菱形的判定(含答案)
初二数学下册知识点《菱形的判定》150例题及解析
初二数学下册知识点《菱形的判定》150例题及解析副标题一、选择题(本大题共65小题,共195.0分)1.如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.其中正确的个数是()A. 1B. 2C. 3D. 4【答案】A【解析】解:因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,故④选项正确,故选:A.因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.2.如图,在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A. 若AD⊥BC,则四边形AEDF是矩形B. 若AD垂直平分BC,则四边形AEDF是矩形C. 若BD=CD,则四边形AEDF是菱形D. 若AD平分∠BAC,则四边形AEDF是菱形【答案】D【解析】解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.由矩形的判定和菱形的判定即可得出结论.本题考查了矩形的判定、菱形的判定;熟记菱形和矩形的判定方法是解决问题的关键.3.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A. AC⊥BDB. AB=BCC. AC=BDD. ∠1=∠2【答案】C【解析】解:A.正确.对角线垂直的平行四边形的菱形.B.正确.邻边相等的平行四边形是菱形.C.错误.对角线相等的平行四边形是矩形,不一定是菱形.D.正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选:C.根据平行四边形的性质.菱形的判定方法即可一一判断.本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.4.下列判断错误的是()A. 两组对边分别相等的四边形是平行四边形B. 四个内角都相等的四边形是矩形C. 四条边都相等的四边形是菱形D. 两条对角线垂直且平分的四边形是正方形【答案】D【解析】解:A、两组对边分别相等的四边形是平行四边形,正确,故本选项错误;B、四个内角都相等的四边形是矩形,正确,故本选项错误;C、四条边都相等的四边形是菱形,正确,故本选项错误;D、两条对角线垂直且平分的四边形是正方形,错误,应该是菱形,故本选项正确.故选:D.根据平行四边形的判定、矩形的判定,菱形的判定以及正方形的判定对各选项分析判断即可得解.本题考查了正方形的判定,平行四边形、矩形和菱形的判定,熟练掌握各四边形的判定方法是解题的关键.5.下列说法正确的是()A. 对角线互相垂直的四边形是菱形B. 矩形的对角线互相垂直C. 一组对边平行的四边形是平行四边形D. 四边相等的四边形是菱形【答案】D【解析】解:A、对角线互相垂直且平分的四边形是菱形;故本选项错误;B、矩形的对角线相等,菱形的对角线互相垂直;故本选项错误;C、两组对边分别平行的四边形是平行四边形;故本选项错误;D、四边相等的四边形是菱形;故本选项正确.故选:D.直接利用菱形的判定定理、矩形的性质与平行四边形的判定定理求解即可求得答案.此题考查了矩形的性质、菱形的判定以及平行四边形的判定.注意掌握各特殊平行四边形对角线的性质是解此题的关键.6.如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A. 当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B. 当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C. 当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D. 当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形【答案】D【解析】解:A.当E,F,G,H是四边形ABCD各边中点,且AC=BD时,存在EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是四边形ABCD各边中点,且AC⊥BD时,存在∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;C.如图所示,若EF∥HG,EF=HG,则四边形EFGH为平行四边形,此时E,F,G,H不是四边形ABCD各边中点,故C正确;D.如图所示,若EF=FG=GH=HE,则四边形EFGH为菱形,此时E,F,G,H不是四边形ABCD各边中点,故D错误;故选:D.连接四边形各边中点所得的四边形必为平行四边形,根据中点四边形的性质进行判断即可.本题主要考查了中点四边形的运用,解题时注意:中点四边形的形状与原四边形的对角线有关.7.下列命题中,真命题是( )A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 对角线互相平分的四边形是平行四边形D. 对角线互相垂直平分的四边形是正方形【答案】C【解析】【分析】本题综合考查了正方形、矩形、菱形及平行四边形的判定.解答此题时,必须理清矩形、正方形、菱形与平行四边形间的关系.A、根据矩形的定义作出判断;B、根据菱形的性质作出判断;C、根据平行四边形的判定定理作出判断;D、根据正方形的判定定理作出判断.【解答】解:A、两条对角线相等且相互平分的四边形为矩形,故本选项错误;B、对角线互相垂直的平行四边形是菱形,故本选项错误;C、对角线互相平分的四边形是平行四边形,故本选项正确;D、对角线互相垂直平分且相等的四边形是正方形,故本选项错误,故选:C.8.如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD是菱形的是()A. AB=ADB. AC=BDC. AC⊥BDD. ∠ABO=∠CBO 【答案】B【解析】解:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,当AB=AD或AC⊥BD时,均可判定四边形ABCD是菱形;当∠ABO=∠CBO时,由AD∥BC知∠CBO=∠ADO,∴∠ABO=∠ADO,∴AB=AD,∴四边形ABCD是菱形;当AC=BD时,可判定四边形ABCD是矩形;故选:B.根据菱形的定义及其判定、矩形的判定对各选项逐一判断即可得.本题主要考查菱形的判定,解题的关键是掌握菱形的定义和各判定及矩形的判定.9.下列命题中正确的是()A. 对角线相等的四边形是菱形B. 对角线互相垂直的四边形是菱形C. 对角线相等的平行四边形是菱形D. 对角线互相垂直的平行四边形是菱形【答案】D【解析】解:对角线互相垂直平分的四边形是菱形;对角线互相垂直的平行四边形是菱形;故选:D.根据菱形对角线互相垂直平分的判定方法进行解答.此题主要考查的是菱形的判定方法:对角线互相垂直的平行四边形是菱形;对角线互相垂直平分的四边形是菱形.10.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是()A. AB=ADB. AC⊥BDC. AC=BDD. ∠BAC=∠DAC 【答案】C【解析】解:A、根据菱形的定义可得,当AB=AD时▱ABCD是菱形;B、根据对角线互相垂直的平行四边形是菱形即可判断,▱ABCD是菱形;C、对角线相等的平行四边形是矩形,不一定是菱形,命题错误;D、∠BAC=∠DAC时,∵▱ABCD中,AD∥BC,∴∠ACB=∠DAC,∴∠BAC=∠ACB,∴AB=BC,∴▱ABCD是菱形.∴∠BAC=∠DAC.故命题正确.故选:C.根据菱形的定义和判定定理即可作出判断.本题考查了菱形的判定定理,正确记忆定义和判定定理是关键.11.如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是()A. 0B. 1C. 2D. 3【答案】D【解析】解:△ABC、△DCE是等边三角形,∴∠ACB=∠DCE=60°,AC=CD,∴∠ACD=180°-∠ACB-∠DCE=60°,∴△ACD是等边三角形,∴AD=AC=BC,故①正确;由①可得AD=BC,∵AB=CD,∴四边形ABCD是平行四边形,∴BD、AC互相平分,故②正确;由①可得AD=AC=CE=DE,故四边形ACED是菱形,即③正确.综上可得①②③正确,共3个.故选:D.先求出∠ACD=60°,继而可判断△ACD是等边三角形,从而可判断①是正确的;根据①的结论,可判断四边形ABCD是平行四边形,从而可判断②是正确的;根据①的结论,可判断④正确.本题考查了平移的性质、等边三角形的性质、平行四边形的判定与性质及菱形的判定,解答本题的关键是先判断出△ACD是等边三角形,难度一般.12.如图,在▱ABCD中,AM,CN分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AMCN为菱形的是()A. AM=ANB. MN⊥ACC. MN是∠AMC的平分线D. ∠BAD=120°【答案】D【解析】解:如图,∵四边形ABCD是平行四边形,∴∠B=∠D,∠DAB=∠DCB,AB=CD,AD=BC,∵AM,CN分别是∠BAD和∠BCD的平分线,∴∠DCN=∠DCB,∠BAM=∠BAD,∴∠BAM=∠DCN,在△ABM和△CDN中,∴△ABM≌△CDN(ASA),∴AM=CN,BM=DN,∵AD=BC,∴AN=CM,∴四边形AMCN是平行四边形,A、∵四边形AMCN是平行四边形,AM=AN,∴平行四边形AMCN是菱形,故本选项错误;B、∵MN⊥AC,四边形AMCN是平行四边形,∴平行四边形AMCN是菱形,故本选项错误;C、∵四边形AMCN是平行四边形,∴AN∥BC,∴∠MNA=∠CMN,∵MN是∠AMC的平分线,∴∠NMA=∠NMC,∴∠MNA=∠MAC,∴∠MAC=∠NMA,∴AM=AN,∵四边形AMCN是平行四边形,∴四边形AMCN是菱形,故本选项错误;D、根据∠BAD=120°和平行四边形AMCN不能推出四边形是菱形,故本选项正确;故选:D.根据平行四边形性质推出∠B=∠D,∠DAB=∠DCB,AB=CD,AD=BC,求出∠BAM=∠DCN,证△ABM≌△CDN,推出AM=CN,BE=DN,求出AN=CM,得出四边形AMCN是平行四边形,再根据菱形的判定判断即可.本题考查了平行四边形的性质和判定、菱形的判定、全等三角形的性质和判定、平行线的性质等知识点;证明三角形全等是解决问题的关键.13.如图,要判定▱ABCD是菱形,需要添加的条件是()A. AB=ACB. BC=BDC. AC=BDD. AB=BC【答案】D【解析】【分析】本题考查菱形的判定,平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.根据菱形的判定方法即可解决问题.【解答】解:根据邻边相等的平行四边形是菱形,可知选项D正确,故选:D.14.如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法.其中正确的个数是( )①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.A. 1B. 2C. 3D. 4【答案】A【解析】【分析】本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,【解答】解:因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,故④选项正确.故选A.15.已知四边形ABCD是等对角线四边形,图①中四边形EFGH的四个顶点分别是四边形ABCD四条边的中点,图②中四边形KLMN满足KL//MN//AC,ML//NK//BD,则()①②A. 四边形EFGH、KLMN都是等对角线四边形B. 四边形EFGH、KLMN都不是等对角线四边形C. 四边形EFGH是等对角线四边形,四边形KLMN不是等对角线四边形D. 四边形EFGH不是等对角线四边形,四边形KLMN是等对角线四边形【答案】B【解析】【分析】本题主要考查了平行四边形的性质与判定,菱形的性质与判定以及新定义问题等知识,熟练掌握这些知识是解决本题的关键.【解答】解:∵四边形ABCD是等对角线四边形,∴AC=BD,∵题图①中四边形EFGH的四个顶点分别是是四边形ABCD四条边的中点,∴EH//BD,EH=BD,GF//BD,GF=BD,HG//AC,HG=AC,EF//AC,EF=AC,∴四边形EFGH是平行四边形,∵AC=BD,∴EH=HG,∴EFGH是菱形,∴四边形EFGH不是等对角线四边形.∵题图②中四边形KLMN满足KL//MN//AC,ML//NK//BD,∴四边形ACLK、四边形KBDN、四边形KLMN是平行四边形,∴AC=KL,KN=BD,∵AC=BD,∴KL=KN,∴KLMN是菱形,∴四边形KLMN不是等对角线四边形.故选B.16.如图,四边形ABCD中,AB∥CD.则下列说法中,不正确的是( )A. 当AB=CD,AO=DO时,四边形ABCD为矩形B. 当AB=AD,AO=CO时,四边形ABCD为菱形C. 当AD∥BC,AC=BD时,四边形ABCD为正方形D. 当AB=CD时,四边形ABCD为平行四边形【答案】C【解析】【分析】本题考查了矩形,菱形,正方形和平行四边形的判定,注意:对角线垂直且相等的平行四边形是正方形,对角线相等的平行四边形是矩形,对角线互相垂直的平行四边形是菱形,有一个角是直角的平行四边形是矩形,有一组邻边相等的平行四边形是菱形.根据对角线相等的平行四边形是矩形,对角线互相垂直的平行四边形是菱形,有一个角是直角的平行四边形是矩形,有一组邻边相等的平行四边形是菱形判断即可.【解答】A.∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,又∵AO=DO,∴AC=BD,∴四边形ABCD为矩形,故A正确;B.∵AB∥CD,∴∠BAO=∠DCO,又∵AO=CO,∠AOB=∠COD,∴△AOB≌△COD,∴AB=CD,∴四边形ABCD是平行四边形,∵AB=AD,∴四边形ABCD为菱形,故B正确;C.∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,又∵AC=BD,∴四边形ABCD为矩形,故C错误;D.∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,故D正确.故选C.17.若顺次连接四边形各边中点所构成的四边形是菱形,则原四边形一定是()A. 矩形B. 菱形C. 平行四边形D. 对角线相等的四边形【答案】D【解析】【分析】此题考查了菱形的性质与三角形中位线的性质.此题难度适中,注意掌握数形结合思想的应用.首先根据题意画出图形,由四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,利用三角形中位线的性质与菱形的性质,即可判定原四边形一定是对角线相等的四边形.【解答】解:如图,根据题意得:四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,∴EF=FG=GH=EH,BD=2EF,AC=2FG,∴BD=AC.∴原四边形一定是对角线相等的四边形.故选D.18.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A. 矩形B. 等腰梯形C. 对角线相等的四边形D. 对角线互相垂直的四边形【答案】C【解析】解:如图,根据题意得:四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,∴EF=FG=GH=EH,BD=2EF,AC=2FG,∴BD=AC.∴原四边形一定是对角线相等的四边形.故选:C.首先根据题意画出图形,由四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,利用三角形中位线的性质与菱形的性质,即可判定原四边形一定是对角线相等的四边形.此题考查了菱形的性质与三角形中位线的性质.此题难度适中,注意掌握数形结合思想的应用.19.顺次连接矩形四边中点所形成的四边形是()A. 矩形B. 菱形C. 正方形D. 梯形【答案】B【解析】解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB,∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选:B.因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.20.如图,在矩形ABCD中,E,F分别是AD,BC的中点,连接AF,BE,CE,DF分别交于点M,N,四边形EMFN是( )A. 正方形B. 菱形C. 矩形D. 无法确定【答案】B【解析】【分析】本题考查了矩形的性质和判定,菱形的判定,平行四边形的性质和判定的应用,能综合运用性质进行推理是解此题的关键,题目比较好,综合性比较强.求出四边形ABFE为平行四边形,四边形BFDE为平行四边形,根据平行四边形的性质得出BE∥FD,即ME∥FN,同理可证EN∥MF,得出四边形EMFN为平行四边形,求出ME=MF,根据菱形的判定得出即可.【解答】解:∵四边形ABCD为矩形,∴AD∥BC,AD=BC,又∵E,F分别为AD,BC中点,∴AE∥BF,AE=BF,ED∥CF,DE=CF,∴四边形ABFE为平行四边形,四边形BFDE为平行四边形,∴BE∥FD,即ME∥FN,同理可证EN∥MF,∴四边形EMFN为平行四边形,∵四边形ABFE为平行四边形,∠ABC为直角,∴ABFE为矩形,∴AF,BE互相平分于M点,∴ME=MF,∴四边形EMFN为菱形.故选B.21.对角线互相平分且相等的四边形是()A. 平行四边形B. 矩形C. 菱形D. 正方形【答案】B【解析】解:对角线互相平分且相等的四边形是矩形.故选:B.根据对角线相等的平行四边形是矩形,以及平行四边形的判定:对角线互相平分的四边形是平行四边形,即可得出结论.此题主要考查矩形的判定:对角线相等的平行四边形是矩形.以及平行四边形的判定:对角线互相平分的四边形是平行四边形,较为简单.22.下列说法正确的是()A. 对角线相等的平行四边形是菱形B. 有一组邻边相等的平行四边形是菱形C. 对角线相互垂直的四边形是菱形D. 有一个角是直角的平行四边形是菱形【答案】B【解析】解:A、对角线相等的平行四边形是矩形,故A选项错误;B、有一组邻边相等的平行四边形是菱形,故B选项正确;C、对角线相互垂直的平行四边形是菱形,故C选项错误;D、有一个角是直角的平行四边形是矩形,故D选项错误,故选:B.利用菱形的判定定理对各个选项逐一判断后即可确定正确的选项.本题考查了菱形的判定,牢记菱形的判定定理是解答本题的关键,难度不大.23.已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等.其中假命题有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】解:①对角线互相平分的四边形是平行四边形,故①是真命题.②等腰梯形的对角线相等.故②是真命题.③对角线互相垂直平分的四边形是菱形.故③是假命题.④两直线平行,内错角相等.故④是假命题.故选B.命题是判断事情的语句,若是判断的事情是正确的就是真命题,如果是错误的就是假命题,平行四边形的对角线互相平分,等腰梯形的对角线相等,对角线互相垂直的不一定是菱形,两直线平行,内错角才相等.本题考查真假命题的概念,以及平行四边形的判定.菱形的判定,等腰梯形的判定定理,以及内错角等知识点.24.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分.其中正确的有()个.A. 4B. 3C. 2D. 1【答案】C【解析】解:∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个.故选:C.根据三角形的中位线性质、平行四边形的性质、矩形的判定、菱形的判定、正方形的判定逐个判断即可.本题考查了三角形的中位线性质、平行四边形的性质、矩形的判定、菱形的判定、正方形的判定等知识点,能熟记定理的内容是解此题的关键.25.如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A. AB=ACB. AD=BDC. BE⊥ACD. BE平分∠ABC 【答案】D【解析】【分析】当BE平分∠ABC时,四边形DBFE是菱形,可知先证明四边形BDEF是平行四边形,再证明BD=DE即可解决问题.本题考查菱形的判定、平行四边形的判定和性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【解答】解:当BE平分∠ABC时,四边形DBFE是菱形,理由:∵DE∥BC,∴∠DEB=∠EBC,∵∠EBC=∠EBD,∴∠EBD=∠DEB,∴BD=DE,∵DE∥BC,EF∥AB,∴四边形DBFE是平行四边形,∵BD=DE,∴四边形DBFE是菱形.其余选项均无法判断四边形DBFE是菱形,故选:D.26.如图,在△ABC中,点E,D,F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四个判断中,不正确的是()A. 四边形AEDF是平行四边形B. 如果∠BAC=90°,那么四边形AEDF是矩形C. 如果AD平分∠BAC,那么四边形AEDF是菱形D. 如果AD⊥BC且AB=AC,那么四边形AEDF是正方形【答案】D【解析】【分析】本题考查了平行四边形的判定定理,矩形的判定定理,菱形的判定定理,和正方形的判定定理等知识点.两组对边分别平行的四边形是平行四边形,有一个角是90°的平行四边形是矩形,有一组邻边相等的平行四边形是菱形,四个角都是直角,且四个边都相等的是正方形.【解答】解:A、因为DE∥CA,DF∥BA所以四边形AEDF是平行四边形.故A选项正确.B、∠BAC=90°,四边形AEDF是平行四边形,所以四边形AEDF是矩形.故B选项正确.C、因为AD平分∠BAC,所以AE=DE,又因为四边形AEDF是平行四边形,所以是菱形.故C选项正确.D、如果AD⊥BC且AB=BC不能判定四边形AEDF是正方形,故D选项错误.故选:D.27.下列说法正确的是()A. 对角线相等且互相垂直的四边形是菱形B. 对角线互相垂直平分的四边形是正方形C. 对角线互相垂直的四边形是平行四边形D. 对角线相等且互相平分的四边形是矩形【答案】D【解析】解:对角线相等且互相垂直的四边形不一定是平行四边形,更不一定是菱形,故A不正确;对角线互相垂直平分的四边形为菱形,但不一定是正方形,故B不正确;对角线互相垂直的四边形,其对角线不一定会平分,故不一定是平行四边形,故C不正确;对角线互相平分说明四边形为平行四边形,又对角线相等,可知其为矩形,故D正确;故选:D.分别根据菱形、正方形、平行四边形和矩形的判定逐项判断即可.本题主要考查平行四边形及特殊平行四边形的判定,掌握平行四边形及特殊平行四边形的对角线所满足的条件是解题的关键.28.如图,在▱ABCD中,对角线,O为AC的中点,经过点O的直线交AD于E,交BC于F,连结AF、CE,现在添加一个适当的条件,使四边形AFCE是菱形,下列条件:;;平分;为AD中点。
5、菱形的判定和性质 - 答案
