光伏离网系统典型设计
离网光伏发电与市电互补自动切换系统设计
![离网光伏发电与市电互补自动切换系统设计](https://img.taocdn.com/s3/m/1ad8d52b657d27284b73f242336c1eb91a373304.png)
工程技术科技创新导报 Science and Technology Innovation Herald62①作者简介:张光雷(1982,5—),男,汉族,山东菏泽人,硕士,初级实验师,研究方向:仪器科学与技术。
DOI:10.16660/ki.1674-098X.2018.35.062离网光伏发电与市电互补自动切换系统设计①张光雷(吉林医药学院 吉林吉林 132013)摘 要:本文设计了一套离网光伏发电与市电互补自动切换的系统。
系统包括离网式光伏发电系统和自动切换系统两部分。
控制系统通过实时检测储能系统两端的电压,把其电压作为系统切换的条件,当电压小于设置的电压阀值时,切换选择电网给负载供电;当电压大于设置的电压阀值时选择使用离网光伏发电系统给负载供电。
通过养生壶加热模拟实验验证此自动切换系统的可行性。
关键词:离网式 光伏发电 切换系统中图分类号:TM761 文献标识码:A 文章编号:1674-098X(2018)12(b)-0062-02传统能源的大量使用对环境造成很大污染,还有其不可再生性使其面临资源枯竭,迫切需要使用太阳能光伏能源来解决当前面临的各种问题。
太阳能光伏系统利用光伏板发电,可以减少对环境的污染,实现绿色节能的目的,也实现了能源的可持续利用,缓解能源枯竭对国家发展造成的影响。
当前由于太阳能光伏系统的大量接入电网,造成电网出现很大波动,为了缓解其造成的影响,大力推广离网式光伏发电系统。
本文利用实验室购置的设备,搭建整套离网式光伏发电系统,并配合控制器的使用实现电网供电和光伏发电系统供电的有机结合,达到最大效率利用太阳能这种新能源的目的,并通过实验验证了此控制策略的可行性。
1 自动切换系统设计原则自动切换系统可以实现离网式光伏发电系统和电网交流的自动切换,可以达到节能环保的目的,有效利用太阳能光伏新能源;也可以将光伏发电系统作为电网停电时的应急电源使用,保证系统负载的不间断工作,从而起到保护设备的安全可靠运行。
光伏离网系统设计思路、常见问题及解决方案
![光伏离网系统设计思路、常见问题及解决方案](https://img.taocdn.com/s3/m/4ec6570af5335a8103d22050.png)
光伏离网系统设计思路、常见问题及解决方案在现代日常生活中,通常我们认为用电是理所当然的事情,然而,当今世界上却还有超过20亿人生活在缺电或者无电地区。
以我们国家为例,由于经济发展水平的差异,西部仍有部分偏远地区的人口没有解决基本用电问题,无法享受现代文明。
光伏离网发电不仅可以解决无电或者少电地区,最过5100考。
光伏离网发电系统主要由光伏组件,支架,控制器,逆变器,蓄电池以及配电系统组成。
系统电气方案设计,主要考虑组件,逆变器(控制器),蓄电池的选型和计算。
设计之前,前期工作要做好,需要先了解用户安装地点的气候条件,负载类型和功率;白天和晚上的用电量,当然,用户的预算和经济情况也要了解清楚,光伏离网系统,用电是靠天气,没有100%的可靠性,这一点一定要和客户讲清楚。
知道以上这些情况,就可以开始做设计了。
光伏离网系统设计三大原则1、根据用户的负载类型和功率确认离网逆变器的功率,家用负载一般分2远低于全年平均值,如果还按最差情况设计太阳能电池组件的功率,那么在一年中的其他时候发电量就会远远超过实际所需,造成浪费。
这时只能考虑适当加大蓄电池的设计容量,增加电能储存,使蓄电池处于浅放电状态,弥补光照最差季节发电量的不足对蓄电浊造成的伤害。
组件的发电量并不能完全转化为用电,还要考虑控制器的效率和机器的损耗以及蓄电池的损耗,太阳能控制器有PWM和MPPT两种类型,PWM控制器效率约85%,输入电压范围比较窄,但价格比较低,MPPT控制器效率约95%,价格比较高。
蓄电池在充放电过程中,也会有10-15%的损耗。
离网系统可用的电量=组件总功率*太阳能发电平均时数*控制器效率*蓄电池效率。
