2018年湖北省仙桃市中考数学试卷
中考数学试题-2018年潜江市仙桃市、江汉油田初中毕业生学业考试数学试题及参考答案 最新
潜江市 仙桃市江 汉 油 田 2018年初中毕业生学业考试数 学 试 题亲爱的同学,相信在本场考试中,你的数学知识水平和探究能力一定会有很好的发挥.特别提醒你要仔细审题,先易后难.祝你取得好成绩!并请你注意以下几点:1.答卷前,请你用钢笔(圆珠笔)将自己的姓名、准考证号填在密封线内.2.答选择题时,请将答案直接填在选择题答题表中.3.试卷共8页,满分120分,考试时间120分钟.总 分 表一、精心选一选,相信自己的判断!(本大题共有8个小题,每小题3分,满分24分.)在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号填入上面选择题答题表中相应题号下的方格内,填错或不填均为零分. 1.2-的相反数是A. 2B.21 C. 2- D. 21- 2.如图,桌面上有一个一次性纸杯,它的俯视图应是A. B. C. D. 3.若方程022=+-m x x 有两个不相等的实数根,则m 的取值范围是A. 1>mB. 1<mC. 1≤mD. 1≥m4.如图,已知:AB ∥EF ,CE =CA ,∠E =65,则∠CABA.25 B.50 C.60D.65 5.估算728-的值在A. 7和8之间B. 6和7之间C. 3和4之间D. 2和3之间6.如图,已知:AB 是⊙O 的直径,C 、D 是上的三等分点,∠AOE = 60,则∠COE 是A.40 B.60 C.80D.120 7.抛物线c bx x y ++-=2的部分图象如图所示,若0>y , 则x 的取值范围是A.14<<-xB. 13<<-xC. 4-<x 或1>xD.3-<x 或1>x 8.如图,⊙O 上有两点A 与P ,若P 点在圆上匀速运动一周, 那么弦AP 的长度d 与时间t 的关系可能是下列图形中的 9.2018年,外国来中国留学的人数创历史新高, 共计16.27万人,用科学记数法表示这个数 应为 人.10.计算 432a a a ÷⋅的结果是 . 11.母亲节那天,很多同学给妈妈准备了鲜花和 礼盒.从图中信息可知一束鲜花的价格是 元.(第6题图)(第7题图)BE12.某家电商场近来一个月卖出不同功率的空调总数见下表:那么这一个月卖出空调的众数是 .13.小华在距离路灯6米的地方,发现自己在地面上的影长是2米,如果小华的身高为1.6米,那么路灯离地面的高度是 米. 14.如图,反比例函数xy 5=的图象与直线)0(>=k kx y 相交于 A 、 B 两点,AC ∥y 轴,BC ∥x 轴,则△ABC 的面积等于 个面积单位.15.如图,将边长为2 cm 的正方形ABCD 沿其对角 线AC 剪开,再把△ABC 沿着AD 方向平移,得 到△C B A '''ˊ,若两个三角形重叠部分的面积是1cm 2,则它移动的距离A A 'ˊ等于 cm.16.根据下列图形的排列规律,第2018个图形 是 (填序号即可). (①;② ;③ ;④ .)……三、用心做一做,显显你的能力!(本大题共9个小题,满分72分.) 17.(本题满分5分)先化简后求值:1113(2-÷--+a aa a a a , 其中22+=a .'随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对专家的测评数据作了适当处理(如果一个学生有一种以上不良姿势,我们以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题: (1)请将两幅统计图补充完整;(2)在这次形体测评中,一共抽查了名学生,如果全市有10万名初中生,那么全市初中生中,三姿良好的学生约有 人; (3)根据统计结果,请你简单谈谈自己的看法.19. (本题满分6分)如图,已知:梯形ABCD 中,AD ∥BC ,E 为AC 的中点,连接DE 并延长交BC 于点F ,连接AF .(1)求证:AD =CF ; (2)在原有条件不变的情况下,请你再添加一个条件(不再增添辅助线),使四边形AFCD成为菱形,并说明理由.25 5075 100125150175200人数量汉江某一段的宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得 68=∠ACB.(1)求所测之处江的宽度(.48.268tan ,37.068cos ,93.068sin ≈≈≈ ); (2.21.(本题满分8分)如图,AB 是⊙O 的直径,AD 与⊙O 相切于点A ,过B 点作BC ∥OD交⊙O 于点C ,连接OC 、AC ,AC 交OD 于点E . (1)求证:△COE ∽△ABC ;(2)若AB =2,AD =3,求图中阴影部分的面积.中,装有A 、B 、C 三张除颜色以外完全相同的卡片,卡片A 两面均为红,卡片B 两面均为绿,卡片C 一面为红,一面为绿.(1)从小盒中任意抽出一张卡片放到桌面上,朝上一面恰好是绿色,请你猜猜,抽出哪张卡片的概率为0?(2)若要你猜(1)中抽出的卡片朝下一面是什么颜色,猜哪种颜色正确率可能高一些?请你列出表格,用概率的知识予以说明. 23.(本题满分10分)在平面直角坐标系中,小方格都是边长为1的正方形,图①、②、③、④的形状和大小均相同.请你解答下列问题(根据变换需要可适当标上字母):(1)写出图①中点A 关于原点对称的点的坐标;(2)指出图②通过怎样的变换可与图①重合?图④通过怎样的变换可与图③拼成一个矩形? (3)请将图形①、②、③、④四部分密铺到图⑤中,在图⑤中画出图形,并将其中两块涂上阴影.为500箱.进入四月份后,每天的产量保持不变,市场需求量不断增加.如图是四月前后一段时期库存量y(箱)与生产时间t(月份)之间的函数图象.(1)四月份的平均日销售量为多少箱?(2)该厂什么时候开始出现供不应求的现象,此时日销售量为多少箱?(3)为满足市场需求,该厂打算在投资不超过135万元的情况下,购买5台新设备,使扩大生产规模后的日产量不低于四月份的平均日销售量.现有A、B两种型号的设备可供选择,其价格与两种设备的日产量如下表:请问:有哪几种购买设备的方案?若为了使日产量最大,应选择哪种方案?点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4.(1)在OC 边上取一点D ,将纸片沿AD 翻折,使点O落在BC 边上的点E 处,求D 、E 两点的坐标;(2)如图②,若AE 上有一动点P (不与A 、E 重合)自A 点沿AE 方向向E 点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t 秒)50(<<t ,过P 点作ED 的平行线交AD 于点M ,过点M 作AE 的平行线交DE 于点N.求四边形PMNE 的面积S 与时间t 之间的函数关系式;当t 取何值时,S 有最大值?最大值是多少?(3)在(2)的条件下,当t 为何值时,以A 、M 、E 为顶点的三角形为等腰三角形,并求出相应时刻点M 的坐标.答卷完后,请回过头来检查一遍,可要仔细哟!潜江市 仙桃市 江 汉 油 田数学试题参考答案及评分说明说明:本试卷中的解答题一般只给出一种解法,对于其它解法,只要推理严谨、运算合理、结果正确,均给满分.对部分正确的,参照本评分说明酌情给分. 一、选择题(每小题3分,共24分) 1—8 A C B B D C B D 二、填空题(每小题3分,共24分)9. 1.627×118 10.a 11. 15 12. 2匹空调 13. 6.4 14. 10 15. 1 16. ③ 三、解答题(共72分)17.解:(5分)解:原式=aa a a a a a )1)(1()113(-+⋅--+ …………………………(2分) =)1()1(3+--a a ………………………………………(3分) =42-a ……………………………………………………(4分) 当22+=a 时,原式=2218.(6分)解:(1)扇形图中填:三姿良好12%,条形统计图,如图所示……………… (2分) (2)500,12000…………………………(4分) (3)答案不惟一,只要点评具有正确的导向性, 且符合以下要点的意思,均可给分(6分) 要点: 中学生应该坚持锻炼身体,努力纠正坐姿、站姿、走姿中的不良习惯,促 进身心健康发育.19.(6分)(1)证明:在DEA ∆和FEC ∆中,∵BC AD ∥∴ FCE DAE ∠=∠,……(1分) 又∵E 为AC 的中点, ∴CE AE =∴DEA ∆≌FEC ∆ …………………………………………………………(2分) ∴CF AD =…………………………………………………………………(3分) (2)四边形AFCD 两邻边相等或对角线互相垂直或对角线平分一个内角,只要写的条件符合一种类型即可…………………………………………………………(4分)证明:∵BC AD ∥ 又∵CF AD =∴四边形AFCD 为平行四边形…………………………………………(5分) 又∵DC DA = ∴四边形AFCD 为菱形………………………………(6分) (选取其中任意一个结论证明,只要正确均可得分) 20.(7分)(1)在BAC Rt ∆中,68=∠ACB ,∴24848.210068tan =⨯≈⋅=AC AB (米)答:所测之处江的宽度约为248米……………………………………………………(3分) (2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识0 255075 100125150175200坐姿 不良 站姿不良来解决问题的,只要正确即可得分.………………………………………………(7分) 21.(8分)(1)证明:∵AB 为⊙O 的直径,∴90=∠BCA又∵BC ∥OD ,∴AC OE ⊥,即:90=∠=∠BCA OEC …………………(2分)又∵OC OA =,∴O C EB AC ∠=∠………………………………………………(3分)∴COE ∆∽ABC ∆.…………………………………………………………………(4分) (2)过点B 作OC BF ⊥,垂足为F .∵AD 与⊙O 相切,∴90=∠OAD 在OAD Rt ∆中,∵,3,1==AD OA∴33tan =∠D ∴30=∠D …………………(5又∴90=∠+∠=∠+∠EAD D EAD BAC∴30=∠=∠D BAC ,∴60=∠BOC ………………………………………(6分)∴4360sin 112121=⨯⨯⨯=⋅⋅=∆ BF OC S OBC ………………………………(7分) ∴=-=∆O BC O CB S S S 扇阴436433601602-=-⨯ππ…………………………(8分) 22.(8分)解:(1)依题意可知:抽出卡片A 的概率为0;…………………(3分)(2)由(1)知,一定不会抽出卡片A ,只会抽出卡片B 或C ,且抽出的卡片朝上的一面是绿色,那么可列下表:………………………………(6分)可见朝下一面的颜色有绿、绿、红三种可能,即:P (绿)=32,P (红)=31,所以猜绿色正确率可能高一些.………………………………………………………(8分) 23.(10分)(1)点A 关于原点对称的点的坐标为(4,–3分) (2)变换中,平移时说出平移方向、单位长度;旋转时, 说出旋转中心、方向和旋转角度,并且能使变换后的图形 达到题目要求均给满分.②与①重合(3分);④与③拼成矩形(3分)…………………………………………………………………………… (7分)(3)如图,图形清楚、正确,涂上其中任意两块……………………………………(10分)24.解:(1)210306300= ∴四月份的平均日销售量为210+500=710箱……………………………(2分)(2)五月;500=a (一个结果1分)…………………………………………(4分)(3)设购买A 型设备x 台,则购买B 型设备)5(x -台,依题意有:⎩⎨⎧≥-+≤-+210)5(4050135)5(2528x x x x …………………………………………………(6分) 解得:3101≤≤x ∴x 取整数1,2,3 方案①:购买A 型设备1台,购买B 型设备4台方案②:购买A 型设备2台,购买B 型设备3台方案③:购买A 型设备3台,购买B 型设备2台………………………(8分)若选择①,日产量可增加50×1+40×4=210(箱)若选择日产量可增加50×2+40×3=220(箱)若选择③,日产量为50×3+40×2=230(箱)∴选择方案③.………………………………………………………………(10分)25.解:(1)依题意可知,折痕AD 是四边形OAED 的对称轴,∴在ABE Rt ∆中,45===AB AO AE , ∴3452222=-=-=AB AE BE ∴2=CE∴E 点坐标为)4,2(………………………………………………………(2分)在DCE Rt ∆中,222DE CE DC =+ 又∵OD DE =∴2222)4(OD OD =+- 解得:25=OD ∴D 点坐标为)25,0(………………………………………………………(3分)(2)如图①∵PM ∥ED ∴∽APM ∆AED ∆ ∴AE AP ED PM = 又知525==AE ED t AP ,=, ∴2255t t PM =⨯= 又∵t PE -=5 而显然四边形PMNE 为矩形∴t t t t PE PM S PMNE 2521)5(22+-=-⨯=⋅=矩形…………………(5分)∴825)25(212+--=t S PMNE 矩形 又∵5250<<∴当25=t 时,PMNE S 矩形有最大值825(面积单位)…………………(6分) (3)(i )若MA ME =(如图①)在AED Rt ∆中,MA ME =,,AE PM ⊥ ∴P 为AE 的中点又∵PM ∥ED , ∴M 为AD 的中点∴2521==AE AP ∴25==t AP ∴4521==t PM 又∵P 与F 是关于AD 对称的两点 ∴25=M x ,45=M y ∴当25=t 时(5250<<),A M E ∆为等腰三角形 此时M 点坐标为)45,25(………………………………………………(9分) (ii )若5==AE AM (如图②) 在AOD Rt ∆中,5255)25(2222=+=+=AO OD AD ∵PM ∥ED ,∴∽APM ∆AED ∆,∴ADAM AE AP = ∴5252555=⨯=⋅==AD AE AM AP t ∴521==t PM 同理可知:525-=M x , 5=M y ∴当52=t 时(5520<<),此时M 点坐标为)5525(,-综合(i )、(ii )可知:25=t 或52=t 时,以A 、M 、E 为顶点的三角形为等腰三角形,相应M 点的坐标为)5,5(或)5525(,-………………………………………(12分)。
2018年湖北省江汉油田、潜江、天门、仙桃中考数学试卷
()
第1页
A. |b|<2<|a|
B.1-2a>1-2b
C. a<b<2
D. a<-2<-b
6.下列说法正确的是
()
A.了解某班学生的身高情况,适宜采用抽样调查
B.数据 3,5,4,1,1 的中位数是 4
C.数据 5,3,5,4,1,1 的众数是 1 和 5
D.甲、乙两人射中环数的方差分别为 s甲2 2 , s乙2 =3 ,说明乙的射击成
1(8 1 3) n mile 处,则海岛 A , C 之间的距离为
n mile.