菱形的判定和性质情景导入1.(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?2.(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念菱形定义:有一组邻边相等的平行四边形叫做菱形【强调】菱形(1)是平行四边形(2)一组邻边相等请同学们列举一些日常生活中所见到过的菱形的例子折纸探究把一张矩形纸片对折再对折,然后沿着图中的虚线剪下、打开,你能发现它是一个什么样的图形吗?菱形是特殊的平行四边形,它具有平行四边形的一切性质.即对称性:菱形是中心对称图形,对角线的交点是对称中心边:菱形的对边平行且相等角:菱形的对角相等对角线:菱形的对角线互相平分那么菱形作为作为特殊的平行四边形具有哪些特殊的性质呢?(1)菱形的都相等(2)菱形的对角线.例1.如图,菱形ABCD 中,AE 和AF 分别是BC 和DC 边上的高,请问AE 与AF 有什么样的关系?为什么?E C B A FD例2.在菱形ABCD中,对角线AC、BD的长分别为a、b,AC、BD相交于点O.(1)用含a、b的代数式表示菱形ABCD的面积S;(2)若a=3cm,b=4cm,求菱形ABCD的面积和周长.知识点:菱形的面积==.菱形的判定提出问题1.根据菱形的定义,需要具备什么条件可以判定一个四边形是菱形?2.还可以用什么方法判定一个四边形是菱形?成果展示1.问题1:拿出十根小木条(其中只有四根一样长),让学生从中选取四根,能否搭成一个菱形?为什么?2.问题2:拿出事先准备好的平行四边形(对角线是木条,四边是橡皮筋),转动木条成直角,观察得到的四边形的形状是菱形吗?为什么?3.问题3:你认为,的四边形是菱形的平行四边形是菱形(注意:一个的基础条件是四边形,一个的基础条件是平行四边形)归纳:四边形、平行四边形、菱形之间的关系:Array例1、证明:四条边都相等的四边形是菱形例2、证明:对角线互相垂直的平行四边形是菱形题型一:菱形的性质-求角度1.如图,在菱形ABCD 中,40ABC ∠=︒,点E 为对角线BD 上一点,F 为AD 边上一点,连接AE 、CE 、FE ,若AE FE =,56BEC ∠=︒,则DEF ∠的度数为()A.16︒B.15︒C.14︒D.13︒【答案】A 【详解】解:∵四边形ABCD 是菱形,∠ABC=40°,∴AB=CB=AD,∠ABE=∠CBE=20°,AD BC ∥,∴∠BAD=140°,∠ADB=∠ABD=20°,又∵BE=BE,∴△ABE≌△CBE(SAS),∴∠BEA=∠BEC=56°,∴∠BAE=104°,∴∠DAE=36°,∵AE=FE,∴∠EFA=∠EAF=36°,∴∠DEF=∠EFA-∠EDF=16°,故选A.2.如图,在菱形ABCD 中,M,N 分别在AB CD ,上,且AM CN =,MN 与AC 交于点O,连接BO .若28DAC ∠=︒,则OBC ∠的度数为度.【答案】62【详解】解:∵四边形ABCD 为菱形,∴AB CD ∥,AB BC =,∴MAO NCO AMO CNO ∠=∠∠=∠,,在AMO 和CNO 中,∵MAO NCO AM CN AMO CNO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA AMO CNO ≌△△,∴AO CO =,∵AB BC =,∴BO AC ⊥,∴90BOC ∠=︒,∵28DAC ∠=︒,∴28BCA DAC ∠=∠=︒,∴902862OBC ∠=︒-︒=︒.故答案为:62.3.如图,在菱形ABCD 中,∠ADC=72°,AD 的垂直平分线交对角线BD 于点P,垂足为E,连接CP,则∠CPB 的度数是()A.108°B.72°C.90°D.100°【答案】B 【详解】解:连接PA,如图所示:∵四边形ABCD 是菱形,∴∠ADP=∠CDP=12∠ADC=36°,BD 所在直线是菱形的对称轴,∴PA=PC,∵AD 的垂直平分线交对角线BD 于点P,∴PA=PD,∴PD=PC,∴∠PCD=∠CDP=36°,∴∠CPB=∠PCD+∠CDP=72°;故选:B.4.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,DH AB ⊥于点H ,连接OH ,若AH DH =,则DHO ∠=.【答案】22.5︒【详解】解:∵DH AB ⊥,AH =,∴ADH 是等腰直角三角形,∴45BAD ADH ==︒∠∠,∵四边形ABCD 是菱形,∴AD AB =,点O 为BD 的中点,∴18067.52BAD ABD ADB ︒-===︒∠∠∠,∴22.5BDH ADB ADH =-=︒∠∠,∵90DHB ∠=︒,点O 为BD 的中点,∴OH OD =,∴22.5DHO ODH ∠==︒∠,故答案为:22.5︒.5.如图,在菱形ABCD 中,AC 交BD 于点O,DE BC ⊥于点E,连接OE ,若140ABC ∠=︒,则OEB ∠=.【答案】70︒【详解】解:∵四边形ABCD 是菱形,140ABC ∠=︒,∴1270ABD CBD ABC BO DO ∠=∠=∠=︒=,,∵DE BC ⊥,∴OE OD OB ==,∴70CBD OEB ∠=∠=︒,故答案为:70︒.题型二:菱形的性质-求长度1.菱形相邻两角的比为1:2,那么菱形的对角线长与边长的比为()A.1:2:3B.1:2:1C.1:2:D.【答案】D【详解】因为菱形相邻的两角互补,所以得到较小的角的度数是60︒,较大的角是120︒.设菱形的边长为1,则60︒角所对的对角线长为1,120︒所以它们所对的对角线长与边长的比为:1.故选:D.2.如图,在菱形ABCD 中,BE AB ⊥交对角线AC 于点E,若120D ∠=︒,1BE =,则AC =.【答案】3【详解】解: 四边形ABCD 是菱形,120D ∠=︒,∴CD AB ∥,120ABC D ∠=∠=︒,∴18012060DAB ∠=︒-︒=︒,∴1302BAE DAB ∠=∠=︒,∴30ECB BAE ∠=∠=︒,BE AB ⊥,∴90ABE ∠=︒,∴30EBC ECB ∠=∠=︒,∴1EB EC ==,在Rt ABE △中,30EAB ∠=︒ ,∴22AE BE ==,∴213AC AE EC =+=+=,故答案为:3.3.菱形ABCD 的边长为8,有一个内角为120°,则较长的对角线的长为()B.8D.4【答案】A 【详解】根据题意作如图所示:在菱形ABCD 中,111206022BAO BAD ∠=∠=⨯︒=︒,又在△ABC 中,AB=BC,∴∠BCA=∠BAC=60°,∴∠ABC=180°-∠BCA-∠BAC=60°,∴三角形ABC 为等边三角形,∴AC=AB=8,∴AO=4,BO ∴==2BD BO ∴==故选:A.4.如图,菱形ABCD 对角线AC ,BD 交于点O ,15ACB ∠=︒,过点C 作CE AD ⊥交AD 的延长线于点E .若菱形ABCD 的面积为4,则菱形的边长为()A.B.2C.D.4【答案】A 【详解】解:∵四边形ABCD 是菱形,∴AD=CD,AD∥BC,∴∠EDC=∠BCD=2∠ACB=30°,∵CE⊥AD,∴∠CED=90°,∴CE=12DC=12AD,∴菱形ABCD 的面积=AD•CE=AD•12AD=12AD 2=4,∴AD=(负值舍去),即菱形的边长为,故选:A.5.如图,在矩形ABCD 中,1AB =,BG ,DH 分别平分ABC ∠,ADC ∠,交AD ,BC 于点G ,H .要使四边形BHDG 为菱形,则AD 的长为.【答案】1【详解】解:∵在矩形ABCD 中,BG 平分ABC ∠,90ABC ∠=︒,90A ∠=︒ ,45AGB ABG ∴∠=∠=︒,AB AG ∴=.又1AB = ,BG ∴==要使四边形BHDG 为菱形,则GD BG ==,1AD AG GD ∴=+=故答案为:1题型三:菱形的性质-求周长和面积1.如图,在菱形ABCD 中,AC 、BD 交于点O,若6AC =,8BD =,则ABC 的周长为()A.16B.18C.20D.26【答案】A 【详解】解:∵四边形ABCD 是菱形,∴132CO AC ==,142BO BD ==,AO BO ⊥,AB BC =,∴5BC =,∴ABC 的周长55616AB BC AC =++=++=,故选:A.2.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,E 为AB 的中点,且2OE =,则菱形ABCD 的周长为()A.12B.16C.8D.4【答案】B 【详解】解: 四边形ABCD 是菱形,AC BD AB BC CD AD ∴⊥===,,90AOB ∠=︒∴,E 为AB 的中点且2OE =,24AB OE ∴==,∴菱形ABCD 的周长44416AB ==⨯=,故选:B.3.如图,菱形ABCD 中,若10DB =,13AB =,则菱形ABCD 的面积为.【答案】120【详解】解:如图,连接AC ,交DB 于点O ,四边形ABCD 是菱形,10DB =,12,5,2AC OA OB DB AC BD ∴===⊥,13AB = ,12OA ∴==,24AC ∴=,则菱形ABCD 的面积为11241012022AC DB ⋅=⨯⨯=,故答案为:120.4.如图,在菱形ABCD 中,6cm AC =,8cm BD =,则菱形AB 边上的高CE 的长是()A.4.8cmB.9.6cm C.5cm D.10cm【答案】A 【详解】解:对角线AC ,BD O ,则ABO 为直角三角形则3AO OC cm ==.4BO DO cm ==,5cm AB ∴=,∴菱形的面积根据边长和高可以计算,根据对角线长也可以计算,即16852S CE =⨯⨯=⨯,∴24cm 5CE =,故选:A.5.如图,菱形ABCD 的对角线AC ,BD 相交于点O,BE AC ∥,AE BD ∥,OE 与AB 交于点F.若5OE =,8AC =,则菱形ABCD 的面积为.【答案】24【详解】解:菱形ABCD 中,142OA AC ==,AC BD ⊥∵BE AC ∥,AE BD∥∴四边形AOBE 是矩形∴5AB OE ==Rt OAB 中,3OB ===∴26BD OB ==∴菱形ABCD 的面积为11862422AC BD ==⨯⨯= 故答案为:24.题型四:菱形的性质运用1.菱形具有而矩形不一定有的性质是()A.对角相等B.邻角互补C.对角线互相平分D.四条边都相等【答案】D【详解】解:A、因为矩形和菱形都是平行四边形,对角相等,所以本选项不符合题意;B、因为矩形和菱形都是平行四边形,邻角互补,所以本选项不符合题意;C、因为矩形和菱形都是平行四边形,对角线互相平分,所以本选项不符合题意;D、因为菱形的四条边相等,而矩形的四条边不相等,所以本选项符合题意.故选:D.2.如图,在菱形ABCD 中,点E、F 分别在边BC CD ,上,且BE DF =,连接EF ,求证:AEF AFE ∠=∠.【答案】见解析【详解】证明:∵四边形ABCD 是菱形,∴AB AD B D =∠=∠,,∵BE DF =,∴()SAS ABE ADF △≌△,∴AE AF =,∴AEF AFE ∠=∠.3.如图,四边形ABCD 为菱形,E 为对角线AC 上的一个动点(不与点A,C 重合),连接DE 并延长交射线AB 于点F,连接BE.(1)求证:DCE BCE △≌△;(2)求证:AFD EBC ∠=∠.【答案】(1)证明:∵四边形ABCD 为菱形,∴CD BC =,ACD ACB ∠=∠,在DCE △和BCE 中,CD BC ACD ACB CE CE =⎧⎪∠=∠⎨⎪=⎩,∴()DCE BCE SAS △≌△;(2)证明∶∵DCE BCE △≌△,∴CDE EBC ∠=∠,∵四边形ABCD 为菱形,∴AB∥CD,∴CDF AFD ∠=∠,∴AFD EBC ∠=∠.4.如图,四边形ABCD 是菱形,AE⊥BC 于点E,AF⊥CD 于点F.(1)求证:△ABE≌△ADF;(2)若AE=4,CF=2,求菱形的边长.【答案】(1)见解析(2)5【详解】(1)证明:∵四边形ABCD 是菱形,∴AB=BC=CD=AD(菱形的四条边相等),∠B=∠D(菱形的对角相等),∵AE⊥BC AF⊥CD,∴∠AEB=∠AFD=90°(垂直的定义),在△ABE 和△ADF 中,AEB AFD B D AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADF(AAS);(2)解:设菱形的边长为x,∴AB=CD=x,CF=2,∴DF=x −2,∵△ABE≌△ADF,∴BE=DF=x −2(全等三角形的对应边相等),在Rt△ABE 中,∠AEB=90°,∴AE 2+BE 2=AB 2(勾股定理),∴42+(x −2)2=x 2,解得x=5,∴菱形的边长是5.题型五:菱形的判定1.判断下列命题是否正确,并说明理由(1)对角线互相平分且邻边相等的四边形是菱形(2)两组对边分别平行且一组邻边相等的四边形是菱形(3)邻角相等的四边形是菱形(4)有一组邻边相等的四边形是菱形(5)两组对角分别相等且对角线互相垂直的四边形是菱形(6)对角线互相垂直的四边形是菱形(7)对角线互相垂直平分的四边形是菱形(8)一条对角线平分一个内角的平行四边形是菱形【答案】✔✔✖✖✔✖✔✔2.下列说法正确的是()A.对角线互相平分的四边形是菱形B.对角线互相平分且相等的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形【答案】D3.用两个边长为a的等边三角形纸片拼成的四边形是()A.平行四边形B.矩形C.菱形D.不能确定【答案】C4.下列说法不正确的是()A.对角线相互垂直的四边形是菱形B.有三个角是直角的四边形是矩形C.对角线互相垂直平分的四边形是菱形D.两组对边分别相等的四边形是平行四边形【答案】A5.下列条件中不能用来判定四边形是菱形的是()A.AB=CD,AB=AD,BC=CD B.∠A=∠C,∠B=∠D,AC⊥BDC.AB=CD,AD=BC,AC⊥BD D.OA=OB=OC=OD(O是对角线交点)【答案】D6.如图,在矩形ABCD 中.点E,F,G,H 分别是四条边的中点.求证:四边形EFGH 是菱形.【答案】连接AC BD 、,∵点E,F,G,H 分别是四条边的中点,∴12EF GH AC ==,12EH FG BD ==∵矩形ABCD ,∴AC BD =,∴EF GH EH FG ===,∴平行四边形EFGH 为菱形.7.如图,在四边形ABCD 中,BC CD =,C BAD ∠=∠,O 是四边形ABCD 内一点,且OA OB OD ==.求证:(1)BOD C ∠=∠;(2)四边形OBCD 是菱形.【答案】(1)∵OA OB OD ==,∴点A 、B 、D 在以点O 为圆心,OA 为半径的圆上,∴2BOD BAD ∠=∠,∵2C BAD ∠=∠,∴BOD C ∠=∠,(2)证明:如图,连接OC ,∵OB OD =,CB CD =,OC OC =,∴(SSS)OBC ODC ≌,∴BOC DOC ∠=∠,BCO DCO ∠=,∵BOD BOC DOC ∠=∠+∠,BCD BCO DCO ∠=∠+∠,∴12BOC BOD ∠=∠,12BCO BCD ∠=∠,∵BOD BCD ∠=∠,∴BOC BCO ∠=∠,∴BO BC =,∵OB OD =,BC CD =,∴OB BC CD DO ===,∴四边形OBCD 是菱形.8.如图,△ABC 中,AB=AC,AD 是A ∠的平分线,E 为AD 延长线上一点,CF//BE 且交AD 于F,连接BF、CE.求证:四边形BECF 是菱形.【答案】∵AB=AC,AD 是角平分线,∴BD=CD,∵CF∥BE,∴∠DBE=∠DCF,在△BDE 和△CDF 中,DBE DCF DB CD BDE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE≌△CDF(ASA),∴CF=BE,又∵CF∥BE,∴四边形BFCE 是平行四边形;∵AB=AC,AD 是角平分线,∴AD⊥BC,又∵四边形BFCE 是平行四边形,∴四边形BFCE 是菱形.9.如图,在Rt ABC △中,90ACB ∠=︒,AE 平分CAB ∠交CB 于点E ,CD AB ⊥于点D ,交AE 于点G ,过点G 作GF BC ∥交AB 于F ,连接EF.(1)求证:CG CE =;(2)判断四边形CGFE 的形状,并证明;(3)若3cm 4cm AC BC ==,,求线段DG 的长度.【答案】(1)见解析(2)菱形,理由见解析(3)910(1)证明:AE 平分CAB ∠,CAE BAE ∴∠=∠,90ACB CD AB ∠=︒⊥ ,,90CAE CEA BAE AGD ∴∠+∠=∠+∠=︒,CEA AGD ∴∠=∠,又CGE AGD ∠=∠ ,CEA CGE ∴∠=∠,CG CE ∴=;(2)解:四边形CGFE 是菱形,理由如下:GF BC ∥,CEG EGF ∴∠=∠,由(1)知CEA CGE ∠=∠,CGE EGF ∴∠=∠,AGC AGF ∴∠=∠,又AG AG CAE BAE =∠=∠ ,,()ASA AGC AGF ∴ ≌,CG FG ∴=,由(1)知CG CE =,CE FG ∴=,又GF BC ∥,CE FG ∴∥,∴四边形CGFE 是平行四边形,又CG CE = ,∴四边形CGFE 是菱形;(3)解:Rt ABC △中,903cm 4cm ACB AC BC ∠=︒==,,,5cm AB ∴===,由(2)知AGC AGF ≌,3cm AF AC ∴==,2cm BF AB AF ∴=-=,四边形CGFE 是菱形,EF CG ∴∥,CD AB ⊥ ,EF AB ∴⊥,设CE EF CG GF x ====,则4BE BC CE x =-=-,在Rt EFB △中,222EF BF BE +=,即()222x 24x +=-,解得:32x =,32CG ∴=,1122ABC S AC BC AB CD =⋅=⋅ ,341255AC BC CD AB ⋅⨯∴===,12395210GD CD CG ∴=-=-=.课后练习1.如图,在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线AC 于点F,E 为垂足,连接DF,则∠CDF 的度数为.【答案】60°【详解】解:连接BD,BF,∵四边形ABCD 是菱形,∴∠DAC=12∠BAD=12×80°=40°,AC 垂直平分BD,AB//CD,∴∠ADC=180°-∠BAD=180°-80°=100°,又∵EF 垂直平分AB,AC 垂直平分BD,∴AF=BF,BF=DF,∴AF=DF,∴∠FAD=∠FDA=40°,∴∠CDF=100°-40°=60°,故答案为:60°.2.如图,在菱形ABCD 中,AB 的垂直平分线交对角线BD 于点F,垂足为点E,连接AF、AC,若∠DCB=70°,则∠FAC=.【答案】20°【详解】解:∵EF 是线段AB 的垂直平分线,∴AF=BF,∴∠FAB=∠FBA,∵四边形ABCD 是菱形,∠DCB=70°,∴BC=AB,∠BCA=12∠DCB=35°,AC⊥BD,∴∠BAC=∠BCA=35°,∴∠FBA=90°﹣∠BAC=55°,∴∠FAB=55°,∴∠FAC=∠FAB﹣∠BAC=55°﹣35°=20°,故答案为:20°.3.如图,在菱形ABCD中,对角线AC与BD相交于点O,OE AB⊥,垂足为E点,若130ADC∠=︒,则AOE∠=.【答案】65°【详解】解:在菱形ABCD中,∠ADC=130°,∴∠BAD=180°-130°=50°,∴∠BAO=12∠BAD=12×50°=25°,∵OE⊥AB,∴∠AOE=90°-∠BAO=90°-25°=65°.故答案为:65°.4.如图,菱形ABCD的边AB的垂直平分线交AB于点E,交AC于点F,连接DF.当100BAD∠=︒时,CDF∠=()A.15°B.30°C.40°D.50°【答案】B【详解】如图,连接BF,∵四边形ABCD是菱形,∴CD BC =,DCF BCF ∠=∠,在BCF △和DCF 中,∵CD BC DCF BCF CF CF =⎧⎪∠=∠⎨⎪=⎩,∴()BCF DCF SAS △≌△∴CBF CDF∠=∠∵FE 垂直平分AB ,1100502BAF ∠=⨯︒=︒,∴50ABF BAF ∠=∠=︒∵18010080ABC ∠=︒-︒=︒,805030CBF ∠=︒-︒=︒∴30CDF ∠=︒.故选:B.5.菱形的周长是24,两邻角比为1∶2,较长的对角线长为.【答案】【详解】解:如图, 菱形的周长是24,∴菱形的边长6AB =,菱形的两邻角之比为1:2,∴较小的内角11806012ABC ∠=︒⨯=︒+,ABC ∴ 是等边三角形,6AC AB ∴==, 在菱形ABCD 中,12OA OC AC ==,12OB BD =,AC BD ⊥,116322AO AC ∴==⨯=,在Rt ABO 中,OB ===∴较长的对角线22BD OB ==⨯.故答案为:6.如图,在菱形ABCD 中,对角线AC ,BD 分别为16和12,DE AB ⊥于点E ,则DE =.【答案】485【详解】解:如图,设AC 与BD 的交点为O ,∵四边形ABCD 是菱形,8AO CO ∴==,6DO BO ==,AC BD ⊥,∴10AB ===,ABCD S =菱形AC BD AB DE ⋅=⋅,∴11612102DE ⨯⨯=⨯,∴485DE =,故答案为:485.7.如图,菱形ABCD 的对角线AC BD 、相交于点O,过点D 作DH AB ⊥于点H,连接OH ,若64OA OH ==,,则菱形ABCD 的面积为.【答案】48【详解】解:∵四边形ABCD 是菱形,∴6OA OC ==,OB OD =,AC BD ⊥,∴12AC =,∵DH AB ⊥,∴90BHD ∠=︒,∴2248BD OH ==⨯=,∴菱形ABCD 的面积111284822AC BD =⋅=⨯⨯=,故答案为:48.8.如图,在菱形ABCD 中,58AB BD ==,,过点D 作DE BA ⊥,交BA 的延长线于点E,则线段DE 的长为()A.4B.3C.485D.245【答案】D 【详解】解:如图,设AC 与BD 的交点为O,∵四边形ABCD 是菱形,∴142AO OC OB OD BD AC BD ====⊥,,,∴3OA ===,∴26AC OA ==,∵12菱形ABCD S AB DE AC BD =⋅=⋅,∴1168242255AC BD DE AB ⋅⨯⨯===,故选:D.9.如图,在菱形ABCD 中,100A ∠=︒,M、N 分别是边AB BC 、的中点,MP CD ⊥于点P.则NPC ∠的度数为()A.50°B.60°C.70°D.80°【答案】A 如图所示,延长PN 交AB 的延长线于点G,∵四边形ABCD 是菱形,∴AB BC AB CD AD BC =,∥,∥,∴BMP DPM G NPC ∠=∠∠=∠,,18080ABC A ∠=︒-∠=︒,∵MP CD ⊥,即90DPM ∠=︒,∴90BMP ∠=︒,∵M、N 分别是边AB BC 、的中点,∴1122BM BN CN AB BC ====,∴180502MBN BMN BNM ︒-===︒∠∠∠,在BGN △与CPN △中,GNB PNC BN CN G NPC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()AAS BGN CPN ≌,∴GN PN =,∴N 为PG 中点.∴12MN PN PG ==,∴NMP NPM =∠∠,∴BMP NMP MPC MPN ∠-∠=∠-∠,即50BMN NPC ∠=∠=︒,故选A.10.如图,菱形ABCD ,E 、F 分别是BC ,CD 上的点,60B EAF ︒∠=∠=,18BAE ︒∠=,求CEF ∠的度数.【答案】18︒【详解】连接AC ,∵四边形ABCD 是菱形,∴ABC 为等边三角形,∴60BAC ACB ︒∠=∠=,AB AC =,∴60ACF B ︒∠=∠=,∵60EAF BAC ︒∠=∠=,∴BAE CAF ∠=∠,∴ABE ACF V V ≌,∴AE AF =,∴AEF △为等边三角形,∴60AEF ︒∠=,∵AEF CEF B BAE ∠+∠=∠+∠,且18BAE ︒∠=,∴18CEF ︒∠=11.如图,ABCD Y 中,对角线AC 、BD 交于点O ,在BD 上截取OE OF OA ==.(1)求证:四边形AECF 是矩形;(2)若AE AF =,求证:AC 平分BAD ∠.【答案】(1)证明:∵四边形ABCD 是平行四边形,∴OA OC =,∵OE OF OA ==,∴OE OF OA OC ===,∴四边形AECF 是平行四边形,AC EF =;∴四边形AECF 是矩形;(2)证明:∵四边形AECF 是矩形,AE AF =,∴四边形AECF 是正方形,∴AC BD ⊥,又∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形,∴AC 平分BAD ∠.12.如图,在三角形纸片ABC 中,AD 平分∠BAC,将△ABC 折叠,使点A 与点D 重合,展开后折痕分别交AB、AC 于点E、F,连接DE、DF.求证:四边形AEDF是菱形.【答案】∵AD 平分∠BAC∴∠BAD=∠CAD又∵EF⊥AD,∴∠AOE=∠AOF=90°∵在△AEO 和△AFO 中EAO FAO AO AO AOE AOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEO≌△AFO(ASA),∴EO=FO又∵A 点与D 点重合,∴AO=DO,∴EF、AD 相互平分,∴四边形AEDF 是平行四边形∵点A 与点D 关于直线EF 对称,∵EF⊥AD,∴平行四边形AEDF 为菱形.13.如图,O 是矩形ABCD 的对角线的交点,DE∥AC,CE∥BD,DE 和CE 相交于E.(1)求证:四边形OCED 是菱形;(2)若矩形ABCD 中,AD=6,点F 为BC 边中点,且OF=2,求四边形OCED 的面积.【答案】(1)见解析;(2)12()1证明:∵四边形ABCD 是矩形,2,2,,AC OC BD OD AC BD ∴===,OD OC ∴=,.DE AC CE BD ∴四边形OCED 是菱形.(2)如图,连接,OE ∵四边形OCED 是菱形,,OE CD ∴⊥.OE AD ∴ /,.DE AC OE AD ∴四边形AOED 是平行四边形,6,OE AD ∴==2,4,OF CD =∴=114612.22S CD OE ∴=⋅=⨯⨯=14.如图,平行四边形ABCD 的对角线AC 的垂直平分线与对角线AC 交于点O,与边AD、BC 分别交于点E、F,那么四边形AFCE 是不是菱形?为什么?【答案】四边形AFCE 是菱形,理由详见解析.【详解】解:四边形AFCE 是菱形,理由:∵四边形ABCD 是平行四边形,∴AD∥BC,即AE∥FC.∴∠OAE=∠OCF.∵∠AOE=∠COF=90°,AO=CO,∴△AOE≌△COF,∴AE=CF,∴四边形AFCE 是平行四边形.∵EF⊥AC 于O,∴平行四边形AFCE 是菱形.15.如图,在Rt ABC ∆中,90ACB ∠=︒,DE 垂直平分BC ,垂足为D ,交AB 于点E .又点F 在DE 的延长线上,且AF CE =.(1)求证:点E 是AB 的中点:(2)求证:四边形ACEF 是平行四边形.【答案】(1)证明:90ACB DE ∠=︒,是BC 的中垂线,DE BC ∴⊥,又AC BC ⊥Q ,//DE AC ∴,又D 为BC 中点,//DE AC∴DE ∴是ABC ∆的中位线,E ∴为AB 边的中点:(2)证明:E 为AB 边的中点,CE AE BE ∴==,AF CE = ,CE AE AF ∴==,ECA EAC AEF F ∴∠=∠∠=∠,,//DE AC ,180EAC AEF FEC ECA ∴∠=∠∠+∠=︒,,ECA F ∴∠=∠,180FEC F ∴∠+∠=︒,.//AF CE ∴,∴四边形ACEF 是平行四边形.16.尺规作图如下:如图,在ABC 中,①作AD 平分BAC ∠交BC 于D ;②作线段AD 的垂直平分线分别交AB 于点E 、交AC 于点F ;③连接DE 、DF ;(1)在所作图的步骤中①得到角平分线AD 的依据是______.A.ASA B.AAS C.SAS D.SSS(2)试判断四边形AEDF 的形状,并说明理由.【答案】(1)D;(2)菱形,见解析【详解】解:(1)如图:连接ON、OM。
北师大版九年级数学上名校课堂练习1.1.2菱形的判定(含答案)
