,具有随机性,总体参数的真值是固定的。

一个特定的置信区间“总是包含”或“绝对不包含”参数的真值,不存在“以多大的概率包含总体参数”的问题。

2.评价估计量的标准(1)无偏性:估计量抽样分布的期望值等于被估计的总体参数,即E(θ∧)=θ。

(2)有效性:估计量的方差尽可能小。

(3)一致性:随着样本量的增大,估计量的值越来越接近被估计总体的参数。

【提示】本考点常见考查方式:①直接考查置信水平为95%的置信区间的含义;②置信度、估计可靠性、置信区间的关系及应用;③置信区间的特点;④给出估计量的具体含义,判断体现了什么标准;⑤直接回答估计量的三个评价标准及具体含义(简答题)。

考点二:一个总体参数的区间估计表7-1 一个总体参数的区间估计【总结】一个总体参数的估计及所使用的分布见图7-1:图7-1 一个总体参数的估计及所使用的分布【真题精选】设总体X~N(μ,σ2),σ2已知,样本容量和置信水平固定,对不同的样本观测值,μ的置信区间的长度()。

[对外经济贸易大学2018研]A.变长B .变短C .保持不变D .不能确定 【答案】C【解析】在正态总体方差已知的条件下,μ的置信区间为/2x z ±ασ所以置信区间长度为/22Z α,当样本容量和置信水平固定时,置信区间长度保持不变。

第7章参数估计答案

第7章参数估计答案

·61·第7章 参数(点)估计系 班姓名 学号一、填空题1、设总体X 服从二项分布),(p N B ,10<<P ,n X X X 21,是其一个样本,那么矩估计量=N ˆ )X /B 1/(X 2- ,=p ˆ XB 12- .2、设总体X 服从指数分布 )0(00)(>⎩⎨⎧≤>=-λλϕλx x e x x n X X X ,,21是来自X的样本,则未知参数λ的矩估计量是 X /1 ,极大似然估计量是 X /1 .3. 设 总 体)p ,1(B ~X , 其 中 未 知 参 数 01<<p , X X X n 12,, 是 X的 子样, 则 p 的 矩 估 计 为_∑=n 1i i X n 1_, 子 样 的 似 然 函 数 为_ii X 1n 1i X )p 1(p -=-∏__。

(x x)p 1(p)p ;x (f -= 为 X 的 概 率 密 度 函 数 ).4、 总 体 X 服 从 密 度 函 数 为f x x x (;)[()],()θπθ=+--∞<<+∞112 的 哥 西分 布。

),,(1n X X 为 从 X 抽 得 的 样 本, 则 当 n =1时 θ有 极 大 似 然 估 计 为θ=_1X。

5. 设 X X X n 12,, 是 来 自 总 体),(N ~X 2σμ的 样 本, 则 有 关 于 μ及 σ2的似 然 函 数L X X X n (,,£;,)12 μσ=_2i )X (21n1i e21μ-σ-=∏σπ__。

二、选择题1、设n X X X ,,21是取自总体),0(2σN 的样本,则可以作为2σ的无偏估计量是( A ).A 、∑=n i i X n 121B 、∑=-n i i X n 1211C 、∑=ni i X n 11D 、∑=-ni i X n 1112、设罐子里装有黑球和白球,有放回地抽取一个容量为n 的样本,其中k 个白球,则罐子里黑球数与白球数之比R 的最大似然估计量为( B ).·62·A 、nk B 、1-knC 、1D 、kn三、计算和证明题1、设总体X 具有分布密度10,)1(),(<<+=x x x P ααα,其中1->α是未知参数,n X X X ,,21为一个样本,试求参数α的矩估计和极大似然估计.解:因⎰⎰++=+=1011α1α1αdx x dx x x X E a)()()(2α1α2α1α102++=++=+|a x 令2α1α++==ˆˆ)(X X EXX --=∴112αˆ为α的矩估计 因似然函数221211αα),()(),,(n n n X X X X X X L +=∑=++=∴ni i X n L 1α1αln )ln(ln ,由∑==++=∂∂ni i X nL 101ααln ln 得,α的极大似量估计量为)ln (ˆ∑=+-=ni iXn11α2、设总体X 服从二项分布),(p k b ,k 是正整数,10<<p ,两者都是未知参数,n X X X 21,是一个样本,试求k 和p 的矩估计.解:由于)(~1P k b Xkp X =∈∴)( )1()(p kp X D -=于是令⎪⎩⎪⎨⎧--==∑=ni i X X n X D XX E 1)(11)()( 解之得XX X n X p ni i ∑=---=12)(11ˆ])(11[ˆ122∑=---=ni i X X n X Xk3、设n X X X ,,21为从一总体中抽出的一组样本,总体均值μ已知,用∑=--ni i X n 12)(11μ去估计总体方差2σ,它是否是2σ的无偏估计,应如何修改,才能成为无偏估计.·63·解:因∑∑==--=--n i n i ii X E n X n E 1122)(11])(11[μμ221σσ≠-=n n ∑=--∴ni i X n 12)(11μ不是2σ的无偏估计 但∑=-n i i X n 12)(1μ是2σ的无偏估计4、设一批产品中含有废品,从中随机抽取75件,其中有废品10件,试估计这批产品的废品率.解:设这批产品的废品率为p ,⎩⎨⎧=次抽到合格品第次抽到废品第i i X i 01于是p X P i ==)1(p X P i -==1)0(即ii x xi i ij p p x X P p x f --===1)1()()(72,11,0 ==i x i故极大似然函数∑-∑=-===--=751751751751)1()1(i ii iii x x x x i p pp p L π∑∑==--+=751751)1ln()75(ln ln i i i i p x p x p L令∑∑===---=7517510)75(111ln i i i i x p x p dp L d解之得p 的极大似然估计值 ∑====7511527510751ˆi i x p。

第7章 统计学 参数估计 练习题

第7章 统计学 参数估计 练习题

第7章参数估计练习题一、填空题(共10题,每题2分,共计20分)1.参数估计就就是用_______ __去估计_______ __。

2、点估计就就是用_______ __得某个取值直接作为总体参数得_______ __。

3.区间估计就是在_______ __得基础上,给出总体参数估计得一个区间范围,该区间通常由样本统计量加减_______ __得到。

4、如果将构造置信区间得步骤重复多次,置信区间中包含总体参数真值得次数所占得比例称为_______ __,也成为_______ __。

5.当样本量给定时,置信区间得宽度随着置信系数得增大而_______ __;当置信水平固定时,置信区间得宽度随着样本量得增大而_______ __。

6、评价估计量得标准包含无偏性、_______ __与_______ __。

7、在参数估计中,总就是希望提高估计得可靠程度,但在一定得样本量下,要提高估计得可靠程度,就会_______ __置信区间得宽度;如要缩小置信区间得宽度,又不降低置信程度,就要_______ __样本量。