16.如图,在平面直角坐标系中, △P1OA1 , △P2 A1A2 , △P3 A2 A3 ,…都是等
腰直角三角形,其直角顶点
P(1 3,3),P2
,P3
,…均在直线
y
1 3
x
4
上.设
△P1OA1 ,△P2 A1A2 ,△P3 A2 A3 ,…的面积分别为 S1 , S2 , S3 ,…,依据图
绩比甲稳定
7.一个圆锥的侧面积是底面积的 2 倍,则该圆锥侧面展开图的圆心角的
度数是 ( )
A.120
B.180
C. 240
D. 300
8.若关于
x
的一元一次不等式组
6
(3 x+1)<x x m> 1,
9,的解集是
x>3
,则
m
的取
值范围是
()
A. m>4
B. m≥4
C. m<4
D. m≤4
9.如图,正方形 ABCD 中, AB=6 ,G 是 BC 的中点.将△ABG 沿 AG 对折至
法或画树状图的方法,求所选派的两名教师恰好是 1 男 1 女的概率.
2018年湖北省仙桃市数学中考模拟试卷(一)(有答案解析)最新
湖北省仙桃市西流河镇初级中学2018届中考模拟试卷(一)数学一、单选题1.下表是某水库一周内水位高低的变化情况(用正数记水位比前一日上升数,用负数记下降数).那么本周星期几水位最低()B.星期四C.星期六D.星期五【答案】C【考点】正数和负数的认识及应用【解析】【解答】解:由于用正数记水位比前一日上升数,用负数记下降数,由图表可知,周一水位比上周末上升0.12米,从周二开始水位下降,一直降到周六,所以星期六水位最低.故答案为:C.【分析】由于用正数记水位比前一日上升数,用负数记水位比前一日下降数,由图表即可知答案。
2.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5 300万美元,“5 300万”用科学记数法可表示为()A. 5.3×103B. 5.3×104C. 5.3×107D. 5.3×108【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】5300万=53000000= .故答案为:C.【分析】科学记数法表示绝对值较大的数,一般表示成a ×10n,的形式,其中1 ≤∣a ∣<10, n是原数的整数位数减一。
3.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K ﹣∠H=27°,则∠K=()A. 76°B. 78°C. 80°D. 82°【答案】B【考点】角的平分线,平行线的性质【解析】【解答】如图,分别过K、H作AB的平行线MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE= ∠ABK,∠SHC=∠DCF= ∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故答案为:B.【分析】分别过K、H作AB的平行线MN和RS,根据平行线的性质和角平分线的性质可用∠ABK和∠DCK 分别表示出∠H和∠K,从而可找到∠H和∠K的关系,结合条件可求得∠K。
2018年湖北省江汉油田、潜江市、天门市、仙桃市中考数学试题含参考解析
2018年湖北省江汉油田中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3.00分)8的倒数是()A.﹣8 B.8 C.﹣ D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.2.(3.00分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:观察图形可知,这个几何体是三棱柱.故选:A.3.(3.00分)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n【解答】解:数350亿用科学记数法表示为3.5×1010.故选:B.4.(3.00分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30°B.36°C.45°D.50°【分析】直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB 的度数,即可得出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠ADC=150°,∠ADB=∠DBC,∵∠ADB:∠BDC=1:2,∴∠ADB=×150°=50°,∴∠DBC的度数是50°.故选:D.5.(3.00分)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a|B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b【分析】根据图示可以得到a、b的取值范围,结合绝对值的含义推知|b|、|a|的数量关系.【解答】解:A、如图所示,|b|<2<|a|,故本选项不符合题意;B、如图所示,a<b,则2a<2b,由不等式的性质知1﹣2a>1﹣2b,故本选项不符合题意;C、如图所示,a<﹣2<b<2,则﹣a>2>b,故本选项符合题意;D、如图所示,a<﹣2<b<2且|a|>2,|b|<2.则a<﹣2<﹣b,故本选项不故选:C.6.(3.00分)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定【分析】直接利用方差的意义以及中位数的定义和众数的定义分别分析得出答案.【解答】解:A、了解某班学生的身高情况,适宜采用全面调查,故此选项错误;B、数据3,5,4,1,1的中位数是:3,故此选项错误;C、数据5,3,5,4,1,1的众数是1和5,正确;D、甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明甲的射击成绩比乙稳定.故选:C.7.(3.00分)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240° D.300°【分析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,则=2πr=πR,解得,n=180°,故选:B.8.(3.00分)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤4【分析】先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m 的不等式,再求出解集即可.【解答】解:,∵解不等式①得:x>3,解不等式②得:x>m﹣1,又∵关于x的一元一次不等式组的解集是x>3,∴m﹣1≤3,解得:m≤4,故选:D.9.(3.00分)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG 对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.5【分析】根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE;在直角△ECG中,根据勾股定理即可求出DE的长.【解答】解:∵AB=AD=AF,∠D=∠AFE=90°,在Rt△ABG和Rt△AFG中,∵,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则EC=6﹣x.∵G为BC中点,BC=6,∴CG=3,在Rt△ECG中,根据勾股定理,得:(6﹣x)2+9=(x+3)2,解得x=2.则DE=2.故选:C.10.(3.00分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:A.二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3.00分)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.【分析】根据概率公式进行计算即可.【解答】解:任选一个字母,这个字母为“s”的概率为:=,故答案为:.12.(3.00分)计算:+|﹣2|﹣()﹣1=0.【分析】根据二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则计算即可.【解答】解:原式=+2﹣﹣2=0故答案为:0.13.(3.00分)若一个多边形的每个外角都等于30°,则这个多边形的边数为12.【分析】根据已知和多边形的外角和求出边数即可.【解答】解:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,∴多边形的边数是=12,故答案为:12.14.(3.00分)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为3200件.【分析】设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据发往A、B两区的物资共6000件,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据题意得:x+1.5x﹣1000=6000,解得:x=2800,∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.15.(3.00分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C 附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile处,则海岛A,C之间的距离为18n mile.【分析】作AD⊥BC于D,根据正弦的定义、正切的定义分别求出BD、CD,根据题意列式计算即可.【解答】解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=x,则CD=x,在Rt△ABD中,BD=x,则x+x=18(1+),解得,x=18,答:A,C之间的距离为18海里.故答案为:1816.(3.00分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.【分析】分别过点P1、P2、P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【解答】解:如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,∵P1(3,3),且△P1OA1是等腰直角三角形,∴OC=CA1=P1C=3,设A1D=a,则P2D=a,∴OD=6+a,∴点P2坐标为(6+a,a),将点P2坐标代入y=﹣x+4,得:﹣(6+a)+4=a,解得:a=,∴A1A2=2a=3,P2D=,同理求得P3E=、A2A3=,∵S1=×6×3=9、S2=×3×=、S3=××=、……∴S2018=,故答案为:.三、解答题(本大题共9个小题,满分72分.)17.(5.00分)化简:•.【分析】先将分子、分母因式分解,再约分即可得.【解答】解:原式=•=.18.(5.00分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;(2)利用菱形以及平行线的性质即可解决问题;【解答】解:(1)如图所示,射线OP即为所求.(2)如图所示,点C即为所求;19.(7.00分)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了60名教师,m=5;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E 组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.【分析】(1)根据:某组的百分比=×100%,所有百分比的和为1,计算即可;(2)先计算出D、F组的人数,再补全条形统计图;(3)列出树形图,根据总的情况和一男一女的情况计算概率.【解答】解:(1)由条形图知,C组共有15名,占25%所以本次共随机采访了15÷25%=60(名)m=100﹣10﹣20﹣25﹣30﹣10=5故答案为:60,5(2)D组教师有:60×30%=18(名)F组教师有:60×5%=3(名)(3)E组共有6名教师,4男2女,F组有三名教师,1男2女共有18种可能,==∴P一男一女答:所选派的两名教师恰好是1男1女的概率为20.(7.00分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.21.(8.00分)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k ≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y 轴交于点C,且△ABO的面积为,求直线BC的解析式.【分析】(1)将A点坐标代入直线y=﹣x中求出m的值,确定出A的坐标,将A的坐标代入反比例解析式中求出k的值,即可确定出反比例函数的解析式;(2)根据直线的平移规律设直线BC的解析式为y=﹣x+b,由同底等高的两三角形面积相等可得△ACO与△ABO面积相等,根据△ABO的面积为列出方程OC•2=,解方程求出OC=,即b=,进而得出直线BC的解析式.【解答】解:(1)∵直线y=﹣x过点A(m,1),∴﹣m=1,解得m=﹣2,∴A(﹣2,1).∵反比例函数y=(k≠0)的图象过点A(﹣2,1),∴k=﹣2×1=﹣2,∴反比例函数的解析式为y=﹣;(2)设直线BC的解析式为y=﹣x+b,∵三角形ACO与三角形ABO面积相等,且△ABO的面积为,∴△ACO的面积=OC•2=,∴OC=,∴b=,∴直线BC的解析式为y=﹣x+.22.(8.00分)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.【分析】(1)连接OC,如图,利用圆周角定理得到∠ACB=90°,再根据斜边上的中线性质得MC=MG=ME,所以∠G=∠1,接着证明∠1+∠2=90°,从而得到∠OCM=90°,然后根据直线与圆的位置关系的判断方法可判断CM为⊙O的切线;(2)先证明∠G=∠A,再证明∠EMC=∠4,则可判定△EFC∽△ECM,利用相似比先计算出CE,再计算出EF,然后计算ME﹣EF即可.【解答】解:(1)CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线;(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°,∴∠1=∠5,而∠1=∠G,∠5=∠A,∴∠G=∠A,∵∠4=2∠A,∴∠4=2∠G,而∠EMC=∠G+∠1=2∠G,∴∠EMC=∠4,而∠FEC=∠CEM,∴△EFC∽△ECM,∴==,即==,∴CE=4,EF=,∴MF=ME﹣EF=6﹣=.23.(10.00分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?【分析】(1)根据线段EF经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(2)显然,当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,利用待定系数法确定一次函数的表达式即可;(3)利用:总利润=每千克利润×产量,根据x的取值范围列出有关x的二次函数,求得最值比较可得.【解答】解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x ≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.24.(10.00分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.25.(12.00分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为(,0),(3,0),(,);(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用二次函数图象上点的坐标特征可求出点A、B的坐标,再利用配方法即可找出抛物线的顶点D的坐标;(2)由点D的坐标结合对称找出点E的坐标,根据点B、C的坐标利用待定系数法可求出直线BC的解析式,再利用一次函数图象上点的坐标特征即可得出关于t的一元一次不等式组,解之即可得出t的取值范围;(3)假设存在,设点P的坐标为(m,0),则点Q的横坐标为m,分m<或m>3及≤m≤3两种情况,利用勾股定理找出关于m的一元二次方程,解之即可得出m的值,进而可找出点P的坐标,此题得解.【解答】解:(1)当y=0时,有﹣x2+x﹣1=0,解得:x1=,x2=3,∴点A的坐标为(,0),点B的坐标为(3,0).∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+,∴点D的坐标为(,).故答案为:(,0);(3,0);(,).(2)∵点E、点D关于直线y=t对称,∴点E的坐标为(,2t﹣).当x=0时,y=﹣x2+x﹣1=﹣1,∴点C的坐标为(0,﹣1).设线段BC所在直线的解析式为y=kx+b,将B(3,0)、C(0,﹣1)代入y=kx+b,,解得:,∴线段BC所在直线的解析式为y=x﹣1.∵点E在△ABC内(含边界),∴,解得:≤t≤.(3)当x<或x>3时,y=﹣x2+x﹣1;当≤x≤3时,y=x2﹣x+1.假设存在,设点P的坐标为(m,0),则点Q的横坐标为m.①当m<或m>3时,点Q的坐标为(m,﹣x2+x﹣1)(如图1),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(﹣m2+m)2=m2+1+m2+(﹣m2+m﹣1)2,整理,得:m1=,m2=,∴点P的坐标为(,0)或(,0);②当≤m≤3时,点Q的坐标为(m,x2﹣x+1)(如图2),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(m2﹣m+2)2=m2+1+m2+(m2﹣m+1)2,整理,得:11m2﹣28m+12=0,解得:m3=,m4=2,∴点P的坐标为(,0)或(1,0).综上所述:存在以CQ为直径的圆与x轴相切于点P,点P的坐标为(,0)、(,0)、(1,0)或(,0).。
湖北省仙桃市中考数学试卷