第2课时菱形的判定基础题知识点菱形的判定1.(钦州中考)如图,要使□ABCD成为菱形,下列添加的条件正确的是( )A.AC=ADB.BA=BCC.∠ABC=90°D.AC=BD2.小明和小亮在做一道习题,若四边形ABCD是平行四边形,请补充条件,使得四边形ABCD是菱形.小明补充的条件是AB=BC;小亮补充的条件是AC=BD,你认为下列说法正确的是( )A.小明、小亮都正确B.小明正确,小亮错误C.小明错误,小亮正确D.小明、小亮都错误3.(海南中考)如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件中能够判定四边形ACED为菱形的是( )A.AB=BC B.AC=BCC.∠B=60°D.∠ACB=60°4.用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD 是菱形的依据是( )A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形5.如图,在□ABCD 中,对角线AC 与BD 相交于点O ,过点O 作EF ⊥AC 交BC 于点E ,交AD 于点F ,连接AE ,CF.则四边形AECF 是( ) A .梯形 B .长方形 C .菱形 D .正方形6.如图,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A 和B 为圆心,大于12AB 的长为半径画 弧,两弧相交于C ,D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是________.7.已知□ABCD 两对角线AC 、BD 相交于点O ,AC =12 cm ,BD =16 cm ,AD =10 cm ,则□ABCD 为________.8.(潍坊中考)如图,ABCD 是对角线互相垂直的四边形,且OB =OD ,请你添加一个适当的条件________________________________________,使ABCD 成为菱形.(只需添加一个即可)9.(长春中考)如图,CE 是△ABC 外角∠ACD 的平分线,AF ∥CD 交CE 于点F ,FG ∥AC 交CD 于点G.求证:四边形ACGF 是菱形.中档题10.如图是一张平行四边形纸片ABCD,要求利用所学知识将它变成一个菱形,甲、乙两位同学的作法分别如下:甲:连接AC,作AC的中垂线交AD、BC于E、F,则四边形AFCE是菱形.乙:分别作∠A与∠B的平分线,AE、BF,分别交BC于点E,交AD于点F,则四边形ABEF是菱形.对于甲、乙两人的作法,可判断( )A.甲正确,乙错误B.甲错误,乙正确C.甲、乙均正确D.甲、乙均错误11.(十堰中考)如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC.从中选择一个条件使四边形BECF是菱形,你认为这个条件是________(只填写序号).12.(荆门中考)已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE,AC平分∠BAD.求证:四边形ABCD是菱形.13.(黔南中考改编)如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.求证:(1)△AED≌△CFD;(2)四边形AECF是菱形.综合题14.(泰安中考改编)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE 交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形.参考答案基础题1.B2.B3.B4.B5.C6.菱形7.菱形8.OA =OC 或AD =BC 或AD ∥BC 或AB =BC9.证明:∵AF ∥CD ,FG ∥AC ,∴四边形ACGF 是平行四边形,∠FCG =∠AFC. ∵CE 平分∠ACD , ∴∠ACF =∠FCG .∴∠ACF =∠AFC.∴AC =AF. ∴四边形ACGF 是菱形. 中档题 10.C 11.③12.证明:∵AB ∥CD ,∴∠BAE =∠DCF. ∵DF ∥BE ,∴∠BEC =∠DFA.∴∠AEB =∠CFD. 在△AEB 和△CFD 中,⎩⎪⎨⎪⎧∠BAE =∠DCF ,AE =CF ,∠AEB =∠CFD ,∴△AEB ≌△CFD.∴AB =CD.∵AB ∥CD ,∴四边形ABCD 是平行四边形. ∵AC 平分∠BAD ,∴∠BAE =∠DAF.∵∠BAE =∠DCF ,∴∠DAF =∠DCF.∴DA =DC. ∴四边形ABCD 是菱形.13.证明:(1)∵PQ 为线段AC 的垂直平分线, ∴AD =CD ,∠ADE =∠CDF =90°.∵CF ∥AB ,∴∠EAD =∠FCD ,∠CFD =∠AED. 在△AED 和△CFD 中,⎩⎪⎨⎪⎧∠EAD =∠FCD ,∠AED =∠CFD ,AD =CD ,∴△AED ≌△CFD(AAS).(2)∵△AED ≌△CFD ,∴DE =DF ,AD =CD.∴四边形AECF是平行四边形.又∵EF为线段AC的垂直平分线,∴EF⊥AC. ∴四边形AECF是菱形.综合题14.证明:(1)∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC.∴∠BAC=∠DAC.∵AB=AD,∠BAF=∠DAF,AF=AF,∴△ABF≌△ADF.∴∠AFB=∠AFD.又∵∠CFE=∠AFB,∴∠AFD=∠CFE.(2)∵AB∥CD,∴∠BAC=∠ACD.又∵∠BAC=∠DAC,∴∠DAC=∠ACD.∴AD=CD.又∵AB=AD,CB=CD,∴AB=CB=CD=AD.∴四边形ABCD是菱形.。
菱形的判定(含答案)
1一、证明题1. 如图AD FE ∥,点B 、C 在AD 上,12∠=∠,.BF BG =(1) 求证:四边形BCEF 是菱形; [证](2)若.AB BC CD ACF BDE ==,求证:△≌△ [解]2. 如图,在平行四边形ABCD 中,BE 平分ABC ∠交AD 于点E ,DF 平分∠ADC 交BC 于点F . 求证:(1)ABE CDF △≌;(2)若BD EF ⊥,则判断四边形EBFD 是什么特殊四边形,请证明你的结论.3. 如图,A 、B 、C 三点在同一条直线上,2AB BC =.分别以AB 、BC 为边作正方形ABEF 和正方形BCMN ,连接FN EC ,. 求证:.FN EC =4. 如图,在正方形ABCD 中,E 是CD 上一点,点F 在CB 的延长线上,且.DE BF = (1)求证:ADE ABF △≌△;(2)问:将ADE △顺时针旋转多少度后与ABF △重合,旋转中心是什么?FEB ACD12FDEC AB ADB CE BBF25. 如图,在正方形ABCD 中,G 是BC 上的任意一点(G 与B C 、两点不重合),E F 、是AG 上的两点(E F 、与A G 、两点都不重合),若AF BF EF =+,12∠=∠,请判断线段DE 与BF 有怎样的位置关系,并证明你的结论.6. 如图,四边形ABCD 是平行四边形,AC 、BD 交于点O ,∠1 =∠2.(1)求证:四边形ABCD 是矩形;(2)若∠BOC =120°,AB = 4cm ,求四边形ABCD 的面积.2 ABCDEF G 1D37. 如图,在ABC △中,AB AC ,D 为BC 中点.四边形ABDE 是平行四边形. 求证:四边形ADCE 是矩形.8. 如图,菱形ABCD 的对角线AC 与BD 相交于点O ,点E 、F 分别为边AB 、AD 的中点,连接EF 、OE 、OF .求证:四边形AEOF 是菱形.9. 在正方形ABCD 中,AC 为对角线,E 为AC 上一点,连接EB 、ED . (1)求证:△BEC ≌△DEC ;(2)延长BE 交AD 于F ,当∠BED =120°时,求∠A F DB E O4CD10. 已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF .(1)求证:BE = DF ;(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论.证明:(1)(2)11. 如图,四边形ABCD 是边长为a 的正方形,点G ,E 分别是边AB ,BC 的中点,∠AEF =90o ,且EF 交正方形外角的平分线CF 于点F . (1)证明:∠BAE =∠FEC ; (2)证明:△AGE ≌△ECF ; (3)求△AEF 的面积.12. 如图, 已知四边形ABCD 是菱形, DE ⊥AB ,DF ⊥BC . 求证:△ADE ≌△CDF .A DB E FO C513. 已知梯形ABCD 中,BC AD //,AD AB = (如图所示).BAD ∠的平分线AE 交BC 于点E ,联结DE . (1) 在图中,用尺规作BAD ∠的平分线AE (保留作图痕迹,不写作法),并证明四边形ABED 是菱形;(2) 若︒=∠60ABC ,BE EC 2=,求证:DC ED ⊥.14. 如图,正方形ABCD 中,E F 、分别是AB BC 、边上的点,且.AE BF =求证.AF DE ⊥15. 如图,将矩形纸片ABCD 沿EF 折叠,使点A 与点C 重合,点D 落在点G 处,EF 为折痕. (1)求证:FGC EBC △≌△;(2)若84AB AD ==,,求四边形ECGF (阴影部分)的面积.A BC D D C F B E A616. 如图,在△ABC 中,D 是BC 边的中点,E 、F 分别在AD 及其延长线上,CE ∥BF ,连接BE 、CF . (1)求证:△BDF ≌△CDE ;(2)若AB =AC ,求证:四边形BFCE 是菱形.一、证明题1. (1)证:2.AD FE FEB ∴∠=∠∥,12 1.FEB ∠=∠∴∠=∠,..BF BC BC EF BF EF =∴=∴=,∴四边形BCEF 是平行四边形.BF BC =,∴四边形BCEF 是菱形. (5分) (2)证:EF BC AB BC CD AD FE ===,,∥,∴四边形ABEF 、四边形CDEF 均为平行四边形,AF BE FC ED ∴==,.(8分) 又2AC BC BD ==,.ACF BDE ∴△≌△ (10分)2. 证明:(1)∵四边形ABCD 是平行四边形,∴A C AB CD ABC ADC ∠=∠=∠=∠,,∵BE 平分ABC ∠,DF 平分ADC ∠,∴ABE CDF ∠=∠ 2′ ∴()ABE CDF ASA △≌△4′ (2)由ABE CDF △≌△,得AE CF =5′在平行四边形ABCD 中,AD BC AD BC =∥,7∴DE BF DE BF =∥,∴四边形EBFD 是平行四边形 6′ 若BD EF ⊥,则四边形EBFD 是菱形 8′3. 证明:在正方形ABEF 和正方形BCMN 中,90AB BE EF BC BN FEN EBC ===∠=∠=,,°. (2分) 2AB BC =, .EN BC ∴=(4分) FEN EBC ∴△≌△. (5分).FN EC ∴= (6分)4. (1)证明:在正方形ABCD 中, 90D ABC AD AB ∠=∠==°,, (1分) 90ABF D ABF ∴∠=∴∠=∠°,, (3分) 又DE BF =,4分)ADE ABF ∴△≌△;5分)(2)将ADE △顺时针旋转90度后与ABF △重合, (7分) 旋转中心是A 点.(9分)5. 根据题目条件可判断.DE BF ∥证明如下:∵四边形ABCD 为正方形,∴ 290AB AD BAF ∠+∠==,°. ∵,AF AE EF =+又,AF BF EF =+ ∴AE BF =,∵12,∠=∠∴().ABF DAE SAS △≌△5分∴AFB DEA ∠=∠,BAF ADE ∠=∠. ∴290ADE ∠+∠=°.∴90AED BFA ∠=∠=°. ∴.DE BF ∥ 9分6. (1)∵∠1 =∠2,∴BO=CO 即2 BO=2CO (1分) ∵四边形ABCD 是平行四边形∴ AO=CO ,BO=OD (2分) 即AC=2CO ,BD= 2 BO ∴AC= BD (3分)∵四边形ABCD 是平行四边形 ∴四边形ABCD 是矩形 (4分)(2)在△BOC 中,∠BOC =120°, ∴ ∠1 =∠2 =(180°—120°)÷2 = 30° (5分) ∴在Rt △ABC 中,AC=2AB=2⨯4=8(cm ),D8∴BC=344822=-(cm ) (6分) ∴四边形ABCD 的面积=24)= (7分)7. 证明:四边形ABDE 是平行四边形, AE BC ∴∥,AB DE =,.AE BD = 2分 D 为BC 中点, ∴.CD BD =3分.CD AE CD AE ∴=∥∴四边形ADCE 是平行四边形.5分AB AC =, ∴.AC DE =∴平行四边形ADCE 是矩形.7分8. 证明:点E F 、分别为AB AD 、的中点,1122AE AB AF AD ∴=,=. 2分又四边形ABCD 是菱形, AB AD ∴=. AE AF ∴=.4分又菱形ABCD 的对角线AC 与BD 相交于点O , O ∴为BD 的中点.OE OF ∴、是ABD △的中位线. 6分 OE AD OF AB ∴∥,∥.∴四边形AEOF 是菱形. 10分9. (1)证明:∵四边形ABCD 是正方形∴BC =CD ,∠ECB =∠ECD =45°又EC =EC …………………………2分 ∴△ABE ≌△ADE ……………………3分 (2)∵△ABE ≌△ADE∴∠BEC =∠DEC =12∠BED …………4分 ∵∠BED =120°∴∠BEC =60°=∠AEF ……………5分 ∴∠EFD =60°+45°=105° …………………………6分10. 证明:(1)∵四边形ABCD 是正方形,AF DBEO9∴AB =AD ,∠B = ∠D = 90°. ∵AE = AF ,∴Rt Rt ABE ADF △≌△. ∴BE =DF .4分(2)四边形AEMF 是菱形.∵四边形ABCD 是正方形, ∴∠BCA = ∠DCA = 45°,BC = DC .∵BE =DF ,∴BC -BE = DC -DF . 即CE CF =. ∴OE OF =. ∵OM = OA ,∴四边形AEMF 是平行四边形. ∵AE = AF ,∴平行四边形AEMF 是菱形.8分11. (1)证明:∵∠AEF =90°,∴∠FEC +∠AEB =90°.………………………………………1分 在Rt △ABE 中,∠AEB +∠BAE =90°,∴∠BAE =∠FEC ;……………………………………………3分 (2)证明:∵G ,E 分别是正方形ABCD 的边AB ,BC 的中点,∴AG=GB=BE=EC ,且∠AGE =180°-45°=135°. 又∵CF 是∠DCH 的平分线,∴∠ECF =90°+45°=135°.………………………………………4分在△AGE 和△ECF 中,135AG EC AGE ECF GAE FEC =⎧⎪∠=∠=⎨⎪∠=∠⎩,,AD BEF O C10∴△AGE ≌△ECF ; …………………………………………6分 (3)解:由△AGE ≌△ECF ,得AE=EF .又∵∠AEF =90°,∴△AEF 是等腰直角三角形.………………………………7分由AB=a ,BE =21a ,知AE =25a , ∴S △AEF =85a 2.…………………………9分12. 证明:在△ADE 和△CDF 中,∵四边形ABCD 是菱形,∴∠A =∠C ,AD =CD .……………………2分又DE ⊥AB ,DF ⊥BC ,∴∠AED =∠CFD =900.……………………4分∴△ADE ≌△CDF . ……………………6分13. (1) 图略(有作图痕迹,且正确).证明:∵AE 为BAD ∠的平分线,∴DAE BAE ∠=∠. 又∵BC AD //,∴AEB DAE ∠=∠.∴AEB BAE ∠=∠.∴BE AB =. ∵AB AD =,∴BE AD =.∵BE AD //,∴四边形ABED 是平行四边形. ∵AB AD =,∴四边形ABED 是菱形.(2)证明:由(1) 知,四边形ABED 是菱形,∴AB DE //,BE DE =. ∴︒=∠=∠60ABC DEC .(方法一)设线段EC 中点为F ,联结DF ,则FC EF =. ∵BE EC 2=,BE DE =.∴FC EF DE ==. ∵︒=∠60DEF ,∴△DEF 为等边三角形.∴︒=∠=∠60EFD EDF ,FC EF DF ==.∴FCD FDC ∠=∠.∴FDC FCD FDC DFE ∠=∠+∠=∠2.∴︒=∠30FDC .∴︒=∠+∠=∠90FDC EDF EDC ,即DC DE ⊥.(方法二)作EC DH ⊥,垂足为H ,则︒=∠30EDH .∴在Rt △DEH 中,ED EH 21=,ED DH 23=. ∵BE DE =,BE EC 2=,∴ED HC 23=.在Rt △DCH 中,3tan ==∠DHHCCDH .∴︒=∠60CDH .∴︒=∠+∠=∠90EDH CDH EDC ,即DC DE ⊥.14. 证明:四边形ABCD 为正方形90DA ABDAE ABF ∴=∠=∠=° 又AE BF =DAE ABF ∴△≌△ADE BAF ∴∠=∠(4分)90ADE AED ∠+∠=°90BAF AED ∴∠+∠=°AF DE ∴⊥ (3分)15. (1)证明:四边形ABCD 是矩形, 90A B BCD D AD BC ∴∠=∠=∠=∠==°,. ······························································ 1分 将矩形纸片ABCD 沿EF 折叠,点A 与点C 重合,点D 落在点G 处,90G D ∴∠=∠=°,90ECG A CG AD ∠=∠==°,, ·················································· 2分 9090G B CG BC ECG BCD ∴∠=∠==∠=∠=°,,°,90GCF BCE FCE ∴∠=∠=∠°-, ·················································································· 3分 FGC EBC ∴△≌△. ·········································································································· 4分(2)解:由(1)得FGC EBC △≌△,EBCF ECGF AEFD S S S ∴==四边形四边形四边形,2ABCD ECGF AEFD EBCF S S S S ∴=+=矩形四边形四边形四边形,11841222ABCD ECGF S S ∴==⨯⨯=矩形四边形. ······································································· 6分16. (1)证明:∵ D 是BC 的中点,∴BD =CD .………………………………1分 ∵CE ∥BF ∴∠DBF=∠DCE . ………………………………………………2分又∵∠BDF=∠CDE , …………………………………………………………3分 ∴△BDF ≌△CDE . ……………………………………………………………4分(2)证明:∵△CDE ≌△BDF ,∴DE =DF .………………………………5分 ∵BD =CD ,∴四边形BFCE 是平行四边形.…………………………………6分 在△ABC 中,∵AB =AC ,BD =CD . ∴AD ⊥BC ,即EF ⊥BC .……………7分 ∴平行四边形BFCE 是菱形. …………………………………………………8分 (另解)∵△CDE ≌△BDF ,∴CE =BF . ……………………………………5分 ∵CE ∥BF ,∴四边形BFCE 是平行四边形.……………………………………6分 ∴BE =CF .在△ABC 中,∵AB =AC ,BD =CD .∴AD ⊥BC ,即AD 垂直平分BC ,∴BE =CE .…………………………………7分 ∴平行四边形BFCE 是菱形. ……………………………………………………8分。
1菱形的形式与判定
类型一、菱形的性质1、如图所示,菱形ABCD中,E、F分别是BC、CD上的点,∠B=∠EAF=60°,∠BAE=18°.求∠CEF的度数答案与解析【思路点拨】由已知∠B=60°,∠BAE=18°,则∠AEC=78°.欲求∠CEF的度数,只要求出∠AEF的度数即可,由∠EAF=60°,结合已知条件易证△AEF为等边三角形,从而∠AEF=60°.【答案与解析】解:连接AC.∵四边形ABCD是菱形,∴ AB=BC,∠ACB=∠ACF.又∵∠B=60°,∴△ABC是等边三角形.∴∠BAC=∠ACB=60°,AB=AC.∴∠ACF=∠B=60°.又∵∠EAF=∠BAC=60°∴∠BAE=∠CAF.∴△ABE≌△ACF.∴ AE=AF.∴△AEF为等边三角形.∴∠AEF=60°.又∵∠AEF+∠CEF=∠B+∠BAE,∠BAE=18°,∴∠CEF=18°.【总结升华】当菱形有一个内角为60°时,连接菱形较短的对角线得到两个等边三角形,有助于求相关角的度数.在求角的度数时,一定要注意已知角与所求角之间的联系.2、已知:如图所示,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F.(1)求证:AM=DM;(2)若DF=2,求菱形ABCD的周长.答案与解析举一反三【答案与解析】证明:(1)连接DB,则由菱形性质得BD⊥AC.又因为EF⊥AC,所以EF∥BD,即ME∥BD.又因为点E是AB的中点,所以点M是AD的中点.所以AM=DM.(2)由(1)得DB∥EF.又BE∥DF,所以四边形EFDB是平行四边形.所以BE=DF=2.又因为,即AB=2BE=2×2=4.所以菱形ABCD的周长为4×4=16.【总结升华】菱形四边相等,对角线互相垂直平分.【变式】菱形ABCD中,E是AB的中点,且DE⊥AB,AB=,如图所示.求:(1)∠ABC的度数.(2)对角线AC的长.(3)菱形ABCD的面积.答案与解析【答案】解:(1)连接BD,交AC于点O.∵四边形ABCD是菱形∴ AD=AB∵ E是AB的中点,且DE⊥AB.∴ AD=DB,∴△ABD是等边三角形.∴△DBC也是等边三角形.∴∠ABC=60°×2=120°.(2)∵四边形ABCD是菱形.∴ AC与BD互相垂直平分.∴,∴.∴.(3).类型二、菱形的判定3、矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别交于E、F两点.(1)求证:△BOE≌△DOF;(2)当EF与AC满足什么条件时,四边形AECF是菱形,并证明你的结论.答案与解析举一反三【答案与解析】(1)证明:在矩形ABCD中,AB∥CD,BO=OD,∴∠BEO=∠DFO,∠EBO=∠FDO(两直线平行,内错角相等),∴△BOE≌△DOF(AAS).(2)当EF⊥AC时,四边形AECF是菱形.证明:由(1)知,△BOE≌△DOF,∴ OE=OF.又∵矩形ABCD中,OA=OC,∴四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形).又∵ EF⊥AC,∴四边形AECF是菱形(对角线互相垂直的平行四边形是菱形).【总结升华】要证明四边形是菱形,先证明这个四边形是平行四边形,再利用对角线互相垂直的特征证明该平行四边形是菱形.【变式】已知,在△ABC中,AB=AC=,M为底边BC上任意一点,过点M分别作AB、AC的平行线交AC于P,交AB 于Q.(1)求四边形AQMP的周长;(2)M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.答案与解析【答案】解:(1)∵MQ∥AP,MP∥AQ,∴四边形AQMP是平行四边形∴QM=AP又∵AB=AC,MP∥AQ,∴∠2=∠C,△PMC是等腰三角形,PM=PC∴QM+PM=AP+PC=AC=∴四边形AQMP的周长为2(2)M位于BC的中点时,四边形AQMP为菱形.∵M位于BC的中点时,易证△QBM与△PCM全等,∴QM=PM,∴四边形AQMP为菱形类型三、菱形的综合应用4、如图所示,菱形ABCD中,AB=4,∠ABC=60°,∠EAF=60°,∠EAF的两边分别交BC、CD于E、F.(1)当点E、F分别在边BC、CD上时,求CE+CF的值.(2)当点E、F分别在CB、DC的延长线时,CE、CF又存在怎样的关系,并证明你的结论.答案与解析【思路点拨】(1)由菱形的性质可知AB=BC,而∠ABC=60°,即联想到△ABC为等边三角形,∠BAC=60°,又∠EAF=60°所以∠BAE=∠CAF,可证△BAE≌△CAF,得到BE=CF,所以CE+CF=BC.(2)思路基本与(1)相同但结果有些变化.【答案与解析】解:(1)连接AC.在菱形ABCD中,BC=AB=4,AB∥CD.∵∠ABC=60°,∴ AB=AC=BC,∠BAC=∠ACB=60°.∴∠ACF=60°,即∠ACF=∠B.∵∠EAF=60°,∠BAC=60°,∴∠BAE=∠CAF.∴△ABE≌△ACF(ASA),∴ BE=CF.∴ CE+CF=CE+BE=BC=4.(2)CE-CF=4.连接AC如图所示.∵∠BAC=∠EAF=60°,∴∠EAB=∠FAC.∵∠ABC=∠ACD=60°,∴∠ABE=∠ACF=120°.∵ AB=AC,∴△ABE≌△ACF(ASA),∴ BE=CF.∴ CE-CF=CE-BE=BC=4.【总结升华】(1)菱形的性质的主要应用是证明角相等、线段相等、两直线平行、两线段互相垂直、互相平分等.(2)注意菱形中的60°角的特殊性,它让菱形这个特殊的平行四边形变得更加特殊,常与等边三角形发生联系巩固练习一.选择题1. 下列命题中,正确的是( )A. 两邻边相等的四边形是菱形B. 一条对角线平分一个内角的平行四边形是菱形C. 对角线垂直且一组邻边相等的四边形是菱形D. 对角线垂直的四边形是菱形2. 菱形的周长为高的8倍,则它的一组邻角是()A. 30°和150°B. 45°和135°C. 60°和120°D. 80°和100°3.已知菱形的周长为40,两条对角线的长度比为3:4,那么两条对角线的长分别为()A.6,8 B. 3,4 C. 12,16 D. 24,324.(2012•陕西)如图,在菱形ABCD中,对角线AC与BD交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE 的大小为()A.75° B.65° C.55° D.50°5. 如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝隙).若①②③④四个平行四边形面积的和为14,四边形ABCD面积是11,则①②③④四个平行四边形周长的总和为()A. 48B. 36C. 24D. 186. 如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是()A. B. 2 C. 3 D.二.填空题7. 已知菱形的一条对角线长为12,面积为30,则这个菱形的另一条对角线长为__________.8.如图,已知菱形ABCD,其顶点A、B在数轴上对应的数分别为-4和1,则BC=_____.9.如图,菱形ABCD的边长是2,E是AB中点,且DE⊥AB,则菱形ABCD的面积为______.10.已知菱形ABCD的周长为20,且相邻两内角之比是1∶2,则菱形的两条对角线的长和面积分别是______11. 如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH=______.12.(2012•西宁)如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E为AD中点,点P在轴上移动,小明同学写出了两个使△POE为等腰三角形的P点坐标(-5,0)和(5,0).请你写出其余所有符合这个条件的P点坐标__________________.三.解答题13. 如图,在菱形ABCD中,点E是AB的中点,且DE⊥AB.(1)求∠ABD的度数;(2)若菱形的边长为2,求菱形的面积.14. 如图,在平行四边形ABCD中,对角线AC、BD相交于O,过点O作直线EF⊥BD,分别交AD、BC于点E和点F,求证:四边形BEDF是菱形.15.如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点(不与端点重合),且满足AE+CF =2.(1)求证:△BDE≌△BCF;(2)判断△BEF的形状,并说明理由;(3)设△BEF的面积为S,求S的取值范围.答案与解析【答案与解析】一.选择题1.【答案】B;2.【答案】A;【解析】由题意可知边长是高的2倍,所以一个内角为30°,另一个内角为150°.3.【答案】C;【解析】设两条对角线的长为.所以有,∴,所以两条对角线的长为12 ,16.4.【答案】B;【解析】在菱形ABCD中,∠ADC=130°,∴∠BAD=180°-130°=50°,∴∠BAO=∠BAD=×50°=25°,∵OE⊥AB,∴∠AOE=90°-∠BAO=90°-25°=65°.5.【答案】A ;【解析】菱形的面积等于11+=18,设菱形边长为,则,①②③④四个平行四边形周长的总和为菱形周长的2倍.6.【答案】A;【解析】菱形的高分别是和,阴影部分面积=两个菱形面积-△ABD面积-△DEF面积-△BGF面积=.二.填空题7.【答案】5;【解析】设这个菱形的另一条对角线长为,所以,解得.8.【答案】5;【解析】菱形四条边相等.9.【答案】;【解析】由题意∠A=60°,DE=.10.【答案】5;;;【解析】菱形一个内角为60°,边长为5,所以两条对角线长为5和,面积为.11.【答案】;【解析】.12.【答案】;【解析】由在菱形ABCD中,AC=12,BD=16,E为AD中点,根据菱形的性质与直角三角形的性质,易求得OE 的长,然后分别从①当OP=OE时,②当OE=PE时,③当OP=EP时去分析求解即可求得答案.三.解答题13.【解析】解:(1)∵DE⊥AB,AE=BE∴△ABD是等腰三角形,∴AD=BD∵四边形ABCD是菱形∴AD=AB∴AD=AB=BD,∴△ABD是等边三角形∴∠ABD=60°(2)∵AD=AB=2,∴AE=1,在Rt△AED中,DE=∴S菱形ABCD=AB•DE=.14.【解析】证明:∵四边形ABCD是平行四边形∴AD∥BC,OB=OD∵∠EDO=∠FBO, ∠OED=∠OFB∴△OED≌△OFB∴DE=BF又∵ED∥BF∴四边形BEDF是平行四边形∵EF⊥BD∴平行四边形BEDF是菱形.15.【解析】解:(1)∵AE+CF=2=CD=DF+CF∴AE=DF,DE=CF,∵AB=BD∴∠A=∠ADB=60°在△BDE与△BCF中∴△BDE≌△BCF(2)由(1)得BE=BF,∠EBD=∠CBF∴∠EBF=∠EBD+∠DBF=∠DBF+∠CBF=∠CBD=60°∴△BEF是等边三角形(3)∵≤△BEF的边长<2∴∴。