有一些离网用户,没有装过电表,对自己的用电情况不是十分清楚,还有1是W,度不等。
3信、导航、医院救治等则在3~7天内选取。
另外还要考虑光伏发电系统的安装地点,如果在偏远的地方,蓄电池容量要设计得较大,因为维护人员到达现场就需要很长时间。
离网光伏系统设计方案
![离网光伏系统设计方案](https://img.taocdn.com/s3/m/ca3c6465cdbff121dd36a32d7375a417866fc18d.png)
离网光伏系统设计方案离网光伏系统设计方案离网光伏系统是一种独立的发电系统,不依赖于传统的电网供电,可以在没有电网供电的地方提供电力供应。
以下是一份离网光伏系统设计方案:1. 系统规模和功率需求:首先确定所需的发电容量和功率需求,考虑到用电设备的种类和数量,并预估每天的用电量。
根据这些信息,确定适当的系统规模和发电功率。
2. 太阳能电池板选择:选择高效的太阳能电池板以提供足够的电力。
考虑到可用的安装空间和太阳能资源的可利用程度,选择适当的太阳能电池板类型和数量。
3. 蓄电池选择:选择适当的蓄电池以存储白天收集到的电能,供应夜间或云天的电力需求。
选择高效的蓄电池,考虑其容量、充电和放电效率,以及寿命等因素。
4. 逆变器和控制器选择:逆变器将直流电转换为交流电,供应家庭和设备使用。
选择适当的逆变器,考虑其容量和转换效率。
控制器将太阳能电池板和蓄电池连接到逆变器,监控和管理系统运行。
5. 线路设计和安全:设计适当的电线和线路连接太阳能电池板、蓄电池、逆变器和用电设备,确保电力传输的安全和稳定。
6. 安全性和保护措施:考虑到天气条件和环境因素,对系统进行适当的安全性和保护措施。
例如,防雷、过压和短路保护装置。
7. 监控和维护:安装监控系统,监测太阳能电池板的发电效率和系统的运行情况。
定期维护和清洁太阳能电池板以最大程度地提高其效率和寿命。
8. 系统节能和优化:考虑到能源的有效利用和节约,设计系统以最大限度地提高能源利用率。
例如,使用高效的电器设备和灯具,合理设置用电时间和能源管理。
总之,离网光伏系统的设计方案应该充分考虑到用户的用电需求、可用的太阳能资源、系统组件的选择和配套、系统的安全性和稳定性,以及系统的监控和维护等方面。
同时,注重节能和优化,最大化提高能源利用效率。
光伏离网系统设计方案
![光伏离网系统设计方案](https://img.taocdn.com/s3/m/d1b7127042323968011ca300a6c30c225901f0d2.png)
光伏离网系统设计方案
离网光伏系统的设计方案主要包括组件选择、系统布置、控制器和逆变器选择以及系统运行和维护等方面。
首先,在组件选择方面,应选用具有高效率和良好耐候性能的太阳能光伏组件。
可以考虑使用单晶硅或多晶硅太阳能电池板,其高转换效率和长寿命能够保证系统的稳定和可靠运行。
其次,在系统布置方面,需要根据实际用电需求和光照条件合理布置光伏组件。
应选择光照条件良好、无遮挡物、日照时间充足的区域进行组件安装,并确保组件之间的间距合理,以充分利用太阳能资源。
再次,控制器和逆变器的选择也是离网光伏系统设计的重要方面。
控制器的主要功能是对电池的充放电过程进行控制和保护,确保电池的安全和稳定运行。
逆变器则负责将直流电转换为交流电供电使用。
应选用具有高效率和稳定性能的控制器和逆变器,以提高系统的整体效率和可靠性。
最后,系统运行和维护方面需要注意以下几点。
首先,应定期检查光伏组件的清洁情况,及时清除组件表面的灰尘和杂物,以确保光伏组件的发电效率。
其次,定期检查电池的充电和放电状态,及时补充不足的电量,防止电池失去充电能力。
同时,还应定期检查控制器和逆变器的运行状态,确保其正常工作。
最后,需要定期对系统进行巡检和维护,及时发现和处理故障,保证系统的正常运行。
综上所述,离网光伏系统的设计方案应综合考虑组件选择、系统布置、控制器和逆变器选择以及系统运行和维护等方面,以保证系统的高效率和可靠性。
离网型光伏发电系统设计方案
![离网型光伏发电系统设计方案](https://img.taocdn.com/s3/m/8b91bf4ef68a6529647d27284b73f242336c31e1.png)