8、估计总体均值置信区间时得估计误差受总体标准差、_______ __与_______ __得影响。

9、估计方差未知得正态总体均值置信区间用公式_______ __;当样本容量大于等于30时,可以用近似公式_______ __。

10、估计正态总体方差得置信区间时,用_____ __分布,公式为______ __。

二、选择题(共10题,每题1分,共计10分)1.根据一个具体得样本求出得总体均值得95%得置信区间 ( )。

A.以95%得概率包含总体均值B.有5%得可能性包含总体均值C.一定包含总体均值D、要么包含总体均值,要么不包含总体均值2.估计量得含义就是指( )。

A、用来估计总体参数得统计量得名称B 、 用来估计总体参数得统计量得具体数值C 、 总体参数得名称D 、 总体参数得具体数值3. 总体均值得置信区间等于样本均值加减边际误差,其中边际误差等于所要求置信水平得临界值乘以( )。

张厚粲《现代心理与教育统计学》(第4版)章节题库-参数估计(圣才出品)

张厚粲《现代心理与教育统计学》(第4版)章节题库-参数估计(圣才出品)

第7章参数估计一、单项选择题1.()表明了从样本得到的结果相比于真正总体的变异量。

A.信度B.效度C.置信区间D.取样误差【答案】D【解析】A项,信度是指测量结果的稳定性程度。

B项,效度是指一个测验或量表实际能测出其所要测的心理特质的程度。

C项,置信区间,也称置信间距,是指在某一置信度时,总体参数所在的区域距离或区域长度。

D项,取样误差是指由于随机抽样的偶然因素使样本各单位的结构不足以代表总体各单位的结构,而引起抽样指标和全局指标的绝对离差。

抽样误差不是由调查失误所引起的,而是随机抽样所特有的误差。

2.样本平均数的可靠性和样本的大小()。

A.没有一定关系B.成反比C.没有关系D.成正比【答案】D【解析】样本平均数的标准差与总体标准差成正比,与样本容量的平方根成反比。

计算公式为:x SE Nσ=式中σ为总体标准差,N 为样本的大小。

在一定范围内,样本量越大,样本的标准误差越小,则该样本平均数估计总体平均数的可靠性越大。

因此样本平均数的可靠性与样本的大小成正比。

3.样本容量均影响分布曲线形态的是()。

A.正态分布和F 分布B.F 分布和t 分布C.正态分布和t 分布D.正态分布和χ2分布【答案】B【解析】t 分布是一种左右对称、峰态比较高狭,分布形状会随样本容量n-1的变化而变化的一族分布:①当样本容量趋于∞时,t 分布为正态分布,方差为1;②当n-1>30以上时,t 分布接近正态分布,方差大于1,随n-1的增大而方差渐趋于1;③当n-1<30时,t 分布与正态分布相差较大,随n-1减少,离散程度(方差)越大,分布图的中间变低但尾部变高。

χ2分布是一个正偏态分布,随每次所抽取的随机变量X 的个数(n 的大小)不同,其分布曲线的形状不同,n 或n-1越小,分布越偏斜。

df 很大时,接近正态分布,当df→∞时,χ2分布即为正态分布。

F 分布形态是一个正偏态分布,它的分布曲线随分子、分母的自由度不同而不同,随df 1与df 2的增加而渐趋正态分布。

第七章 参数估计-含答案

第七章 参数估计-含答案
D.对于一个参数只能有一个估计值
答案:B
3.假定抽样单位数为400,抽样平均数为300和30,相应的变异系数为50%和20%,试以0.9545的概率来确定估计精度为()。
A.15和0.6B.5%和2%
C.95%和98% D.2.5%和1
答案:C
4.根据10%抽样调查资料,甲企业工人生产定额完成百分比方差为25,乙企业为49。乙企业工人数四倍于甲企业,工人总体生产定额平均完成率的区间()。
C.总体参数取值的变动范围
D.抽样误差的最大可能范围
答案:A
11.无偏性是指( )。
A.抽样指标等于总体指标 B.样本平均数的平均数等于总体平均数
C.样本平均数等于总体平均数 D. 样本成数等于总体成数
答案:B
12.一致性是指当样本的单位数充分大时,抽样指标( )。
A.小于总体指标 B. 等于总体指标
答案:ABC
4.点估计( )。
A.考虑了抽样误差大小B.没有考虑抽样误差大小
C.能说明估计结果的把握程度D.是抽样估计的主要方法
E.不能说明估计结果的把握程度
答案:BE
5.在其它条件不变时,抽样推断的置信度1-α越大,则( )。
A.允许误差范围越大B.允许误差范围越小
C.抽样推断的精确度越高D.抽样推断的精确度越低
答案:D
18.设X~N(μ,σ2)σ为未知,从中抽取n=16的样本,其样本均值为 ,样本标准差为s,则总体均值的置信度为95%的置信区间为()。
答案:C
二、多项选择题
1.在区间估计中,如果其他条件保持不变,置信度与精确度之间存在下列关系( )。
A.前者愈低,后者也愈低B. 前者愈高,后者也愈高
C. 前者愈低,后者愈高D.前者愈高,后者愈低

第7章参数估计 - 概率统计精品课程网站

第7章参数估计 - 概率统计精品课程网站

⎧e − ( x −θ ) , x ≥ θ 4. 设总体X的概率密度为 f ( x; θ ) = ⎨ ,而 X 1 , X 2 , L , X n 为来自X的简 x <θ ⎩ 0,
单随机样本,则未知参数 θ 的矩估计量为___________. 5. 若X是离散型随机变量,其分布律是 P{ X = x} = p ( x; θ ) , ( θ 是待估计参数) ,则似 X是连续型随机变量, 其概率密度是 f ( x; θ ) , 则似然函数是_________. 然函数是_________,
据如下:
1050 1250 1100 1340 1080 1060 1200 1150 1300 1150
试用最大似然估计法估计 θ .
7. 设某电子元件的使用寿命 X 的概率密度为
⎧ 2e −2 ( x −θ ) , f ( x; θ ) = ⎨ ⎩0,
x > θ, x ≤ θ,
θ > 0 为未知参数, x1 , x2 ,..., xn 是 X 的一组样本观测值,求 θ 的最大似然估计值.
2
9. 设一批零件的长度服从正态分布 N ( µ , σ ) ,现从中随机抽取 16 个零件,测样本均 值为 x = 20( cm ) ,样本标准差 s = 1( cm ) ,则 µ 的置信水平为 0.90 的置信区间是( ) .
1 1 ⎞ (A) ⎛ ⎜ 20 − t0.05 (16), 20 + t0.05 (16) ⎟ 4 4 ⎠ ⎝ 1 1 ⎞ (C) ⎛ ⎜ 20 − t0.05 (15), 20 + t0.05 (15) ⎟ 4 4 ⎠ ⎝
3 则未知参数 µ 的置信水平为 0.95 的置信区间是________________. 13. 已知一批零件的长度X (单位:cm) 服从正态分布N(µ , 1), 从中随机抽取 16 个零件, 得到长度的平均值为 40(cm) ,则 µ 的置信水平为 0.9 的置信区间为___________________. 二、单项选择