《菱形的判定与性质》培优训练(附答案)
八年级数学下册《6.1菱形的判定与性质》培优训练(附答案)1.如图,在菱形ABCD 中,AC 与BD 相交于点O ,AB =4,BD =43,E 为AB 的中点,点P 为线段AC 上的动点,则EP+BP 的最小值为( )A .4B .25C .27D .82.如图,菱形ABCD 的边长为4,60,A E ∠=是边AD 的中点,F 是边AB 上的一个动点,将线段EF 绕着E 逆时针旋转60,得到EG ,连接EG CG 、,则BG CG +的最小值为( )A .33 B .27 C .43 D .223+3.如图,在菱形ABCD 中,AB=6,∠ABC=60°,点E 在AD 上,且AE=2,点P 是对角线BD 上的一个动点,则PE+PA 的最小值是 .4.如图,在四边形ABCD 中,AD ∥BC ,AB =BC ,对角线AC 、BD 交于点O ,BD 平分∠ABC ,过点D 作DE ⊥BC ,交BC 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若DC =25,AC =4,求OE 的长.5.如图,在Rt ABC ∆中,090BAC ∠=,D 是BC 的中点,E 是AD 的中点,过点A 作//BC AF 交BE 的延长线于点F(1)求证:四边形ADCF 是菱形(2)若4,5AC AB ==,求菱形ADCF 的面积6.在菱形ABCD 中,∠ABC =60°,P 是射线BD 上一动点,以AP 为边向右侧作等边△APE ,连接CE .(1)如图1,当点P 在菱形ABCD 内部时,则BP 与CE 的数量关系是 ,CE 与AD 的位置关系是 .(2)如图2,当点P 在菱形ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;(3)如图2,连接BE ,若AB =23,BE =219,求AP 的长.7.如图,菱形ABCD 中,4AB =,E 为BC 中点,AE BC ⊥,AF CD ⊥于点F ,CG ∥AE ,CG 交AF 于点H ,交AD 于点G .(1)求菱形ABCD 的面积;(2)求CHA ∠的度数.8.四边形ABCD 为菱形,点E 在边AD 上,点F 在边CD 上(1) 若AE=CF ,求证:EB=BF(2) 若AD=4,DE=CF ,且△EFB 为等边三角形,求四边形DEBF 的面积(3) 若∠DAB=60°,点H 在边BC 上,且BH=HC=2.若∠DFA=2∠HAB ,直接写出CF 的长9.如图,在菱形ABCD 中,AB=4,∠BAD=120°,△AEF 为正三角形,E 、F 在菱形的边BC ,CD 上.(1)证明:BE=CF .(2)当点E ,F 分别在边BC ,CD 上移动时(△AEF 保持为正三角形),请探究四边形AECF 的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF 的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.10.如图,在ABC ∆中,90ACB ∠=︒,CD AB ⊥于D ,AE 平分BAC ∠,分别交BC ,CD 于E ,F ,EH AB ⊥于H .连接FH ,求证:四边形CFHE 是菱形.11.在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE∥DB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若∠DAB=60°,且AB=4,求OE的长.12.如图,在菱形ABCD中,∠A=60°,点E,F分别是边AB,AD上的点,且满足∠BCE=∠DCF,连结EF.(1)若AF=1,求EF的长;(2)取CE的中点M,连结BM,FM,BF.求证:BM⊥FM.13.在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCFD 的面积.14.在菱形ABCD中,∠ABC=60°,E是对角线AC上一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF。
初二数学菱形的判定作业练习题(含答案)
初二数学菱形的判定作业练习题一.选择题(共5小题)1.下列说法不正确的是()A.四边都相等的四边形是菱形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直平分的四边形是菱形D.对角线互相平分且相等的四边形是菱形2.已知四边形ABCD是平行四边形,下列结论中正确的有()①当AB BC⊥时,四边形ABCD是菱形;=时,四边形ABCD是菱形;②当AC BD③当90=时,四边形ABCD是菱形;∠=︒时,四边形ABCD是菱形;④当AC BDABCA.3个B.4个C.1个D.2个3.如图,在四边形ABCD中,对角线AC,BD相交于点O,且OA OC=,=.若要使四边形ABCD为菱形,则可以添加的条件是()OB ODA.AC BD∠=︒D.AC BD⊥⊥C.60=B.AB BCAOB4.已知四边形ABCD中,AC BD⊥,再补充一个条件使四边形ABCD为菱形,这个条件可以是() A.AC BD==B.AB BCC.AC与BD互相平分D.90∠=︒ABC5.在平面直角坐标系内,点O是原点,点A的坐标是(3,4),点B的坐标是(3,4)-,要使四边形AOBC 是菱形,则满足条件的点C的坐标是()A.(3,0)-B.(3,0)C.(6,0)D.(5,0)二.填空题(共5小题)6.如果一个四边形的两条对角线互相平分,互相垂直,那么这个四边形是.7.如图,两张等宽的长方形纸条交叉重叠在一起,重叠的部分ABCD是.8.四边形ABCD中,已知//AD BC,添加一个条件,即可判定该四边AB CD,//形是菱形.9.如图,四边形ABCD是对角线互相垂直的四边形,且OB OD=,请你添加一个适当的条件,使四边形ABCD是菱形.(只需添加一个即可)10.四边形ABCD为平行四边形,对角线AC,BD交于点O,请你添加一个合适的条件使其成为菱形.(只需添加一个即可)三.解答题(共4小题)11.如图,在ABCD=.⊥,垂足分别为点E、F,且BE DFY中,AE BC⊥,AF CD求证:ABCDY是菱形.12.已知如图ABCDY中,EF垂直平分对角线BD,交点为O,求证:四边形BFDE是菱形.13.如图,//∠交AE于点D,AC BD⊥于点O,交BF于点C,连接CD.求AE BF,BD平分ABC证:四边形ABCD是菱形.14.如图,在ABCAF BC交BE的延长∠=︒,AD是中线,E是AD的中点,过点A作//∆中,90BAC线于F,连接CF,求证:四边形ADCF是菱形.答案与解析一.选择题(共5小题)1.下列说法不正确的是()A.四边都相等的四边形是菱形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直平分的四边形是菱形D.对角线互相平分且相等的四边形是菱形【分析】由菱形的判定定理和矩形的判定定理分别对各个选项进行判断即可.【解答】解:Q四边都相等的四边形是菱形,∴选项A不符合题意;Q有一组邻边相等的平行四边形是菱形,∴选项B不符合题意;Q对角线互相垂直平分的四边形是菱形,∴选项C不符合题意;Q对角线互相平分且相等的四边形是矩形,∴选项D符合题意;故选:D.2.已知四边形ABCD是平行四边形,下列结论中正确的有()①当AB BC=时,四边形ABCD是菱形;②当AC BD⊥时,四边形ABCD是菱形;③当90∠=︒时,四边形ABCD是菱形:ABC④当AC BD=时,四边形ABCD是菱形;A.3个B.4个C.1个D.2个【分析】根据菱形的判定定理判断即可.【解答】解:Q四边形ABCD是平行四边形,=时,四边形ABCD是菱形;故符合题意;∴①当AB BC②当AC BD⊥时,四边形ABCD是菱形;故符合题意;③当90∠=︒时,四边形ABCD是长方形;故不符合题意;ABC④当AC BD=时,四边形ABCD是长方形;故不符合题意;故选:D.3.如图,在四边形ABCD中,对角线AC,BD相交于点O,且OA OC=.若要使四边形ABCD=,OB OD为菱形,则可以添加的条件是()A.AC BD⊥=B.AB BC∠=︒D.AC BD⊥C.60AOB【分析】由条件OA OC=根据对角线互相平分的四边形是平行四边形可得四边形ABCD为平=,OB OD行四边形,再由矩形和菱形的判定定理即可得出结论.【解答】解:OA OCQ,OB OD=,=∴四边形ABCD为平行四边形,A、AC BDQ,=∴四边形ABCD是矩形,故选项A不符合题意;B、AB BCQ,⊥∴四边形ABCD是矩形,故选项B不符合题意;Q,∠=︒AOBC、60不能得出四边形ABCD是菱形;选项C不符合题意;D、AC BDQ,⊥∴四边形ABCD是菱形,故选项D符合题意;故选:D.4.已知四边形ABCD中,AC BD⊥,再补充一个条件使四边形ABCD为菱形,这个条件可以是() A.AC BD=B.AB BC=C.AC与BD互相平分D.90∠=︒ABC【分析】由在四边形ABCD中,对角线AC,BD互相平分,可得四边形ABCD是平行四边形,又由对角线互相垂直的平行四边形是菱形,即可求得答案.【解答】解:Q在四边形ABCD中,对角线AC,BD互相平分,∴四边形ABCD是平行四边形,⊥Q,AC BD∴四边形ABCD是菱形.故选:C.5.在平面直角坐标系内,点O是原点,点A的坐标是(3,4),点B的坐标是(3,4)-,要使四边形AOBC 是菱形,则满足条件的点C的坐标是()A.(3,0)-B.(3,0)C.(6,0)D.(5,0)【分析】如图,连接AB交OC于D,根据菱形的性质即可得到结论.【解答】解:如图,连接AB交OC于D,Q四边形AOBC是菱形,=,AD OC∴⊥,OD CD-,Q点A的坐标是(3,4),点B的坐标是(3,4)OD∴=,3∴=,OC6∴,(6,0)C故选:C.二.填空题(共5小题)6.如果一个四边形的两条对角线互相平分,互相垂直,那么这个四边形是菱形.【分析】由一个四边形的两条对角线互相平分,互相垂直,根据菱形的判定定理可得这个四边形是菱形.【解答】解:Q一个四边形的两条对角线互相平分,∴此四边形是平行四边形,Q两条对角线互相垂直,∴这个四边形是菱形.故答案为:菱形.7.如图,两张等宽的长方形纸条交叉重叠在一起,重叠的部分ABCD是菱形.【分析】首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.【解答】解:过点A 作AE BC ⊥于E ,AF CD ⊥于F ,如图,Q 两条纸条宽度相同,AE AF ∴=.//AB CD Q ,//AD BC ,∴四边形ABCD 是平行四边形.ABCD S BC AE CD AF =⋅=⋅Y Q .又AE AF =Q .BC CD ∴=,∴四边形ABCD 是菱形;故答案为:菱形.8.四边形ABCD 中,已知//AB CD ,//AD BC ,添加一个条件 AB BC =或AC BD ⊥ ,即可判定该四边形是菱形.【分析】根据平行四边形的判定证出四边形ABCD 是平行四边形,根据菱形的判定证出即可.【解答】解:添加的条件是AB BC =,或AC BD ⊥;理由如下://AB CD Q ,//AD BC ,∴四边形ABCD 是平行四边形,若AB BC =,则平行四边形ABCD 是菱形;若AC BD ⊥,则平行四边形ABCD 是菱形;故答案为:AB BC =或AC BD ⊥.9.如图,四边形ABCD 是对角线互相垂直的四边形,且OB OD =,请你添加一个适当的条件OA OC = ,使四边形ABCD 是菱形.(只需添加一个即可) 【分析】可以添加条件OA OC =,根据对角线互相垂直平分的四边形是菱形可判定出结论.【解答】解:OA OC =,OB OD =Q ,OA OC =,∴四边形ABCD 是平行四边形,AC BD ⊥Q ,∴平行四边形ABCD 是菱形,故答案为:OA OC =.10.如图,四边形ABCD 为平行四边形,请你添加一个合适的条件 ()AB BC AC BD =⊥ 使其成为菱形.(只需添加一个即可)【分析】根据菱形的判定可得.【解答】解:AB BC =Q (一组邻边即可),且四边形ABCD 为平行四边形∴四边形ABCD 是菱形AC BD ⊥Q ,且四边形ABCD 为平行四边形∴四边形ABCD 是菱形.故答案为()AB BC AC BD =⊥三.解答题(共4小题)11.如图,在ABCD Y 中,AE BC ⊥,AF CD ⊥,垂足分别为点E 、F ,且BE DF =. 求证:ABCD Y 是菱形.【分析】由平行四边形的性质可得B D ∠=∠,由“ASA ”可证ABE ADF ∆≅∆,可得AB AD =,即可得结论.【解答】证明:Q 四边形ABCD 是平行四边形B D ∴∠=∠,且BE DF =,90AEB ADF ∠=∠=︒()ABE ADF ASA ∴∆≅∆AB AD ∴=,且四边形ABCD 是平行四边形∴四边形ABCD 是菱形12.已知如图ABCD Y 中,EF 垂直平分对角线BD ,交点为O ,求证:四边形BFDE 是菱形.【分析】根据平行四边形的性质以及全等三角形的判定方法证明出DOE BOF ∆≅∆,得到OE OF =,利用对角线互相平分的四边形是平行四边形得出四边形EBFD 是平行四边形,进而利用对角线互相垂直的平行四边形是菱形得出四边形BFDE 为菱形.【解答】证明:Q 在ABCD Y 中,O 为对角线BD 的中点,BO DO ∴=,EDB FBO ∠=∠,在DOE ∆和BOF ∆中,EDO FBO OD OBEOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()DOE BOF ASA ∴∆≅∆;OE OF ∴=,又OB OD =Q ,∴四边形EBFD 是平行四边形,EF BD ⊥Q ,∴四边形BFDE 为菱形.13.如图,//AE BF ,BD 平分ABC ∠交AE 于点D ,AC BD ⊥于点O ,交BF 于点C ,连接CD .求证:四边形ABCD 是菱形.【分析】直接利用平行线的性质结合角平分线的定义得出对应角的关系,进而得出()ADO CBO ASA ∆≅∆,进而证明即可.【解答】证明://AE BF Q ,ADB CBD ∴∠=∠,BD Q 平分ABC ∠交AE 于点D ,ABD DBC ∴∠=∠,ABD ADB ∴∠=∠,AB AD ∴=,AC BD ⊥Q ,BO DO ∴=,在ADO ∆和CBO ∆中ADO CBO DO BOAOD BOC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ADO CBO ASA ∴∆≅∆,AD BC ∴=,又∵AD ∥BC ,∴四边形ABCD 是平行四边形,AB AD =Q ,∴四边形ABCD 是菱形.14.如图,在ABC ∆中,90BAC ∠=︒,AD 是中线,E 是AD 的中点,过点A 作//AF BC 交BE 的延长线于F ,连接CF ,求证:四边形ADCF 是菱形.【分析】根据AAS 证AFE DBE ∆≅∆,推出AF BD =.结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”得到ADCF 是菱形.【解答】证明://AF BC Q ,AFE DBE ∴∠=∠,E Q 是AD 的中点,AD 是BC 边上的中线,AE DE ∴=,BD CD =,在AFE ∆和DBE ∆中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AFE DBE AAS ∴∆≅∆;AF DB ∴=.DB DC =Q ,AF CD ∴=.//AF BC Q ,∴四边形ADCF 是平行四边形,90BAC ∠=︒Q ,D 是BC 的中点, 12AD DC BC ∴==, ∴四边形ADCF 是菱形.。
第1讲 菱形的性质与判定(解析版)
第1讲 菱形的性质与判定 1.理解掌握菱形的概念性质及判定定理2.会用菱形的有关知识进行证明,会计算菱形的面积 知识点01 菱形的性质(1)菱形的定义:有一组邻边相等的平行四边形叫做菱形.(2)菱形的性质①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.(3)菱形的面积计算①利用平行四边形的面积公式. ②菱形面积12ab .(a 、b 是两条对角线的长度) 【知识拓展1】菱形的两条对角线长的比是32,面积是cm 12,则它的对角线的长分别是 cm , cm . (★)解答方法:∵ 设菱形的两条对角线的长分别为厘米厘米x x 3,2,∴ 122132=⋅⋅=x x S 菱形,∴ 解得舍去)(2,221-==x x , ∴ 对角线的长分别为cm cm 6,4。
答案:cm cm 6,4。
【总结方法】菱形的面积等于对角线乘积的一半。
【即学即练】两对角线分别是6cm 和8cm 的菱形面积是 _________ cm 2,周长是 _________ cm . (★) 解答方法:菱形面积是224286cm =÷⨯;∵菱形的对角线互相垂直平分,根据勾股定理可得,边长为5cm ,则周长是20cm . 知识精讲目标导航故答案为24,20.解答:24,20【知识拓展2】菱形的周长是它的高的8倍,则菱形较小的一个角为()(★★) A.60°B.45°C.30°D.15°解答方法:菱形的周长为边长的4倍,又∵菱形周长为高的8倍,∴AB=2AE,∵△ABE为直角三角形,∴∠ABC=30°.故选 C.答案:C【总结方法】本题考查了菱形各边长相等的性质,考查了直角三角形中的特殊角,本题中根据特殊角求得∠ABC=30°是解题的关键.【即学即练1】菱形的一条对角线与边长相等,则菱形中较小的内角是()(★★) A.60°B.15°C.30°D.90°解答方法:因为菱形的一条对角线与边长相等,所以该对角线和菱形的两边组成的是等边三角形,可得该菱形较小内角的度数是60°.解答:A【即学即练2】如果菱形的周长等于一条对角线长的4倍,那么这个菱形较小的一个内角等于度.(★★)解答方法:∵菱形的周长等于一条对角线长的4倍,∴AB=BD=AD,∴△ABD是等边三角形,∴∠A=60°.即这个菱形较小的一个内角等于60°.解答:60【知识拓展3】已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE. (★★)答案:证明:∵ 四边形ABCD 是菱形,∴ BCD CA CD CB ∠=平分,.∴ CE CE DCE BCE =∠=∠又.,∴ △BCE ≌△COB (SAS ).∴ ∠CBE=∠CDE .∵ 在菱形ABCD 中,AB ∥CD , ∴∠AFD=∠FDC∴ ∠AFD=∠CBE .【总结方法】通过菱形的基本性质可以得到三角形全等,进而推出对应角相等,然后利用平行内错角相等进行转化即可得到要证明的结论。
菱形的性质和判定(含解析)
菱形的性质和判定一、选择题1、如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为( )A 。
5B 。
7C .8D .二、解答题2、如图,菱形ABCD,对角线AC、BD交于点O,DE//AC,CE//BD,求证:OE=BC3、如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△的位置,AB与相交于点D,AC与、分别交于点E、F.(1)求证:△BCF≌△.(2)当∠C=α度时,判定四边形的形状并说明理由.4、如图,矩形ABCD 中,对角线AC 的垂直平分线交AD 、BC 于点E 、F,AC 与EF 交于点O ,连结AF 、CE .(1)求证:四边形AFCE 是菱形;(2)若AB=3,AD=4,求菱形AFCE 的边长。
5、如图,CD 是△ABC 的中线,点E 是AF 的中点,CF∥AB. (1)求证:CF=AD ;(2)若∠ACB=90°,试判断四边形BFCD 的形状,并说明理由.6、如图,将矩形A 1B 1C 1D 1沿EF 折叠,使B 1点落在A 1D 1边上的B 点处;再将矩形A 1B 1C 1D 1沿BG 折叠,使D 1点落在D 点处且BD 过F 点.(1)求证:四边形BEFG 是平行四边形;(2)当∠B 1FE 是多少度时,四边形BEFG 为菱形?试说明理由.菱形的性质和判定的答案和解析一、选择题1、答案:B试题分析:作CH⊥AB于H,如图,根据菱形的性质可判断△ABC为等边三角形,则CH=AB=4,AH=BH=4,再利用勾股定理计算出CP=7,再根据折叠的性质得点A′在以P点为圆心,PA为半径的弧上,利用点与圆的位置关系得到当点A′在PC上时,CA′的值最小,然后证明CQ=CP即可。
解:作CH⊥AB于H,如图,∵菱形ABCD的边AB=8,∠B=60°,∴△ABC为等边三角形,∴CH=AB=4,AH=BH=4,∵PB=3,∴HP=1,在Rt△CHP中,CP= =7,∵梯形APQD沿直线PQ折叠,A的对应点A′,∴点A′在以P点为圆心,PA为半径的弧上,∴当点A′在PC上时,CA′的值最小,∴∠APQ=∠CPQ,而CD∥AB,∴∠APQ=∠CQP,∴∠CQP=∠CPQ,∴CQ=CP=7.故选:B.二、解答题2、答案:证明见解析试题分析:先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED 是矩形,利用勾股定理即可求出BC=OE.证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴∠COD=90°,∴四边形OCED是矩形,∴DE=OC,∵OB=OD,∠BOC=∠ODE=90°,∴BC===OE3、答案:(1)见解答过程(2)见解答过程试题分析:(1)根据等腰三角形的性质得到AB=BC,∠A=∠C,由旋转的性质得到=AB=BC,∠A=∠=∠C,∠BD=∠,根据全等三角形的判定定理得到△BCF≌△(2)由旋转的性质得到∠=∠A,根据平角的定义得到∠DEC=180°-α,根据四边形的内角和得到∠ABC=360°—∠—∠C—∠=180°-α,证的四边形是平行四边形,由于=BC,即可得到四边形是菱形。
菱形的判定(5种题型)(解析版)
菱形的判定(5种题型)【知识梳理】一、菱形的判定:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.几何语言:∵AB=BC=CD=DA∴四边形ABCD是菱形;③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).几何语言:∵AC⊥BD,四边形ABCD是平行四边形∴平行四边形ABCD是菱形要点诠释:前一种方法是在四边形的基础上加上四条边相等.后两种方法都是在平行四边形的基础上外加一个条件来判定菱形。