离网型光伏发电系统设计方案一、引言离网型光伏发电系统是指将光伏发电系统与电网完全隔离,并通过储能设备储存电能,提供给用户使用。
光伏发电系统通过太阳能板将太阳能转换为直流电能,再经过逆变器将直流电转换为交流电,供电给用户使用。
在无法接入传统电网的地区或需要独立供电的应用场景中,离网型光伏发电系统具有广泛的应用前景。
二、系统组成1.光伏电池组:光伏电池组是光伏发电系统的核心部件,由多个太阳能电池板组成。
太阳能板能够将阳光转化为直流电能,为系统提供能源。
2.充放电控制器:充放电控制器主要负责对光伏电池组进行控制和管理,确保系统的充电和放电过程稳定。
充放电控制器还可监测电池组的电压、电流和温度等参数,以提高系统的安全性和效率。
3.储能设备:储能设备是离网型光伏发电系统的关键组成部分,用于储存多余的电能,并在需要时释放。
常见的储能设备包括蓄电池、超级电容、储氢罐等。
蓄电池是较常用的储能设备,能够将电能长时间存储,并通过逆变器将储存的直流电转换为交流电。
4.逆变器:逆变器是将光伏电池组输出的直流电转换为交流电的关键设备。
逆变器可以将直流电的电压和频率转换为符合用户需求的交流电。
三、系统设计1.太阳能资源评估:根据光照强度和日照时间等要素,评估系统所处地区可利用的太阳能资源。
通过太阳能资源评估,确定光伏电池组的组件类型和数量,以及逆变器的容量。
2.负载需求分析:根据用户的用电需求,确定系统的负载容量和负载类型。
负载需求的分析包括负载功率和运行时间的估算。
对于不同类型的负载,可以分配不同的储能容量。
3.储能容量设计:储能容量的设计需要考虑系统的负载需求和太阳能资源。
通过计算所需的电能储存量,确定储能设备的容量。
储能设备的容量应能满足负载的用电需求,并在连续阴天等情况下保证供电稳定。
4.系统可靠性设计:离网型光伏发电系统的可靠性设计是确保系统正常运行的重要因素。
采用双冗余设计可以提高系统的可靠性,例如采用多组光伏电池板、多台储能设备和逆变器等。
离网型光伏发电系统设计方案
![离网型光伏发电系统设计方案](https://img.taocdn.com/s3/m/2f695eda77a20029bd64783e0912a21614797fa1.png)
离⽹型光伏发电系统设计⽅案⼀、系统基本原理 离⽹型光伏发电系统⼴泛应⽤于偏僻⼭区、⽆电区、海岛、通讯基站和路灯等应⽤场所。
系统⼀般由太阳电池组件组成的光伏⽅阵、太阳能充放电控制器、蓄电池组、离⽹型逆变器、直流负载和交流负载等构成。
光伏⽅阵在有光照的情况下将太阳能转换为电能,通过太阳能充放电控制器给负载供电,同时给蓄电池组充电;在⽆光照时,通过太阳能充放电控制器由蓄电池组给直流负载供电,同时蓄电池还要直接给独⽴逆变器供电,通过独⽴逆变器逆变成交流电,给交流负载供电。
图1 离⽹型光伏发电系统⽰意图(1)太阳电池组件 太阳电池组件是太阳能供电系统中的主要部分,也是太阳能供电系统中价值最⾼的部件,其作⽤是将太阳的辐射能量转换为直流电能;(2)太阳能充放电控制器 也称“光伏控制器”,其作⽤是对太阳能电池组件所发的电能进⾏调节和控制,最⼤限度地对蓄电池进⾏充电,并对蓄电池起到过充电保护、过放电保护的作⽤。
在温差较⼤的地⽅,光伏控制器应具备温度补偿的功能。
(3)蓄电池组 其主要任务是贮能,以便在夜间或阴⾬天保证负载⽤电。
(4)离⽹型逆变器 离⽹发电系统的核⼼部件,负责把直流电转换为交流电,供交流负荷使⽤。
为了提⾼光伏发电系统的整体性能,保证电站的长期稳定运⾏,逆变器的性能指标⾮常重要。
⼆、主要组成部件介绍2.1太阳电池组件介绍图2 硅太阳电池组件结构图 太阳电池组件是将太阳光能直接转变为直流电能的阳光发电装置。
根据⽤户对功率和电压的不同要求,制成太阳电池组件单个使⽤,也可以数个太阳电池组件经过串联(以满⾜电压要求)和并联(以满⾜电流要求),形成供电阵列提供更⼤的电功率。
太阳电池组件具有⾼⾯积⽐功率,长寿命和⾼可靠性的特点,在20年使⽤期限内,输出功率下降⼀般不超过20%。
图3太阳电池伏安特性 ⼀般来说,太阳电池的发电量随着⽇照强度的增加⽽按⽐例增加。
随着组件表⾯的温度升⾼⽽略有下降。