概率论与数理统计浙大四版习题答案第七章

概率论与数理统计浙大四版习题答案第七章

第七章 参数估计1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计)求总体均值μ及方差σ2的矩估计,并求样本方差S 2。

解:μ,σ2的矩估计是 6122106)(1ˆ,002.74ˆ-=⨯=-===∑ni i x X n X σμ621086.6-⨯=S 。

2.[二]设X 1,X 1,…,X n 为准总体的一个样本。

求下列各总体的密度函数或分布律中的未知参数的矩估计量。

(1)⎩⎨⎧>=+-其它,0,)()1(cx x c θx f θθ其中c >0为已知,θ>1,θ为未知参数。

(2)⎪⎩⎪⎨⎧≤≤=-.,010,)(1其它x x θx f θ其中θ>0,θ为未知参数。

(5)()p p m x p px X P x m xmx,10,,,2,1,0,)1()(<<=-==- 为未知参数。

解:(1)X θcθθc θc θc θdx x c θdx x xf X E θθcθθ=--=-===+-∞+-∞+∞-⎰⎰1,11)()(1令,得cX Xθ-=(2),1)()(10+===⎰⎰∞+∞-θθdx xθdx x xf X E θ2)1(,1X X θX θθ-==+得令(5)E (X ) = mp令mp = X , 解得mXp=ˆ 3.[三]求上题中各未知参数的极大似然估计值和估计量。

解:(1)似然函数1211)()()(+-===∏θn θn nni ix x x c θx f θL0ln ln )(ln ,ln )1(ln )ln()(ln 11=-+=-++=∑∑==ni ini i xc n n θθd θL d x θc θn θn θL∑=-=ni icn xnθ1ln ln ˆ (解唯一故为极大似然估计量)(2)∑∏=--=-+-===ni i θn n ni ix θθnθL x x x θx f θL 112121ln )1()ln(2)(ln ,)()()(∑∑====+⋅-=ni ini ix nθxθθn θd θL d 121)ln (ˆ,0ln 2112)(ln 。

第7章 参数估计

第7章   参数估计

七、参数估计1.估计量的含义是指()。

A.来估计总体参数的统计量的名称B.用来估计总体参数的统计量的具体数值C.总体参数的名称D.总体参数的具体数值2.在参数估计中,要求通过样本的统计量来估计总体参数,评价统计量的标准之一是使它与总体参数的离差越小越好。

这种评价标准称为()。

A.无偏性B.有效性C.一致性D.充分性3.根据一个具体的样本求出的总体均值的95%的置信区间()。

A.以95%的概率包含总体均值B.有5%的可能性包含总体均值C.一定包含总体均值D.要么包含总体均值,要么不包含总体均值4.无偏估计是指()。

A.样本统计量的值恰好等于待估的总体参数B.所有可能样本估计值的数学期望等于待估总体参数C.样本估计值围绕待估总体参数使其误差最小D.样本量扩大到和总体单元相等时与总体参数一致5.总体均值的置信区间等于样本均值加减边际误差,其中的边际误差等于所要求置信水平的临界值乘以()。

A.样本均值的抽样标准差B.样本标准差C.样本方差D.总体标准差6.当样本量一定时,置信区间的宽度()。

A.随着置信系数的增大而减小B.随着置信系数的增大而增大C.与置信系数的大小无关D.与置信系数的平方成反比7.当置信水平一定时,置信区间的宽度()。

A.随着样本量的增大而减小B.随着样本量的增大而增大C.与样本量的大小无关D.与样本量的平方根成正比8.一个95%的置信区间是指()。

A.总体参数有95%的概率落在这一区间内B.总体参数有5%的概率未落在这一区间内C.在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D.在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数9. 95%的置信水平是指()。

A.总体参数落在一个特定的样本所构造的区间内的概率为95%B.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为95%C总体参数落在一个特定的样本所构造的区间内的概率为5%D在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为5%10.一个估计量的有效性是指()。

统计学第七章、第八章课后题答案

统计学第七章、第八章课后题答案

统计学复习笔记第七章 参数估计一、 思考题1. 解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。

估计量也是随机变量。

如样本均值,样本比例、样本方差等。

根据一个具体的样本计算出来的估计量的数值称为估计值。

2. 简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。

(2)有效性:是指估计量的方差尽可能小。

对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。

(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。

3. 怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。

置信区间的论述是由区间和置信度两部分组成。

有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。

因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。

在公布调查结果时给出被调查人数是负责任的表现。

这样则可以由此推算出置信度(由后面给出的公式),反之亦然。

4. 解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。

也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。

不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以0.95的概率覆盖总体参数。

5. 简述样本量与置信水平、总体方差、估计误差的关系。

1. 估计总体均值时样本量n 为2. 样本量n 与置信水平1-α、总体方差、估计误差E 之间的关系为 其中: 2222α2222)(E z n σα=n z E σα2=▪ 与置信水平成正比,在其他条件不变的情况下,置信水平越大,所需要的样本量越大;▪ 与总体方差成正比,总体的差异越大,所要求的样本量也越大;▪ 与与总体方差成正比,样本量与估计误差的平方成反比,即可以接受的估计误差的平方越大,所需的样本量越小。

第七章参数估计习题

第七章参数估计习题

第七章 参数估计习题1.从各总体中随机地抽取若干样本单元,测得其值为:(1)2781 2836 2807 2763 2858;(2)221 191 202 205 236;(3)11.05 10.95 11.00 11.02 10.99 10.00 10.99 10.97 11.02 10.98(4)1061 1065 1092 1017 1021 1138 1143 1094 1270 1028 试用顺序统计量法估计各总体的均值和均方差。

2.已知某种木材的横纹抗压力服从正态分布,今从一批这种木材中,随机地抽取10根样品,测得它们的抗压值(单位:公斤/厘米2)为:482 493 457 471 510 446 435 418 394 469 试求这批木材均值和均方差的估计值。