2018年湖北省仙桃市中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3.00分)(2018•天门)8的倒数是()A.﹣8 B.8 C.﹣ D.2.(3.00分)(2018•天门)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥3.(3.00分)(2018•天门)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×10104.(3.00分)(2018•天门)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30°B.36°C.45°D.50°5.(3.00分)(2018•天门)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a|B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b 6.(3.00分)(2018•天门)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定7.(3.00分)(2018•天门)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240° D.300°8.(3.00分)(2018•天门)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤49.(3.00分)(2018•天门)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.510.(3.00分)(2018•天门)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h 的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3.00分)(2018•天门)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.12.(3.00分)(2018•天门)计算:+|﹣2|﹣()﹣1=.13.(3.00分)(2018•天门)若一个多边形的每个外角都等于30°,则这个多边形的边数为.14.(3.00分)(2018•天门)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为件.15.(3.00分)(2018•天门)我国海域辽阔,渔业资源丰富.如图,现有渔船B 在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile处,则海岛A,C之间的距离为n mile.16.(3.00分)(2018•天门)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.三、解答题(本大题共9个小题,满分72分.)17.(5.00分)(2018•天门)化简:•.18.(5.00分)(2018•天门)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.19.(7.00分)(2018•天门)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了名教师,m=;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.20.(7.00分)(2018•天门)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.21.(8.00分)(2018•天门)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y 轴交于点C,且△ABO的面积为,求直线BC的解析式.22.(8.00分)(2018•天门)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.23.(10.00分)(2018•天门)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?24.(10.00分)(2018•天门)问题:如图①,在Rt△ABC中,AB=AC,D为BC 边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.25.(12.00分)(2018•天门)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A 在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为,,;(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.2018年湖北省仙桃市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3.00分)(2018•天门)8的倒数是()A.﹣8 B.8 C.﹣ D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.【点评】此题主要考查倒数的概念及性质,属于基础题,注意掌握倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3.00分)(2018•天门)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:观察图形可知,这个几何体是三棱柱.故选:A.【点评】本题考查的是三棱柱的展开图,考法较新颖,需要对三棱柱有充分的理解.3.(3.00分)(2018•天门)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:数350亿用科学记数法表示为3.5×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3.00分)(2018•天门)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30°B.36°C.45°D.50°【分析】直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB 的度数,即可得出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠ADC=150°,∠ADB=∠DBC,∵∠ADB:∠BDC=1:2,∴∠ADB=×150°=50°,∴∠DBC的度数是50°.故选:D.【点评】此题主要考查了平行线的性质,正确得出∠ADB度数是解题关键.5.(3.00分)(2018•天门)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a|B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b【分析】根据图示可以得到a、b的取值范围,结合绝对值的含义推知|b|、|a|的数量关系.【解答】解:A、如图所示,|b|<2<|a|,故本选项不符合题意;B、如图所示,a<b,则2a<2b,由不等式的性质知1﹣2a>1﹣2b,故本选项不符合题意;C、如图所示,a<﹣2<b<2,则﹣a>2>b,故本选项符合题意;D、如图所示,a<﹣2<b<2且|a|>2,|b|<2.则a<﹣2<﹣b,故本选项不符合题意;故选:C.【点评】此题考查了绝对值意义,比较两个负数大小的方法,有理数的运算,解本题的关键是掌握有理数的运算.6.(3.00分)(2018•天门)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定【分析】直接利用方差的意义以及中位数的定义和众数的定义分别分析得出答案.【解答】解:A、了解某班学生的身高情况,适宜采用全面调查,故此选项错误;B、数据3,5,4,1,1的中位数是:3,故此选项错误;C、数据5,3,5,4,1,1的众数是1和5,正确;D、甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明甲的射击成绩比乙稳定.故选:C.【点评】此题主要考查了方差的意义以及中位数的定义和众数的定义,正确把握相关定义是解题关键.7.(3.00分)(2018•天门)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240° D.300°【分析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,则=2πr=πR,解得,n=180°,故选:B.【点评】本题考查的是圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.8.(3.00分)(2018•天门)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤4【分析】先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m 的不等式,再求出解集即可.【解答】解:,∵解不等式①得:x>3,解不等式②得:x>m﹣1,又∵关于x的一元一次不等式组的解集是x>3,∴m﹣1≤3,解得:m≤4,故选:D.【点评】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出关于m的不等式是解此题的关键.9.(3.00分)(2018•天门)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.5【分析】根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE;在直角△ECG中,根据勾股定理即可求出DE的长.【解答】解:如图,连接AE,∵AB=AD=AF,∠D=∠AFE=90°,在Rt△AFE和Rt△ADE中,∵,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则EC=6﹣x.∵G为BC中点,BC=6,∴CG=3,在Rt△ECG中,根据勾股定理,得:(6﹣x)2+9=(x+3)2,解得x=2.则DE=2.故选:C.【点评】本题考查了翻折变换,解题的关键是掌握翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理.10.(3.00分)(2018•天门)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h 的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:A.【点评】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3.00分)(2018•天门)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.【分析】根据概率公式进行计算即可.【解答】解:任选一个字母,这个字母为“s”的概率为:=,故答案为:.【点评】此题主要考查了概率公式,关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数.12.(3.00分)(2018•天门)计算:+|﹣2|﹣()﹣1=0.【分析】根据二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则计算即可.【解答】解:原式=+2﹣﹣2=0故答案为:0.【点评】本题考查的是二次根式的混合运算,掌握二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则是解题的关键.13.(3.00分)(2018•天门)若一个多边形的每个外角都等于30°,则这个多边形的边数为12.【分析】根据已知和多边形的外角和求出边数即可.【解答】解:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,∴多边形的边数是=12,故答案为:12.【点评】本题考查了多边形的内角和外角,能熟记多边形的外角和等于360°是解此题的关键.14.(3.00分)(2018•天门)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为3200件.【分析】设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据发往A、B两区的物资共6000件,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据题意得:x+1.5x﹣1000=6000,解得:x=2800,∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.15.(3.00分)(2018•天门)我国海域辽阔,渔业资源丰富.如图,现有渔船B 在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile处,则海岛A,C之间的距离为18n mile.【分析】作AD⊥BC于D,根据正弦的定义、正切的定义分别求出BD、CD,根据题意列式计算即可.【解答】解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=x,则CD=x,在Rt△ABD中,BD=x,则x+x=18(1+),解得,x=18,答:A,C之间的距离为18海里.故答案为:18【点评】本题考查的是解直角三角形的应用,掌握方向角的概念、锐角三角函数的定义是解题的关键.16.(3.00分)(2018•天门)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.【分析】分别过点P1、P2、P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【解答】解:如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,∵P1(3,3),且△P1OA1是等腰直角三角形,∴OC=CA1=P1C=3,设A1D=a,则P2D=a,∴OD=6+a,∴点P2坐标为(6+a,a),将点P2坐标代入y=﹣x+4,得:﹣(6+a)+4=a,解得:a=,∴A1A2=2a=3,P2D=,同理求得P3E=、A2A3=,∵S1=×6×3=9、S2=×3×=、S3=××=、……∴S2018=,故答案为:.【点评】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题,属于中考常考题型.三、解答题(本大题共9个小题,满分72分.)17.(5.00分)(2018•天门)化简:•.【分析】先将分子、分母因式分解,再约分即可得.【解答】解:原式=•=.【点评】本题主要考查分式的乘除法,解题的关键是掌握分式乘除运算顺序和运算法则.18.(5.00分)(2018•天门)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;(2)利用菱形以及平行线的性质即可解决问题;【解答】解:(1)如图所示,射线OP即为所求.(2)如图所示,点C即为所求;【点评】本题考查作图﹣应用与设计、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(7.00分)(2018•天门)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了60名教师,m=5;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E 组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.【分析】(1)根据:某组的百分比=×100%,所有百分比的和为1,计算即可;(2)先计算出D、F组的人数,再补全条形统计图;(3)列出树形图,根据总的情况和一男一女的情况计算概率.【解答】解:(1)由条形图知,C组共有15名,占25%所以本次共随机采访了15÷25%=60(名)m=100﹣10﹣20﹣25﹣30﹣10=5故答案为:60,5(2)D组教师有:60×30%=18(名)F组教师有:60×5%=3(名)(3)E组共有6名教师,4男2女,F组有三名教师,1男2女共有18种可能,∴P==一男一女答:所选派的两名教师恰好是1男1女的概率为【点评】本题考查了条形图、频率分布图、树形图、概率等相关知识,难度不大,综合性较强.概率=所求情况数与总情况数之比20.(7.00分)(2018•天门)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.21.(8.00分)(2018•天门)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y 轴交于点C,且△ABO的面积为,求直线BC的解析式.【分析】(1)将A点坐标代入直线y=﹣x中求出m的值,确定出A的坐标,将A的坐标代入反比例解析式中求出k的值,即可确定出反比例函数的解析式;(2)根据直线的平移规律设直线BC的解析式为y=﹣x+b,由同底等高的两三角形面积相等可得△ACO与△ABO面积相等,根据△ABO的面积为列出方程OC•2=,解方程求出OC=,即b=,进而得出直线BC的解析式.【解答】解:(1)∵直线y=﹣x过点A(m,1),∴﹣m=1,解得m=﹣2,∴A(﹣2,1).∵反比例函数y=(k≠0)的图象过点A(﹣2,1),∴k=﹣2×1=﹣2,∴反比例函数的解析式为y=﹣;(2)设直线BC的解析式为y=﹣x+b,∵三角形ACO与三角形ABO面积相等,且△ABO的面积为,∴△ACO的面积=OC•2=,∴OC=,∴b=,∴直线BC的解析式为y=﹣x+.【点评】此题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,三角形的面积求法,以及一次函数图象与几何变换,熟练掌握待定系数法是解题的关键.22.(8.00分)(2018•天门)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.【分析】(1)连接OC,如图,利用圆周角定理得到∠ACB=90°,再根据斜边上的中线性质得MC=MG=ME,所以∠G=∠1,接着证明∠1+∠2=90°,从而得到∠OCM=90°,然后根据直线与圆的位置关系的判断方法可判断CM为⊙O的切线;(2)先证明∠G=∠A,再证明∠EMC=∠4,则可判定△EFC∽△ECM,利用相似比先计算出CE,再计算出EF,然后计算ME﹣EF即可.【解答】解:(1)CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线;(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°,∴∠1=∠5,而∠1=∠G,∠5=∠A,∴∠G=∠A,∵∠4=2∠A,∴∠4=2∠G,而∠EMC=∠G+∠1=2∠G,∴∠EMC=∠4,而∠FEC=∠CEM,∴△EFC∽△ECM,∴==,即==,∴CE=4,EF=,∴MF=ME﹣EF=6﹣=.【点评】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l 的距离为d:直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了圆周角定理.23.(10.00分)(2018•天门)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?【分析】(1)根据线段EF经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(2)显然,当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,利用待定系数法确定一次函数的表达式即可;(3)利用:总利润=每千克利润×产量,根据x的取值范围列出有关x的二次函数,求得最值比较可得.【解答】解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x ≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.【点评】本题考查了二次函数的应用,待定系数法求二次函数的解析式,解题的关键是从实际问题中抽象出二次函数模型.24.(10.00分)(2018•天门)问题:如图①,在Rt△ABC中,AB=AC,D为BC 边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.【点评】本题考查的是全等三角形的判定和性质、勾股定理、以及旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题的关键.25.(12.00分)(2018•天门)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A 在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为(,0),(3,0),(,);(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用二次函数图象上点的坐标特征可求出点A、B的坐标,再利用配方法即可找出抛物线的顶点D的坐标;(2)由点D的坐标结合对称找出点E的坐标,根据点B、C的坐标利用待定系数法可求出直线BC的解析式,再利用一次函数图象上点的坐标特征即可得出关于t的一元一次不等式组,解之即可得出t的取值范围;(3)假设存在,设点P的坐标为(m,0),则点Q的横坐标为m,分m<或m>3及≤m≤3两种情况,利用勾股定理找出关于m的一元二次方程,解之即可得出m的值,进而可找出点P的坐标,此题得解.【解答】解:(1)当y=0时,有﹣x2+x﹣1=0,解得:x1=,x2=3,∴点A的坐标为(,0),点B的坐标为(3,0).∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+,∴点D的坐标为(,).故答案为:(,0);(3,0);(,).(2)∵点E、点D关于直线y=t对称,∴点E的坐标为(,2t﹣).当x=0时,y=﹣x2+x﹣1=﹣1,∴点C的坐标为(0,﹣1).设线段BC所在直线的解析式为y=kx+b,。