太阳电池组件的峰值功率Wp是指在⽇照强度为1000W/M2,AM为1.5,组件表⾯温度为25℃时的Imax*Umax的值(如上图所⽰)。
光伏发电离网系统方案
![光伏发电离网系统方案](https://img.taocdn.com/s3/m/4dfbdb37195f312b3069a5cd.png)
1、离网太阳能发电系统2、客户需求4KW交流水泵,每天工作一小时,2-3天阴雨天,纯离网系统。
3太阳能供电系统:3.1太阳能发电系统原理图4.系统配置与参考价格太阳能电池组件高效晶硅电池组件200Wp*8=1.6KWp蓄电池太阳能专用蓄电池12V150AH * 8pcs,(14.4度电。
可以满足4KW负载工作1小时,三天用电量)控制器48V 50A*1pcs逆变器48V6KW*1pcs纯正弦波逆变器,满足4KW水泵工作,wire 4mm2×1 , 太阳能专用光伏支架光伏专用支架Q235钢材热镀锌工作温度-30℃─50℃参考报价RMB: 元报价有效期30天付款方式预付货款的50%作为定金,余款发货前付清。
交货时间收到定金后15-30天。
分项成本(RMB:元)1、光伏组件:36V200Wp8pcs*8 1.6KW 5760.002、48V50A充电控制、48V6KW纯正弦波逆变一体机:95003、蓄电池:12V 150Ah 8pcs 83504、支架:1000.00注:1. 本预算为概算。
具体价格需等方案及具体配置确定后才能决定。
2. 此报价为主要材料税前报价,不包括运费、安装费及基础施工费;3、由于水泵属于动力元件,开启的瞬间需要额定功率3——5倍的电量,否则水泵是没办法启动的,所以对逆变器要求很高,同样造价也偏高。
5.离网型供电方案多年的开发设计经验,系统设计安全可靠,效率高。
1.高效率2.发电量逐级跟踪系统,当发电量从早上到下午发生变化时,会自动安排不同的机组工作,降低系统自身损耗,3. 休眠功能当不需要负载输出时,机组自动进入休眠状态,降低系统损耗与常用的火力发电系统相比,我公司光伏发电的优点主要体现在:1,无枯竭危险,太阳光普照大地,没有地域的限制无论陆地或海洋,无论高山或岛屿,都处处皆有,可直接开发和利用,且勿须开采和运输2安全可靠,无噪声,无污染排放外,电源无高次谐波干扰,特别适用于通信电源;;3不受资源分布地域的限制,可利用建筑屋面的优势,平原、河道、海洋、高山、雪原、海岛、森林地区,任何需电的地方都可以使用晶体硅太阳能电池发电系统;4无需消耗燃料和架设输电线路即可就地发电供电;5高性能:晶体硅太阳能电池发电系统具有抗台风、抗冰雹、抗潮湿、抗紫外辐照等特点,组件系统可以在零下40度到零上70度环境下正常工作;6使用者从感情上容易接受;7经济使用:建设周期短,获取能源花费的时间短,维修成本底一次性投资终身受益。
太阳能离网电站原理及设计方法介绍
![太阳能离网电站原理及设计方法介绍](https://img.taocdn.com/s3/m/ee6caf038762caaedc33d46f.png)
二、系统各部件介绍:
(一)太阳能电池组件: 1、结构:
P1
2、伏安特性曲线:
P1
3、主要参数: 标准测试条件:温度25℃,大气质量: AM1.5,光照:1kW/㎡ Isc短路电流,电池正负极短路状态时流过的电流 Voc开路电压,正负极开路状态下的电压 Pm最大输出功率,最大输出工作电压与最大工作电流乘积 Vpm最大工作输出电压, Ipm最大工作电流 填充因子:FF=Vm*Im/Voc*Isc 转换效率:n=Vm*Pm/P=FF*Voc*Isc/p(P为太阳辐射功率)
一、太阳能独立光伏发电原理: 指太阳能光伏发电系统不与公共电网连接的发电方式。典型特
征为:白天利用太阳能发电,并将电能存储在蓄电设备中。晚上利 用蓄电池中的电能为负载提供电能,其优点是能够根据具体用电情 况,不受电网覆盖、地理位置的约束,实地配备的光伏供电系统。 具体结构简图如下:
P1