3.已知某校一年级学生期末的数学成绩服从正态分布,今从该年级中任意抽取40名学生,他们的数学成绩(单位:分)为:90.8 83.6 72.2 87.1 64.8 74.7 85.0 88.371.2 66.0 88.2 95.8 78.6 67.4 85.6 73.294.2 84.8 74.8 86.8 77.7 87.6 66.7 76.485.9 71.1 54.7 87.0 97.8 76.8 68.4 83.387.4 61.9 64.8 78.6 84.6 65.8 75.6 50.6试求该年级学生数学成绩的均值和均方差的估计值。

4.设某厂生产一批钉子长度服从正态分布。

今从这批钉子中,任意抽取16只,测得它们的长度(单位:厘米)为:2.14 2.10 2.13 1.25 2.13 2.12 2.13 2.102.15 2.12 2.14 2.10 2.13 2.11 2.14 2.11试用矩估计法求这批钉子的均值和方差的估计值5.已知总体X 在〔a ,b 〕上服从均匀分布⎪⎪⎩⎪⎪⎨⎧≤≤-=其它01),,(b x a a b b a x P其中a <b ,试用矩估计法求a 与b 的估计量。

统计基础试题——参数估计和假设检验

统计基础试题——参数估计和假设检验

第七章参数估计和假设检验一、填空题1.在抽样推断中,常用的总体指标有、和。

2.在抽样推断中,按随机原则从总体中抽取的部分单位叫,这部分单位的数量叫。

3.整群抽样是对总体中群内的进行的抽样组织形式。

4.若总体单位的标志值不呈正态分布,只要,全部可能样本指标也会接近于正态分布。

5.抽样估计的方法有和两种。

6.扩大误差范围,可以推断的可靠程度,缩小误差范围则会推断的可靠程度。

7.对总体的指标提出的假设可以分为和。

8.如果提出的原假设是总体参数等于某一数值,这种假设检验称为,若提出的原假设是总体参数大于或小于某一数值,这种假设检验称为。

二、单项选择题1.所谓大样本是指样本单位数在()及以上。

A.50个B.30个C.80个D.100个2.总体平均数和样本平均数的关系是()。

A.总体平均数是确定值,样本平均数是随机变量B.总体平均数是随机变量,样本平均数是确定值C.总体平均数和样本平均数都是随机变量D.总体平均数和样本平均数都是随机变量3.先对总体按某一标志分组,然后再在各组中按随机原则抽取一部分单位构成样本,这种抽样组织方式称为()。

A.简单随机抽样B.机械抽样C.类型抽样D.整群抽样4.用样本指标对总体指标作点估计时,应满足4点要求,其中无偏性是指()。

A.样本平均数等于总体平均数B.样本成数等于总体成数C.样本指标的平均数等于总体的平均数 D.样本指标等于总体指标5.在其它条件不变的情况下,提高抽样估计的可靠程度,其精确度将()。

A.保持不变B.随之扩大C.随之缩小D.无法确定6.在抽样估计中,样本容量()。

A.越小越好B.越大越好C.有统一的抽样比例D.取决于抽样估计的可靠性要求。

7.假设检验中的临界区域是指()。

A.接受域B.拒绝域C.检验域D.置信区间三、多项选择题1.在抽样推断中,抽取样本单位的具体方法有()。

A.重复抽样B.不重复抽样C.分类抽样D.等距抽样E.多阶段抽样2.在抽样推断中,抽取样本的组织形式有()。

第7章习题

第7章习题

第七章参数估计1.估计量的含义是指(A )。

A.用来估计总体参数的统计量的名称B.用来估计总体参数的统计量的具体数值C.总体参数的名称D.总体参数的具体数值2.在参数估计中,要求通过样本的统计量来估计总体参数,评价统计量的标准之一是使它与总体参数的离差越小越好,这种评价标准称为( B )。

A.无偏性 B.有效性 C.一致性 D .充分性3.根据一个具体的样本求出的总体均值的95%的置信区间(D )。

A.以95%的概率包含总体均值B.有5%的可能性包含总体均值C.一定包含总体均值D.要么包含总体均值,要么不包含总体均值4.无偏估计是指(B )。

A.样本统计量的值恰好等于待估的总体参数B.所有可能样本估计值的数学期望等于待估总体参数C.样本估计值围绕待估总体参数使其误差最小D.样本量扩大到和总体单元相等时与总体参数一致5.总体均值的置信区间等于样本均值加减边际误差,其中的边际误差等于所要求置信水平的临界值乘以( A )。

A.样本均值的抽样标准差 B.样本标准差C. 样本方差D.总体标准差6.当样本量一定时,置信区间的宽度(B )。

A.随着置信系数的增大而减小B.随着置信系数的增大而增大C.与置信系数的大小无关D.与置信系数的平方成反比7.当置信水平一定时,置信区间的宽度(A )。

A.随着样本量的增大而减小B.随着样本量的增大而增大C.与样本量的大小无关D.与样本量的平方根成正比8.一个95%的置信区间是指(C )。

A.总体参数有95%的概率落在这一区间内B.总体参数有5%的概率未落在这一区间内C.在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D.在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数9.95%的置信水平是指(B )。

A.总体参数落在一个待定的样本所构造的区间内的概率为95%B.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为95%C.总体参数落在一个待定的样本所构造的区间内的概率为5%D.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为5%10.一个估计量的有效性是指(D )。

07章 抽样和参数估计习题及答案

07章 抽样和参数估计习题及答案

第七章 抽样调查1、 抽样调查的目的在于用抽样指标去推断总体指标。

( )2、 不论总体单位数多少都适用抽样调查方法。

( )3、 古典概率是指每次试验中事件等可能出现的条件下,试验前就可计算出来的比率。

( )4、 股票指数在未来的一周内上升可能性的大小指的是主观概率。

( )5、对一个有限总体进行重复抽样,各次抽取的结果是相互独立的。

( )6、对一个无限总体进行不重复抽样,各次抽取的结果是相互独立的。

( )7、抽样极限误差可以大于抽样平均误差,可以小于抽样平均误差,当然也可以等于抽样平均误差。

( )8、对于重复简单随机抽样,若其它条件不变,样本单位数目增加3倍,则样本平均数抽样平均误差将必须减少30%。

( )9、对于重复简单随机抽样,若其它条件不变,要使抽样平均误差减少一半,则抽样单位数目将必须增加1倍。

( )10、抽样误差产生的原因是抽样调查时违反了随机原则。

( ) 11、抽样误差是抽样调查所固有的、无法消除的误差。

( )12、在确定样本单位数目时,若总体成数方差未知,则P 可取0.5。

( )1、 若某一事件出现的概率为1/6,当试验6次时,该事件出现的次数将是()。

1次 大于1次小于1次上述结果均有可能2、 已知一批计算机元件的正品率为80%,现随机抽取n 个样本,其中x 个为正品,则x 的分布服从()。

正态分布二项分布泊松分布超几何分布3、某工厂生产的零件出厂时每200个装一盒,这种零件分为合格与不合格两类,合格率约为99%,设每盒中的不合格数为X ,则X 通常服从( )。