二.菱形的判定与性质(1)依次连接四边形各边中点所得的四边形称为中点四边形.不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形.(2)菱形的中点四边形是矩形(对角线互相垂直的四边形的中点四边形定为矩形,对角线相等的四边形的中点四边形定为菱形.)(3)菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.(4)正方形是特殊的菱形,菱形不一定是正方形,所以,在同一平面上四边相等的图形不只是正方形.【考点剖析】题型一:添加一个条件使四边形为菱形∥,例1.(2023·安徽·校联考一模)如图,四边形ABCD的对角线AC,BD相交于点O,若AB CD =,想要判断四边形ABCD是菱形,则可以添加一个条件是_____________.AO CO【答案】AB AD =(答案不唯一)【分析】根据菱形的判定方法进行解答即可.【详解】解:∵AB CD ∥,∴OAB OCD ∠=∠,OBA ODC ∠=∠,∵AO CO =,∴△≌△AO B C O D , ∴AB CD =,∵AB CD ∥,∴四边形ABCD 为平行四边形,如果添加AB AD =,可以通过有一组邻边相等的平行四边形是菱形,判断四边形ABCD 为菱形; 故答案为:AB AD =.【点睛】本题主要考查了三角形全等的判定和性质,平行四边形的判定,平行线的性质,菱形的判定,解题的关键是熟练掌握菱形的判定方法.【变式】如图,▱ABCD 的对角线AC ,BD 相交于点O ,请添加一个条件: ,使▱ABCD 是菱形.【分析】根据菱形的定义得出答案即可.【解答】解:∵邻边相等的平行四边形是菱形,∴当AD =DC ,▱ABCD 为菱形;故答案为:AD =DC (答案不唯一).【点评】此题主要考查了菱形的判定以及平行四边形的性质,根据菱形的定义得出是解题关键.题型二:证明四边形为菱形例2.如图,在△ABC中,AC=BC,点D,E,F分别是AB,AC,BC的中点,连接DE,DF.求证:四边形DFCE 是菱形.【分析】根据三角形的中位线的性质和菱形的判定定理即可得到结论;【解答】证明:∵点D,E,F分别是AB,AC,BC的中点,∴DE∥CF,DE=BC,DF∥CE,DF=AC,∴四边形DECF是平行四边形,∵AC=BC,∴DE=DF,∴四边形DFCE是菱形;【点评】本题考查了菱形的判定和性质,等腰三角形的性质,三角形的中位线的性质,熟练掌握菱形的判定定理是解题的关键.例3.如图,四边形ABCD为平行四边形,EF∥BD,分别交BC,CD于点P,Q,交AB,AD的延长线于E,F,且BE=BP,求证:(1)∠E=∠F;(2)四边形ABCD是菱形.【分析】(1)首先判定四边形BPFD是平行四边形,所以BP∥DF,利用平行线的性质可得∠F=∠BPE,又因为BE=BP,可得∠E=∠F;(2)利用平行线的性质以及菱形的判定方法进而得出即可.【解答】证明:(1)∵四边形ABCD是平行四边形,∴BP∥DF,∵EF∥BD,∴四边形BPFD是平行四边形,∴BP∥DF,∴∠F=∠BPE,∵BE=BP,∴∠E=∠BPE,∴∠E=∠F;(2)∵EF∥BD,∴∠E=∠ABD,∠F=∠ADB∴∠ABD=∠ADB,又∵四边形ABCD为平行四边形,∴四边形ABCD是菱形.【点评】本题考查了平行四边形的性质和判定、菱形的判定等知识,得出四边形BPFD是平行四边形是解题关键.【变式】如图,已知平行四边形ABCD,点E在AC的延长线上,连接BE、DE,过点D作DF∥EB交CA的延长线于点F,连接FB(1)求证:△DAF≌△BCE;(2)如果四边形ABCD是菱形,求证:四边形BEDF是菱形.【分析】(1)由平行四边形的性质得出AD=CB,AD∥CB,证出∠DAF=∠BCE,∠DFA=∠BEC,由AAS证明△DAF≌△BCE即可;(2)先证明四边形BEDF是平行四边形,再由菱形的性质得出AC⊥BD,即可得出四边形BEDF是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB,∴∠DAC=∠BCA,∴∠DAF=∠BCE,∵DF∥EB,∴∠DFA=∠BEC,在△DAF和△BCE中,,∴△DAF≌△BCE(AAS);(2)证明:连接BD,如图所示:由(1)得:△DAF≌△BCE,∴DF=BE,又∵DF∥BE,∴四边形BEDF是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,即EF⊥BD,∴四边形BEDF是菱形.【点评】本题考查了菱形的判定与性质、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.题型三:根据菱形的判定与性质求角度 例4.(2023春·福建福州·九年级统考期中)如图,在ABC 中,30ACB ∠=︒,将ABC 绕点C 顺时针旋转60︒得到DEC ,连接AE .(1)求证:AB AE =;(2)若A ABC CB =∠∠,证明:直线AE 与BC 互相垂直.【分析】(1)由ABC 绕点C 顺时针旋转60︒得到DEC ,可得60BCE ∠=︒,BC EC =,而30ACB ∠=︒,即得30ACE ACB ∠=︒=∠,可证()SAS ACB ACE △≌△,故AB AE =;(2)根据ABC 绕点C 顺时针旋转得到DEC ,AB AC =,可得AC DC DE AE ===,证明四边形ACDE 是菱形,得到DA CD ∥;又306090BCD ∠=︒+︒=︒,进而推导出AE BC ⊥.【详解】(1)证明:ABC 绕点C 顺时针旋转60︒得到DEC ,60BCE ∴∠=︒,BC EC =,30ACB ∠=︒,30ACE ACB ∴∠=︒=∠,AC AC =,()SAS ACB ACE ∴≌,AB AE =∴; (2)解:ABC 绕点C 顺时针旋转得到DEC ,AC DC ∴=,AB DE =,由(1)可知AB AE =,AE DE ∴=,若AB AC =,则AC AE =,AC DC DE AE ∴===,∴四边形ACDE 是菱形,AE CD ∴∥;30ACB ∠=︒,将ABC 绕点C 顺时针旋转60︒得到DEC ,306090BCD ∴∠=︒+︒=︒,即CD BC ⊥,AE BC ∴⊥,即直线AE 与BC 互相垂直.【点睛】本题考查三角形的旋转问题,涉及菱形的判定及全等三角形的判定与性质,解题的关键是掌握旋转的性质,证明ACB ACE △≌△. 模拟预测)如图,在正方形网格中,ABC 的顶点在格点上,请仅用无刻度的直尺 (1)在图1中,作45CAE ∠=︒.(2)在图2中,作ABC 的角平分线CF .【分析】(1)如图,取格点E ,连接AE ,则CAE ∠即为所作;(2)如图,取格点F ,作射线CF ,则射线CF 即为所作;【详解】(1)解:如图,CAE ∠即为所作,由图可得:2AN CM ==,1CN EM ==,90ANC CME ∠=∠=︒,∴()SAS ANC CME ≌,∴CAN ECM ∠=∠,AC CE =,∵90CAN ACN ∠+∠=︒,∴90ECM ACN ∠∠=︒,∴90ACE ∠=︒,∵AC CE =,∴45CAE CEA ∠=∠=︒;(2)解:如图,射线CF 即为所作,由图可得:AC CG GF AF ===∴四边形ACGF 为菱形,∴CF 平分ACG ∠,即CF 是ABC 的角平分线【点睛】本题考查网格作图,全等三角形判定与性质,等腰直角三角形,菱形的判定与性质,熟练掌握菱形的判定与性质是解题的关键.题型四:根据菱形的判定与性质求线段长 例5.(2023·山西长治·校联考二模)如图,在ABCD Y 中,对角线AC ,BD 相交于点O ,E 为OD 的中点,连接AE ,CE .(1)实践与操作:利用尺规在线段OB 上作出点F ,使得四边形AFCE 为平行四边形,连接AF ,CF ;(要求:尺规作图并保留作图痕迹,不写作法,标明字母)(2)应用与求解:若4,60AB BC ABC ==∠=︒,求EF 的长.【答案】(1)见解析(2)【分析】(1)利用圆规在OB 上作OF OE =,根据对角线互相平分的四边形是平行四边形可得四边形AFCE 为平行四边形;(2)先根据平行四边形的性质和已知条件证明EF OB =,再证ABC 是等边三角形,求出4AC =,再证四边形ABCD 是菱形,推出BO AC ⊥,最后根据勾股定理求出OB 即可.【详解】(1)解:如图所示:以点O 为圆心,OE 长为半径作弧,与线段OB 的交点即为点F ,连接AF ,CF .(2)解:由(1)知OF OE =,ABCD Y 中,E 为OD 的中点,∴1122OE OD OB ==, ∴12OF OE OB ==,∴EF OB =,4,60AB BC ABC ==∠=︒,∴ABC 是等边三角形,∴4AC =,ABCD Y 中,AB BC =,∴四边形ABCD 是菱形,∴BD AC ⊥,即BO AC ⊥, ∴122AO AC ==,∴OB ==∴EF =【点睛】本题考查尺规作图,平行四边形的判定与性质,菱形的判定与性质,等边三角形的判定与性质,勾股定理等,解题的关键是掌握菱形、平行四边形、等腰三角形的性质.【变式】如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点E ,点F 为四边形ABCD 外一点,DA 平分∠BDF ,∠ADF =∠BAD ,且AF ⊥AC .(1)求证:四边形ABDF 是菱形;(2)若AB =5,求AC 的长.【分析】(1)首先证明四边形ABDF 是平行四边形,再证明邻边相等即可证明.(2)在Rt △AFC 中,利用勾股定理求解即可.【解答】(1)证明:∵∠ADF =∠BAD ,∴AB ∥DF ,∵AF ⊥AC ,BD ⊥AC ,∴AF ∥BD ,∴四边形ABDF 是平行四边形;∵DA 平分∠BDF ,∴∠ADF =∠BDA ,∴∠BAD =∠BDA ,∴BD =AB ,∴四边形ABDF 是菱形.(2)解:∵DA 平分∠BDF ,∴∠ADF =∠BDA ,∵BD垂直平分线段AC,∴DA=DC,∴∠ADB=∠BDC=∠ADF,∵DA=DF=DC,∴∠DAF=∠F,∠DAC=∠DCA,∴∠ADC=180°﹣2∠DAC,∠ADF=180°﹣2∠DAF,∵∠DAF+∠DAC=90°,∴∠ADF+∠ADC=360°﹣2(∠DAC+∠DAF)=180°,∴C,D,F三点共线,∴∠ADB=∠BDC=∠ADF=60°,∵FA=FD,∴△ADF是等边三角形,∴AF=DF=CD=5,∵∠FAC=90°,∴AC==5.【点评】本题考查了平行四边形的判定和性质、菱形的判定、角平分线的性质,勾股定理的应用,解题的关键是利用勾股定理列方程,属于中考常考题型.题型五:根据菱形的判定与性质求面积例6.已知,如图,在▱ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,CE=3,求四边形ABCD的面积.【分析】(1)先证明四边形ABEF是平行四边形,再证明邻边相等即可证明.(2)作FG⊥BC于G,根据S菱形ABEF=•AE•BF=BE•FG,先求出FG即可解决问题.【解答】(1)证明:∵四边形ABCD是平行四边形∴AD∥BC,∴∠EBF=∠AFB,∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∴AB=AF,∵BO⊥AE,∴∠AOB=∠EOB=90°,∵BO=BO,∴△BOA≌△BOE(ASA),∴AB=BE,∴BE=AF,BE∥AF,∴四边形ABEF是平行四边形,∵AB=AF.∴四边形ABEF是菱形.(2)解:作FG⊥BC于G,∵四边形ABEF是菱形,AE=6,BF=8,∴AE⊥BF,OE=AE=3,OB=BF=4,∴BE==5,∵S菱形ABEF=•AE•BF=BE•FG,∴GF=,∴S平行四边形ABCD=BC•FG=.【点评】本题考查平行四边形的性质、菱形的判定和性质、勾股定理等知识,解题的关键是利用面积法求出高FG,记住菱形的三种判定方法,属于中考常考题型.【变式】如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到F,使EF=BE,连接CF.(1)求证:四边形BCFE为菱形;(2)若CE=8,∠CFE=60°,求四边形BCFE的面积.【分析】(1)证明DE是△ABC的中位线,由三角形中位线定理得出DE∥BC,BC=2DE,由已知条件得出EF =BC,证出四边形BCFE是平行四边形,再由EF=BE,即可得出结论;(2)作CM⊥DF于M,由菱形的性质得出EF=CF,证出△CEF是等边三角形,得出CF=CE=8,由三角函数求出CM,即可得出四边形BCFE的面积.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,BC=2DE,∴EF∥BC,∵BE=2DE,∴BC=BE,∵EF=BE,∴EF =BC ,∴四边形BCFE 是平行四边形,又∵EF =BE ,∴四边形BCFE 为菱形;(2)解:作CM ⊥DF 于M ,如图所示:由(1)得:四边形BCFE 为菱形,∴EF =CF ,∵∠CFE =60°,∴△CEF 是等边三角形,∴CF =CE =8,∴CM =CF •sin60°=8×=4,∴四边形BCFE 的面积=EF •CM =8×4=32.【点评】三角形中位线定理、等边三角形的判定与性质;熟练掌握菱形的判定与性质,证明△CEF 是等边三角形是解决问题(2)的突破口.【过关检测】一、单选题 1.(2023·陕西西安·校考二模)在下列条件中,能判定平行四边形ABCD 为菱形的是( )A .AB BC ⊥B .AC BD = C .AB BC = D .AB AC =【答案】C【分析】根据菱形的判定定理,即可进行解答.【详解】解:A 、若AB BC ⊥,则平行四边形ABCD 为矩形;不符合题意;B 、若AC BD =,则平行四边形ABCD 为正方形;不符合题意; C 、若AB BC =,则平行四边形ABCD 为菱形;符合题意;D 、若AB BC =,则平行四边形不是特殊的平行四边形;不符合题意;故选:C .【点睛】本题主要考查了菱形的判定,解题的关键是掌握有一组另邻边相等的平行四边形是菱形,对角线互相垂直的平行四边形是菱形. A .点O 为ABCD Y 的对称中心C .::ABE BDF S S AE ED =△△【答案】B 【分析】由作图知,EF 是线段BD 的垂直平分线,利用平行四边形的性质可判断选项A ;根据菱形的判定定理可判断选项C ;根据菱形的性质得到BDF BDE S S =△△,可判断选项D ;BE 不一定平分ABD ∠,选项B 不正确.【详解】解:由作图知,EF 是线段BD 的垂直平分线,即点O 为ABCD Y 的对称中心,故选项A 正确,不符合题意;∵四边形ABCD 是平行四边形,∴DE BF ∥,∴DEF BFE ∠=∠,∵EF 是线段BD 的垂直平分线,∴BE ED =,BF FD =,BFE EFD ∠=∠,∴DEF EFD ∠=∠,∴DE DF =,∴DE DF BE BF ===,∴四边形BEDF 为菱形,故选项D 正确,不符合题意;∴BDF BDE S S =△△,∴:::ABE BDF ABE BDE S S S S AE ED ==△△△△,故选项C 正确,不符合题意;BE 不一定平分ABD ∠,故选项B 不正确,符合题意;故选:B .【点睛】本题考查平行四边形的性质,菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 3.(2023·陕西西安·校考一模)在平行四边形ABCD 中,添加下列条件,能判定平行四边形ABCD 是菱形的是( )A .AB AD =B .AC BD = C .90ABC ∠= D .AB CD =【答案】A【分析】根据一组邻边相等的平行四边形是菱形即可求得答案.【详解】解:∵四边形ABCD 是平行四边形,又AB AD =, ∴平行四边形ABCD 是菱形,故选:A .【点睛】本题考查菱形的判定,熟记菱形的判定是解题的关键. 4.(2023·河北衡水·校联考模拟预测)春节期间,某广场布置了一个菱形花坛,两条对角线长分别为2310m ⨯和2410m ⨯,其面积用科学记数法表示为( )A .42610m ⨯B .421.210m ⨯C .521.210m ⨯D .22610m ⨯【答案】A 【分析】利用菱形的面积等于对角线乘积的一半进行计算,或者利用菱形对角线垂直的性质进行面积求解,最后化为科学记数法的形式即可.【详解】菱形的对角线相互垂直()2222ABD CBD ABCD BD AO OC BD AO BD CO BD AC S S S ⨯+⨯⨯⨯=+=+==四边形∴菱形的面积=对角线成绩的一半=224131********⨯⨯⨯⨯=⨯2m 【点睛】本题考查用对角线计算菱形的面积及科学记数法,也可以利用对角线垂直的性质进行面积的计算,注意所有对角线垂直的四边形面积均等于对角线乘积的一半.正确的使用公式和理解科学记数法的写法是解题的关键. 5.(2023·陕西西安·西安市铁一中学校考模拟预测)在下列条件中,能够判定ABCD Y 为菱形的是( )A .AB AC =B .AC BD ⊥ C .90A ∠=︒ D .AC BD = 【答案】B【分析】由菱形的判定和矩形的判定分别对各个选项进行判断即可.【详解】解:A 、由AB AC =,不能判定ABCD Y 为菱形,故选项不符合题意;B 、由AC BD ⊥,能判定ABCD Y 为菱形,故选项符合题意;C 、由90A ∠=︒,不能判定ABCD Y 为菱形,故选项不符合题意;D 、由AC BD =,能判定ABCD Y 为矩形,不能判定ABCD Y 为菱形,故选项不符合题意;故选:B .【点睛】本题考查了菱形的判定,熟练掌握菱形的判定定理是解题的关键.二、填空题【答案】2【分析】由菱形的性质可得OA OD 、的长,则可求得AD 的长,再由三角形中位线定理即可求得结果.【详解】解:在菱形ABCD 中,114322OA AC OD OB BD =====、,AC BD ⊥,由勾股定理得:5AD ,∵H是AB的中点,∴OH是ABD△的中位线,∴1522 OH AD==,故答案为:5 2.【点睛】本题考查了菱形的性质,勾股定理,三角形中位线定理,熟悉这些性质与定理是解题的关键.7.(2023·宁夏石嘴山·统考一模)如图,是小明作线段AB的垂直平分线的作法及作图痕迹,则四边形ADBC一定是______________.【答案】菱形【分析】根据作图方法可知AC BC AD BD===,再根据四条边相等的四边形是菱形即可得到答案.【详解】解:由作图方法可知,AC BC AD BD===,∴四边形ABCD是菱形,故答案为:菱形.【点睛】本题主要考查了菱形的判定,线段垂直平分线的尺规作图,熟知菱形的判定条件是解题的关键.8.(2023·广东广州·广州市育才中学校考一模)菱形的两个内角的度数比是1:3,一边上的高长是4,则菱形的面积是__________.【答案】【分析】根据菱形相邻的两个角度之比求出对应的角度,利用等腰直角三角形的性质求出菱形的边长,然后用菱形面积公式计算即可.【详解】如左图所示,∵菱形对角相等,互补,且两个内角的度数比是1:3,118045,1804513513A C B D ∴∠=∠=⨯︒=︒∠=∠=︒−︒=︒+,如图1所示,过点D 作BC 边上的高交BC 于点H ,则4DH =,90DHC ∠=︒,45C ∠=︒,∴△CDH 是等腰直角三角形,4CH DH ∴==,CD ∴=∵菱形四条边都相等,BC CD ∴==4ABCD S BC DH =⋅==菱如图2,当过点A 作CD 边上的高交CD 于点H ,同理可证△ADH 为等腰直角三角形,可求得CD AD ==4ABCD S CD AH =⋅==菱故答案为: 【点睛】本题考查了菱形的性质,等腰直角三角形的性质,解题的关键在于求出菱形的边长. 9.(2023春·四川成都·九年级成都嘉祥外国语学校校考阶段练习)如图,在ABCD Y 中,尺规作图:以点A 为圆心,AB 的长为半径画弧交AD 于点F ,分别以点B ,F 为圆心,以大于BF 的长为半径画弧交于点P ,作射线AP 交BC 与点E ,若12BF =,10AB =,则AE AB +的值为________.【答案】26【分析】证明四边形ABEF 是菱形,利用勾股定理求出OA 即可解决问题.【详解】解:由题意可知:AB AF =,AE BF ⊥,OB OF ∴=,BAE EAF ∠=∠,四边形ABCD 是平行四边形,AD BC ∴∥,EAF AEB ∴∠=∠,BAE AEB ∴∠=∠,AB BE AF \==,AF BE ∥,∴四边形ABEF 是平行四边形,AB AF =,∴四边形ABEF 是菱形,OA OE ∴=,162OB OF BF ===,在Rt AOB △中,8OA ,216AE OA ∴==,26AE AB ∴+=.故答案为:26.【点睛】本题考查了平行四边形的性质、菱形的判定和性质、勾股定理等知识,解题的关键是判定四边形ABEF 是菱形.【答案】8【分析】如图所示,连接EF ,设AE BF 、交于O ,由作图方法可知,AE 是线段BF 的垂直平分线,则BE FE =,OB OF =,证明OAF OEB △≌△,得到AF BE =,进而证明四边形ABEF 是菱形,则13902OB BF AE OA AOB ====︒,,∠ ,由勾股定理得4OA ==,则28AE OA ==.【详解】解:如图所示,连接EF ,设AE BF 、交于O ,由作图方法可知,AE 是线段BF 的垂直平分线,∴BE FE =,OB OF =,∵四边形ABCD 是平行四边形,∴AD BC ∥,∴OAF OEB OFA OBE ==∠∠,∠∠,∴()AAS OAF OEB △≌△,∴AF BE =,∴AF AB EF BE ===,∴四边形ABEF 是菱形,∴13902OB BF AE OA AOB ====︒,,∠ ,在Rt ABO △中,由勾股定理得4OA ==,∴28AE OA ==,故答案为:8.【点睛】本题主要考查了菱形的性质与判定,平行四边形的性质,勾股定理,线段垂直平分线的性质和尺规作图,证明四边形ABEF 是菱形是解题的关键. 11.(2023春·四川成都·九年级专题练习)如图,在ABC 中,AB AC =,分别以C 、B 为圆心,取AB 的长为半径作弧,两弧交于点D .连接BD 、AD .若130ABD ∠=︒,则CAD ∠=__________.【答案】25︒/25度【分析】由题意和作法可知:AB AC BD CD ===,可得四边形ABDC 是菱形,再根据菱形及等腰三角形的性质,即可求解.【详解】解:如图:连接CD ,由题意和作法可知:AB AC BD CD ===,∴四边形ABDC 是菱形,)()11180180130252BAD ABD ∠︒−∠=︒−︒=︒,25CAD BAD ∴∠=∠=︒,故答案为:25︒.【点睛】本题考查了菱形的判定与性质,等腰三角形的性质,证得四边形ABDC 是菱形是解决本题的关键.12.(2023·甘肃陇南·校考一模)如图,在平行四边形ABCD 中,2AB BC ==,60BAD ∠=︒,点M 为CD 的中点,连接AM BE AM ⊥,于点E ,则BE 的长为 ___________.【答案】【分析】连接BD BM ,,由题意可得△BCD 是等边三角形,BM CD ⊥,利用勾股定理分别求出BM AM 、,再由等积法求BE 的长即可.【详解】解:连接BD BM ,,∵四边形ABCD 是平行四边形,2AB BC ==,∴四边形ABCD 是菱形,∴2AB BC CD DA ====,CD AB ∥∵60BAD ∠=︒,∴60C ∠=︒,∴BCD △是等边三角形,∵M 是CD 的中点,∴BM CD ⊥, ∴112CM DM CD ===,AB BM ⊥,∵21BC CM ==,,∴BM =在Rt ABM 中,AM ===∵BE AM ⊥,∴AB BM BE AM ⋅==,故答案为:.【点睛】本题考查平行四边形的性质,菱形的判定及性质,等边三角形的判定与性质,熟练掌握菱形的判定及性质,等边三角形的性质,勾股定理,等积法是解题的关键. 13.(2023·湖北襄阳·校考一模)如图,▱ABCD 中,AB AD =,点E 是AB 上一点,连接CE 、DE ,且BC CE =,若40BCE ∠=︒,则ADE ∠=______.【答案】15︒/15度【分析】首先证明四边形ABCD 是菱形,然后根据等腰三角形的性质可得()118040702CEB B ∠=∠=︒−︒=︒,利用三角形内角和定理即可解决问题.【详解】解:在▱ABCD 中,AB AD =, ∴四边形ABCD 是菱形,AB AD BC CD ∴===,//AB CD ,BC CE =,CD CE ∴=,CED CDE ∴∠=∠,40BCE ∠=︒,()118040702CEB B ∴∠=∠=︒−︒=︒,70ADC B ∴∠=∠=︒,70ECD BEC ∠=∠=︒,()118070552CDE CED ∴∠=∠=︒−︒=︒,705515ADE ∴∠=︒−︒=︒.故答案为:15︒.【点睛】本题考查了平行四边形的性质,菱形的判定与性质,等腰三角形的性质,解决本题的关键是掌握菱形的判定与性质.三、解答题 14.(2023·陕西榆林·统考二模)如图,在ABC 中,BAC ∠的平分线AD 交BC 于点D .请利用尺规分别在AB 、AC 上求作点E 、F ,使得四边形AEDF 是菱形.(保留作图痕迹,不写作法)【答案】见解析【分析】作AD 的垂直平分线交,AC AB 于点,E F ,则点,E F 即为所求.【详解】解:如图所示,作AD 的垂直平分线交,AC AB 于点,E F ,则点,E F 即为所求理由如下,∵EF 是AD 的垂直平分线,∴,==EA ED FA FD ,∴EAD EDA ∠=∠,∵BAC ∠的平分线AD 交BC 于点D ,∴∠∠E A D F A D =,∴EDA FAD ∠=∠,∴AF DE ∥,同理可得AE DF ∥,∴四边形AEDF 是平行四边形,∵EA ED =,∴四边形AEDF 是菱形.【点睛】本题考查了作垂直平分线,角平分线的定义,菱形的判定,熟练掌握基本作图是解题的关键. (1)求证:ABC ADC ≅.(2)若EO CO =,试判断四边形【答案】(1)见解析(2)四边形BCDE 是菱形,理由见解析【分析】(1)根据SSS 定理推出即可;(2)先判断AC 为BD 的垂直平分线得到AC BD OB OD ⊥=,,再由EO CO =,可判断四边形BCDE 为平行四边形,然后利用AC BD ⊥可判断四边形BCDE 是菱形.【详解】(1)在ABC 与ADC △中,AB AD BC DCAC AC =⎧⎪=⎨⎪=⎩,∴()ΑSSS BC ADC ≅.(2)四边形BCDE 是菱形,理由如下:∵AB AD CB CD ==,,∴AC 垂直平分BD ,即AC BD ⊥且BO DO =.∵EO CO =,∴四边形BCDE 是平行四边形.∵AC BD ⊥,∴四边形BCDE 是菱形.【点睛】本题考查了全等三角形的判定,线段的垂直平分线的判定和性质及菱形的判定,解题的关键是了解菱形的判定方法,难度不大. 九年级专题练习)如图,在ABC 中,上的中点,将ABC 绕着点 【答案】(1)见解析(2)【分析】(1)根据旋转的性质可得,AC BD AD BC ==,从而得到AC BD AD BC ===,即可求证;(2)过点A 作AE BC ⊥于点E ,先证明ABC 是等边三角形,可得112BE BC ==,2AB BC ==,再由勾股定理可得AE【详解】(1)证明:∵将ABC 绕着点O 旋转180︒得ABD △,∴,AC BD AD BC ==,∵AC BC =,∴AC BD AD BC ===,∴四边形AECD 是菱形;(2)解:如图,过点A 作AE BC ⊥于点E ,∵60,2B BC AC ∠=︒==,∴ABC 是等边三角形, ∴112BE BC ==,2AB BC ==,∴AE∴菱形AECD 的面积为AE BC ⨯=【点睛】等边三角形的判定和性质,勾股定理,熟练掌握菱形的判定和性质,等边三角形的判定和性质,勾股定理是解题的关键. 17.(2023·黑龙江哈尔滨·统考一模)如图,方格纸中每个小正方形的边长均为1,ABC 的顶点和点O 均在小正方形的顶点上.(1)在方格纸中画出DEF ,使DEF 和ABC 关于点O 对称(点A 、B 、C 的关于点O 的对称点分别为点D 、E 、F );(2)在方格纸中画出以线段EF 为一边的菱形EFMN ,且菱形EFMN 的面积为3,连接CN .请直接写出线段CN 的长.【答案】(1)见解析(2)图见解析;CN =【分析】(1)作出点A 、B 、C 关于点O 的对称点D 、E 、F ,顺次连接即可得出DEF ;(2)找出格点M 、N ,连接MF 、MN 、NE ,即可得出菱形EFMN ,求出线段CN 的长即可.【详解】(1)解:如图,作出点A 、B 、C 关于点O 的对称点D 、E 、F ,顺次连接,则DEF 即为所求.