湖北省潜江市、仙桃市、天门市、江汉油田2018年中考数学试题(解析)
2018年天门中考数学试卷解读一、选择题<共10个小题,每小题3分,满分30分)在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分﹣的疾病致死的人数大约为600万,数据600万用科学记数法表示为< )解答: 解:600万=6000000=6×106, 故选:B.点评:此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n的值. 4.不等式组的解集在数轴上表示正确的是< )A .B .C .D .考点:在数轴上表示不等式的解集;解一元一次不等式组。
分析: 先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可. 解答:解:, 由①得x ≥﹣1; 由②得x <2;∴不等式组的解集为﹣1≤x <2; 在数轴上表示为:故选C .点评: 本题考查了不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.A . 70°B . 26°C . 36°D . 16° 考点:平行线的性质;三角形内角和定理。
分析: 由AB ∥CD ,根据两直线平行,内错角相等,即可求得∠1的度数,又由三角形外角的性质,即可求得∠E 的度数. 解答: 解:∵AB ∥CD ,∠A=48°, ∴∠1=∠A=48°,∵∠C=22°,∴∠E=∠1﹣∠C=48°﹣22°=26°. 故选B .点评: 此题考查了平行线的性质与三角形外角的性质.此题比较简单,注意掌握两直线平行,内错角相等定理的应用.6.化简的结果是< ) A .B .C . <x+1)2D . <x ﹣1)2考点:分式的混合运算。
2018年湖北省仙桃市中考数学试卷(答案+解析)
2018年湖北省仙桃市中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3分)8的倒数是()A .﹣8B .8C .﹣18D .18 2.(3分)如图是某个几何体的展开图,该几何体是()A .三棱柱B .三棱锥C .圆柱D .圆锥3.(3分)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A .3.5×102B .3.5×1010C .3.5×1011D .35×10104.(3分)如图,AD ∥BC ,∠C =30°,∠ADB :∠BDC =1:2,则∠DBC 的度数是()A .30°B .36°C .45°D .50°5.(3分)点A ,B 在数轴上的位置如图所示,其对应的实数分别是a ,b ,下列结论错误的是()A .|b |<2<|a |B .1﹣2a >1﹣2bC .﹣a <b <2D .a <﹣2<﹣b6.(3分)下列说法正确的是()A .了解某班学生的身高情况,适宜采用抽样调查B .数据3,5,4,1,1的中位数是4C .数据5,3,5,4,1,1的众数是1和5D .甲、乙两人射中环数的方差分别为s 甲2=2,s 乙2=3,说明乙的射击成绩比甲稳定7.(3分)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A .120°B .180°C .240°D .300°8.(3分)若关于x 的一元一次不等式组{6−3(x +1)<x −9x −m >−1的解集是x >3,则m 的取值范围是() A .m >4B .m ≥4C .m <4D .m ≤49.(3分)如图,正方形ABCD 中,AB =6,G 是BC 的中点.将△ABG 沿AG 对折至△AFG ,延长GF 交DC 于点E ,则DE 的长是()A .1B .1.5C .2D .2.510.(3分)甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km /h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法:①乙车的速度是120km /h ;②m =160;③点H 的坐标是(7,80);④n =7.5.其中说法正确的有()A .4个B .3个C .2个D .1个二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3分)在“Wishyousuccess ”中,任选一个字母,这个字母为“s ”的概率为.12.(3分)计算:√3+|√3﹣2|﹣(12)﹣1=. 13.(3分)若一个多边形的每个外角都等于30°,则这个多边形的边数为.14.(3分)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A ,B 两个贫困地区,其中发往A 区的物资比B 区的物资的1.5倍少1000件,则发往A 区的生活物资为件.15.(3分)我国海域辽阔,渔业资源丰富.如图,现有渔船B 在海岛A ,C 附近捕鱼作业,已知海岛C 位于海岛A 的北偏东45°方向上.在渔船B 上测得海岛A 位于渔船B 的北偏西30°的方向上,此时海岛C 恰好位于渔船B 的正北方向18(1+√3)nmile 处,则海岛A ,C 之间的距离为nmile .16.(3分)如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…都是等腰直角三角形,其直角顶点P 1(3,3),P 2,P 3,…均在直线y =﹣13x +4上.设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…的面积分别为S 1,S 2,S 3,…,依据图形所反映的规律,S 2018=.三、解答题(本大题共9个小题,满分72分.)17.(5分)化简:4a+4b 5ab •15a 2ba 2−b 2.18.(5分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O ,M ,N ,A ,B 均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON 的平分线OP ;(2)在图②中,画一个Rt △ABC ,使点C 在格点上.19.(7分)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育与实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.组别发言次数n百分比A0≤n<310%B3≤n<620%C6≤n<925%D9≤n<1230%E12≤n<1510%F15≤n<18m%请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了名教师,m=;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.20.(7分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.21.(8分)如图,在平面直角坐标系中,直线y=﹣12x与反比例函数y=kx(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣12x向上平移后与反比例函数图象在第二象限内交于点B,与y轴交于点C,且△ABO的面积为32,求直线BC的解析式.22.(8分)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.23.(10分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?24.(10分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.25.(12分)抛物线y =﹣23x 2+73x ﹣1与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,其顶点为D .将抛物线位于直线l :y =t (t <2524)上方的部分沿直线l 向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M ”形的新图象. (1)点A ,B ,D 的坐标分别为,,;(2)如图①,抛物线翻折后,点D 落在点E 处.当点E 在△ABC 内(含边界)时,求t 的取值范围;(3)如图②,当t =0时,若Q 是“M ”形新图象上一动点,是否存在以CQ 为直径的圆与x 轴相切于点P ?若存在,求出点P 的坐标;若不存在,请说明理由.2018年湖北省仙桃市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3分)8的倒数是()A .﹣8B .8C .﹣18D .18 【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是18, 故选:D .2.(3分)如图是某个几何体的展开图,该几何体是()A .三棱柱B .三棱锥C .圆柱D .圆锥【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:观察图形可知,这个几何体是三棱柱.故选:A .3.(3分)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A .3.5×102B .3.5×1010C .3.5×1011D .35×1010【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:数350亿用科学记数法表示为3.5×1010.故选:B .4.(3分)如图,AD ∥BC ,∠C =30°,∠ADB :∠BDC =1:2,则∠DBC 的度数是()A .30°B .36°C .45°D .50°【分析】直接利用平行线的性质得出∠ADC =150°,∠ADB =∠DBC ,进而得出∠ADB 的度数,即可得出答案.【解答】解:∵AD ∥BC ,∠C =30°,∴∠ADC =150°,∠ADB =∠DBC ,∵∠ADB :∠BDC =1:2,∴∠ADB =13×150°=50°, ∴∠DBC 的度数是50°.故选:D .5.(3分)点A ,B 在数轴上的位置如图所示,其对应的实数分别是a ,b ,下列结论错误的是()A .|b |<2<|a |B .1﹣2a >1﹣2bC .﹣a <b <2D .a <﹣2<﹣b【分析】根据图示可以得到a 、b 的取值范围,结合绝对值的含义推知|b |、|a |的数量关系.【解答】解:A 、如图所示,|b |<2<|a |,故本选项不符合题意;B 、如图所示,a <b ,则2a <2b ,由不等式的性质知1﹣2a >1﹣2b ,故本选项不符合题意;C 、如图所示,a <﹣2<b <2,则﹣a >2>b ,故本选项符合题意;D 、如图所示,a <﹣2<b <2且|a |>2,|b |<2.则a <﹣2<﹣b ,故本选项不符合题意;故选:C .6.(3分)下列说法正确的是()A .了解某班学生的身高情况,适宜采用抽样调查B .数据3,5,4,1,1的中位数是4C .数据5,3,5,4,1,1的众数是1和5D .甲、乙两人射中环数的方差分别为s 甲2=2,s 乙2=3,说明乙的射击成绩比甲稳定【分析】直接利用方差的意义以与中位数的定义和众数的定义分别分析得出答案.【解答】解:A 、了解某班学生的身高情况,适宜采用全面调查,故此选项错误;B 、数据3,5,4,1,1的中位数是:3,故此选项错误;C 、数据5,3,5,4,1,1的众数是1和5,正确;D 、甲、乙两人射中环数的方差分别为s 甲2=2,s 乙2=3,说明甲的射击成绩比乙稳定.故选:C .7.(3分)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A .120°B .180°C .240°D .300°【分析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.【解答】解:设母线长为R ,底面半径为r ,∴底面周长=2πr ,底面面积=πr 2,侧面面积=πrR ,∵侧面积是底面积的2倍,∴2πr 2=πrR ,∴R =2r ,设圆心角为n ,则nπR 180=2πr =πR ,解得,n =180°,故选:B .8.(3分)若关于x 的一元一次不等式组{6−3(x +1)<x −9x −m >−1的解集是x >3,则m 的取值范围是() A .m >4B .m ≥4C .m <4D .m ≤4 【分析】先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m 的不等式,再求出解集即可.【解答】解:{6−3(x +1)<x −9①x −m >−1②, ∵解不等式①得:x >3,解不等式②得:x >m ﹣1,又∵关于x 的一元一次不等式组{6−3(x +1)<x −9x −m >−1的解集是x >3, ∴m ﹣1≤3,解得:m ≤4,故选:D .9.(3分)如图,正方形ABCD 中,AB =6,G 是BC 的中点.将△ABG 沿AG 对折至△AFG ,延长GF 交DC 于点E ,则DE 的长是()A .1B .1.5C .2D .2.5【分析】根据翻折变换的性质和正方形的性质可证Rt △AFE ≌Rt △ADE ;在直角△ECG 中,根据勾股定理即可求出DE 的长.【解答】解:如图,连接AE ,∵AB =AD =AF ,∠D =∠AFE =90°,在Rt △AFE 和Rt △ADE 中,∵{AE =AE AF =AD, ∴Rt △AFE ≌Rt △ADE ,∴EF =DE ,设DE =FE =x ,则EC =6﹣x .∵G 为BC 中点,BC =6,∴CG =3,在Rt △ECG 中,根据勾股定理,得:(6﹣x )2+9=(x +3)2,解得x =2.则DE =2.故选:C .10.(3分)甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km /h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法:①乙车的速度是120km /h ;②m =160;③点H 的坐标是(7,80);④n =7.5.其中说法正确的有()A .4个B .3个C .2个D .1个【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km /h .①正确;由图象第2﹣6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,则m =160,②正确;当乙在B 休息1h 时,甲前进80km ,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km ,到两车相遇用时80÷(120+80)=0.4小时,则n =6+1+0.4=7.4,④错误.故选:B .二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3分)在“Wishyousuccess ”中,任选一个字母,这个字母为“s ”的概率为27. 【分析】根据概率公式进行计算即可.【解答】解:任选一个字母,这个字母为“s ”的概率为:414=27,故答案为:27.12.(3分)计算:√3+|√3﹣2|﹣(12)﹣1=0.【分析】根据二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则计算即可.【解答】解:原式=√3+2﹣√3﹣2=0故答案为:0.13.(3分)若一个多边形的每个外角都等于30°,则这个多边形的边数为12.【分析】根据已知和多边形的外角和求出边数即可.【解答】解:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,∴多边形的边数是360°30°=12,故答案为:12.14.(3分)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为3200件.【分析】设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据发往A、B两区的物资共6000件,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据题意得:x+1.5x﹣1000=6000,解得:x=2800,∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.15.(3分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+√3)nmile 处,则海岛A,C之间的距离为18√2nmile.【分析】作AD⊥BC于D,根据正弦的定义、正切的定义分别求出BD、CD,根据题意列式计算即可.【解答】解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=√22x,则CD=√22x,在Rt △ABD 中,BD =AD tan∠ABD=√62x , 则√22x +√62x =18(1+√3),解得,x =18√2, 答:A ,C 之间的距离为18√2海里. 故答案为:18√216.(3分)如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…都是等腰直角三角形,其直角顶点P 1(3,3),P 2,P 3,…均在直线y =﹣13x +4上.设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…的面积分别为S 1,S 2,S 3,…,依据图形所反映的规律,S 2018=942017.【分析】分别过点P 1、P 2、P 3作x 轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【解答】解:如图,分别过点P 1、P 2、P 3作x 轴的垂线段,垂足分别为点C 、D 、E ,∵P 1(3,3),且△P 1OA 1是等腰直角三角形,∴OC =CA 1=P 1C =3,设A 1D =a ,则P 2D =a ,∴OD =6+a ,∴点P 2坐标为(6+a ,a ),将点P 2坐标代入y =﹣13x +4,得:﹣13(6+a )+4=a ,解得:a =32, ∴A 1A 2=2a =3,P 2D =32,同理求得P 3E =34、A 2A 3=32,∵S 1=12×6×3=9、S 2=12×3×32=94、S 3=12×32×34=916、…… ∴S 2018=942017, 故答案为:942017.三、解答题(本大题共9个小题,满分72分.)17.(5分)化简:4a+4b 5ab •15a 2ba 2−b 2.【分析】先将分子、分母因式分解,再约分即可得. 【解答】解:原式=4(a+b)5ab •15a 2b (a+b)(a−b)=12a a−b .18.(5分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O ,M ,N ,A ,B 均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;(2)利用菱形以与平行线的性质即可解决问题;【解答】解:(1)如图所示,射线OP即为所求.(2)如图所示,点C即为所求;19.(7分)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育与实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.组别发言次数n百分比A0≤n<310%B3≤n<620%C6≤n<925%D9≤n<1230%E12≤n<1510%F15≤n<18m%请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了60名教师,m=5;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.