独立光伏发电系统的构成主要包括:太阳能电池组件(阵列)、蓄电池、 逆变器、控制器、接线箱等。 ❖太阳电池组件:属于发电系统,是指把利用半导体的光伏效应将太阳能辐射 能转换成直流电的太阳能电池片封装的阵列; ❖控制器:管理系统,对蓄电池充放电管理; ❖逆变器:逆变系统,将直流电转换成220V50Hz的交流电。 ❖蓄电池:能量储存系统;一般使用阀控式铅酸蓄电池、铅酸胶体蓄电池等 ❖支架、配电柜等辅助设备:辅助保护系统,汇总太阳电池组件的配线。内装 有浪涌保护器器、保险和开关等。
P1
(二)控制器 在大多数光伏系统中都用到了控制器以保护蓄电池免于过充或过放。过充可
能使电池中的电解液汽化,造成故障,而电池过放会引起电池过早失效。过充过 放均有可能损害负载。所以控制器是光伏发电系统的核心部件之一,也是平衡系 统BOS(Balance of System)的主要部分。
光伏离网逆变器并机典型设计
![光伏离网逆变器并机典型设计](https://img.taocdn.com/s3/m/1d5aa7ec2dc58bd63186bceb19e8b8f67c1cef0c.png)
光伏离网逆变器并机典型设计在一些无电地区,安装光伏离网储能系统,比采纳油机发电,更经济和环保。
相对于并网系统,离网系统较为简单,需考虑用户的负载、用电量、当地的天气状况,特殊是负载状况多样化,有像水泵类的感性负载、也有像电炉类的阻性负载,有单相,也有三相。
对于大于10kW的光伏离网系统,可以采纳单机或者多机并联的方式,但各有其优缺点。
本文主要介绍采纳多台离网逆变器搭建的中大功率光伏离网系统设计方法。
古瑞瓦特离网掌握逆变一体SPF5000TL HVM机型,最多支持6台并机,可以搭建30kW以内的光伏离网系统。
既可组成30kW的单相系统,还可组成30kW的三相系统。
考虑到三相负载不肯定均衡,6台逆变器组成三相系统时,还有多种配置方法,如222、321、411等,可以应对不同场景的用户需要。
下表是一个用户的实际负载状况和用电状况。
这个系统较特别,有单相负载与三相负载两种,且三相不平衡。
我们依据负载的分布,先进行逆变器选型设计,系统总负载功率是24kW,用户表示,不会全部的负载都同时运行,最大功率在20kW左右,因此设计采纳6台5kW单相离网逆变器,A相用3台共15kW,B相用2台共10kW,C相用1台共5kW,构成一个30kW三相不平衡的离网系统。
单相逆变器输出有两根线:相线和零线,6台逆变器的零线全接在一起,3台逆变器的相线接在A相,2台逆变器的相线接在B相,1台逆变器的相线接在C相。
多台逆变器并联,每台机还需连接通信线,A相的3台机均流线接在一起,B相的2台机均流线接在一起,连接完线,再接上蓄电池,关闭输出断路器,在面板上设置逆变器的相位,SPF5000进入设置第23项,A相的3台机设为3P1,B相的2台机设为3P2,C相的1台机设为3P3,设置完成,便可运行。
选完逆变器,我们再计算组件用量,该系统平均每天需80度电,当地的峰值日照小时数据是平均每天3.5小时,离网系统的效率比并网低,约为0.7,这样算80/(3.5*0.7),需要32kW左右的光伏组件,设计采纳280W的组件120块,每台逆变器20块,功率5.6kW,组件采纳10串2并的方式接入逆变器,系统总功率33.6kW。
离网型太阳能光伏发电系统设计
![离网型太阳能光伏发电系统设计](https://img.taocdn.com/s3/m/57419865657d27284b73f242336c1eb91b373349.png)
离网型太阳能光伏发电系统设计离网型太阳能光伏发电系统是一种利用太阳能光伏板将太阳能转化为电能,不依赖于传统电网供电的独立发电系统。
在一些偏远地区、山区、海岛等电力资源匮乏的地方,离网型太阳能光伏发电系统成为一种重要的可再生能源发电方式。
本文将从组成部分、系统设计和优势等方面进行详细介绍。
太阳能光伏板组是系统的核心部分,通过光伏效应将太阳能转化为直流电能。
在选择光伏板时,需要考虑光伏板的功率、转换效率和可靠性等参数,以确保系统的稳定发电。
储能设备主要用于储存电能,以应对夜间或阴天等无法直接获取太阳能的情况。
目前常用的储能设备有铅酸蓄电池和锂离子电池等。
在选择储能设备时,需要考虑储能容量、寿命、充放电效率等因素。
逆变器用于将直流电能转化为交流电能,以满足家庭或办公室等用电需求。
逆变器的选择需要考虑输出功率、转换效率和负载容量等因素。