正态分布二项分布泊松分布超几何分布4、 若一个系的学生中有65%是男生,40%是高年级学生。

若随机抽选一人,该学生或是男生或是高年级学生的概率最可能是( )。

0.350.600.80 1.055、 有为朋友从远方来,他乘火车、轮船、汽车、飞机来的概率分别为0.3、0.2、0.1和0.4,如果他乘火车、轮船、汽车来的话,迟到的概率分别为1/4、1/3和1/12,而乘飞机则不会迟到,试求他迟到的概率为( )。

(完整版)第七章参数估计练习题

(完整版)第七章参数估计练习题

第七章参数估计练习题一.选择题1.估计量的含义是指()A.用来估计总体参数的统计量的名称B.用来估计总体参数的统计量的具体数值C.总体参数的名称D.总体参数的具体取值2.一个95%的置信区间是指()A.总体参数有95%的概率落在这一区间内B.总体参数有5%的概率未落在这一区间内C. 在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数。

D.在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数。

3.95%的置信水平是指()A.总体参数落在一个特定的样本所构造的区间内的概率是95%B.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为95%C.总体参数落在一个特定的样本所构造的区间内的概率是5%D.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为5%4.根据一个具体的样本求出的总体均值的95%的置信区间()A.以95%的概率包含总体均值B.有5%的可能性包含总体均值C.一定包含总体均值D.要么包含总体均值,要么不包含总体均值5. 当样本量一定时,置信区间的宽度()A.随着置信水平的增大而减小B. .随着置信水平的增大而增大C.与置信水平的大小无关D。

与置信水平的平方成反比6.当置信水平一定时,置信区间的宽度()A.随着样本量的增大而减小B. .随着样本量的增大而增大C.与样本量的大小无关D。

与样本量的平方根成正比7.在参数估计中,要求通过样本的统计量来估计总体参数,评价统计量的标准之一是使它与总体参数的离差越小越好。

这种评价标准称为()A.无偏性 B.有效性 C. 一致性D. 充分性8. 置信水平(1-α)表达了置信区间的()A.准确性 B. 精确性 C. 显著性D. 可靠性9. 在总体均值和总体比例的区间估计中,边际误差由()A.置信水平决定 B. 统计量的抽样标准差确定C. 置信水平和统计量的抽样标准差D. 统计量的抽样方差确定10. 当正态总体的方差未知,且为小样本条件下,估计总体均值使用的分布是()A.正态分布B. t分布C.χ2分布D. F分布11. 当正态总体的方差未知,且为大样本条件下,估计总体均值使用的分布是()A.正态分布 B . t 分布 C.χ2 分布 D. F 分布12. 当正态总体的方差已知时,且为小样本条件下,估计总体均值使用的分布是( )A.正态分布 B . t 分布 C.χ2 分布 D. F 分布13. 当正态总体的方差已知时,且为大样本条件下,估计总体均值使用的分布是( )A.正态分布 B . t 分布 C.χ2 分布 D. F 分布14. 对于非正态总体,在大样本条件下,估计总体均值使用的分布是( )A.正态分布 B . t 分布 C.χ2 分布 D. F 分布15.对于非正态总体,在大样本条件下,总体均值在(1-α)置信水平下的置信区间可以写为( ) A. n z x 22/σα± B. n z x 22/σα± C . n z x σα2/± D. ns z x 22/α± 16.正态总体方差已知时,在小样本条件下,总体均值在(1-α)置信水平下的置信区间可以写为( ) A. n z x 22/σα± B. n s t x 2/α± C . n z x σα2/± D. ns z x 22/α± 17.正态总体方差未知时,在小样本条件下,总体均值在(1-α)置信水平下的置信区间可以写为( ) A. n z x 22/σα± B . n s t x 2/α± C. n z x σα2/± D. ns z x 22/α± 18. 在进行区间估计时,若要求的置信水平为90%,则其相应的临界值为( )A .1.65 B.1.96 C.2.58 D. 1.519.在其他条件相同的条件下,95%的置信区间比90%的置信区间( )A .要宽 B.要窄 C.相同 D. 可能宽也可能窄20.指出下面的说法哪一个是正确的( )A .置信水平越大,估计的可靠性越大 B. 置信水平越大,估计的可靠性越小C. 置信水平越小,估计的可靠性越大D. 置信水平的大小与估计的可靠性无关21. 指出下面的说法哪一个是正确的( )A .样本量越大,样本均值的抽样标准误差就越小B. 样本量越大,样本均值的抽样标准误差就越大C. 样本量越小,样本均值的抽样标准误差就越小D.样本均值的抽样标准误差与样本量无关22. 一项调查表明,有33%的被调查者认为她们所在的公司十分适合女性工作。

概率论与数理统计第七章参数估计习题答案

概率论与数理统计第七章参数估计习题答案

æ çè
x
±
ua
/
2
s n
ö ÷ø
=
(14.95
±
0.1´1.96)
=
(14.754,15.146)
大学数学云课堂
3028709.总体X ~ N (m,s 2 ),s 2已知,问需抽取容量n多大的样本,
才能使m的置信概率为1 -a,且置信区间的长度不大于L?
解:由s
2已知可知m的置信度为1
-
a的置信区间为
64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1)求m的置信概率为0.95的置信区 间.
(2)求s 2的置信概率为0.95的置信区间.
解:x = 76.6, s = 18.14,a = 1- 0.95 = 0.05, n = 20,
大学数学云课堂
3028706.设X1,X 2,L,X n是取自总体X的样本,E(X)= m,D(X)= s 2,
n -1
å sˆ 2 = ( X i+1 - X i )2 ,问k为何值时sˆ 2为s 2的无偏估计. i =1 解:令 Yi = X i+1 - X i , i = 1, 2,¼, n -1, 则E(Yi ) = E( X i+1) - E( X i ) = m - m = 0, D(Yi ) = 2s 2 , n -1 å 于是Esˆ 2 = E[k ( Yi2 )] = k(n -1)EY12 = 2s 2 (n -1)k, i =1 那么当E(sˆ 2 ) = s 2 ,即2s 2 (n -1)k = s 2时, 有k = 1 . 2(n -1)
的密度函数为f
(x,q