【分析】(1)根据:某组的百分比=该组人数总人数×100%,所有百分比的和为1,计算即可;(2)先计算出D 、F 组的人数,再补全条形统计图;(3)列出树形图,根据总的情况和一男一女的情况计算概率.【解答】解:(1)由条形图知,C 组共有15名,占25%所以本次共随机采访了15÷25%=60(名)m =100﹣10﹣20﹣25﹣30﹣10=5故答案为:60,5(2)D 组教师有:60×30%=18(名)F 组教师有:60×5%=3(名)(3)E 组共有6名教师,4男2女,F 组有三名教师,1男2女共有18种可能,∴P 一男一女=1018=59 答:所选派的两名教师恰好是1男1女的概率为5920.(7分)已知关于x 的一元二次方程x 2+(2m +1)x +m 2﹣2=0.(1)若该方程有两个实数根,求m 的最小整数值;(2)若方程的两个实数根为x 1,x 2,且(x 1﹣x 2)2+m 2=21,求m 的值.【分析】(1)利用判别式的意义得到△=(2m +1)2﹣4(m 2﹣2)≥0,然后解不等式得到m 的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x 1+x 2=﹣(2m +1),x 1x 2=m 2﹣2,再利用(x 1﹣x 2)2+m 2=21得到(2m +1)2﹣4(m 2﹣2)+m 2=21,接着解关于m 的方程,然后利用(1)中m 的范围确定m 的值.【解答】解:(1)根据题意得△=(2m +1)2﹣4(m 2﹣2)≥0,解得m ≥﹣94, 所以m 的最小整数值为﹣2;(2)根据题意得x 1+x 2=﹣(2m +1),x 1x 2=m 2﹣2,∵(x 1﹣x 2)2+m 2=21,∴(x 1+x 2)2﹣4x 1x 2+m 2=21,∴(2m +1)2﹣4(m 2﹣2)+m 2=21,整理得m 2+4m ﹣12=0,解得m 1=2,m 2=﹣6,∵m ≥﹣94, ∴m 的值为2.21.(8分)如图,在平面直角坐标系中,直线y =﹣12x 与反比例函数y =k x (k ≠0)在第二象限内的图象相交于点A (m ,1). (1)求反比例函数的解析式;(2)将直线y =﹣12x 向上平移后与反比例函数图象在第二象限内交于点B ,与y 轴交于点C ,且△ABO 的面积为32,求直线BC 的解析式.【分析】(1)将A 点坐标代入直线y =﹣12x 中求出m 的值,确定出A 的坐标,将A 的坐标代入反比例解析式中求出k 的值,即可确定出反比例函数的解析式;(2)根据直线的平移规律设直线BC 的解析式为y =﹣12x +b ,由同底等高的两三角形面积相等可得△ACO 与△ABO 面积相等,根据△ABO 的面积为32列出方程12OC •2=32,解方程求出OC =32,即b =32,进而得出直线BC 的解析式. 【解答】解:(1)∵直线y =﹣12x 过点A (m ,1),∴﹣12m =1,解得m =﹣2, ∴A (﹣2,1).∵反比例函数y =k x(k ≠0)的图象过点A (﹣2,1), ∴k =﹣2×1=﹣2, ∴反比例函数的解析式为y =﹣2x ;(2)设直线BC 的解析式为y =﹣12x +b , ∵三角形ACO 与三角形ABO 面积相等,且△ABO 的面积为32,∴△ACO 的面积=12OC •2=32,∴OC =32,∴b =32, ∴直线BC 的解析式为y =﹣12x +32.22.(8分)如图,在⊙O 中,AB 为直径,AC 为弦.过BC 延长线上一点G ,作GD ⊥AO 于点D ,交AC 于点E ,交⊙O 于点F ,M 是GE 的中点,连接CF ,CM .(1)判断CM 与⊙O 的位置关系,并说明理由;(2)若∠ECF =2∠A ,CM =6,CF =4,求MF 的长.【分析】(1)连接OC ,如图,利用圆周角定理得到∠ACB =90°,再根据斜边上的中线性质得MC =MG =ME ,所以∠G =∠1,接着证明∠1+∠2=90°,从而得到∠OCM =90°,然后根据直线与圆的位置关系的判断方法可判断CM 为⊙O 的切线;(2)先证明∠G =∠A ,再证明∠EMC =∠4,则可判定△EFC ∽△ECM ,利用相似比先计算出CE ,再计算出EF ,然后计算ME ﹣EF 即可.【解答】解:(1)CM 与⊙O 相切.理由如下:连接OC ,如图,∵GD ⊥AO 于点D ,∴∠G +∠GBD =90°,∵AB 为直径,∴∠ACB =90°,∵M 点为GE 的中点,∴MC =MG =ME ,∴∠G =∠1,∵OB =OC ,∴∠B =∠2,∴∠1+∠2=90°,∴∠OCM =90°,∴OC ⊥CM ,∴CM 为⊙O 的切线;(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°,∴∠1=∠5,而∠1=∠G ,∠5=∠A ,∴∠G =∠A ,∵∠4=2∠A ,∴∠4=2∠G ,而∠EMC =∠G +∠1=2∠G ,∴∠EMC =∠4,而∠FEC =∠CEM ,∴△EFC ∽△ECM ,∴EF CE =CE ME =CF CM ,即EF CE =CE 6=46,∴CE =4,EF =83, ∴MF =ME ﹣EF =6﹣83=103.23.(10分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF 、折线ABCD 分别表示该有机产品每千克的销售价y 1(元)、生产成本y 2(元)与产量x (kg )之间的函数关系.(1)求该产品销售价y 1(元)与产量x (kg )之间的函数关系式;(2)直接写出生产成本y 2(元)与产量x (kg )之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?【分析】(1)根据线段EF 经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(2)显然,当0≤x ≤50时,y 2=70;当130≤x ≤180时,y 2=54;当50<x <130时,设y 2与x 之间的函数关系式为y 2=mx +n ,利用待定系数法确定一次函数的表达式即可;(3)利用:总利润=每千克利润×产量,根据x 的取值范围列出有关x 的二次函数,求得最值比较可得.【解答】解:(1)设y 1与x 之间的函数关系式为y 1=kx +b ,∵经过点(0,168)与(180,60),∴{b =168180k +b =60,解得:{k =−35b =168, ∴产品销售价y 1(元)与产量x (kg )之间的函数关系式为y 1=﹣35x +168(0≤x ≤180); (2)由题意,可得当0≤x ≤50时,y 2=70;当130≤x ≤180时,y 2=54;当50<x <130时,设y 2与x 之间的函数关系式为y 2=mx +n ,∵直线y 2=mx +n 经过点(50,70)与(130,54),∴{50m +n =70130m +n =54,解得{m =−15n =80, ∴当50<x <130时,y 2=﹣15x +80. 综上所述,生产成本y 2(元)与产量x (kg )之间的函数关系式为y 2={ 70(0≤x ≤50)−15x +80(50<x <130)54(130≤x ≤180);(3)设产量为xkg 时,获得的利润为W 元,①当0≤x ≤50时,W =x (﹣35x +168﹣70)=﹣35(x ﹣2453)2+120053, ∴当x =50时,W 的值最大,最大值为3400; ②当50<x <130时,W =x [(﹣35x +168)﹣(﹣15x +80)]=﹣25(x ﹣110)2+4840,∴当x =110时,W 的值最大,最大值为4840;③当130≤x ≤180时,W =x (﹣35x +168﹣54)=﹣35(x ﹣95)2+5415, ∴当x =130时,W 的值最大,最大值为4680.因此当该产品产量为110kg 时,获得的利润最大,最大值为4840元.24.(10分)问题:如图①,在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转90°得到AE ,连接EC ,则线段BC ,DC ,EC 之间满足的等量关系式为BC =DC +EC ;探索:如图②,在Rt △ABC 与Rt △ADE 中,AB =AC ,AD =AE ,将△ADE 绕点A 旋转,使点D 落在BC 边上,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45°.若BD =9,CD =3,求AD 的长.【分析】(1)证明△BAD ≌△CAE ,根据全等三角形的性质解答;(2)连接CE ,根据全等三角形的性质得到BD =CE ,∠ACE =∠B ,得到∠DCE =90°,根据勾股定理计算即可;(3)作AE ⊥AD ,使AE =AD ,连接CE ,DE ,证明△BAD ≌△CAE ,得到BD =CE =9,根据勾股定理计算即可.【解答】解:(1)BC =DC +EC ,理由如下:∵∠BAC =∠DAE =90°,∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC ,即∠BAD =∠CAE ,在△BAD 和△CAE 中,{AB =AC ∠BAD =∠CAE AD =AE, ∴△BAD ≌△CAE ,∴BD =CE ,∴BC =BD +CD =EC +CD ,故答案为:BC =DC +EC ;(2)BD 2+CD 2=2AD 2,理由如下:连接CE ,由(1)得,△BAD ≌△CAE ,∴BD =CE ,∠ACE =∠B ,∴∠DCE =90°,∴CE 2+CD 2=ED 2,在Rt △ADE 中,AD 2+AE 2=ED 2,又AD =AE ,∴BD 2+CD 2=2AD 2;(3)作AE ⊥AD ,使AE =AD ,连接CE ,DE ,∵∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAD ′,在△BAD 与△CAE 中,{AB =AC ∠BAD =∠CAE AD =AE, ∴△BAD ≌△CAE (SAS ),∴BD =CE =9,∵∠ADC =45°,∠EDA =45°,∴∠EDC =90°,∴DE =√CE 2−CD 2=6√2,∵∠DAE =90°,∴AD =AE =√22DE =6.25.(12分)抛物线y =﹣23x 2+73x ﹣1与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,其顶点为D .将抛物线位于直线l :y =t (t <2524)上方的部分沿直线l 向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M ”形的新图象.(1)点A ,B ,D 的坐标分别为(12,0),(3,0),(74,2524); (2)如图①,抛物线翻折后,点D 落在点E 处.当点E 在△ABC 内(含边界)时,求t 的取值范围;(3)如图②,当t =0时,若Q 是“M ”形新图象上一动点,是否存在以CQ 为直径的圆与x 轴相切于点P ?若存在,求出点P 的坐标;若不存在,请说明理由.【分析】(1)利用二次函数图象上点的坐标特征可求出点A 、B 的坐标,再利用配方法即可找出抛物线的顶点D 的坐标;(2)由点D 的坐标结合对称找出点E 的坐标,根据点B 、C 的坐标利用待定系数法可求出直线BC 的解析式,再利用一次函数图象上点的坐标特征即可得出关于t 的一元一次不等式组,解之即可得出t 的取值范围;(3)假设存在,设点P 的坐标为(12m ,0),则点Q 的横坐标为m ,分m <12或m >3与12≤m ≤3两种情况,利用勾股定理找出关于m 的一元二次方程,解之即可得出m 的值,进而可找出点P 的坐标,此题得解.【解答】解:(1)当y =0时,有﹣23x 2+73x ﹣1=0,解得:x 1=12,x 2=3, ∴点A 的坐标为(12,0),点B 的坐标为(3,0).∵y =﹣23x 2+73x ﹣1=﹣23(x 2﹣72x )﹣1=﹣23(x ﹣74)2+2524,∴点D 的坐标为(74,2524). 故答案为:(12,0);(3,0);(74,2524).(2)∵点E 、点D 关于直线y =t 对称,∴点E 的坐标为(74,2t ﹣2524).当x =0时,y =﹣23x 2+73x ﹣1=﹣1, ∴点C 的坐标为(0,﹣1).设线段BC 所在直线的解析式为y =kx +b ,将B (3,0)、C (0,﹣1)代入y =kx +b ,{3k +b =0b =−1,解得:{k =13b =−1, ∴线段BC 所在直线的解析式为y =13x ﹣1. ∵点E 在△ABC 内(含边界),∴{2t −2524≤02t −2524≥13×74−1, 解得:516≤t ≤2548.(3)当x <12或x >3时,y =﹣23x 2+73x ﹣1;当12≤x ≤3时,y =23x 2﹣73x +1. 假设存在,设点P 的坐标为(12m ,0),则点Q 的横坐标为m .①当m <12或m >3时,点Q 的坐标为(m ,﹣23m 2+73m ﹣1)(如图1), ∵以CQ 为直径的圆与x 轴相切于点P ,∴CP ⊥PQ ,∴CQ 2=CP 2+PQ 2,即m 2+(﹣23m 2+73m )2=14m 2+1+14m 2+(﹣23m 2+73m ﹣1)2,整理,得:m 1=14−2√345,m 2=14+2√345, ∴点P 的坐标为(7−√345,0)或(7+√345,0); ②当12≤m ≤3时,点Q 的坐标为(m ,23m 2﹣73m +1)(如图2), ∵以CQ 为直径的圆与x 轴相切于点P ,∴CP ⊥PQ ,∴CQ 2=CP 2+PQ 2,即m 2+(23m 2﹣73m +2)2=14m 2+1+14m 2+(23m 2﹣73m +1)2, 整理,得:11m 2﹣28m +12=0,解得:m 3=611,m 4=2, ∴点P 的坐标为(311,0)或(1,0). 综上所述:存在以CQ 为直径的圆与x 轴相切于点P ,点P 的坐标为(7−√345,0)、(311,0)、(1,0)或(7+√345,0).。
2018年湖北省江汉油田、潜江、天门、仙桃中考数学试卷
江汉油田、潜江、天门、仙桃 2018年初中学业水平考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.8的倒数是( )A .8-B .8C .1-8D .182.如图是某个几何体的展开图,该几何体是 ( )A .同位角B .内错角C .同旁内角D .对顶角3.2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为 ( ) A .23.510⨯B .103.510⨯C .113.510⨯D .103510⨯4.如图,AD BC ∥,30C ∠=o ,=12ADB BDC ∠∠::,则DBC ∠的度数是( ) A .30o B .36o C .45oD .50o5.点A ,B 在数轴上的位置如图所示,其对应的实数分别是a ,b ,下列结论错误的是( )A .2||||b a <<B .1212a b ->-C .2a b -<<D .2a b <-<- 6.下列说法正确的是( )A .了解某班学生的身高情况,适宜采用抽样调查B .数据3,5,4,1,1的中位数是4C .数据5,3,5,4,1,1的众数是1和5D .甲、乙两人射中环数的方差分别为22s =甲,2=3s 乙,说明乙的射击成绩比甲稳定7.一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是 ( ) A .120oB .180oC .240oD .300o8.若关于x 的一元一次不等式组6391,x x m --⎧⎨--⎩(x+1)<,>的解集是3x >,则m 的取值范围是 ( ) A .4m >B .4m ≥C .4m <D .4m ≤9.如图,正方形ABCD 中,=6AB ,G 是BC 的中点.将ABG △沿AG 对折至AFG △,延长GF 交DC 于点E ,则DE 的长是()A .1B .1.5C .2D .2.510.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80 km 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1 h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法: ①乙车的速度是120 km/h ; ②=160m ;③点H 的坐标是780(,);④=7.5n .其中说法正确的是( )A .4个B .3个C .2个D .1个第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上)11.在“Wish you success ”中,任选一个字母,这个字母为“s ”的概率为: . 12.计算:11|32|=23--+--().13.若一个多边形的每个外角都等于30o ,则这个多边形的边数为 .14.某公司积极开展“爱心扶贫”的公益活动,现准备将6 000件生活物资发往A ,B 两个贫困地区,其中发往A 区的物资比B 区的物资的1.5倍少1 000件,则发往A 区的生活物资为 件. 15.我国海域辽阔,渔业资源丰富.如图,现有渔船B 在海岛A ,C 附近捕鱼作业,已知海岛C 位于海岛A 的北偏东45o 方向上.在渔船B 上测得海岛A 位于渔船的北偏西30o 的方向上,此时海岛C 恰好位于渔船B 的正北方向1813+()n mile 处,则海岛A ,C 之间的距离为 n mile .16.如图,在平面直角坐标系中,11POA △,212P A A △,323P A A △,…都是等腰直角三角形,其直角顶点133P (,),2P ,3P ,…均在直线143y x =-+上.设11POA △,212P A A △,323P A A △,…的面积分别为1S ,2S ,3S ,…,依据图形所反映的规律,2018=S .三、解答题(本大题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分5分)化简:22244155a b a b ab a b +-g18.(本小题满分5分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O ,M ,C ,A ,B 均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出MON ∠的平分线OP ;(2)在图②中,画一个Rt ABC △,使点36n ≤<在格点上.19.(本小题满分7分)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了 名教师,m= ; (2)补全条形统计图;(3)已知受访的教师中,E 组只有2名女教师,F 组恰有1名男教师,现要从E 组、F 组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.组别发言次数n 百分比 A 03n <10% B 36n ≤<20% C 69n ≤< 25% D 912n ≤< 30% E 1215n ≤< 10% FADm%20.(本小题满分7分)已知关于x 的一元二次方程22212=0x m x m +++()-. (1)若该方程有两个实数根,求m 的最小整数值;(2)若方程的两个实数根为1x ,2x ,且2212=21x x m +(-),求m 的值.21.(本小题满分8分)如图,在平面直角坐标系中,直线12y x =-与反比例函数k y k x=≠(0)在第二象限内的图象相交于点1A m (,).(1)求反比例函数的解析式;(2)将直线12y x =-向上平移后与反比例函数图象在第二象限内交于点B ,与y 轴 交于点C ,且ABO △的面积为32,求直线BC 的解析式.22.(本小题满分8分)如图,在O e 中,AB 为直径,AC 为弦.过BC 延长线上一点G ,作GD AO ⊥________________ _____________于点D,交AC于点E,交Oe于点F,M是GE的中点,连接CF,CM.(1)判断CM与Oe的位置关系,并说明理由;(2)若=2CM,=4CF,求MF的长.∠∠,=6ECF A23.(本小题满分10分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y(元)、生产成本2y(元)与产量x(kg)之间的函数关系.1(1)求该产品销售价y(元)与产量x(kg)之间的函数关系式;1(2)直接写出生产成本y(元)与产量x(kg)之间的函数关系2式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?24.(本小题满分10分)问题:如图①,在Rt ABC △中,=AB AC ,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转90o得到AE ,连接EC ,则线段BC ,DC ,EC 之间满足的等量关系式为 ;探索:如图②,在Rt ABC △与中,AB AC =,AD AE =,将ADE △绕点A 旋转,使点D 落在BC 边上,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD 中,===45ABC ACB ADC ∠∠∠o.若9BD =,3CD =,求AD 的长.25.(本小题满分12分) 抛物线227133y x x =+--与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,其顶点为D .将抛物线位于直线l :2524y t t =(<)上方的部分沿直线l 向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M ”形的新图象.(1)点A ,B ,D 的坐标分别为 , , ; (2)如图①,抛物线翻折后,点D 落在点E 处.当点E 在ABC △内(含边界)时,求t 的取值范围;(3)如图②,当=0t 时,若Q 是“M ”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.。