控制器是系统的智能控制中心,用于监测和控制光伏发电系统的运行状态。
控制器可以监测太阳能光伏板组的输出功率、电池的电量、负载的电流等信息,并能根据实际情况进行调节,以保证系统正常运行和安全运行。
在设计离网型太阳能光伏发电系统时,需要考虑以下几个方面。
首先,要确定系统的总功率需求,从而确定光伏板组和储能设备的容量。
其次,需要确定太阳能光伏板的安装方式和角度,以最大限度地提高光伏板的光吸收效率。
此外,还需要考虑光伏板组到储能设备的连线方式和长度,以减小能量传输损失。
最后,需要合理安装逆变器和控制器,并确保系统的运行安全可靠。
离网型太阳能光伏发电系统具有诸多优势。
首先,它不依赖于传统电网供电,无需支付电费,可以有效降低用电成本。
其次,太阳能是一种可再生能源,具有取之不尽、用之不竭的优势,对环境没有污染。
再次,光伏发电系统可以按需配置光伏板组和储能设备,灵活性高,适应性强。
此外,太阳能光伏发电系统的维护成本相对较低,寿命长,维护简便。
综上所述,离网型太阳能光伏发电系统是一种可行的可再生能源发电方式。
离网(独立)-型光伏发电系统设计与简易计算方法
![离网(独立)-型光伏发电系统设计与简易计算方法](https://img.taocdn.com/s3/m/7f0a6a56af45b307e87197dc.png)
离网(独立)-型光伏发电系统设计与简易计算方法乛、離网(独立) 型光伏发电系统(一) 前言:光伏发电系统的设计与计算涉及的影响因素较多,不仅与光伏电站所在地区的光照条件、地理位置、气侯条件、空气质量有关,也与电器负荷功率、用电时间有关,还与需要確保供电的阴雨天数有关,其它尚与光伏组件的朝向、倾角、表面清洁度、环境温度等等因素有关。
而这些因素中,例如光照条件、气候、电器用电状况等主要因素均极不稳定,因此严格地讲,離网光伏电站要十分严格地保持光伏发电量与用电量之间的始终平衡是不可能的。
離网电站的设计计算只能按统计性数据进行设计计算,而通过蓄电池电量的变化调节两者的不平衡使之在发电量与用电量之间达到统计性的平衡。
(二) 设计计算依椐:光伏电站所在地理位置(緯度) 、年平均光辐射量F或年平均每日辐射量f(f=F/365) (详见表1)我国不同地区水平面上光辐射量与日照时间资料表1地区类别地区年平均光辐射量F年平均光照时间H(小时)年平均每天辐射量f(MJ/m2)年平均每天光照时间h(小时)年平均每天1kw/m2峰光照时间h1(小时) MJ/m2 .Kwh/m2一宁夏北部、甘肃北部、新疆南部、青海西部、西藏西部、6680-8401855-23333200-33018.3-23.08.7-9.0 5.0-6.3(印度、巴基斯坦北部)二河北西北部、山西北部、内蒙南部、宁夏南部、甘肃中部、青海东部、西藏东南部、新疆西部5852-6681625-18553000-32016.0-18.38.2-8.7 4.5-5.1三山东、河南、河北东南部、山西南部、新疆北部、吉林、辽宁、云南、陕西北部、甘肃东南部、江5016-58521393-16252200-30013.7-16.06.0-8.2 3.8-4.5苏北部、安徽北部、台湾西南部四湖南、湖北、广西、江西、淅江、福建北部、广东北部、陕西南部、江苏南部、安徽南部、黑龙江、台湾东北部4190-50161163-13931400-22011.5-13.73.8-6.0 3.2-3.8五四川、贵州3344-4190928-11631000-1409.16-11.52.7-3.8 2.5-3.2注:1)1 kwh=3.6MJ;亻2)f=F(MJ/m2 )/365天;3)h=H/365天;4) h1=F(KWh)/365(天)/1000(kw/m2 ) (小时) ;3) 5)表中所列为各地水平面上的辐射量,在倾斜光伏组件上的辐射量比水平面上辐射量多。
离网光伏发电系统方案
![离网光伏发电系统方案](https://img.taocdn.com/s3/m/53e49f7f0812a21614791711cc7931b765ce7b93.png)
离网光伏发电系统方案离网光伏发电系统方案是一种独立运行的能源解决方案,通过光伏发电系统将太阳能转化为电能,供应给独立的电力设备。