概率论与数理统计(第三版)课后答案习题7

概率论与数理统计(第三版)课后答案习题7

第七章 参数估计1. 解 )1()(,)(),,(~p np X D np X E p n B X -==∴⎩⎨⎧=-=⎩⎨⎧==22)1(,)()(B p np X np B X D X X E 即由解之,得n,p 的矩估计量为XB p B X X n 2221,-=⎥⎥⎦⎤⎢⎢⎣⎡-=∧∧注:“[ ]”表示取整。

2. 解 因为:220)(22)(1)1()(1)()(λλθλλθλθλθλ++=⋅=+=⋅==⎰⎰⎰∞+--∞+--∞+∞-dx e x x E dx e x dx x xf x E x x所以,由矩估计法得方程组: ⎪⎩⎪⎨⎧++=+=2221)1(1λλθλθA X 解得λθ,的矩估计量为 ⎪⎩⎪⎨⎧=-=∧∧221B B X λθ3. 解 (1) 由于 222)]([)()(X E X E X D -==σ令 ∑===n i iX n A X E 12221)( 又已知 μ=)(X E故 2σ的矩估计值为 ∑∑==∧-=-=-=n i i n i i X n X n A 12122222)(11μμμσ(2) μ已知时,似然函数为:⎭⎬⎫⎩⎨⎧--⋅=∑=-ni in x L 122222)(21exp )2()(μσπσσ因此∑=---=ni ixn L 12222)(21)2ln(2)(ln μσπσσ令 0)(2112)(ln 124222=-+-=∑=ni ixn L d dμσσσσ解得2σ的极大似然估计为: ∑=∧-=n i i X n 122)(1μσ4. 解 矩估计:λλ=∴=)()(X E X E 令X X E =)(故X =∧λ为所求矩估计量。

注意到 λ=)(X D 若令 2)(B X D =, 可得: 2B =∧λ似然估计:因为λλ-==e k k X P k!)(所以,λ的似然函数为∏=-=ni i xe x L i1!)(λλλ取对数λλλn x x L ni i ni i --=∑∑==11)!ln(ln )(ln令ln 1=-=∑=n xd d ni iλλλ, 解得∑=∧=ni ix n 11λ故,λ极大似然估计量为 X =∧λ5. 解 矩估计:21)1()()(11++=+==⎰⎰+∞+∞-θθθθdx x dx x xf X E令 X X E =)(, 即 X=++21θθ; 解之X X --=∧112θ 似然估计: 似然函数为⎪⎩⎪⎨⎧<<+=⎪⎩⎪⎨⎧<<+=∏∏==其它其它,010,)()1(,010,)1()(11i ni i ni n i i x x x x L θθθθθ 只需求10,)()1()(11<<+=∏=i ni i nx x L θθθ的驻点即可.又∑=++=ni ix n L 11ln )1ln()(ln θθθ令∑=++=ni ix n L d d 11ln 1)(ln θθθ; 解之∑=∧--=ni ixn1ln 1θ6. 解:似然函数为∑===---=-=---∏∏ni i i xn i i n ni x i ex ex L 12222)(l n 21112212)(l n 12)()2(21),(μσσμπσσπσμ取对数得 ∑----===∏n i ini i x x n L 122122)(l n 21)l n ()2l n (2),(ln μσπσσμ由 0)(l n 2112),(ln 0)1()(ln 221),(ln 124222122=∑-+⋅-=∂∂=∑-⋅--=∂∂==n i i n i i x n L x L μσσσμσμσσμμ联立解之,2,σμ的极大似然估计值为 ∑∑-=∑===∧=∧n i n i i in i i x n x n x n 12121)ln 1(ln 1,ln 1σμ7. 解:似然函数为 n i x x e ax L i i n i x a i ai ,,2,1;0,00,)(11 =⎪⎩⎪⎨⎧≤>=∏=--λλλ只需求∑⋅===--==--∏∏ni ai ai x a n i n n ni x a i ex a eax L 111111)()(λλλλλ的最值点。

概率与数理统计第7章参数估计习题与答案

概率与数理统计第7章参数估计习题与答案

第7章参数估计----点估计一、填空题1、设总体X服从二项分布B(N,p),0P1,X1,X2X n是其一个样本,那么矩估计量p?XN.2、设总体X~B(1,p),其中未知参数0p1,X1,X2,X n是X的样本,则p的矩估计为_ 1n in1X i _,样本的似然函数为_in1X i(1p)1Xp__。

i3、设X1,X2,,X n是来自总体X~N(,2)的样本,则有关于及2的似然函数2L(X,X,X n;,)_12 in112e12(X) i22__。

二、计算题1、设总体X具有分布密度f(x;)(1)x,0x1,其中1是未知参数,X1,X2,X为一个样本,试求参数的矩估计和极大似然估计.n解:因E(X ) 1x1a()α1(α1)xdx1x dxαα112a2|xααα12令E(X)X?α?α122X1α?为的矩估计1Xn因似然函数L(x1,x2,x;)(1)(x1x2x)nnnlnLnln(α1)lnX,由αii1 l nLαnα 1inlnX0得,i1n ?的极大似量估计量为(1)αnln Xii12、设总体X服从指数分布f(x)xe,x00,其他,X1,X2,X n是来自X的样本,(1)求未知参数的矩估计;(2)求的极大似然估计.56解:(1)由于1 E(X),令11 X X,故的矩估计为? 1 X(2)似然函数nL(x,x,,x )e12ni nx i 1nlnLnlnxii1 ndlnLnnx0 indi1x ii1故的极大似然估计仍为1 X 。

3、设总体 2 X~N0,, X 1,X 2,,X n 为取自X 的一组简单随机样本,求 2 的极大似然估计;[解](1)似然函数n1 Le i122 x i 2 22n 22en 2x i 2 i 12于是n2nnx2i lnLln2ln2222i1 dlnLn1d224 22n i1 2x i,令 d lnL 2d 2 0,得的极大似然估计:n 122X ini1. 4、设总体X 服从泊松分布P(),X 1,X 2,,X n 为取自X 的一组简单随机样本,(1)求 未知参数估计;(2)求大似然估计. 解:(1)令E(X )X?X ,此为估计。

概率与数理统计第7章参数估计习题及答案

概率与数理统计第7章参数估计习题及答案

第7章参数估计 ----点估计一、填空题1、设总体X 服从二项分布),(p N B ,10P ,n X X X 21,是其一个样本,那么矩估计量pX N.2、设总体)p ,1(B ~X ,其中未知参数01p, X X X n 12,,是X 的样本,则p 的矩估计为_n1i iX n1_,样本的似然函数为_iiX 1n1i X )p 1(p __。