中考数学 2018年湖北省江汉油田、潜江、天门、仙桃中考数学试卷
2018年湖北省江汉油田中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3.00分)(2018•天门)8的倒数是()A.﹣8 B.8 C.﹣ D.2.(3.00分)(2018•天门)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥3.(3.00分)(2018•天门)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×10104.(3.00分)(2018•天门)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30°B.36°C.45°D.50°5.(3.00分)(2018•天门)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a|B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b 6.(3.00分)(2018•天门)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定7.(3.00分)(2018•天门)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240° D.300°8.(3.00分)(2018•天门)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤49.(3.00分)(2018•天门)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.510.(3.00分)(2018•天门)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h 的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3.00分)(2018•天门)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.12.(3.00分)(2018•天门)计算:+|﹣2|﹣()﹣1=.13.(3.00分)(2018•天门)若一个多边形的每个外角都等于30°,则这个多边形的边数为.14.(3.00分)(2018•天门)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为件.15.(3.00分)(2018•天门)我国海域辽阔,渔业资源丰富.如图,现有渔船B 在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile处,则海岛A,C之间的距离为n mile.16.(3.00分)(2018•天门)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.三、解答题(本大题共9个小题,满分72分.)17.(5.00分)(2018•天门)化简:•.18.(5.00分)(2018•天门)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.19.(7.00分)(2018•天门)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了名教师,m=;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.20.(7.00分)(2018•天门)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.21.(8.00分)(2018•天门)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y 轴交于点C,且△ABO的面积为,求直线BC的解析式.22.(8.00分)(2018•天门)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.23.(10.00分)(2018•天门)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?24.(10.00分)(2018•天门)问题:如图①,在Rt△ABC中,AB=AC,D为BC 边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.25.(12.00分)(2018•天门)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A 在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为,,;(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.2018年湖北省江汉油田中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3.00分)(2018•天门)8的倒数是()A.﹣8 B.8 C.﹣ D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.【点评】此题主要考查倒数的概念及性质,属于基础题,注意掌握倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3.00分)(2018•天门)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:观察图形可知,这个几何体是三棱柱.故选:A.【点评】本题考查的是三棱柱的展开图,考法较新颖,需要对三棱柱有充分的理解.3.(3.00分)(2018•天门)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:数350亿用科学记数法表示为3.5×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3.00分)(2018•天门)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30°B.36°C.45°D.50°【分析】直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB 的度数,即可得出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠ADC=150°,∠ADB=∠DBC,∵∠ADB:∠BDC=1:2,∴∠ADB=×150°=50°,∴∠DBC的度数是50°.故选:D.【点评】此题主要考查了平行线的性质,正确得出∠ADB度数是解题关键.5.(3.00分)(2018•天门)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a|B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b【分析】根据图示可以得到a、b的取值范围,结合绝对值的含义推知|b|、|a|的数量关系.【解答】解:A、如图所示,|b|<2<|a|,故本选项不符合题意;B、如图所示,a<b,则2a<2b,由不等式的性质知1﹣2a>1﹣2b,故本选项不符合题意;C、如图所示,a<﹣2<b<2,则﹣a>2>b,故本选项符合题意;D、如图所示,a<﹣2<b<2且|a|>2,|b|<2.则a<﹣2<﹣b,故本选项不符合题意;故选:C.【点评】此题考查了绝对值意义,比较两个负数大小的方法,有理数的运算,解本题的关键是掌握有理数的运算.6.(3.00分)(2018•天门)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定【分析】直接利用方差的意义以及中位数的定义和众数的定义分别分析得出答案.【解答】解:A、了解某班学生的身高情况,适宜采用全面调查,故此选项错误;B、数据3,5,4,1,1的中位数是:3,故此选项错误;C、数据5,3,5,4,1,1的众数是1和5,正确;D、甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明甲的射击成绩比乙稳定.故选:C.【点评】此题主要考查了方差的意义以及中位数的定义和众数的定义,正确把握相关定义是解题关键.7.(3.00分)(2018•天门)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240° D.300°【分析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πr R,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,则=2πr=πR,解得,n=180°,故选:B.【点评】本题考查的是圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.8.(3.00分)(2018•天门)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤4【分析】先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m 的不等式,再求出解集即可.【解答】解:,∵解不等式①得:x>3,解不等式②得:x>m﹣1,又∵关于x的一元一次不等式组的解集是x>3,∴m﹣1≤3,解得:m≤4,故选:D.【点评】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出关于m的不等式是解此题的关键.9.(3.00分)(2018•天门)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.5【分析】根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE;在直角△ECG中,根据勾股定理即可求出DE的长.【解答】解:∵AB=AD=AF,∠D=∠AFE=90°,在Rt△ABG和Rt△AFG中,∵,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则EC=6﹣x.∵G为BC中点,BC=6,∴CG=3,在Rt△ECG中,根据勾股定理,得:(6﹣x)2+9=(x+3)2,解得x=2.则DE=2.故选:C.【点评】本题考查了翻折变换,解题的关键是掌握翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理.10.(3.00分)(2018•天门)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h 的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:A.【点评】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3.00分)(2018•天门)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.【分析】根据概率公式进行计算即可.【解答】解:任选一个字母,这个字母为“s”的概率为:=,故答案为:.【点评】此题主要考查了概率公式,关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数.12.(3.00分)(2018•天门)计算:+|﹣2|﹣()﹣1=0.【分析】根据二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则计算即可.【解答】解:原式=+2﹣﹣2=0故答案为:0.【点评】本题考查的是二次根式的混合运算,掌握二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则是解题的关键.13.(3.00分)(2018•天门)若一个多边形的每个外角都等于30°,则这个多边形的边数为12.【分析】根据已知和多边形的外角和求出边数即可.【解答】解:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,∴多边形的边数是=12,故答案为:12.【点评】本题考查了多边形的内角和外角,能熟记多边形的外角和等于360°是解此题的关键.14.(3.00分)(2018•天门)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为3200件.【分析】设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据发往A、B两区的物资共6000件,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据题意得:x+1.5x﹣1000=6000,解得:x=2800,∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.15.(3.00分)(2018•天门)我国海域辽阔,渔业资源丰富.如图,现有渔船B 在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile处,则海岛A,C之间的距离为18n mile.【分析】作AD⊥BC于D,根据正弦的定义、正切的定义分别求出BD、CD,根据题意列式计算即可.【解答】解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=x,则CD=x,在Rt△ABD中,BD=x,则x+x=18(1+),解得,x=18,答:A,C之间的距离为18海里.故答案为:18【点评】本题考查的是解直角三角形的应用,掌握方向角的概念、锐角三角函数的定义是解题的关键.16.(3.00分)(2018•天门)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.【分析】分别过点P1、P2、P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【解答】解:如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,∵P1(3,3),且△P1OA1是等腰直角三角形,∴OC=CA1=P1C=3,设A1D=a,则P2D=a,∴OD=6+a,∴点P2坐标为(6+a,a),将点P2坐标代入y=﹣x+4,得:﹣(6+a)+4=a,解得:a=,∴A1A2=2a=3,P2D=,同理求得P3E=、A2A3=,∵S1=×6×3=9、S2=×3×=、S3=××=、……∴S2018=,故答案为:.【点评】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题,属于中考常考题型.三、解答题(本大题共9个小题,满分72分.)17.(5.00分)(2018•天门)化简:•.【分析】先将分子、分母因式分解,再约分即可得.【解答】解:原式=•=.【点评】本题主要考查分式的乘除法,解题的关键是掌握分式乘除运算顺序和运算法则.18.(5.00分)(2018•天门)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;(2)利用菱形以及平行线的性质即可解决问题;【解答】解:(1)如图所示,射线OP即为所求.(2)如图所示,点C即为所求;【点评】本题考查作图﹣应用与设计、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(7.00分)(2018•天门)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了60名教师,m=5;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E 组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.【分析】(1)根据:某组的百分比=×100%,所有百分比的和为1,计算即可;(2)先计算出D、F组的人数,再补全条形统计图;(3)列出树形图,根据总的情况和一男一女的情况计算概率.【解答】解:(1)由条形图知,C组共有15名,占25%所以本次共随机采访了15÷25%=60(名)m=100﹣10﹣20﹣25﹣30﹣10=5故答案为:60,5(2)D组教师有:60×30%=18(名)F组教师有:60×5%=3(名)(3)E组共有6名教师,4男2女,F组有三名教师,1男2女共有18种可能,==∴P一男一女答:所选派的两名教师恰好是1男1女的概率为【点评】本题考查了条形图、频率分布图、树形图、概率等相关知识,难度不大,综合性较强.概率=所求情况数与总情况数之比20.(7.00分)(2018•天门)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.21.(8.00分)(2018•天门)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y 轴交于点C,且△ABO的面积为,求直线BC的解析式.【分析】(1)将A点坐标代入直线y=﹣x中求出m的值,确定出A的坐标,将A的坐标代入反比例解析式中求出k的值,即可确定出反比例函数的解析式;(2)根据直线的平移规律设直线BC的解析式为y=﹣x+b,由同底等高的两三角形面积相等可得△ACO与△ABO面积相等,根据△ABO的面积为列出方程OC•2=,解方程求出OC=,即b=,进而得出直线BC的解析式.【解答】解:(1)∵直线y=﹣x过点A(m,1),∴﹣m=1,解得m=﹣2,∴A(﹣2,1).∵反比例函数y=(k≠0)的图象过点A(﹣2,1),∴k=﹣2×1=﹣2,∴反比例函数的解析式为y=﹣;(2)设直线BC的解析式为y=﹣x+b,∵三角形ACO与三角形ABO面积相等,且△ABO的面积为,∴△ACO的面积=OC•2=,∴OC=,∴b=,∴直线BC的解析式为y=﹣x+.【点评】此题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,三角形的面积求法,以及一次函数图象与几何变换,熟练掌握待定系数法是解题的关键.22.(8.00分)(2018•天门)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.