该系统不依赖于传统的电网,在偏远地区或无法接入电网的地方具有广泛的应用前景。
本文将就离网光伏发电系统的组成、应用场景及可行性进行讨论。
首先,离网光伏发电系统主要由太阳能电池板、电池储能设备和逆变器三部分组成。
太阳能电池板是系统的核心,负责将太阳能转化为直流电能。
通过电池储能设备对电能进行存储,以满足晚上或阴天无法直接获取太阳能的情况下的使用需求。
逆变器负责将直流电转化为交流电,以供给独立电力设备使用。
离网光伏发电系统的应用场景非常广泛。
在偏远地区或乡村,传统电网的覆盖范围有限,离网光伏发电系统能够为当地居民提供稳定的电力供应。
此外,对于一些岛屿或海上设施来说,连接到电网十分困难,离网光伏发电系统成为了解决能源问题的理想选择。
此外,离网光伏发电系统还可以应用于野外探险、露营活动等户外场合,为人们提供便利的电力支持。
离网光伏发电系统的优势主要体现在以下几个方面。
首先是环保和可持续性。
光伏发电系统依靠太阳能进行发电,不会产生污染物排放,对环境友好,且太阳能作为可再生资源,具有长期可持续的发展潜力。
其次是节约成本。
对于一些无法接入电网的地区来说,传统的电力供应需要进行高额的投资和维护费用,而离网光伏发电系统则可以有效地降低这些成本。
此外,离网光伏发电系统还能够提供可靠的电力供应,不受天气和电网故障的影响。
然而,离网光伏发电系统也存在一些挑战和限制。
首先是系统初期投资较高。
尽管光伏发电技术不断推进和降价,但建设离网光伏发电系统仍然需要投入一定的资金。
其次是能源储存问题。
由于日夜交替和天气变化,需要对电能进行存储,但目前电池储能设备的成本相对较高。
最后是系统易受天气和季节影响。
在阴雨天或冬季,太阳能电池板的效率会下降,对电力供应造成一定影响。
为了克服这些限制,可以采取一些措施。
首先是增加储能容量,以便在光照不足时能够更长时间地供电。
离网型太阳能光伏发电系统
![离网型太阳能光伏发电系统](https://img.taocdn.com/s3/m/fef641ecb14e852458fb5759.png)
离网型太阳能光伏发电系统一、系统构成离网型太阳能光伏发电系统主要由光伏电池板、光伏控制器、蓄电池组、变换器和监控系统等五部分构成。
图1为光伏发电系统示意图,图2为系统构成原理框图。
各部分的功能和作用是:1、光伏电池板:它是光伏发电的核心,其作用是太阳辐射能直接转换为直流电能供给负载或储存在蓄电池中。
2、光伏控制器:由于一般的多晶硅或单晶硅光伏电池板输出为电流源型,不能直接输出给负载和蓄电池,需通过光伏控制器将其变换为蓄电池可接受的稳定的电压或电流,实现蓄电池的有效充电或供给外接负载。
光伏控制器还能实现对蓄电池组的过充和过放保护。
3、变换器:如果要求输出为直流,则可以通过该部分将蓄电池的电压转换成不同的直流电压以适应不同的负载设备。
如果要求输出为交流,则可通过交流逆变器将直流电变换为220V(单相)、380V(三相)交流电,供给交流用电设备。
对于家庭用,该部分一般采用交流逆变器。
4、监控系统:该部分的主要作用是监控各部分的工作参数和工作状态。
同时提供人机操作界面。
图1 离网型光伏发电系统示意图图2 离网型光伏发电构成原理框图二、系统功能及特点1、能实现对蓄电池组的恒压、恒流充电和充电过程的自动管理;2、具有太阳能最大功率点跟踪控制功能(MPPT),发挥光伏电池的最大功效;3、逆变器交流输出波形正弦度好,输出电压稳定,抗扰能力强;4、保护功能完善,具有蓄电池过充、过放、输出过压、过流、短路等多种保护;5、具有交流电网供电后备功能,当多日无太阳光照,蓄电池储存电能无法满足输出供电时,系统可自动切换为交流市电供电,由于采用直流侧无间断切换,交流输出无间断现象;6、友好的人机操作界面、完善的监控功能,系统采用大尺寸触摸液晶屏,操控方便、显示直观;三、系统适应领域1、家庭供电:特别适用于独立式居住的家庭,如城市别墅区、农村家庭。