(2)解:如图,找出格点M 、N ,连接MF 、MN 、NE 、CN ,则菱形EFMN 即为所求作的菱形;根据格点特点可知,EF MF MN EN ===,∴四边形EFMN 为菱形,1334211132EFMN S =⨯−⨯⨯⨯−−=菱形,CN【点睛】本题主要考查了作中心对称图形,菱形的判断,勾股定理,解题的关键是数形结合,熟练掌握方格纸的特点.【答案】见解析【分析】先利用ABD BDC ∠=∠,证明AB DC ,进而证明四边形ABCD 为平行四边形,再有勾股定理逆定理证明AOB 为直角三角形,得到AC BD ⊥,则问题可证.【详解】证明:∵ABD BDC ∠=∠,∴AB DC ,∵AB CD =∴四边形ABCD 为平行四边形,∵AB CD =2OA =,1OB =,∴22222221OA OB AB +=+==,∴AOB 为直角三角形,即AC BD ⊥,∴四边形ABCD 是菱形.【点睛】本题考查了菱形的判定和勾股定理逆定理,解答关键是熟练掌握菱形的判定方法. (1)求证:四边形AECF 是菱形;(2)若1BE =,4EC =,求EF 【答案】(1)见解析(2)EF 的长为【分析】(1)由D 是AC 的中点,可得AD CD =,由DF DE =,可证四边形AECF 是平行四边形,由DE AC ⊥,可证平行四边形AECF 是菱形;(2)由题意知4AE CE ==,在Rt ABE △中,由勾股定理,得AB =,计算求AB 的值,在Rt ABC△中,由勾股定理,得AC =AC 的值,根据12AECF S EF AC AB EC =⋅=⋅菱形,计算求解即可.【详解】(1)证明:∵D 是AC 的中点,∴AD CD =,∵DF DE =,∴四边形AECF 是平行四边形,又∵DE AC ⊥,∴平行四边形AECF 是菱形;(2)解:∵1BE =,4EC =,四边形AECF 是菱形,∴4AE CE ==,∴在Rt ABE △中,由勾股定理,得AB =∴在Rt ABC △中,由勾股定理,得AC = ∵12AECF S EF AC AB EC =⋅=⋅菱形,∴EF =∴EF 的长为【点睛】本题考查了菱形的判定与性质,勾股定理.解题的关键在于对知识的熟练掌握与灵活运用. 20.(2023春·辽宁本溪·九年级统考开学考试)如图,ABCD Y 的对角线AC ,BD 相交于点O ,点O 作AC 的垂线,与AD ,BC 分别相文于点E ,F ,连接EC ,AF .(1)求证:四边形AECF 是菱形;(2)若4=EC ED ,DOE 的面积是2,求ABCD Y 的面积.【答案】(1)见解析(2)40【分析】(1)由平行四边形的性质得到OA OC =,AD BC ∥,进一步证明()AAS AOE COF △≌△,则AE CF =,即可证明四边形AECF 是平行四边形,由EF AC ⊥即可得到结论;(2)由菱形的性质得到AE CE =,进一步得到4AE EC ED ==,则48==AOE DOE S S △△,即可得到10=+=AOD AOE DOE S S S △△△,由平行四边形的性质即可得到ABCD Y 的面积.【详解】(1)证明:∵四边形ABCD 为平行四边形,∴OA OC =,AD BC ∥,∴DAC ACF ∠=∠,AEF EFC ∠=∠,∴()AAS AOE COF △≌△,∴AE CF =,∵AE CF ∥,∴四边形AECF 是平行四边形,∵EF AC ⊥,∴四边形AECF 是菱形;(2)解:∵四边形AECF 是菱形,∴AE CE =,∵4=EC ED ,∴4AE EC ED ==,∴48==AOE DOE S S △△,∴10=+=AOD AOE DOE S S S △△△,∵四边形ABCD 是平行四边形,∴AC 与BD 互相平分,∴AOD COD BOC AOB S S S S ===△△△△, ∴4=ABCD AOD S S △, ∴40=ABCDS 答:ABCD Y 的面积为40.【点睛】此题考查了平行四边形的判定和性质、菱形的判定和性质、全等三角形的判定和性质等,熟练掌握相关判定和性质是关键. 21.(2023·陕西宝鸡·统考二模)如图,在四边形ABCD 中,AB CD =,过A 作AE BD ⊥交BD 于点E ,过C 作CF BD ⊥交BD 于F ,且AE CF =.请你在不添加辅助线的情况下,添一个条件______,使得四边形ABCD 是菱形,并说明理由.【答案】答案不唯一,见解析【分析】添加条件AB AD =,根据HL 证明Rt Rt ABE CDF ≌△△,从而得到ABE CDF ∠=∠,再根据平等线的判断得到AB CD =,从而得到结论.【详解】解:AB AD =.理由:∵AE BD ⊥,CF BD ⊥,∴90AEB CFD ∠=∠=︒,在Rt ABE △和Rt CDF △中,AB CD AE CF =⎧⎨=⎩,∴()Rt Rt HL ABE CDF ≌△△,∴ABE CDF ∠=∠,∴AB CD ∥,∵AB CD =,∴四边形ABCD 是平行四边形.∵AB AD =,∴四边形ABCD 是菱形.(注:答案不唯一)【点睛】本题考查了菱形的判定,熟练掌握全等三角形的性质与判定,平行线的性质与判定和菱形的判定是解题的关键. 的交点.若将BED 沿直线 (1)求证:四边形BEDF 是菱形;(2)若::1:3:22AE DE AB =【答案】(1)证明见解析(2)【分析】(1)由平行四边形的性质可得DE BF ∥,则EDB FBD ∠=∠,由折叠的性质可得DE DF =,EDB FDB ∠=∠,则FBD FDB ∠=∠,BF DF DE ==,进而结论得证;(2)设AE a =,则3DE a =,AB =,3BE a =,4AD a =,由()()222293a a a +==,即222AE AB BE +=,可得ABE 是直角三角形,且90BAE ∠=︒,则四边形ABCD 是矩形,由平行四边形ABCD的面积为可得AD AB ⨯=即4a ⨯=解得22a =,根据2BEDF BD EF S DE AB ⋅=⋅=菱形 ,计算求解即可得EF BD ⋅的值.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴DE BF ∥,∴EDB FBD ∠=∠,。
中考数学复习----《菱形的判定》知识点总结与专项练习题(含答案)
中考数学复习----《菱形的判定》知识点总结与专项练习题(含答案)知识点总结1.直接判定:四条边都相等的四边形是菱形。
几何语言:∵AB=BC=CD=DA,∴四边形ABCD是菱形2.利用平行四边形判定:①定义:一组领边相等的平行四边形是菱形。
②对角线的特殊性:对角线相互垂直的平行四边形是菱形。
练习题1、(2022•襄阳)如图,▱ABCD的对角线AC和BD相交于点O,下列说法正确的是()A.若OB=OD,则▱ABCD是菱形B.若AC=BD,则▱ABCD是菱形C.若OA=OD,则▱ABCD是菱形D.若AC⊥BD,则▱ABCD是菱形【分析】由矩形的判定和菱形的判定分别对各个选项进行判断即可.【解答】解:A、∵四边形ABCD是平行四边形,∴OB=OD,故选项A不符合题意;B、∵四边形ABCD是平行四边形,AC=BD,∴▱ABCD是矩形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵OA=OD,∴AC=BD,∴▱ABCD是矩形,故选项C不符合题意;D、∵四边形ABCD是平行四边形,AC⊥BD,∴▱ABCD是菱形,故选项D符合题意;故选:D.2、(2022•营口)如图,将△ABC沿着BC方向平移得到△DEF,只需添加一个条件即可证明四边形ABED是菱形,这个条件可以是.(写出一个即可)【分析】由平移的性质得AB∥DE,AB=DE,则四边形ABED是平行四边形,再由菱形的判定即可得出结论.【解答】解:这个条件可以是AB=AD,理由如下:由平移的性质得:AB∥DE,AB=DE,∴四边形ABED是平行四边形,又∵AB=AD,∴平行四边形ABED是菱形,故答案为:AB=AD(答案不唯一).3、(2022•齐齐哈尔)如图,在四边形ABCD中,AC⊥BD,垂足为O,AB∥CD,要使四边形ABCD为菱形,应添加的条件是.(只需写出一个条件即可)【分析】由AB∥CD,AB=CD得四边形ABCD是平行四边形,再由菱形的判定即可得出结论.【解答】解:添加的条件是AB=CD,理由如下:∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,又∵AC⊥BD,∴平行四边形ABCD是菱形,故答案为:AB=CD(答案不唯一).4、(2022•辽宁)如图,CD是△ABC的角平分线,过点D分别作AC,BC的平行线,交BC于点E,交AC于点F.若∠ACB=60°,CD=43,则四边形CEDF的周长是.【分析】连接EF交CD于O,证明四边形CEDF是菱形,可得CD⊥EF,∠ECD=∠ACB=30°,OC=CD=2,在Rt△COE中,可得CE===4,故四边形CEDF的周长是4CE=16.【解答】解:连接EF交CD于O,如图:∵DE∥AC,DF∥BC,∴四边形CEDF是平行四边形,∵CD是△ABC的角平分线,∴∠FCD=∠ECD,∵DE∥AC,∴∠FCD=∠CDE,∴∠ECD=∠CDE,∴CE=DE,∴四边形CEDF是菱形,∴CD⊥EF,∠ECD=∠ACB=30°,OC=CD=2,在Rt△COE中,CE===4,∴四边形CEDF的周长是4CE=4×4=16,故答案为:16.。
九年级数学菱形的判定(基础)(含答案)
菱形的判定(基础)一、单选题(共10道,每道10分)1.下列说法中正确的是( )A.对角线相等的平行四边形是菱形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直的四边形是菱形D.有一个角是直角的平行四边形是菱形答案:B解题思路:对角线相等的平行四边形是矩形,故A错误有一组邻边相等的平行四边形叫做菱形,故B正确对角线相互垂直的平行四边形是菱形,故C错误有一个角是直角的平行四边形是矩形,故D错误试题难度:三颗星知识点:略2.下列四边形中不一定为菱形的是( )A.对角线互相平分的四边形B.每条对角线平分一组对角的平行四边形C.对角线互相垂直的平行四边形D.用两个全等的等边三角形拼成的四边形答案:A解题思路:对角线互相平分的四边形是平行四边形,并不一定为菱形,故A符合题意每条对角线平分一组对角的平行四边形,对角线相互垂直,则此平行四边形是菱形,故B 不符合题意对角线互相垂直的平行四边形是菱形,故C不符合题意用两个全等的等边三角形拼成的四边形的四条边长相等,所以该四边形是菱形,故D不符合题意试题难度:三颗星知识点:略3.如图,AC=8,分别以A,C为圆心,以长度5为半径作弧,两条弧分别相交于点B和D,依次连接A,B,C,D,可得菱形ABCD,则关于操作依据的原理说法正确的是( )A.四条边相等的四边形是菱形B.对角线互相垂直平分的四边形是菱形C.菱形的四条边相等D.菱形的对角线互相垂直平分答案:A解题思路:由作图可知,AB=AD=CB=CD=5∴此操作依据的原理是四条边相等的四边形是菱形试题难度:三颗星知识点:略4.如图,要使平行四边形ABCD成为菱形,添加一个条件不正确的是( )A.AC⊥BDB.AB=ADC.AC=ABD.∠ABD=∠CBD答案:C解题思路:当AC⊥BD时,平行四边形ABCD是菱形,故A不符合题意当AB=AD时,平行四边形ABCD是菱形,故B不符合题意当AC=AB时,平行四边形ABCD不一定是菱形,故C符合题意当∠ABD=∠CBD时,∵OA=OC∴AB=CB∴平行四边形ABCD是菱形,故D不符合题意试题难度:三颗星知识点:略5.如图,四边形ABCD的两条对角线相交于点O,且互相平分.添加下列条件,仍不能判定四边形ABCD为菱形的是( )A.AC平分∠BADB.BD平分∠ABCC.OA⊥OBD.AC=BD答案:D解题思路:∵四边形ABCD的两条对角线相交于点O,且互相平分∴四边形ABCD是平行四边形当AC平分∠BAD,又∵OB=OD∴AB=AD∴平行四边形ABCD是菱形,故A不符合题意同理可证,当BD平分∠ABC时,平行四边形ABCD是菱形,故B不符合题意当OA⊥OB时,即AC⊥BD,平行四边形ABCD是菱形,故C不符合题意当AC=BD时,平行四边形ABCD是矩形,故D符合题意试题难度:三颗星知识点:略6.如图,在四边形ABCD中,AB=CD,AC,BD是对角线,E,F,G,H分别是AD,BD,BC,AC的中点,连接EF,FG,GH,HE,则四边形EFGH的形状是( )A.平行四边形B.菱形C.长方形D.无法判断答案:B解题思路:∵E,F,G,H分别是AD,BD,BC,AC的中点∴在△ADB中,EF为△ADB的中位线∴EF=AB同理可得,FG=CD,GH=AB,EH=CD,又∵AB=CD∴EF=FG=GH=EH∴四边形EFGH的形状是菱形试题难度:三颗星知识点:略7.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是( )A.AB=BCB.AC=BCC.∠B=60°D.∠ACB=60°答案:B解题思路:∵将△ABC沿BC方向平移得到△DCE∴AC∥DE且AC=DE,BC=EC∴四边形ACED为平行四边形当AC=BC时,则AC=EC∴平行四边形ACED为菱形试题难度:三颗星知识点:略8.如图,在△ABC中,AD,CD分别平分∠BAC和∠ACB,AE∥CD,CE∥AD.若从三个条件:①AB=AC;②AB=BC;③AC=BC中,选择一个作为已知条件,则能使四边形ADCE为菱形的是( )A.①B.②C.③D.以上都不符合题意答案:B解题思路:∵AE∥CD,CE∥AD∴四边形ADCE为平行四边形要使平行四边形ADCE为菱形,则DA=DC∴∠DAC=∠DCA又∵AD,CD分别平分∠BAC和∠ACB∴∠BAC=∠BCA∴AB=BC故②AB=BC能使四边形ADCE为菱形试题难度:三颗星知识点:略9.用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是( )A. B.C. D.答案:C解题思路:A.由作图可知,AC⊥BD且AC平分BD,又∵AD∥BC,可证BD平分AC,即对角线相互平分且垂直的四边形是菱形,故A正确B.由作图可知,AB=BC,AB=AD,则AD=BC,又∵AD∥BC,则四边形ABCD为菱形,故B 正确C.由作图可知,AB∥CD,又∵AD∥BC,只能得出四边形ABCD为平行四边形,故C错误D.由作图可知,∠BAC=∠DAC,∠BCA=∠DCA,又∵AD∥BC,则∠DAC=∠BCA,则AB=BC=CD=DA,则四边形ABCD为菱形,故D正确试题难度:三颗星知识点:略10.如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1),若平移点A到点C,使得以点O,A,B,C为顶点的四边形为菱形,正确的是( )A.向左平移1个单位,再向下平移1个单位B.向右平移1个单位,再向上平移1个单位C.向左平移个单位,再向下平移1个单位D.向右平移个单位,再向上平移1个单位答案:B解题思路:∵B(1,1)∴OB=∴OA=OB=如图,过点B作射线BC∥OA,在BC上截取BC=OA,则四边形OACB是菱形,∵A(,0),B(1,1)∴C(,1)∴点A向右平移1个单位,再向上平移1个单位到点C,四边形OACB是菱形试题难度:三颗星知识点:略。
专题06 菱形的性质和判定(解析版)
专题06 菱形的性质和判定姓名:___________考号:___________分数:___________(考试时间:100分钟满分:120分)一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列命题中,正确的是().A.两邻边相等的四边形是菱形B.一条对角线平分一个内角的平行四边形是菱形C.对角线垂直且一组邻边相等的四边形是菱形D.对角线垂直的四边形是菱形【答案】B【分析】根据菱形的性质,对各个选项逐个分析,即可得到答案.【解析】两邻边相等的平行四边形是菱形,故选项A不符合题意;一条对角线平分一个内角的平行四边形是菱形,故选项B符合题意;对角线垂直且一组邻边相等的平行四边形是菱形,故选项C不符合题意;对角线垂直的平行四边形是菱形,故选项D不符合题意;故选:B.【点睛】本题考查了命题、菱形的知识;解题的关键是熟练掌握菱形的性质,从而完成求解.2.如图,在菱形ABCD中,对角线AC,BD相交于点O,AC=8,BD=6,点E,F分别为AO,DO的中点,则线段EF的长为()A.2.5 B.3 C.4 D.5【答案】A【分析】根据菱形的对角线互相垂直平分求出AD的长,再根据中位线定理即可求出EF的长.【解析】解:因为在菱形ABCD中,对角线AC=8,BD=6,∴AC⊥BD,AO=4,DO=3,∴AD=2222435AO DO+=+=,∵点E,F分别为AO,DO的中点,∴12.52==EF AD;故选:A.【点睛】本题考查的是菱形的性质和中位线的性质,注意到菱形的对角线互相垂直平分是解决本题的关键.3.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,则BC的长为().A.3 B.2C.3D.32 2【答案】C【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求解.【解析】解:∵菱形AECF,AB=6,设BE=x,则AE=CE=6-x,∵菱形AECF,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=FCO=30°,∴2BE=CE,即CE=2x,∴2x=6-x,解得:x=2,∴CE=4,又EB=2,则利用勾股定理得:23BC ,故选:C.【点睛】此题主要考查了折叠问题以及勾股定理等知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.4.如图,在菱形ABCD中,AB=6,∠ABC=60°,M为AD中点,P为对角线BD上一动点,连接PA和PM,则PA+PM的最小值是( )A.3 B.23C.33D.6【答案】C【分析】首先连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,由在菱形ABCD中,AB=6,∠ABC=60°,易得△ACD是等边三角形,BD垂直平分AC,继而可得CM⊥AD,则可求得CM的值,继而求得PA+PM的最小值.【解析】解:连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,∵在菱形ABCD中,AB=6,∠ABC=60°,∴∠ADC=∠ABC=60°,AD=CD=6,BD垂直平分AC,∴△ACD是等边三角形,PA=PC,∵M为AD中点,∴DM=12AD=3,CM⊥AD,∴CM=22CD DM -=33,∴PA+PM=PC+PM=CM=33.故选C .【点睛】此题考查了最短路径问题、等边三角形的判定与性质、勾股定理以及菱形的性质.注意准确找到点P 的位置是解此题的关键.5.如图在平面直角坐标系xOy 中若菱形ABCD 的顶点,A B 的坐标分别为(6,0),(4,0)-,点D 在y 轴上,则点C 的坐标是( )A .(6,8)B .(10,8)C .(10,6)D .(4,6)【答案】B【分析】 首先根据菱形的性质求出AB 的长度,再利用勾股定理求出DO 的长度,进而得到点C 的坐标.【解析】∵菱形ABCD 的顶点A 、B 的坐标分别为(-6,0)、(4,0),点D 在y 轴上,∴AB=AO+OB=6+4=10,∴AD=AB=CD=10,∴22221068DO AD AO =-=-=,∴点C 的坐标是:(10,8).故选:B .【点睛】本题主要考查了菱形的性质以及坐标与图形的性质,解题的关键是利用勾股定理求出DO 的长度. 6.如图,ABCD 中,AC 平分BAD ∠,若2,3AC AB ==ABCD 的面积为( )A .2B .22C .42D .82【答案】B【分析】 连接BD 交AC 于点O ,首先证明四边形ABCD 为菱形,然后求出BD 的长,最后根据菱形的面积公式解答.【解析】解:如图,连接BD 交AC 于点O ,在ABCD 中,//AD BC ,,DAC ACB ∴∠=∠AC 平分BAD ∠,DAC BAC ∴∠=∠,BAC BCA ∴∠=∠,AB BC ∴=,∴四边形ABCD 为菱形,11,2122AC BD OA AC ∴⊥==⨯=, 22312OB AB OA ∴=-=-222BD OB ==,ABCD ∴的面积为:112222222ABCD S AC BD =•=⨯⨯=故选B .【点睛】本题主要考查了平行四边形的性质、菱形的判定和性质以及勾股定理等知识,解题的关键是证得四边形ABCD 为菱形.7.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点C 作CE ⊥AD 于点E ,连接OE ,若OB =6,S 菱形ABCD =60,则OE 的长为( )A .23B .5C .5D .6【答案】C【分析】 先根据菱形的性质、面积公式可得AC 的长,再根据直角三角形斜边上的中线等于斜边的一半即可得.【解析】四边形ABCD 是菱形,6OB =,212BD OB ∴==,OA OC =,162ABCD BD AC S AC =⋅=菱形, 60ABCD S =菱形,660AC ∴=,解得10AC =,又OA OC =,CE AD ⊥,OE ∴是Rt ACE △斜边AC 上的中线,1110522OE AC ∴==⨯=, 故选:C .【点睛】本题考查了菱形的性质、直角三角形斜边上的中线等于斜边的一半,熟练掌握菱形的性质是解题关键.8.如图,在菱形ABCD 中,E F ,分别是BC CD ,的中点,设ABCD S S =四边形,1AEF S S ∆=,则( )A .112S S =B .112S S <C .112S S >D .152S S = 【答案】B【分析】利用三角形的中线得到12AECF S S =四边形,判断出A 、C 错误,B 符合题意,利用三角形中位线定理求得CEF 18S S =,通过计算得到183S S =,即可得到正确的答案. 【解析】连接BD 、AC ,∵E ,F 分别是BC ,CD 的中点, ∴ABE ABC ADF ACD 1122S S S S ==,, ∴A CD 1122AECF B S S S ==四边形菱形, ∵AEF AECF S S <四边形,即112S S <,故A 、C 错误,B 符合题意; ∵E ,F 分别是BC ,CD 的中点,∴EF=12BD ,EF ∥BD , ∴CEF CBD A CD 111488B S S S S ===菱形,∴1AEF CEF 113288AECF S S S S S S S ==-=-=四边形, 即183S S =,故D 错误,故选:B .【点睛】本题考查了菱形的性质,三角形中线有关的面积计算,三角形中位线与三角形的面积,熟练掌握菱形的性质是解决问题的关键.9.如图,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,以A 为圆心,AB 为半径的弧交AD 于点F ,连接EF .若BF =6,AB =5,则四边形ABEF 面积是( )A .12B .24C .36D .48【答案】B【分析】 根据题意AB =AF ,利用角平分线和平行证明BA =BE ,用一组对边平行且相等证明四边形ABEF 为平行四边形,再用邻边相等证明它是菱形,最后用菱形面积公式计算面积.【解析】记AE 与BF 相交于O 点,如图,由作法得AB =AF =10,AE 平分∠BAD ,∴∠BAE =∠DAE ,∵四边形ABCD 为平行四边形,∴AD ∥BC ,∴∠DAE =∠BEA ,∴∠BAE =∠BEA ,∴BA =BE ,∴AF =BE ,∵AF ∥BE ,∴四边形ABEF 为平行四边形,∵AB=AF,∴四边形ABEF为菱形,∴OA=OE,OB=OF=12BF=3,AE⊥BF,在Rt△AOB中,OA22534=-=,∴AE=2AO=8,∴四边形ABEF面积116824 22AE BF=⋅=⨯⨯=.故选:B.【点睛】本题考查角平分线的性质,菱形的判定和面积求解,解题的关键是根据题目中的角平分线和平行的条件能够证明等腰三角形,再根据菱形的判定和面积公式求四边形面积.10.如图,在菱形ABCD中,AE是菱形的高,若对角线AC、BD的长分别是6、8,则AE的长是()A.174B.245C.163D.5【答案】B【分析】由菱形的性质可得AC⊥BD,BO=DO=4,CO=AO=3,由勾股定理可求CB=5,由菱形的面积公式可求AE的长.【解析】解:四边形ABCD是菱形AC BD∴⊥,4BO DO==,3CO AO==225BC BO CO ∴=+=12ABCD S AC BD BC AE =⨯⨯=⨯菱形 245AE ∴=245AE ∴= 故选B .【点睛】本题菱形的性质,熟练运用菱形的面积公式是本题的关键.11.如图,菱形ABCD 的边长为13,对角线AC 的长为24,延长AB 至E ,BF 平分CBE ∠,点G 是BF 上任意一点,则ACG 的面积为( )A .30B .60C .90D .120【答案】B【分析】 连接BD 交AC 于点O ,根据菱形的性质可得BD 与AC 互相垂直平分,再根据AC 平分∠DAB ,BF 平分∠CBE ,可以证明AC ∥FB ,根据平行线间的距离处处相等可得S △CBG =S △ABG ,进而可得S △ACG =S △ABC .【解析】解:如图,连接BD 交AC 于点O ,∵四边形ABCD 是菱形,∴BD 与AC 互相垂直平分,∴OA=OC=12,∴OB=OD=221312=5,∵DA∥CB,∴∠DAB=∠CBE,∵AC平分∠DAB,∴∠CAB=12∠DAB,∵BF平分∠CBE,∴∠FBE=12∠CBE,∴∠CAB=∠FBE,∴AC∥FB,∴S△CBG=S△ABG,∴S△ACG=S△ABC=12×AC•OB=12×24×5=60,则△ACG的面积为60.故选:B.【点睛】本题考查了菱形的性质、三角形的面积,解决本题的关键是掌握菱形的性质.12.两张全等的矩形纸片ABCD,AECF按如图方式交叉叠放在一起,AB=AF,AE=BC.若AB=1,BC=3,则图中重叠(阴影)部分的面积为().A.2 B3C.53D.43【答案】C【分析】证得四边形AGCH是平行四边形,由△ABG≌△CEG(AAS),证得四边形AGCH是菱形,设AG=CG=x,则BG=BC-CG=3-x,在Rt△ABG中,由勾股定理得出方程,解方程求得CG的长,即可求出菱形AGCH的面积.【解析】设BC 交AE 于G ,AD 交CF 于H ,如图所示:∵四边形ABCD 、四边形AECF 是全等的矩形,∴AB=CE ,∠B=∠E=90°,AD ∥BC ,AE ∥CF ,∴四边形AGCH 是平行四边形,在△ABG 和△CEG 中,AGB CGE B EAB CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABG ≌△CEG (AAS ),∴AG=CG ,∴四边形AGCH 是菱形,设AG=CG=x ,则BG=BC-CG=3-x ,在Rt △ABG 中,由勾股定理得:12+(3-x)2=x 2,解得:x=53, ∴CG=53, ∴菱形AGCH 的面积=CG ⋅AB=55133⨯=, 即图中重叠(阴影)部分的面积为53. 