3、设12,,,n X X X 是来自总体),(N ~X 2的样本,则有关于及2的似然函数212(,,;,)n L X X X _2i2)X (21n1i e21__。

二、计算题1、设总体X 具有分布密度(;)(1),01f x x x ,其中1是未知参数,n X X X ,,21为一个样本,试求参数的矩估计和极大似然估计.解:因10101α1α1αdxxdxx x X E a)()()(2α1α2α1α12|a x令2α1α)(XX E XX112α为的矩估计因似然函数1212(,,;)(1)()nn n L x x x x x x ni i X n L 1α1αln )ln(ln ,由ni iX n L 101ααln ln 得,的极大似量估计量为)ln (ni iX n11α2、设总体X 服从指数分布,0()0,xe xf x 其他,n X X X ,,21是来自X 的样本,(1)求未知参数的矩估计;(2)求的极大似然估计.解:(1)由于1()E X ,令11XX,故的矩估计为1X(2)似然函数112(,,,)nii x nn L x x x e111ln lnln 0nii nini ii L n x d Lnnx dx 故的极大似然估计仍为1X。

3、设总体2~0,X N ,12,,,n X X X 为取自X 的一组简单随机样本,求2的极大似然估计;[解] (1)似然函数222112i x ni Le2212222ni i x ne于是2221ln ln 2ln222ni i x n n L22241ln 122n ii d L n x d,令2ln 0d L d,得2的极大似然估计:2211nii X n.4、设总体X 服从泊松分布()P , 12,,,n X X X 为取自X 的一组简单随机样本, (1)求未知参数的矩估计;(2)求的极大似然估计.解:(1)令()E X XX ,此为的矩估计。

07章抽样和参数估计习题及答案

07章抽样和参数估计习题及答案

第七章抽样调查1、抽样调查的目的在于用抽样指标去推断总体指标。

()2、不论总体单位数多少都适用抽样调查方法。

()3、古典概率是指每次试验中事件等可能出现的条件下,试验前就可计算出来的比率。

()4、股票指数在未来的一周内上升可能性的大小指的是主观概率。

()5、对一个有限总体进行重复抽样,各次抽取的结果是相互独立的。

()6、对一个无限总体进行不重复抽样,各次抽取的结果是相互独立的。

()7、抽样极限误差可以大于抽样平均误差,可以小于抽样平均误差,当然也可以等于抽样平均误差。

()8、对于重复简单随机抽样,若其它条件不变,样本单位数目增加3倍,则样本平均数抽样平均误差将必须减少30%。

()9、对于重复简单随机抽样,若其它条件不变,要使抽样平均误差减少一半,则抽样单位数目将必须增加1倍。

()10、抽样误差产生的原因是抽样调查时违反了随机原则。

()11、抽样误差是抽样调查所固有的、无法消除的误差。

()12、在确定样本单位数目时,若总体成数方差未知,则P可取0.5。

()1、若某一事件岀现的概率为1/6,当试验6次时,该事件岀现的次数将是()。

□ 1次r大于1次厂小于1次厂上述结果均有可能2、已知一批计算机元件的正品率为80%,现随机抽取n个样本,其中x个为正品,则x的分布服从()。

正态分布二项分布泊松分布超几何分布3、某工厂生产的零件岀厂时每200个装一盒,这种零件分为合格与不合格两类,合格率约为99%,设每盒中的不合格数为 X ,则X 通常服从()。

正态分布「 二项分布「泊松分布「 超几何分布4、若一个系的学生中有 65%是男生,40%是高年级学生。

若随机抽选一人, 是高年级学生的概率最可能是()。

7、产生抽样误差的主要原因,在于()抽样方法的优劣 抽样技术的高低该学生或是男生或0.60「0.80厂 1.055、有为朋友从远方来,他乘火车、轮船、汽车、飞机来的概率分别为如果他乘火车、 轮船、汽车来的话,迟到的概率分别为 1/4、1/3和1/12 试求他迟到的概率为( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7章 参数估计 ----点估计一、填空题1、设总体X 服从二项分布),(p N B ,10<<P ,n X X X 21,是其一个样本,那么矩估计量=pˆ XN. 2、 设 总 体)p ,1(B ~X , 其 中 未 知 参 数 01<<p , X X X n 12,, 是 X 的样本, 则 p 的 矩 估 计 为_∑=n 1i i X n 1_, 样本 的 似 然 函 数 为_ii X 1n1i X )p 1(p -=-∏__。

3、 设 12,,,n X X X 是 来 自 总 体 ),(N ~X 2σμ的 样 本, 则 有 关 于 μ及 σ2的 似 然 函 数212(,,;,)n L X X X μσ=_2i 2)X (21n1i e21μ-σ-=∏σπ__。

二、计算题1、设总体X 具有分布密度(;)(1),01f x x x ααα=+<<,其中1->α是未知参数,n X X X ,,21为一个样本,试求参数α的矩估计和极大似然估计.解:因⎰⎰++=+=1011α1α1αdx x dx x x X E a )()()(2α1α2α1α102++=++=+|a x (令2α1α++==ˆˆ)(X X EXX --=∴112αˆ为α的矩估计因似然函数1212(,,;)(1)()n n n L x x x x x x ααα=+∑=++=∴ni i X n L 1α1αln )ln(ln ,由∑==++=∂∂ni i X nL 101ααln ln 得,α的极大似量估计量为)ln (ˆ∑=+-=ni iXn11α2、设总体X 服从指数分布 ,0()0,x e x f x λλ-⎧>=⎨⎩其他 ,n X X X ,,21是来自X 的样本,(1)求未知参数λ的矩估计;(2)求λ的极大似然估计.解:(1)由于1()E X λ=,令11X Xλλ=⇒=,故λ的矩估计为1ˆX λ= (2)似然函数112(,,,)nii x nn L x x x eλλ=-∑=111ln ln ln 0nii ni ni ii L n x d L n n x d xλλλλλ====-=-=⇒=∑∑∑故λ的极大似然估计仍为1X。

3、设总体()2~0,X N σ,12,,,n X X X 为取自X 的一组简单随机样本,求2σ的极大似然估计;—[解] (1)似然函数2221i x ni L σ-==()2212222ni i x n eσπσ=--∑=⋅于是2221ln ln 2ln 222ni i x n n L πσσ==---∑ 22241ln 122n i i d L n x d σσσ==-+∑, 令2ln 0d L d σ=,得2σ的极大似然估计:2211n i i X n σ∧==∑.4、设总体X 服从泊松分布()P λ, 12,,,n X X X 为取自X 的一组简单随机样本, (1)求未知参数λ的矩估计;(2)求λ的极大似然估计.解:(1)令ˆ()E X X X λλ==⇒=,此为λ的矩估计。