对于城市居民小区,居住在顶楼的住户或私家阳台较大的家庭也较合适;2、学校供电:特别适用于中小学和幼儿园,在这些地方,一般白天用电较多,且用电量不大;3、医院供电:可与医院的应急供电系统融合在一起,可有效提高医院的应急电源的可靠性和经济性;4、城市小区公共供电:可安装在城市小区公共部分,接入小区的公用电房,作为小区公用电使用;5、政府部门、企事业单位办公大楼供电:集中安装在办公大楼的顶层,作为公用电接入大楼低压配电柜中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光伏离网系统典型设计
当今世界上还有很大一部分人生活在缺电或无电的世界中,他们居住在贫困或偏远地区,远离发电厂和公共电网,因为没有电,无法享受到现代文明给生活带来的信息和便利。
光伏离网发电系统是一种独立自给的可再生新能源供电系统,可以解决他们的基本用电问题。
典型光伏离网发电系统主要由太阳能组件,支架,太阳能控制器,离网逆变器,蓄电池,配电箱等六部分组成,太阳能组件接入到太阳能控制器后,首先满足用户负载使用,之后将多余的电量存储于蓄电池中,以备夜间及阴雨天使用,当蓄电池没电,大部分逆变器还可以支持市电输入(或者柴油发电机)作为补充能源给负载供电。
光伏离网系统的设计不同于并网发电系统,需要考虑用户的负载大小,日用电量,当地的气候条件等因素,根据客户的实际需求选择不同设计方案,相对较为复杂,为了保证离网系统能够可靠工作,做好前期的客户需求调查是非常有必要的。
光伏离网系统的设计,主要包含逆变器的选型,组件容量的设计和蓄电池容量的设计:
一.逆变器选型:根据用户负载大小和类型确定逆变器功率
逆变器功率大小的选择一般要不小于负载总功率,但是考虑到逆变器的使用寿命和后续扩容,建议逆变器功率需要考虑留有一定的裕量,一般为负载功率的1.2~1.5倍,另外,如果负载包含有类似于冰箱,空调,水泵,抽油烟机等带电动机的感性负载(电动机的启动功率是额定功率的3~5倍),需要把负
载的启动功率考虑进来,即负载的启动功率要小于逆变器的最大冲击功率。
以下是逆变器的功率选择的计算公式,供设计时参考。
二.组件容量确定:根据用户日用电量和光照强度确定组件容量
光伏组件白天发的电一部分供给负载使用,剩下部分给蓄电池充电,到了晚上或者太阳辐射不足情况下,储存在蓄电池的电将放电给负载使用,由此可见,在没有市电/或者柴油机作为补充能源情况下,负载的所耗电全部来自光伏组件白天所产生的电,考虑到不同季节,不同地区的光照强度会有差异,为了保证系统的可靠运行,光伏板的容量设计应该在光照最差的季节也能满足需求,以下是光伏板的容量计算公式:
三.蓄电池容量确定:根据夜晚用电量或者后备时间确定电池容量
光伏离网系统的蓄电池主要用于储能,保证在太阳辐射不足时负载还能够正常工作。
对于有重要负载的光伏离网系统,蓄电池容量的设计需要考虑当地的最长阴雨天数。
普通的光伏离网系统负载供电要求不高,考虑到系统成本原因,可以不考虑阴雨天数,只要根据实际的光照强度来调整负载的使用。
另外,大部分光伏离网系统选用铅酸电池,一般取铅酸电池的放电深度为0.5-0.7,蓄电池容量的设计可以参考以下公式:
四.10kVA光伏离网系统典型设计方案
项目背景:给刚果布首都一所学校设计一套光伏离网系统满足其日常用电。
1)项目需求调查
设计方案前期,需要做好客户需求调查(负载信息要准确),具体如下:
2)逆变器选型
客户的负载主要是教室照明,教室风扇,公共场所照明,围墙照明以及广播系统等,负载总功率为6.84kw,逆变器功率选择不小于9.8kVA,可以选用晶福源ESS10K逆控一体机,输出功率为10kVA。
3)组件容量确定
根据客户需求调查表可以看出,学校平均每天用电量约为61.5kWh,当地光照条件较好,按照每天4.23h的日照时间计算,组件配置1.1倍裕量,设计采用88块270W多晶光伏组件,总功率为23.76kW,平均每天发电100.5kwh,考虑到系统效率,一般为0.8,每天可用电80kwh。
4)蓄电池容量确定
学校的照明大部分使用时间是在晚上,考虑电池的使用寿命,应适当增加电池容量,且客户要求的电池备用时间为2天,取电池放电深度为0.7,该项目采用110节的1000AH/2V的胶体电池串联,总容量为220000VAH,可利用电量约为154kwh,可以满足2天的后备时间的用电需求。
5)系统方案图。