【分析】(1)连接OC,如图,利用圆周角定理得到∠ACB=90°,再根据斜边上的中线性质得MC=MG=ME,所以∠G=∠1,接着证明∠1+∠2=90°,从而得到∠OCM=90°,然后根据直线与圆的位置关系的判断方法可判断CM为⊙O的切线;(2)先证明∠G=∠A,再证明∠EMC=∠4,则可判定△EFC∽△ECM,利用相似比先计算出CE,再计算出EF,然后计算ME﹣EF即可.【解答】解:(1)CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线;(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°,∴∠1=∠5,而∠1=∠G,∠5=∠A,∴∠G=∠A,∵∠4=2∠A,∴∠4=2∠G,而∠EMC=∠G+∠1=2∠G,∴∠EMC=∠4,而∠FEC=∠CEM,∴△EFC∽△ECM,∴==,即==,∴CE=4,EF=,∴MF=ME﹣EF=6﹣=.【点评】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l 的距离为d:直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了圆周角定理.23.(10.00分)(2018•天门)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?【分析】(1)根据线段EF经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(2)显然,当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,利用待定系数法确定一次函数的表达式即可;(3)利用:总利润=每千克利润×产量,根据x的取值范围列出有关x的二次函数,求得最值比较可得.【解答】解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x ≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.【点评】本题考查了二次函数的应用,待定系数法求二次函数的解析式,解题的关键是从实际问题中抽象出二次函数模型.24.(10.00分)(2018•天门)问题:如图①,在Rt△ABC中,AB=AC,D为BC 边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.【点评】本题考查的是全等三角形的判定和性质、勾股定理、以及旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题的关键.25.(12.00分)(2018•天门)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A 在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为(,0),(3,0),(,);(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用二次函数图象上点的坐标特征可求出点A、B的坐标,再利用配方法即可找出抛物线的顶点D的坐标;(2)由点D的坐标结合对称找出点E的坐标,根据点B、C的坐标利用待定系数法可求出直线BC的解析式,再利用一次函数图象上点的坐标特征即可得出关于t的一元一次不等式组,解之即可得出t的取值范围;(3)假设存在,设点P的坐标为(m,0),则点Q的横坐标为m,分m<或m>3及≤m≤3两种情况,利用勾股定理找出关于m的一元二次方程,解之即可得出m的值,进而可找出点P的坐标,此题得解.【解答】解:(1)当y=0时,有﹣x2+x﹣1=0,解得:x1=,x2=3,∴点A的坐标为(,0),点B的坐标为(3,0).∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+,∴点D的坐标为(,).故答案为:(,0);(3,0);(,).(2)∵点E、点D关于直线y=t对称,∴点E的坐标为(,2t﹣).当x=0时,y=﹣x2+x﹣1=﹣1,。
湖北省江汉油田、潜江市、天门市、仙桃市2018年中考数学真题试题(含解析)
中说法正确的是(
)
A.①②③ B.①②④ C.①③④ D.①②③④
3
二、填空题(本大题共 6 个小题,每小题 3 分,满分 18 分.请将结果直接填写在答题卡对
应的横线上 . )
11 .( 3.00 分)在“ Wish you success ”中,任选一个字母,这个字母为“ s”的概率
为
.
12.( 3.00 分)计算:
表示为(
)
2
10
11
10
A. 3.5 × 10 B. 3.5 × 10 C. 3.5 × 10 D . 35× 10
4.( 3.00 分)如图, AD∥ BC,∠ C=30°,∠ ADB:∠ BDC=1: 2,则∠ DBC的度数是(
)
A.30° B .36° C.45° D.50°
5.( 3.00 分)点 A,B 在数轴上的位置如图所示,其对应的实数分别是
)
A.﹣ 8 B. 8 C.﹣ D .
2.( 3.00 分)如图是某个几何体的展开图,该几何体是(
)
A.三棱柱 B.三棱锥 C.圆柱 D.圆锥
3.( 3.00 分) 2018 年 5 月 26 日至 29 日,中国国际大数据产业博览会在贵州召开,“数化
万物, 智在融合”为年度主题. 此次大会成功签约项目 350 余亿元. 数 350 亿用科学记数法
乙车才沿相同路线行驶.乙车先到达 B 地并停留 1h 后,再以原速按原路返回,直至与甲车
相遇.在此过程中,两车之间的距离 y( km)与乙车行驶时间 x( h)之间的函数关系如图所
示.下列说法: ①乙车的速度是 120km/h;② m=160;③点 H 的坐标是 ( 7,80);④ n=7.5 .其
湖北省江汉油田、潜江市、天门市、仙桃市中考数学真题试题(含解析)
湖北省江汉油田、潜江市、天门市、仙桃市2018年中考数学真题试题一、选择题(本大题共10个小题,每小题3分,满分30分、在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分。
)1、(分)8的倒数是( )A、﹣8B、8ﻩC、﹣D、2。
(分)如图是某个几何体的展开图,该几何体是( )A、三棱柱B、三棱锥ﻩC、圆柱D、圆锥3、(分)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题、此次大会成功签约项目350余亿元、数350亿用科学记数法表示为( )A、×102ﻩB、×1010ﻩC、×1011ﻩD、35×10104、(分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是( )A。
30°B、36° C、45°ﻩD、50°5、(分)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是( )A、|b|<2<|a|B、1﹣2a>1﹣2bC、﹣a<b<2ﻩD。
a〈﹣2<﹣b6、(分)下列说法正确的是( )A、了解某班学生的身高情况,适宜采纳抽样调查B。
数据3,5,4,1,1的中位数是4C。
数据5,3,5,4,1,1的众数是1和5D。
甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定7、(分)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是( ) A、120°B、180°C、240°ﻩD、300°8。
(分)若关于x的一元一次不等式组的解集是x〉3,则m的取值范围是( )A、m>4ﻩB。
m≥4 C。
m〈4ﻩD、m≤49、(分)如图,正方形ABCD中,AB=6,G是BC的中点、将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是( )A、1ﻩB、ﻩC、2ﻩD、10。
2018年湖北省仙桃市中考数学试卷(答案+解析)
2018年湖北省仙桃市中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3分)8的倒数是()A.﹣8 B.8 C.﹣D.2.(3分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥3.(3分)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×10104.(3分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30°B.36°C.45°D.50°5.(3分)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a| B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b6.(3分)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定7.(3分)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240°D.300°8.(3分)若关于x的一元一次不等式组<>的解集是x>3,则m的取值范围是()A.m>4 B.m≥4C.m<4 D.m≤49.(3分)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.510.(3分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有()A.4个B.3个C.2个D.1个二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3分)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.12.(3分)计算:+|﹣2|﹣()﹣1=.13.(3分)若一个多边形的每个外角都等于30°,则这个多边形的边数为.14.(3分)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为件.15.(3分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile 处,则海岛A,C之间的距离为n mile.16.(3分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.三、解答题(本大题共9个小题,满分72分.)17.(5分)化简:•.18.(5分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.19.(7分)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计(1)本次共随机采访了名教师,m=;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.20.(7分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.21.(8分)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y轴交于点C,且△ABO的面积为,求直线BC的解析式.22.(8分)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.23.(10分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y(元)、生产成本y2(元)与产量x(kg)之间的函数关系.1(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?24.(10分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.25.(12分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为,,;(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.2018年湖北省仙桃市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3分)8的倒数是()A.﹣8 B.8 C.﹣D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.2.(3分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:观察图形可知,这个几何体是三棱柱.故选:A.3.(3分)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数350亿用科学记数法表示为3.5×1010.故选:B.4.(3分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30°B.36°C.45°D.50°【分析】直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB的度数,即可得出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠ADC=150°,∠ADB=∠DBC,∵∠ADB:∠BDC=1:2,∴∠ADB=×150°=50°,∴∠DBC的度数是50°.故选:D.5.(3分)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a| B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b【分析】根据图示可以得到a、b的取值范围,结合绝对值的含义推知|b|、|a|的数量关系.【解答】解:A、如图所示,|b|<2<|a|,故本选项不符合题意;B、如图所示,a<b,则2a<2b,由不等式的性质知1﹣2a>1﹣2b,故本选项不符合题意;C、如图所示,a<﹣2<b<2,则﹣a>2>b,故本选项符合题意;D、如图所示,a<﹣2<b<2且|a|>2,|b|<2.则a<﹣2<﹣b,故本选项不符合题意;故选:C.6.(3分)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定【分析】直接利用方差的意义以及中位数的定义和众数的定义分别分析得出答案.【解答】解:A、了解某班学生的身高情况,适宜采用全面调查,故此选项错误;B、数据3,5,4,1,1的中位数是:3,故此选项错误;C、数据5,3,5,4,1,1的众数是1和5,正确;D、甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明甲的射击成绩比乙稳定.故选:C.7.(3分)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240°D.300°【分析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,则=2πr=πR,解得,n=180°,故选:B.8.(3分)若关于x的一元一次不等式组<>的解集是x>3,则m的取值范围是()A.m>4 B.m≥4C.m<4 D.m≤4【分析】先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m的不等式,再求出解集即可.【解答】解:<>,∵解不等式①得:x>3,解不等式②得:x>m﹣1,又∵关于x的一元一次不等式组<>的解集是x>3,∴m﹣1≤3,解得:m≤4,故选:D.9.(3分)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.5【分析】根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE;在直角△ECG中,根据勾股定理即可求出DE的长.【解答】解:如图,连接AE,∵AB=AD=AF,∠D=∠AFE=90°,在Rt△AFE和Rt△ADE中,∵,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则EC=6﹣x.∵G为BC中点,BC=6,∴CG=3,在Rt△ECG中,根据勾股定理,得:(6﹣x)2+9=(x+3)2,解得x=2.则DE=2.故选:C.10.(3分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有()A.4个B.3个C.2个D.1个【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:B.二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3分)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.【分析】根据概率公式进行计算即可.【解答】解:任选一个字母,这个字母为“s”的概率为:=,故答案为:.12.(3分)计算:+|﹣2|﹣()﹣1=0.【分析】根据二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则计算即可.【解答】解:原式=+2﹣﹣2=0故答案为:0.13.(3分)若一个多边形的每个外角都等于30°,则这个多边形的边数为12.【分析】根据已知和多边形的外角和求出边数即可.【解答】解:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,∴多边形的边数是=12,故答案为:12.14.(3分)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为3200件.【分析】设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据发往A、B两区的物资共6000件,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据题意得:x+1.5x﹣1000=6000,解得:x=2800,∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.15.(3分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile 处,则海岛A,C之间的距离为18n mile.【分析】作AD⊥BC于D,根据正弦的定义、正切的定义分别求出BD、CD,根据题意列式计算即可.【解答】解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=x,则CD=x,在Rt△ABD中,BD=x,则x+x=18(1+),解得,x=18,答:A,C之间的距离为18海里.故答案为:1816.(3分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.【分析】分别过点P1、P2、P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【解答】解:如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,∵P1(3,3),且△P1OA1是等腰直角三角形,∴OC=CA1=P1C=3,设AD=a,则P2D=a,1∴OD=6+a,∴点P2坐标为(6+a,a),坐标代入y=﹣x+4,得:﹣(6+a)+4=a,将点P2解得:a=,∴A1A2=2a=3,P2D=,同理求得PE=、A2A3=,3∵S1=×6×3=9、S2=×3×=、S3=××=、……∴S2018=,故答案为:.三、解答题(本大题共9个小题,满分72分.)17.(5分)化简:•.【分析】先将分子、分母因式分解,再约分即可得.【解答】解:原式=•=.18.(5分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;(2)利用菱形以及平行线的性质即可解决问题;【解答】解:(1)如图所示,射线OP即为所求.(2)如图所示,点C即为所求;19.