故选:C . 二、填空题(本大题共6小题,每小题3分,共18分)13.菱形的周长为12cm ,一个内角等于120︒,则这个菱形的面积为_________2cm . 932【分析】作AE ⊥BC 于E ,由直角三角形的性质求出菱形的高AE ,再运用菱形面积公式=底×高计算即可.【解析】解:作AE⊥BC于E,如图所示:∵四边形ABCD是菱形,周长为12cm,∠BCD=120°,∴AB=BC=3cm,∠B=60°,∵AE⊥BC,∴∠BAE=30°,∴BE=12AB=32cm,AE=3BE=332cm,∴菱形的面积=BC•AE=3×332932cm2);932【点睛】本题考查了菱形的性质、含30°角的直角三角形的性质、菱形的面积等知识;熟练掌握菱形的性质,求出菱形的高是解决问题的关键.14.己知菱形ABCD的边长是3,点E在直线AD上,DE=1,联结BE与对角线AC相交于点M,则AMMC的值是______.【答案】23或43【分析】首先根据题意作图,注意分为E在线段AD上与E在AD的延长线上,然后由菱形的性质可得AD∥BC,则可证得△MAE∽△MCB,根据相似三角形的对应边成比例即可求得答案.【解析】解:∵菱形ABCD的边长是3,∴AD=BC=3,AD∥BC,如图①:当E在线段AD上时,∴AE=AD-DE=3-1=2,∴△MAE∽△MCB,∴23 MA AEMC BC==;如图②,当E在AD的延长线上时,∴AE=AD+DE=3+1=4,∴△MAE∽△MCB,∴43 MA AEMC BC==.∴MAMC的值是23或43.故答案为23或43.【点睛】此题考查了菱形的性质,相似三角形的判定与性质等知识.解题的关键是注意此题分为E在线段AD 上与E在AD的延长线上两种情况,小心不要漏解.15.如图,菱形ABCD的边长为13,对角线AC=24,点E、F分别是边CD、BC的中点,连接EF 并延长与AB的延长线相交于点G,则EG =____.【答案】10;【分析】连接菱形的另一条对角线,利用菱形性质特征和勾股定理可求BD长;利用三角形中位线定理可得EF长;在利用三角形全等可证EF GF=即可得解.【解析】连接BD 交AC 与点O ,在菱形ABCD 中 ∵111222AC BD OC OA AC OD OB BD ⊥=====,,, 在RT DOC △中 222213125OD DC OC =-=-=,∴10BD =,∵点E 、F 分别是边CD 、BC 的中点,∴152EF BD ==, ∵//AB CD ,∴BGF CEF GBF ECF ∠=∠∠=∠,,又∵CF BF =,∴BGF CEF ≅△△,∴5EF GF ==,∴10EG =.故答案为:10.【点睛】本题主要考查菱形的性质特征、三角形的中位线定理、平行线性质、勾股定理以及全等三角形等.中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.运用三角形中位线定理求线段长的方法:当题中有中点,特别是一个三角形中出现两边中点时,我们常常考虑运用三角形的中位线来解决问题,首先证明出它是三角形的中位线,然后利用中位线构造线段这间的关系,并由此建立待求线段与已知线段的联系,从而求出线段的长.16.在数学必修拓展课上,小兰利用一张直角三角形纸片折出了一个菱形AFDE ,如图所示,若∠ACB =90°,AC =3cm ,BC =4cm ,则折痕EF 的长为______.【答案】354【分析】过点D 作DH ⊥AB 于 H ,连结AD 、EF ,设CD=x ,则DH=x ,BD=4−x ,由勾股定理求得x 的值,设CF=y ,则 AF=3−y=FD ,由勾股定理求得y 的值,由菱形的性质得AD 与EF 垂直平分,进而求得EF 的长.【解析】解:如图,过点D 作DH ⊥AB 于 H ,连结AD 、EF ,∵菱形AFDE ,∴AD 平分∠BAC ,∵∠ACB=90°,∴CD=DH ,∴AH=AC=3,设CD=x ,则DH=x ,BD=4−x ,∵2222345AC BC +=+=,∴HB=5−3=2,在Rt △DBH 中,()22222242BD DH BH x x =+-=+,,∴x=1.5,即CD=1.5,设CF=y ,则AF=3−y=FD ,在Rt △CDF 中,()222222321.534CF CD FD y y y +=+=-=,,, 即CF=324,∴AF=3−324, 在Rt △ACD 中,2222363 1.5AC CD +=+=, ∴AO=136362=,由菱形的性质得AD 垂直平分EF ,OF=22223236353448AF AO ⎛⎫⎛⎫-=--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,∴EF=2OF= 3535284⨯=, 故答案为35. 【点睛】本题考查菱形的性质,勾股定理,角平分线的性质.17.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,DH AB ⊥于点H ,连接OH ,若20DHO ∠=︒,则HDB ∠的度数是______.【答案】20︒【分析】先根据菱形的性质得OD =OB ,而DH ⊥AB ,所以OH 为Rt △DHB 的斜边DB 上的中线,得到OH =OD ,利用等腰三角形的性质得∠HDB =∠DHO .【解析】∵四边形ABCD 是菱形,∴OD =OB ,∵DH ⊥AB ,∴∠DHB =90°,∴OH 为Rt △DHB 的斜边DB 上的中线,∴OH =OD ,∴∠HDB =∠DHO =20°,故填:20°.【点睛】本题考查菱形的性质,直角三角形斜边中线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.已知:如图,点P 是边长为2的菱形ABCD 对角线AC 上的一个动点,点M 是AB 边的中点,且60BAD ∠=︒,则MP PB +的最小值是_______.【答案】3 【分析】 找出B 点关于AC 的对称点D ,连接DM ,则DM 就是PM+PB 的最小值,求出即可.【解析】解:连接DE 交AC 于P ,连接BD ,BP ,由菱形的对角线互相垂直平分,可得B 、D 关于AC 对称,则PD=PB ,∴PE+PB=PE+PD=DE ,即DM 就是PM+PB 的最小值,∵∠BAD=60°,AD=AB ,∴△ABD 是等边三角形,∵AE=BE ,∴DE ⊥AB (等腰三角形三线合一的性质)在Rt △ADE 中,DM=22AD AM -=2221=3-.故PM+PB 的最小值为3.故答案为:3.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O .过点B 作AC 的平行线,过点C 作BD的平行线,两线相交于点P .(1)求证:四边形OBPC 是菱形.(2)已知3AB =,5BC =,求四边形OBPC 的面积.【答案】(1)证明过程见解析;(2)152OBPC S =四边形 【分析】(1)根据平行四边形的判定证得四边形OBPC 是平行四边形,再根据矩形的性质可知OB=OC ,然后根据菱形的判定即可证得结论;(2)根据菱形的性质和三角形的中线将三角形面积平分可证得四边形OBPC 的面积等于三角形ABC 的面积,利用直角三角形的面积公式即可解答.【解析】(1)∵//BP OC ,//CP OB ,∴四边形OBPC 是平行四边形,在矩形ABCD 中,AC BD =,且AC 与BD 互相平分,∴OB OC =,∴'平行四边形OBPC 是菱形.(2)∵四边形OBPC 是菱形,∴OBC BCP S S =△△,又∵AO OC =,∴AOB BOC S S =△△,∴OBC BCP AOB S S S ==△△△,∴四边形OBPC 的面积等于三角形ABC 的面积, ∴11522ABC S AB BC =⋅=△, ∴152OBPC S =四边形. 【点睛】本题考查了矩形的性质、平行四边形的判定、菱形的判定与性质、三角形的中线与面积关系、三角形的面积公式,属于基础题型,难度适中,解答的关键是熟练掌握菱形的判定与性质的应用.20.如图,菱形ABCD中,作BE⊥AD、CF⊥AB,分别交AD、AB的延长线于点E、F.(1)求证:AE=BF;(2)若点E恰好是AD的中点,AB=2,求BD的值.【答案】(1)见解析;(2)BD=2【分析】(1)根据菱形的性质和平行线的性质得到AB=BC,∠A=∠CBF,结合垂直的性质得到△AEB≌△BFC,根据三角形全等的性质即可证明;(2)首先证明BE是AD的垂直平分线,然后根据垂直平分线的性质即可求解.【解析】(1)证明:四边形ABCD是菱形∴AB=BC,AD∥BC∴∠A=∠CBF∵BE⊥AD、CF⊥AB∴∠AEB=∠BFC=90°∴△AEB≌△BFC(AAS)∴AE=BF(2)∵E是AD中点,且BE⊥AD∴直线BE为AD的垂直平分线∴BD=AB=2【点睛】本题考查了菱形的性质,三角形全等的证明,垂直平分线的性质,关键是要利用好菱形的性质求解.,连接CE.21.如图,在菱形ABCD中,E为对角线BD上一点,且AE DE(1)求证:DE CE =.(2)当EA AB ⊥于点A ,1AE ED ==时,求菱形的边长.【答案】(1)见解析;(2)3【分析】(1)根据SAS 证明△ADE ≌△CDE ,从而得到AE =CE ,再根据AE =DE ,再得出结论;(2)连接AC 交BD 于H ,由菱形的性质可得AB=AD ,AC ⊥BD ,BH=DH ,AH=CH ,由等腰三角形的性质和三角形内角和定理可求∠DAE=∠ADE=∠ABD=30°,利用直角三角形的性质可求解即可.【解析】(1)∵四边形ABCD 是菱形,∴AD =DC ,∠ADE =∠CDE ,在△ADE 和△CDE 中,AD DC ADE CDE DE DE ⎧⎪∠∠⎨⎪=⎩== ,∴△ADE ≌△CDE (SAS ),∴AE =CD ,又∵AE=DE ,∴DE CE =;(2)如图,连接AC 交BD 于H ,∵四边形ABCD 是菱形,∴AB=AD ,AC ⊥BD ,BH=DH ,AH=CH ,∴∠ABD=∠ADB ,∵AE═ED=1,∴∠DAE=∠EDA ,∴∠DAE=∠ADE=∠ABD ,∵∠DAE+∠ADE+∠BAE+∠ABD=180°,∴∠DAE=∠ADE=∠ABD=30°,∴BE=2AE=2,∴BD=BE+DE=3,∴BH=DH=32, ∵∠ABD=30°,AH ⊥BD ,∴AB=2AH ,BH=3 AH ,∴AH=3,AB=2AH=3, ∴菱形的边长为3.【点睛】考查了菱形的性质、全等三角形的判定和性质、直角三角形的性质,解题关键是灵活运用其性质. 22.如图,ABC ∆中,90BCA ∠=︒,CD 是边AB 上的中线,分别过点C ,D 作BA 和BC 的平行线,两线交于点E ,且DE 交AC 于点O ,连接AE .(1)求证:四边形ADCE 是菱形;(2)若60B ∠=︒,6BC =,求四边形ADCE 的面积.【答案】(1)证明见解析;(2)S 菱形ADCE 183=【分析】(1)先证明四边形ADCE 为平行四边形,再证明AC ⊥DE 即可证明;(2)根据勾股定理得到AC 的长度,由含30度角的直角三角形的性质求得DE 的长度,然后由菱形的面积等于对角线乘积的一半即可求.【解析】(1)证明:∵DE∥BC,EC∥AB,∴四边形DBCE是平行四边形.∴EC∥DB,且EC=DB.在Rt△ABC中,CD为AB边上的中线,∴AD=DB=CD.∴EC=AD.∴四边形ADCE是平行四边形.∴ED∥BC.∴∠AOD=∠ACB.∵∠ACB=90°,∴∠AOD=∠ACB=90°,∴AC⊥DE,∴ADCE是菱形;(2)解:Rt△ABC中,CD为AB边上的中线,∠B=60°,BC=6,∴AD=DB=CD=6.∴AB=12,由勾股定理得AC=63.∵四边形DBCE是平行四边形,∴DE=BC=6.∴S菱形ADCE6361832AC ED⋅⨯===.【点睛】本题主要考查菱形的性质和判定以及面积的计算,含30°角的直角三角形.(1)掌握菱形的判定定理并能灵活运用是解题关键;(2)中理解菱形的面积等于对角线的乘积的一半是解题关键.23.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.(1)求证:四边形OCED是菱形;(2)当AC=6时,求出四边形OCED的周长.【答案】(1)详见解析;(2)12【分析】(1)首先由CE∥BD,DE∥AC,可证得四边形OCED是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD,即可判定四边形OCED是菱形,(2)求出OC=OD=3,由菱形的性质即可得出答案.【解析】(1)∵CE∥BD,DE∥AC,∴四边形OCED为平行四边形,又∵四边形 ABCD 是矩形,∴OD=OC,∴四边形OCED为菱形;(2)∵四边形 ABCD 是矩形,∴OC=OD=12 AC,又∵AC=6,∴OC=3,由(1)知,四边形OCED为菱形,∴四边形OCED的周长为=4OC=4×3=12.【点睛】本题考查了矩形的性质、菱形的判定与性质等知识,熟练掌握菱形的判定方法是解题的关键.24.如图,四边形ABCD中,60B︒∠=,连接对角线AC,AC BC=,点E在AB上,将CE绕点C顺时针旋转60︒得到CF,且点F在AD上.(1)求证:AF BE=;(2)若AE DF=,求证:四边形ABCD是菱形.【答案】(1)证明见解析;(2)证明见解析【分析】(1)证明ABC ∆是等边三角形,由旋转的性质得出CE CF =,60ECF ︒∠=,通过证明ACF BCE ∆≅∆进行求证;(2)由已知条件可求出AD BC =,由(1)可证//AD BC ,进而可得出四边形ABCD 是平行四边形,最后根据邻边相等的平行四边形是菱形进行求证.【解析】证明:(1)∵60B ︒∠=,AC BC =,ABC ∆∴是等边三角形,60ACB ︒∴∠=,AB AC BC ==, CE 绕点C 顺时针旋转60︒得到CF ,CE CF ∴=,60ECF ︒∠=,∵ACB ACE ECB ∠=∠∠+,ECF ACE ACF ∠=∠∠+,BCE ACF ∴∠=∠,在ACF 和BCE 中AC BC ACF BCE CF CE =⎧⎪∠=∠⎨⎪=⎩,()ACF BCE SAS ∴∆≅∆,AF BE ∴=;(2)AE DF =,AF BE =,DF AF AE BE ∴+=+,即AB AD =,又AB BC =,AD BC ∴=,由(1)知BCE ACF ∆∆≌,60B CAF ︒∴∠=∠=,60ACB CAF ︒∴∠=∠=,//AD BC ∴,∴四边形ABCD 是平行四边形,又AB AD =,∴四边形ABCD 是菱形.【点睛】本题考查全等三角形的判定与性质,旋转的性质,平行四边形与菱形的判定,由已知条件证明BCE ACF ∆∆≌是解题的关键.。
菱形的判定专项练习30题
菱形的判断专项练习30 题(有答案)1.如图,梯形ABCD中, AD∥BC, BA=AD=DC=BC,点 E 为 BC的中点.(1)求证:四边形 ABED是菱形;(2)过 A 点作 AF⊥BC 于点 F,若 BD=4cm,求 AF的长.2.如图,四边形 ABCD中,对角线 AC、BD订交于点 O,且 AC⊥BD.点 M,N 分别在 BD、AC上,且 AO=ON=NC,BM=MO=OD.求证: BC=2DN.3.如图,在△ ABC 中, AB=AC, D, E, F 分别是 BC, AB,AC的中点.(1)求证:四边形 AEDF是菱形;(2)若 AB=12cm,求菱形 AEDF的周长.4.如图,在 ? ABCD中, EF∥BD,分别交 BC, CD于点 P,Q,交 AB, AD的延伸线于点 E, F.已知BE=BP.求证:( 1)∠ E=∠F;(2) ? ABCD是菱形.5.如图,在△ ABC 中, D 是 BC的中点, E 是 AD的中点,过点 A 作 AF∥BC, AF与 CE的延伸线订交于点F,连结 BF.(1)求证: AF=DC;( 2)若∠ BAC=90°,求证:四边形AFBD是菱形.6.已知平行四边形ABCD中,对角线BD均分∠ ABC,求证:四边形ABCD是菱形.AB所在直线翻转180°获得△ ABF,再将三角板绕点 C 顺7.如图,在一个含30°的三角板ABC中,将三角板沿着时针方向旋转60°获得△ DEC,点 F 在 AC上,连结AE.(1)求证:四边形 ADCE是菱形.(2)连结 BF 并延伸交 AE 于 G,连结 CG.请问:四边形 ABCG是什么特别平行四边形?为何?8.如图,已知四边形 ABCD是平行四边形, DE⊥AB,DF⊥BC,垂足分别是为 E F ,而且 DE=DF.求证:四边形 ABCD 是菱形.9.如图,在△ ABC 中, DE∥B C,分别交 AB, AC于点 D,E,以 AD,AE为边作 ? ADFE交 BC于点 G, H,且EH=EC.求证:( 1)∠ B=∠C;(2) ? ADFE是菱形.10.如图,在△ ABC 中,∠ ACB=90°, CD是 AB 边上的高,∠ BAC 的均分线AE交 CD于 F,EG⊥AB 于 G.(1)求证:△ AEG≌△ AEC;(2)△ CEF能否为等腰三角形,请证明你的结论;(3)四边形 GECF能否为菱形,请证明你的结论.11.如图,在△ ABC 中, AB=AC,点 D、E、 F 分别是△ ABC 三边的中点.求证:四边形ADEF是菱形.12.如图,在四边形ABCD中, AB=CD,M、 N、 E、 F 分别为 AD、 BC、BD、 AC的中点,求证:四边形MENF为菱形.13.已知:如图,在梯形 ABCD中, AD∥BC, AB=AD,∠ BAD的均分线 AE交 BC于点 E,连结 DE.求证:四边形 ABED 是菱形.14.如图,在△ ABC 中, AB=AC, M、 O、N 分别是 AB、 BC、CA的中点.求证:四边形AMON是菱形.15.如图:在△ ABC 中,∠ BAC=90°, AD⊥BC 于 D, CE均分∠ ACB,交AD于 G,交 AB于 E,EF⊥BC 于 F.求证:四边形AEFG是菱形.16.如图,矩形ABCD绕其对角线交点旋转后得矩形AECF, AB交 EC于点 N, CD交 AF 于点 M.求证:四边形ANCM是菱形.17.如图,四边形 ABCD、 DEBF都是矩形, AB=BF, AD、 BE交于 M,BC、 DF交于 N,那么四边形 BMDN是菱形吗?假如是,请写出证明过程;假如不是,说明原因.18.已知以下图, AD是△ ABC的角均分线, DE∥AC 交 AB 于 E,DF∥AB 交 AC于 F,四边形 AEDF是菱形吗?说明原因.19.已知:以下图, BD是△ ABC的角均分线, EF 是 BD的垂直均分线,且交 AB 于 E,交 BC于点 F.求证:四边形BFDE是菱形.20.如图,在平行四边形ABCD中, O是对角线 AC的中点,过点O作 AC的垂线与边AD、 BC分别交于E、 F.求证:四边形AFCE是菱形.21.如图,在矩形ABCD中, EF 垂直均分BD.(1)判断四边形 BEDF的形状,并说明原因.(2)已知 BD=20, EF=15,求矩形 ABCD的周长.22.以下图,在? ABCD中,点 E 在 BC上, AE均分∠ BAF,过点 E 作 EF∥AB.求证:四边形ABEF为菱形.23.已知,如图,矩形ABCD中, AB=4cm, AD=8cm,作∠ CAE=∠ACE 交 BC于 E,作∠ ACF=∠CAF 交 AD于 F.( 1)求证: AECF是菱形;(2)求四边形AECF的面积.24.如图,平行四边形 ABCD的对角线 AC的垂直均分线与边 AD、 BC分别交于 E、F.问四边形 AFCE是菱形吗?请说明原因.25.如图:在平行四边形ABCD中, E、F 分别是边 AB、 CD的延伸线上一点,且BE=DF,连结 EF交 AC于 O.(1) AC与 EF 相互均分吗?为何?(2)连结 CE、 AF,再增添一个什么条件,四边形AECF是菱形?为何?26.已知:如图,△ ABC 和△ DBC的极点在 BC边的同侧, AB=DC,AC=BD交于 E,∠ BEC的均分线交 BC于 O,延伸EO 到 F,使 EO=OF.求证:四边形 BFCE是菱形.27.如图,在△ ABC 中, D 是 BC边的中点, F,E 分别是 AD及其延伸线上的点, CF∥BE.(1)求证:△ BDE≌△ CDF;(2)请连结 BF, CE,试判断四边形 BECF是何种特别四边形,并说明原因;(3)在( 2)下要使 BECF是菱形,则△ ABC 应知足何条件?并说明原因.28.如图,在△ ABC 中,∠ ACB=90°, BC的垂直均分线 DE交 BC于 D,交 AB于 E, F 在 DE上,而且AF=CE.(1)求证:四边形 ACEF是平行四边形;(2)当∠B 的大小知足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.29.如图,在△ ABC 中, AD是∠ BAC的均分线, EF 垂直均分 AD交 AB 于 E,交 AC于 F.求证:四边形AEDF是菱形.30.如图,△ ABC中,点 O是边 AC上一个动点,过O作直线 MN∥BC,设 MN交∠ BCA的均分线于点E,交∠BCA的外角均分线于点F.( 1)研究:线段OE与 OF的数目关系并加以证明;( 2)当点 O运动到哪处,且△ ABC 知足什么条件时,四边形AECF是正方形?( 3)当点 O在边 AC上运动时,四边形BCFE会是菱形吗?假如,请证明,若不是,则说明原因.矩形的判断专项练习30 题参照答案:1. 1)证明:∵点 E 为 BC的中点,∴BE=CE= BC,在△ AEF 和△ DEC中,∵BA=AD=DC=BC,∴△ AFE≌△ DCE( AAS),∴AF=DC;∴AB=BE=ED=AD,∴四边形 ABED是菱形;( 2)证明:∵D 是 BC的中点,( 2)解:过点 D 作 DH⊥BC,垂足为∴DB=CD= BC,H,∵CD=DE=CE,∵AF=CD,∴∠ DEC=60°,∴AF=DB,∴∠ DBE=30°,∵AF∥BD,在 Rt△BDH中, BD=4cm,∴四边形 AFBD是平行四边形,∴DH=2cm,∵∠ BAC=90°, D 为 BC中点,∵AF=DH,∴AD= CB=DB,∴AF=2cm.∴四边形AFBD是菱形.2.∵ AO=ON, BM=MO,∴四边形 AMND是平行四边形,∵AC⊥BD,∴平行四边形 AMND是菱形,∴ MN=DN,6.∵对角线 BD均分∠ ABC,∵ON=NC, BM=MO,∴ MN= BC,∴ BC=2DN∴∠ 1=∠2,∵四边形 ABCD是平行四边形,3.( 1)∵ D, E 分别是 BC, AB的中点,∴AB∥DC,∴DE∥AC 且 DE=AF= AC.∴∠ 3=∠1,∴∠ 3=∠2,同理 DF∥AB 且 DF=AE= AB.∴DC=BC,又∵四边形 ABCD是平行四边形,又∵ AB=AC,∴ DE=DF=AF=AE,∴四边形 ABCD是菱形.∴四边形 AEDF是菱形.(2)∵E是 AB中点,∴ AE= AB=6cm,所以菱形 AEDF的周长为 4×6=24cm.4.( 1)∵ BE=BP,∴∠ E=∠BPE,7.( 1)∵三角板 ABC中,将三角板沿着AB 所在直线翻∵BC∥AF,转 180°获得△ ABF,∴∠ BPE=∠F,∴∠ E=∠F.∴△ ABC≌△ ABF,且∠ BAC=∠BAF=30°,( 2)∵ EF∥BD,∴∠ FAC=60°,∴∠ E=∠ABD,∠ F=∠ADB,∴AD=DC=AC,∴∠ ABD=∠ADB,又∵△ ABC≌△ EFC,∴AB=AD,∴CA=CE,∵四边形 ABCD是平行四边形,又∵∠ ECF=60°,∴□ ABCD是菱形.∴AC=EC=AE,5. 1)证明:∵E 是 AD的中点,∴AD=DC=CE=AE,∴AE=DE,∴四边形 ADCE是菱形;∵AF∥BC,∴∠ 1=∠2,( 2)证明:由( 1)可知:△ ACD,△ AFC 是等边三角形,△ACB≌△ AFB,∴∠ EDC=∠BAC= ∠FAC=30°,且△ ABC 直角三角形,∴B C= AC,∵EC=CB,∴E C= AC,∴E AC中点,∴DE⊥AC,∴AE=EC,∵AG∥BC,∴∠ EAG=∠ECB,∠ AGE=∠EBC,∴△ AEG≌△ CEB,∴A G=BC,(7 分)∴四形 ABCG是平行四形,∵∠ ABC=90°,∴四形 ABCG是矩形8.在△ ADE和△ CDF中,∵四形ABCD是平行四形,∴∠ A=∠C,∵DE⊥AB,DF⊥BC,∴∠ AED=∠CFD=90°.又∵ DE=DF,∴△ ADE≌△ CDF( AAS)∴DA=DC,∴平行四形ABCD是菱形9.( 1)∵在 ? ADFE中, AD∥EF,∴∠ EHC=∠B(两直平行,同位角相等).∵EH=EC(已知),∴∠ EHC=∠C(等等角),∴∠ B=∠C(等量代);(2)∵ DE∥BC(已知),∴∠AED=∠C,∠ ADE=∠B.∵∠ B=∠C,∴∠ AED=∠ADE,∴AD=AE,∴ ? ADFE是菱形.10. 1)明:∵∠ ACB=90°,∴AC⊥EC.又∵ EG⊥AB, AE 是∠ BAC的均分,∴GE=CE.在 Rt△AEG与 Rt△AEC中,,(2)解:△ CEF 是等腰三角形.原因以下:∵CD是 AB 上的高,∴CD⊥AB.又∵ EG⊥AB,∴EG∥CD,∴∠ CFE=∠GEA.又由( 1)知, Rt△AEG≌Rt△AEC,∴∠ GEA=∠CEA,∴∠ CEA=∠CFE,即∠ CEF=∠CFE,∴CE=CF,即△ CEF 是等腰三角形;( 3)解:四形GECF是菱形.原因以下:∵由( 1)知, Rt△AEG≌Rt△AEC,GE=EC;由( 2)知, CE=CF,∴GE=EC=FC.又∵ EG∥CD,即GE∥FC,∴四形GECFR是菱形.11.∵ D、 E、 F 分是△ ABC 三的中点,∴DE AC,EF AB,∴四形ADEF平行四形.又∵ AC=AB,∴D E=EF.∴四形ADEF菱形.12.∵ M、 E、分AD、 BD、的中点,∴ME∥AB, ME= AB,同理: FH∥AB, FH= AB,∴四形MENF是平行四形,∵M. F 是 AD, AC中点,∴MF= DC,∵AB=CD,∴MF=ME,∴四形MENF菱形13.∵ AE 均分∠ BAD,∴∠ BAE=∠DAE,⋯( 1 分)在△ BAE和△ DAE中,∵,∴Rt△AEG≌Rt△AEC( HL);∴△ BAE≌△ DAE(SAS)⋯(2分)∴BE=DE,⋯( 3 分)∵AD∥EF,∵AD∥BC,∴∠ 2=∠3,∴∠ DAE=∠AEB,⋯( 4 分)∴∠ 1=∠3,∴∠ BAE=∠AEB,∴AG=AE,∴AB=BE,⋯( 5 分)∵AE=EF,∴AB=BE=DE=AD,⋯( 6 分)∴AG=EF,∴四形 ABED是菱形.