(2)似然函数1121(,,,)!nii x n n nii e L x x x x λλ=-=∑=∏1111ln ln ln !ln 0n ni i i i n ni i i i L x n x x x d L n xd nλλλλλ=====--=-=⇒==∑∑∑∑故λ的极大似然估计仍为X 。

第七章 参数估计 ----点估计的评价标准*一、填空题1、 设321,,X X X 是取自总体X 的一个样本,则下面三个均值估计量3213321232111214331ˆ,1254131ˆ,2110351ˆX X X uX X X u X X X -+=++=++=μ都是总体均值的无偏估计,则 2ˆμ最有效. 2、 设n X X X ,,21是取自总体),0(2σN 的样本,则可以作为2σ的无偏估计量是( A ).A 、∑=n i i X n 121B 、∑=-n i i X n 1211C 、∑=ni i X n 11D 、∑=-ni i X n 111二、计算题1、设n X X X ,,21为从一总体中抽出的一组样本,总体均值μ已知,用∑=--ni i X n 12)(11μ去估计总体方差2σ,它是否是2σ的无偏估计,应如何修改,才能成为无偏估计.解:因∑∑==--=--n i n i ii X E n X n E 1122)(11])(11[μμ221σσ≠-=n n ∑=--∴ni i X n 12)(11μ不是2σ的无偏估计 但∑=-n i i X n 12)(1μ是2σ的无偏估计 2、设n X X X ,,21是来自总体),(2σμN 的一个样本,若使∑-=+-⋅1121)(n i i i X XC 为2σ的无偏估计,求常数C 的值。

¥ 解:11221111122111122222122[()][()][2][2]12(1)2(1)n n i i i i i i n i i i i i n i E C X X C E X X C EX EX EX EX C n C C n μσμσμσσ--++==-++=-=⋅-=-=+-=+++-=-=⇒=-∑∑∑∑第七章 参数估计 ----区间估计一、选择题1、设总体),(~2σμN X ,2σ未知,设总体均值μ的置信度α-1的置信区间长度l ,那么l 与a 的关系为( A ).A 、a 增大,l 减小B 、a 增大,l 增大C 、a 增大,l 不变D 、a 与l 关系不确定2、设总体),(~2σμN X ,且2σ已知,现在以置信度α~1估计总体均值μ,下列做法中一定能使估计更精确的是( C ).A 、提高置信度α-1,增加样本容量B 、提高置信度α-1,减少样本容量C 、降低置信度α-1,增加样本容量D 、降低置信度α-1,减少样本容量%二、计算题1、设总体)9.0,(~2μN X ,当样本容量9=n 时,测得5=X ,求未知参数μ的置信度为的置信区间.解:μ的置信区间为22(X Z X Z αα-+05.0=α 9=n 9.0=σ 5X =0.0521.96Z =μ的置信区间为)588.5,412.4(。

2、设总体2~(,),X N μσ已知0,σσ=要使总体均值μ的置信水平为1α-的置信区间的长度不大于L ,问需要抽取多大容量的样本。

解:μ的置信区间为22(X Z X Z αα-+,22022242Z Z L n Lαασ≤⇒≥3、某车间生产自行车中所用小钢球,从长期生产实践中得知钢球直径),(~2σμN X ,现从某批产品里随机抽取6件,测得它们的直径(单位:mm)为:.,,,,,,置信度95.01=-α(即05.0=α)(1)若06.02=σ,求μ的置信区间(2)若2σ未知,求μ的置信区间(3)求方差2σ,均方差σ的置信区间.解:(1)2σ已知,则μ的置信区间为22(,)X Z X Z nnαα-⋅+,25,0.05, 1.96n Z αα===代入则得μ的置信区间)15.15,75.14((2)2σ未知,则μ的置信区间为22(,)X t X t n n αα-+⋅,05.0,5==αn 查表得0.0522.5706t =,代入得μ的置信区间为)19.15,71.14((3)222(1)~(1)n S n χσ--2σ的置信区间2222122(1)(1)(,)(1)(1)n S n S n n ααχχ-----5,05.0==n α 代入得2σ的置信区间为:)3069.0,0199.0(。

]均方差σ的置信区间为(0.0199,0.3069)(0.1411,0.2627)=4、 设从正态总体X 中采用了n = 31个相互独立的观察值 , 算得样本均值 61.58=X 及样本方差 22)8.5(=S, 求总体X 的均值和方差的90%的置信区间解:,8.5s ,31n ,95.021,05.02,9.01===α-=α=α- 0.05(30) 1.6973t = 的 90%的置信区间为 : 2(((56.84,60.38)X t n nα±-= 220.050.95(30)43.77(30)18.49χχ== ,S =2σ的 (1-a )%的置信区间为 :2222221(1)(1),(1)(1)n s n s n n ααχχ-⎛⎫-- ⎪ ⎪--⎝⎭即6.541.2349.188.333077.4364.333022<<⨯<<⨯σσ的 90%的 置 信 区 间 为 : ,5、 设 某 种 灯 泡 的 寿 命 X 服 从 正 态 分 布 N(μ , ) ,μ , 未 知 , 现 从中 任 取 5个灯 泡 进 行 寿 命 测 试 (单 位 : 1000小 时 ), 得 :、, , , , ,求 方 差 及 均 方 差 的 90%的 置 信 区 间 .解:995.0)(41,6.1151512251=-===∑∑==i i i i x x S x x41,95.021,05.02,9.01=-=-==-n ααα220.050.95(4)9.488,(4)0.711x x ==598.5711.0995.04,419.0488.9995.04=⨯=⨯及 的 90%的 置 信 区 间 为 , 及 )366.2,647.0()598.5,419.0(=6、 二正态总体N(,) , N(,)的参数均未知 ,依次取容量为 n =10 , n=11的二独立样本 ,测得样本均值分别为121.2, 2.8x x ==,样本方差分别为 29.0,34.02221==S S ,(1) 求二总体均值差12μμ-的90%的置信区间。

(2)求二总体方差比90%的置信区间。

解:1210.9,0.05,19,1102n n αα-==-=-=(1)290.34100.290.313719w s ⋅+⋅==,0.05(19) 1.729t =,12μμ-的90%的置信区间为 1111(1.2 2.8 1.7290.3137,1.2 2.8 1.7290.3137)10111011( 2.0231, 1.1769)--+-++=--(2)0.05(9,10) 3.02F =0.950.0511(9,10)(10,9) 3.14F F ==17.129.034.02221==S S 2221/σσ∴的 90%的 置 信 区 间 为 : )67.3,39.0()14.317.1,02.3117.1(=⨯⨯。

相关文档
最新文档