∵AG∥EF,∴四形 AGFE是平行四形,∵AE=EF,∴平行四形 AGFE是菱形.14.∵ AB=AC, M、 O、 N 分是 AB、 BC、 CA的中点,∴AM= AB= AC=AN,M0∥AC,NO∥AB,且MO= AC=AN,16.∵ CD∥AB,NO= AB=AM(三角形中位定理),∴∠ FMC=∠FAN,∴∠ NAE=∠MCF(等角的余角相等),∴AM=MO=AN=NO,在△ CFM和△ AEN中,∴四形 AMON是菱形(四条都相等的四形是菱形)15.法一:∵ AD⊥BC,,∴∠ ADB=90°,∵∠ BAC=90°,∴△ CFM≌△ AEN( ASA),∴∠ B+∠BAD=90°,∠ BAD+∠CAD=90°,∴CM=AN,∴∠ B=∠CAD,∴四形 ANCM平行四形,∵CE均分∠ ACB,EF⊥BC,∠ BAC=90°( EA⊥CA),在△ ADM和△ CFM中,∴AE=EF(角均分上的点到角两的距离相等),∵CE=CE,,∴由勾股定理得: AC=CF,∵△ ACG和△ FCG中∴△ ADM≌△ CFM( AAS),∴AM=CF,,∴四形 ANCM是菱形17.四形 BMDN是菱形.∴△ ACG≌△ FCG,∵AM∥BC,∴∠ CAD=∠CFG,∴∠ AMB=∠MBN,∵∠ B=∠CAD,∵BM∥FN∴∠ B=∠CFG,∴∠ MBN=∠BNF,∴GF∥AB,∴∠ AMB=∠BNF,∵AD⊥BC,EF⊥BC,又∵∠ A=∠F=90°, AB=BF,∴AD∥EF,∴△ ABM≌△ BFN,即 AG∥EF,AE∥GF,∴BM=BN,∴四形 AEFG是平行四形,同理,△ EMD≌△ CND,∵AE=EF,∴DM=DN,∴平行四形 AEFG是菱形.∵ED=BF=AB,∠ E=∠A=90°,∠ AMB=∠EMD,∴△ ABM≌△ EDM,法二:∵AD⊥BC,∠CAB=90°,EF⊥BC,CE均分∠ ACB,∴BM=DM,∴AD∥EF,∠ 4=∠5, AE=EF,∴MB=MD=DN=BN,∵∠ 1=180° 90° ∠ 4,∠ 2=180° 90° ∠ 5,∴四形 BMDN是菱形∴∠ 1=∠2,18.如图,因为 DE∥AC,DF∥AB,所以四边形AEDF为∠FDO=∠EBO, OD=OB,∠ DOF=∠BOE=90°,平行四边形.所以△ DOF≌△ BOE,∵DE∥AC,∴∠ 3=∠2,所以 OE=OF.又∠ 1=∠2,∴∠ 1=∠3,又因为 EF⊥BD, OD=OB,∴AE=DE,∴平行四边形 AEDF为菱形.所以四边形 BEDF为菱形.(5 分)( 2)如图,在菱形 EBFD中, BD=20, EF=15,则 DO=10, EO=.由勾股定理得 DE=EB=BF=FD=.19.∵ EF 是 BD的垂直均分线,S 菱形EBFD=EF? BD=BE? AD,∴EB=ED,∴∠ EBD=∠EDB.即∵BD是△ ABC的角均分线,∴∠ EBD=∠FBD.所以得 AD=12.∴∠ FBD=∠EDB,依据勾股定理可得 AE=,有 AB=AE+EB=16.∴ED∥BF.由 2(AB+AD) =2( 16+12) =56,同理, DF∥BE,故矩形 ABCD的周长为 56∴四边形 BFDE是平行四边形.22.∵四边形 ABCD是平行四边形,又∵ EB=ED,∴AF∥BE,∴四边形 BFDE是菱形.又∵ EF∥AB,∴四边形 ABEF为平行四边形,∵AE 均分∠ BAF,∴∠ BAE=∠FAE,∵∠ FAE=∠BEA,∴∠ BAE=∠BEA,20.方法一:∵ AE∥FC.∴BA=BE,∴∠ EAC=∠FCA.( 2 分)∴平行四边形 ABEF为菱形又∵∠ AOE=∠COF, AO=CO,23.( 1)证明:在矩形 ABCD中,∴△ AOE≌△ COF.(5 分)∵AB∥CD,∴EO=FO.∴∠ BAC=∠DCA,又 EF⊥AC,又∠ CAE=∠ACE,∠ ACF=∠CAF,∴AC是 EF 的垂直均分线.(8 分)∴∠ EAC=∠FCA.∴AF=AE, CF=CE,∴AE∥CF.又∵ EA=EC,∴四边形 AECF为平行四边形,∴AF=AE=CE=CF.又∠ CAE=∠ACE,∴四边形 AFCE为菱形.( 10 分)∴AE=EC.方法二:同方法一,证得△ AOE≌△ COF.( 5 分)∴ ? AECF为菱形.∴AE=CF.( 2)设 BE=x,则 EC=AE=8﹣ x,∴四边形 AFCE是平行四边形.( 8 分)在 Rt△ABE中,又∵ EF 是 AC的垂直均分线,222 AB +BE =AE,∴EA=EC,222即 4 +x =( 8﹣ x).∴四边形 AFCE是菱形.( 10 分)解之得 x=3,方法三:同方法二,证得四边形 AFCE是平行四边形.(8所以 EC=5,分)即 S=EC×AB=5×4=20.菱形 AECF又 EF⊥AC,( 9 分)24.四边形 AFCE是菱形,原因是:∴四边形 AFCE为菱形∵四边形 ABCD是平行四边形,21.( 1)四边形 BEDF是菱形.∴AD∥BC,在△ DOF和△ BOE中,∴= ,∵AO=OC,∴OE=OF,∴四边形AFCE是平行四边形,∵E F⊥AC,∴平行四边形AFCE是菱形25.( 1) AC与 EF 相互均分,连结CE, AF,∵平行四边形ABCD,∴AB∥CD, AB=CD,又∵ BE=DF,∴A B+BE=CD+DF,∴A E=CF,∴AE∥CF, AE=CF,∴四边形AECF是平行四边形,∴AC与 EF 相互均分;(2)条件: EF⊥AC,∵EF⊥AC,又∵四边形 AECF是平行四边形,∴平行四边形 AECF是菱形.26.∵ AB=DC AC=BD BC=CB,∴△ ABC≌△ DCB,∴∠ DBC=∠ACB,∴B E=CE,又∵∠ BEC的均分线是EF,∴EO是中线(三线合一),∴BO=CO,∴四边形 BFCE是平行四边形(对角线相互均分),又∵ BE=CE,∴四边形BFCE是菱形.27.( 1)证明:∵ CF∥BE,∴∠ EBD=∠FCD,D是BC边的中点,则BD=CD,∠BDE=∠CDF,∴△ BDE≌△ CDF.(2)以下图,由( 1)可得 CF=BE,又 CF∥BE,所以四边形 BECF是平行四边形;(3)△ ABC是等腰三角形,即 AB=AC,原因:当 AB=AC 时,则有 AD⊥BC,又( 2)中四边形为平行四边形,所以可判断其为菱形.28.( 1)∵ DE 为 BC的垂直均分线,∴∠ EDB=90°, BD=DC,又∵∠ ACB=90°,∴DE∥AC,∴E为 AB的中点,∴在 Rt△ABC中, CE=AE=BE,∴∠ AEF=∠AFE,且∠BED=∠AEF,∠DEC=∠DFA,∴AF∥CE,又∵ AF=CE,∴四边形 ACEF为平行四边形;(2)要使得平行四边形 ACEF为菱形,则 AC=CE即可,∵DE∥AC,∴∠ BED=∠BAC,∠ DEC=∠ECA,又∵∠ BED=∠DEC,∴∠ EAC=∠ECA,∴AE=EC,又 EB=EC,∴AE=EC=EB,∵C E= AB,∴A C= AB即可,在 Rt△ABC中,∠ ACB=90°,∴当∠ B=30°时, AB=2AC,故∠ B=30°时,四边形 ACEF为菱形.29.∵ AD 均分∠ BAC∴∠ BAD=∠CAD又∵ EF⊥AD,∴∠ AOE=∠AOF=90°∵在△ AEO和△ AFO中,∴△ AEO≌△ AFO( ASA),∴EO=FO即 EF、 AD相互均分,∴四边形 AEDF是平行四边形又EF⊥AD,∴平行四边形 AEDF为菱形30. 1)解: OE=OF.原因以下:∵CE是∠ ACB的角均分线,∴∠ ACE=∠BCE,又∵ MN∥BC,∴∠ NEC=∠ECB,∴∠ NEC=∠ACE,∴OE=OC,∵OF是∠ BCA的外角均分线,∴∠ OCF=∠FCD,又∵ MN∥BC,∴∠ OFC=∠ECD,∴∠ OFC=∠COF,若四边形BCFE是菱形,则BF⊥EC,但在△ GFC中,不行能存在两个角为其为菱形.90°,所以不存在∴OF=OC,∴OE=OF;( 2)解:当∠ ACB=90°,点∵OE=OF,∴四边形AECF是正方形;O在AC的中点时,( 3)答:不行能.解:以下图,∵CE均分∠ ACB, CF均分∠ ACD,∴∠ ECF= ∠ACB+ ∠ACD= (∠ ACB+∠ACD)=90°,。
2022年《菱形的判定3》专题练习(附答案)
2.6.2 菱形的判定要点感知1四条边__________的四边形是菱形.预习练习1-1 用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是( )图1-1 图2-1要点感知2 对角线__________的平行四边形是菱形.预习练习2-1如图,四边形ABCD的对角线AC,BD互相垂直,那么以下条件能判定四边形ABCD为菱形的条件是( )∥CD知识点1 四条边都相等的四边形是菱形1.如图,四边形ABCD内有一点E,AE=BE=DE=BC=DC,AB=AD,假设∠C=100°,那么∠AED的大小是( )°°°°2.顺次连接矩形四边中点所形成的四边形是__________,学校的一块菱形花圃两对角线的长分别是6 m和8 m,那么这个花圃的面积为__________.3.如图,在四边形ABCD中,E,F,G,H分别是AB,BD,CD,AC的中点,AD=BC,求证:四边形EFGH是菱形.知识点2 对角线互相垂直的平行四边形是菱形4.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是____________________(写出一个即可).5.如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.(1)求证:∠1=∠2;(2)连接BE,DE,判断四边形BCDE的形状,并说明理由.6.如图,在三角形ABC中,AD平分∠BAC,将△ABC折叠,使点A与点D重合,展开后折痕分别交AB,AC于点E,F,连接DE,DF.求证:四边形AEDF是菱形.7.如图,将△ABC沿BC方向平移得到△DCE,连接AD,以下条件中能够判定四边形ACED 为菱形的条件是( )A.AB=BCB.AC=BCC.∠B=60°D.∠ACB=60°第7题图第9题图第10题图8.如图,在给定的一张平行四边形纸片上做一个菱形,甲、乙两人的作法如下:甲:连接AC,做AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,那么四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,那么四边形ABEF是菱形.根据两人的作法可判断( )A.甲正确,乙错误B.乙正确,甲错误C.甲、乙均正确D.甲、乙均错误9.如图,菱形ABCD的一个内角∠BAD=80°,对角线AC,BD相交于点O,点E在AB上,且BE=BO,那么∠EOA=______.10.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF,给出以下条件:①BE⊥EC;②BF∥CE;③AB=AC,从中选择一个条件使四边形BECF是菱形,你认为这个条件是__________(填序号).11.如图,在四边形ABCD中,AD∥BC,AM⊥BC,垂足为M,AN⊥∠BAD=∠BCD,AM=AN,求证:四边形ABCD是菱形.12.如图,△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.(1)求证BE=CD;(2)假设AD⊥BC,试判断四边形BDFE的形状,并给出证明.13.如图,在四边形ABCD中,AB=AD,CB=CD,点E是CD上一点,BE交AC于点F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE;(2)假设AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.参考答案要点感知1 都相等预习练习1-1 B要点感知2 互相垂直预习练习2-1 B1.B2.菱形24 m23.证明:∵E,F分别是AB,BD的中点,∴EF=12 AD.同理可得:GH=12AD,GF=12BC,HE=12BC,又AD=BC,∴EF=GF=GH=HE.∴四边形EFGH是菱形.4.答案不唯一,如AB=AD或AB=BC或AC⊥BD等5.(1)证明:∵在△ADC和△ABC中,AD=AB,AC=AC,DC=BC,∴△ADC≌△ABC(SSS).∴∠1=∠2;(2)四边形BCDE是菱形;证明:∵DC=BC,∠1=∠2,∴AC垂直平分BD.又∵OE=OC,∴四边形DEBC是平行四边形.∵AC⊥BD,∴四边形DEBC是菱形.6.证明:连接EF,交AD于点O,∵AD平分∠BAC,∴∠EAO=∠FAO.∵EF⊥AD,∴∠AOE=∠AOF=90°.在△AEO和△AFO中,∠EAO=∠FAO,AO=AO,∠AOE=∠AOF,∴△AEO≌△AFO(ASA).∴EO=FO.∵A点与D点重合,∴AO=DO.∴EF,AD相互平分,∴四边形AEDF是平行四边形.又EF⊥AD,∴平行四边形AEDF为菱形.7.B 8.C 9.25°10.③11.证明:∵AD∥BC,∴∠BAD+∠B=180°.∵∠BAD=∠BCD,∴∠BCD+∠B=180°.∴AB∥DC.∴四边形ABCD是平行四边形.∴∠B=∠D.∵AM=AN,AM⊥BC,AN⊥DC,∴Rt△ABM≌Rt△ADN.∴AB=AD.∴平行四边形ABCD是菱形.12.(1)证明:由题知AE=AD,AB=AC,∠BAC=∠EAD=α.∴∠BAC-∠BAD=∠EAD-∠BAD,即∠EAB=∠DAC.∴△EAB≌△DAC.∴BE=CD.(2)四边形BDFE是菱形.∵AB=AC,AD⊥BC,∴BD=CD.∵BE=CD,∴BE=BD.∵△EAB≌△DAC,∴∠EBF=∠C.∵∠ABC=∠C,∴∠EBF=∠ABC.∵BF=BF,∴△EBF≌△DBF.∴EF=DF.∵EF∥BC,∴∠EFB=∠FBD.∴∠EFB=∠EBF.∴EF=EB.∴BD=BE=EF=FD.∴四边形BDFE是菱形.13.(1)证明:∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC(SSS).∴∠BAC=∠DAC.∵AB=AD,∠BAF=∠DAF,AF=AF,∴△ABF≌△ADF(SAS).∴∠AFB=∠AFD.又∵∠CFE=∠AFB,∴∠AFD=∠CFE.∴∠BAC=∠DAC,∠AFD=∠CFE.(2)∵AB∥CD,∴∠BAC=∠ACD.又∵∠BAC=∠DAC,∴∠DAC=∠ACD.∴AD=CD.∵AB=AD,CB=CD,∴AB=CB=CD=AD.∴四边形ABCD是菱形.(3)当BE⊥CD时,∠EFD=∠BCD.理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF.又∵CF为公共边,∴△BCF≌△DCF(SAS).∴∠CBF=∠CDF.∵BE⊥CD,∴∠BEC=∠DEF=90°.∴∠ECB+∠CBF=∠EFD+∠EDF=90°. ∴∠EFD=∠BCD.第1课时 二次根式及其化简1.化简12=____.2.2)23(-= .3.|)1(1|,22a a +--<化简时当得 . 4.假设三角形的三边a 、b 、c 满足a 2-4a +4+3-b =0,那么笫三边c 的取值范围是_____________.5.判断题(1)假设2a =a ,那么a 一定是正数.( ) (2)假设2a =-a ,那么a 一定是负数.( )(3)2)14.3(π-=π-3.14.( )(4)∵(-5)2=52,∴5)5(,55,5)5(2222-=-∴==-又.( )(5).57)75()75(2-=--=- ( )(6)当a >1时,|a -1|+221a a +-=2a -2.( )(7)假设x =1,那么2x -22)2(244--=+-x x x x =2x -(x -2)=x +2=1+2=3.( )(8)假设2)(xy =-xy ≠0,那么x 、y 异号.( ) (9)m <1时,(m -1)2)1(1-m =1.( )(10)122++x x =x +1.( ) (11)22)3(3-+=0.( ) (12)当m >3时,269m m +--m =-3.( )6.如果等式2x =-x 成立,那么x 的取值范围是________. 7.当x _______时,221x x +-=x -1.8.假设2)2(+-x =x +2,那么x __________. 9.假设m <0,那么|m |+______332=+m m .10.当)169()2(,22122+--<<x x x x 时=________. 11.假设x 与它的绝对值之和为零,那么_________2=x .12.当a _________时,|2a -3a |=-4a . 13.化简2π)310(-=________.14.假设a <0,那么化简4)1(2+-a a 的结果为________. 15.化简)5()5(2m m --的结果是________.16.当a _______时,2122-=a a . 17.假设a <-3时,那么|2-2)1(a +|等于________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
菱形的判定一、选择题1.下列四边形中不一定为菱形的是()A.对角线相等的平行四边形 B.每条对角线平分一组对角的四边形C.对角线互相垂直的平行四边形 D.用两个全等的等边三角形拼成的四边形2.四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD= BC; ⑤AD∥BC.这5个条件中任选三个,能使四边形ABCD是菱形的选法有().A.1种 B.2种 C.3种 D.4种3.菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是()A.8cm和43cm B.4cm和83cm C.8cm和83cm D.4cm和43cm二、填空题4.如图1所示,已知□ABCD,AC,BD相交于点O,•添加一个条件使平行四边形为菱形,添加的条件为________.(只写出符合要求的一个即可)图1 图25.如图2所示,D,E,F分别是△ABC的边BC,CA,AB上的点,且DE∥AB,DF∥CA,要使四边形AFDE 是菱形,则要增加的条件是________.(只写出符合要求的一个即可)6.菱形ABCD的周长为48cm,∠BAD: ∠ABC= 1:•2,•则BD=•_____,•菱形的面积是______.7.在菱形ABCD中,AB=4,AB边上的高DE垂直平分边AB,则BD=_____,AC=_____.四、思考题9.如图,矩形ABCD的对角线相交于点O,PD∥AC,PC∥BD,PD,PC相交于点P,四边形PCOD是菱形吗?试说明理由.]2、如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.3如图所示,四边形ABCD、DEBF都是矩形,AB=BF,AD、BE相交于M,BC、DF交于N,求证:四边形BMDN是菱形.1、用两个边长为a的等边三角形纸片拼成的四边形是___________2、有一组邻边相等的四边形是菱形()3、对角线互相垂直的四边形是菱形()4、对角线互相平分垂直的四边形是菱形()5、如图,△ABC中,AD平分∠BAC,DE∥AC,与AB相交于点E,DF∥AB,与AC相交于点F,试说明四边形AEDF是菱形。
反思:参考答案一、1.A 点拨:本题用排除法作答.2.D 点拨:根据菱形的判定方法判断,注意不要漏解.3.C 点拨:如图所示,若∠ABC=60°,则△ABC 为等边三角形,• 所以AC=AB=14×32=8(cm ),AO=12AC=4cm . 因为AC⊥BD,在Rt△AOB 中,由勾股定理,得OB=222284AB OA -=-=43(cm ),• 所以BD=2OB=83cm .二、4.AB=BC 点拨:还可添加AC⊥BD 或∠ABD=∠CBD 等. 5.点D 在∠BAC 的平分线上(或AE=AF )6.12cm ;723cm 2点拨:如图所示,过D 作DE⊥AB 于E , 因为AD∥BC,•所以∠BAD+∠ABC=180°. 又因为∠BAD:∠ABC=1:2,所以∠BAD=60°,因为AB=AD ,所以△ABD 是等边三角形,所以BD=AD=12cm .所以AE=6cm . 在Rt △AED 中,由勾股定理,得AE 2+ED 2=AD 2,62+ED 2=122,所以ED 2=108, 所以ED=63cm ,所以S 菱形ABCD =12×63=723(cm 2).7.4;43 点拨:如图所示,因为DE 垂直平分AB ,又因为DA=AB ,所以DA=DB=4.所以△ABD 是等边三角形,所以∠BAD=60°, 由已知可得AE=2.在Rt△AED 中,•AE 2+DE 2=AD 2,即22+DE 2=42,所以DE 2=12,DC所以DE=23,因为12AC ·BD=AB ·DE ,即12AC ·4=4×23,所以AC=43.三、8.解:四边形ABCD 是菱形,因为四边形ABCD 中,AB∥CD,且AB=CD , 所以四边形ABCD 是平行四边形,又因为AB=BC,所以ABCD 是菱形.点拨:根据已知条件,不难得出四边形ABCD 为平行四边形,又AB=BC ,即一组邻边相等,由菱形的定义可以判别该四边形为菱形.四、9.解:四边形PCOD 是菱形.理由如下:因为PD∥OC,PC∥OD,•所以四边形PCOD 是平行四边形. 又因为四边形ABCD 是矩形,所以OC=OD , 所以平行四边形PCOD 是菱形.20.3 菱形的判B 卷一、七彩题1.(一题多解题)如图所示,△ABC 中,∠ACB=90°,∠ABC 的平分线BD•交AC 于点D ,CH⊥AB 于H ,且交BD 于点F ,DE⊥AB 于E ,四边形CDEF 是菱形吗?请说明理由.KDACFHGE BD ACFH GEB二、知识交叉题2.(科内交叉题)如图所示,已知△ABC 中,AB=AC ,D 是BC 的中点,过点D•作DE⊥AB,DF⊥AC,垂足分别为E ,F ,再过E ,F 作EG⊥AC,FH⊥AB,垂足分别为G ,H ,且EG ,•FH 相交于点K ,试说明EF 和DK 之间的关系.三、实际应用题3.菱形以其特殊的对称美而备受人们喜爱,在生产生活中有极其广泛的应用.如图所示是一块长30cm ,宽20cm 的长方形的瓷砖,E ,F ,G ,H 分别是边BC ,CD ,DA ,•AB 的中点,涂黑部分为淡蓝色花纹,中间部分为白色.现有一面长4.2m ,宽2.8m•的墙壁准备贴这种瓷砖,试问: (1)这面墙壁最少要贴这种瓷砖多少块?(2)全部贴满瓷砖后,这面墙壁最多会出现多少 个面积相等的菱形?•其中有花纹的菱形有多少个?四、经典中考题4.(宜宾)已知:如图所示,菱形ABCD 中,E ,F 分别是CB ,CD 上的点,且BE=DF . (1)试说明:AE=AF ;(2)若∠B=60°,点E ,F 分别为BC 和CD 的中点,试说明:△AEF 为等边三角形.五、探究学习篇1.(结论开放题)如图所示,在菱形ABCD中,E,F分别是BC,CD上的点,且CE=CF.请你仔细观察图,除了菱形自身已经具备的性质和题目中的条件外,请你选取一个角度提出一个问题,并加以说明.2.阅读下列材料,完成后面的问题:如图,在ABCD中,∠BAD的平分线AE与BC相交于点E,∠ABC 的平分线BF与AD相交于点F,AE•与BF•相交于点O,•求证:•四边形ABEF是菱形.证明:①因为四边形ABCD是平行四边形;②所以AD∥BC;③所以∠ABE+∠BAF= 180°;④因为AE,BF分别平分∠BAF,∠ABE;⑤所以∠1=∠2=12∠BAF,∠3=∠4=12∠ABE; ⑥所以∠1+∠3=12(∠ABE+∠BAF)=90°;⑦所以∠AOB=90°;⑧所以AE⊥BF; ⑨所以四边形ABEF是菱形,问:(1)上述证明是否正确?答:___________;(2)如有错误,在第______步推理错误,应在第_____步后添加如下证明过程:参考答案一、1.解法一:四边形CDEF是菱形.理由:如图所示,因为∠1=∠2,∠ACB=90°,DE⊥AB,又BD=•BD,•所以△CBD≌△EBD,所以CD=DE,因为∠1+∠4=90°,∠2+∠5=90°,∠1=∠2,∠3=∠5,•所以∠3=∠4.所以CF=CD.所以CF=DE.因为CH⊥AB,DE⊥AB,所以CH∥DE.所以CF//DE.•所以四边形CDEF是平行四边形.又因为CF=CD,所以□CDEF是菱形.解法二:四边形CDEF是菱形.理由:如答图20-3-4所示,连结CE交DF于点O.因为∠1=∠2,∠BCD=∠BED=90°,BD=BD,所以△BCD≌△BED.所以BC=BE.又因为∠1=∠2,所以BD⊥CE,且OC=OE.因为∠1+∠4=90°,∠2+∠5=90°,∠1=∠2,∠3=∠5,所以∠3= ∠4.所以CF=CD.又因为CE⊥DF,所以OF=OD.所以四边形CDEF是平行四边形,•又因为DF⊥CE,所以CDEF是菱形.点拨:解法一利用了菱形的定义,•解法二利用了“对角线互相垂直的平行四边形是菱形”的方法,本题除以上两种解法外,还可利用“四条边都相等的四边形是菱形”的方法解决,请同学们再进行探讨.二、2.解:EF与DK互相垂直平分.理由:因为DE⊥AB,FH⊥AB,所以DE∥FH.•因为DF⊥AC,EG⊥AC,所以DF∥EG.所以四边形DEKF是平行四边形.因为AB=AC,所以∠B=∠C.又因为BD=CD,∠BED=∠CFD=90°,所以△BDE≌△CDF,所以DE=DF.所以DEKF是菱形,•所以EF与DK互相垂直平分.点拨:要说明EF与DK互相垂直平分,只要说明四边形DEKF是菱形,•要说明四边形DEKF是菱形,可先说明四边形DEKF是平行四边形,再说明一组邻边相等即可.三、3.解:(1)因为墙壁的总面积为4.2×2.8=11.76(m2),每块瓷砖的面积为0.3×0.2=0.06(m2),所以最少需要贴这种瓷砖11.76÷0.06=196(块).(2)因为每相邻4块瓷砖构成一个有花纹的菱形(如图),在长4.2m,宽2.8m的墙壁上贴长30cm,宽20cm的长方形瓷砖,可贴4.2÷0.3=14(列),2.8÷0.2=14(•行).因此构成的有花纹的菱形共13列13行,所以有花纹的菱形共13×13=169(个).同时,白色菱形的个数与瓷砖的块数相同,故有白色菱形196个.从而面积相等的菱形最多有169+196=365(个).四、4.解:(1)因为四边形ABCD是菱形,所以AB=AD,∠B=∠D,又因为BE=DF,•所以△ABE≌△ADF,所以AE=AF.(2)连结AC.因为AB=BC,∠B=60°,所以△ABC 是等边三角形,因为E是BC的中点,所以AE⊥BC,所以∠BAE=90°-60°=30°,同理∠DAF=30°.因为∠BAD=180°-∠B=120°,所以∠EAF=∠BAD-∠BAE-∠DAF=60°.又因为AE=AF,•所以△AEF是等边三角形.。