(7分)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计(1)本次共随机采访了 60 名教师,m = 5 ; (2)补全条形统计图;(3)已知受访的教师中,E 组只有2名女教师,F 组恰有1名男教师,现要从E 组、F 组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.【分析】(1)根据:某组的百分比=该组人数总人数×100%,所有百分比的和为1,计算即可;(2)先计算出D 、F 组的人数,再补全条形统计图;(3)列出树形图,根据总的情况和一男一女的情况计算概率. 【解答】解:(1)由条形图知,C 组共有15名,占25% 所以本次共随机采访了15÷25%=60(名) m =100﹣10﹣20﹣25﹣30﹣10=5 故答案为:60,5(2)D 组教师有:60×30%=18(名) F 组教师有:60×5%=3(名) (3)E 组共有6名教师,4男2女, F 组有三名教师,1男2女 共有18种可能,∴P一男一女==答:所选派的两名教师恰好是1男1女的概率为20.(7分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m=2,m2=﹣6,1∵m≥﹣,∴m的值为2.21.(8分)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y轴交于点C,且△ABO的面积为,求直线BC的解析式.【分析】(1)将A点坐标代入直线y=﹣x中求出m的值,确定出A的坐标,将A的坐标代入反比例解析式中求出k的值,即可确定出反比例函数的解析式;(2)根据直线的平移规律设直线BC的解析式为y=﹣x+b,由同底等高的两三角形面积相等可得△ACO与△ABO面积相等,根据△ABO的面积为列出方程OC•2=,解方程求出OC=,即b=,进而得出直线BC的解析式.【解答】解:(1)∵直线y=﹣x过点A(m,1),∴﹣m=1,解得m=﹣2,∴A(﹣2,1).∵反比例函数y=(k≠0)的图象过点A(﹣2,1),∴k=﹣2×1=﹣2,∴反比例函数的解析式为y=﹣;(2)设直线BC的解析式为y=﹣x+b,∵三角形ACO与三角形ABO面积相等,且△ABO的面积为,∴△ACO的面积=OC•2=,∴OC=,∴b=,∴直线BC的解析式为y=﹣x+.22.(8分)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.【分析】(1)连接OC,如图,利用圆周角定理得到∠ACB=90°,再根据斜边上的中线性质得MC=MG=ME,所以∠G=∠1,接着证明∠1+∠2=90°,从而得到∠OCM=90°,然后根据直线与圆的位置关系的判断方法可判断CM为⊙O的切线;(2)先证明∠G=∠A,再证明∠EMC=∠4,则可判定△EFC∽△ECM,利用相似比先计算出CE,再计算出EF,然后计算ME ﹣EF即可.【解答】解:(1)CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线;(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°,∴∠1=∠5,而∠1=∠G,∠5=∠A,∴∠G=∠A,∵∠4=2∠A,∴∠4=2∠G,而∠EMC=∠G+∠1=2∠G,∴∠EMC=∠4,而∠FEC=∠CEM,∴△EFC∽△ECM,∴==,即==,∴CE=4,EF=,∴MF=ME﹣EF=6﹣=.23.(10分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y(元)、生产成本y2(元)与产量x(kg)之间的函数关系.1(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?【分析】(1)根据线段EF经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(2)显然,当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,利用待定系数法确定一次函数的表达式即可;(3)利用:总利润=每千克利润×产量,根据x的取值范围列出有关x的二次函数,求得最值比较可得.【解答】解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=<<;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.24.(10分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.25.(12分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为(,0),(3,0),(,);(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用二次函数图象上点的坐标特征可求出点A、B的坐标,再利用配方法即可找出抛物线的顶点D的坐标;(2)由点D的坐标结合对称找出点E的坐标,根据点B、C的坐标利用待定系数法可求出直线BC的解析式,再利用一次函数图象上点的坐标特征即可得出关于t的一元一次不等式组,解之即可得出t的取值范围;(3)假设存在,设点P的坐标为(m,0),则点Q的横坐标为m,分m<或m>3及≤m≤3两种情况,利用勾股定理找出关于m的一元二次方程,解之即可得出m的值,进而可找出点P的坐标,此题得解.【解答】解:(1)当y=0时,有﹣x2+x﹣1=0,解得:x=,x2=3,1∴点A的坐标为(,0),点B的坐标为(3,0).∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+,∴点D的坐标为(,).故答案为:(,0);(3,0);(,).(2)∵点E、点D关于直线y=t对称,∴点E的坐标为(,2t﹣).当x=0时,y=﹣x2+x﹣1=﹣1,∴点C的坐标为(0,﹣1).设线段BC所在直线的解析式为y=kx+b,将B(3,0)、C(0,﹣1)代入y=kx+b,,解得:,∴线段BC所在直线的解析式为y=x﹣1.∵点E在△ABC内(含边界),∴,解得:≤t≤.(3)当x<或x>3时,y=﹣x2+x﹣1;当≤x≤3时,y=x2﹣x+1.假设存在,设点P的坐标为(m,0),则点Q的横坐标为m.①当m<或m>3时,点Q的坐标为(m,﹣m2+m﹣1)(如图1),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(﹣m2+m)2=m2+1+m2+(﹣m2+m﹣1)2,整理,得:m=,m2=,1∴点P的坐标为(,0)或(,0);②当≤m≤3时,点Q的坐标为(m,m2﹣m+1)(如图2),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(m2﹣m+2)2=m2+1+m2+(m2﹣m+1)2,整理,得:11m2﹣28m+12=0,解得:m=,m4=2,3∴点P的坐标为(,0)或(1,0).综上所述:存在以CQ为直径的圆与x轴相切于点P,点P的坐标为(,0)、(,0)、(1,0)或(,0).。
【K12教育学习资料】[学习]湖北省江汉油田、潜江市、天门市、仙桃市2018年中考数学真题试题(含解
湖北省江汉油田、潜江市、天门市、仙桃市2018年中考数学真题试题一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3.00分)8的倒数是()A.﹣8 B.8 C.﹣ D.2.(3.00分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱 D.圆锥3.(3.00分)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010 C.3.5×1011 D.35×10104.(3.00分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30° B.36° C.45° D.50°5.(3.00分)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a| B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b6.(3.00分)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定7.(3.00分)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240°D.300°8.(3.00分)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤49.(3.00分)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.510.(3.00分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3.00分)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.12.(3.00分)计算:+|﹣2|﹣()﹣1= .13.(3.00分)若一个多边形的每个外角都等于30°,则这个多边形的边数为.14.(3.00分)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为件.15.(3.00分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile处,则海岛A,C之间的距离为n mile.16.(3.00分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.三、解答题(本大题共9个小题,满分72分.)17.(5.00分)化简:•.18.(5.00分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.19.(7.00分)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了名教师,m= ;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.20.(7.00分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.21.(8.00分)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y轴交于点C,且△ABO的面积为,求直线BC的解析式.22.(8.00分)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.23.(10.00分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?24.(10.00分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.25.(12.00分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为,,;(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x 轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3.00分)8的倒数是()A.﹣8 B.8 C.﹣ D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.2.(3.00分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱 D.圆锥【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:观察图形可知,这个几何体是三棱柱.故选:A.3.(3.00分)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010 C.3.5×1011 D.35×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数350亿用科学记数法表示为3.5×1010.故选:B.4.(3.00分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30° B.36° C.45° D.50°【分析】直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB的度数,即可得出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠ADC=150°,∠ADB=∠DBC,∵∠ADB:∠BDC=1:2,∴∠ADB=×150°=50°,∴∠DBC的度数是50°.故选:D.5.(3.00分)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a| B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b【分析】根据图示可以得到a、b的取值范围,结合绝对值的含义推知|b|、|a|的数量关系.【解答】解:A、如图所示,|b|<2<|a|,故本选项不符合题意;B、如图所示,a<b,则2a<2b,由不等式的性质知1﹣2a>1﹣2b,故本选项不符合题意;C、如图所示,a<﹣2<b<2,则﹣a>2>b,故本选项符合题意;D、如图所示,a<﹣2<b<2且|a|>2,|b|<2.则a<﹣2<﹣b,故本选项不符合题意;故选:C.6.(3.00分)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定【分析】直接利用方差的意义以及中位数的定义和众数的定义分别分析得出答案.【解答】解:A、了解某班学生的身高情况,适宜采用全面调查,故此选项错误;B、数据3,5,4,1,1的中位数是:3,故此选项错误;C、数据5,3,5,4,1,1的众数是1和5,正确;D、甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明甲的射击成绩比乙稳定.故选:C.7.(3.00分)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240°D.300°【分析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,则=2πr=πR,解得,n=180°,故选:B.8.(3.00分)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤4【分析】先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m的不等式,再求出解集即可.【解答】解:,∵解不等式①得:x>3,解不等式②得:x>m﹣1,又∵关于x的一元一次不等式组的解集是x>3,∴m﹣1≤3,解得:m≤4,故选:D.9.(3.00分)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.5【分析】根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE;在直角△ECG中,根据勾股定理即可求出DE的长.【解答】解:∵AB=AD=AF,∠D=∠AFE=90°,在Rt△ABG和Rt△AFG中,∵,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则EC=6﹣x.∵G为BC中点,BC=6,∴CG=3,在Rt△ECG中,根据勾股定理,得:(6﹣x)2+9=(x+3)2,解得x=2.则DE=2.故选:C.10.(3.00分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:A.二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3.00分)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.【分析】根据概率公式进行计算即可.【解答】解:任选一个字母,这个字母为“s”的概率为:=,故答案为:.12.(3.00分)计算:+|﹣2|﹣()﹣1= 0 .【分析】根据二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则计算即可.【解答】解:原式=+2﹣﹣2=0故答案为:0.13.(3.00分)若一个多边形的每个外角都等于30°,则这个多边形的边数为12 .【分析】根据已知和多边形的外角和求出边数即可.【解答】解:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,∴多边形的边数是=12,故答案为:12.14.(3.00分)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为3200 件.【分析】设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据发往A、B两区的物资共6000件,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据题意得:x+1.5x﹣1000=6000,解得:x=2800,∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.15.(3.00分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile处,则海岛A,C之间的距离为18n mile.【分析】作AD⊥BC于D,根据正弦的定义、正切的定义分别求出BD、CD,根据题意列式计算即可.【解答】解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=x,则CD=x,在Rt△ABD中,BD=x,则x+x=18(1+),解得,x=18,答:A,C之间的距离为18海里.故答案为:1816.(3.00分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.【分析】分别过点P1、P2、P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【解答】解:如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,∵P1(3,3),且△P1OA1是等腰直角三角形,∴OC=CA1=P1C=3,设A1D=a,则P2D=a,∴OD=6+a,∴点P2坐标为(6+a,a),将点P2坐标代入y=﹣x+4,得:﹣(6+a)+4=a,解得:a=,∴A1A2=2a=3,P2D=,同理求得P3E=、A2A3=,∵S1=×6×3=9、S2=×3×=、S3=××=、……∴S2018=,故答案为:.三、解答题(本大题共9个小题,满分72分.)17.(5.00分)化简:•.【分析】先将分子、分母因式分解,再约分即可得.【解答】解:原式=•=.18.(5.00分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;(2)利用菱形以及平行线的性质即可解决问题;【解答】解:(1)如图所示,射线OP即为所求.(2)如图所示,点C即为所求;19.(7.00分)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了60 名教师,m= 5 ;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.【分析】(1)根据:某组的百分比=×100%,所有百分比的和为1,计算即可;(2)先计算出D、F组的人数,再补全条形统计图;(3)列出树形图,根据总的情况和一男一女的情况计算概率.【解答】解:(1)由条形图知,C组共有15名,占25%所以本次共随机采访了15÷25%=60(名)m=100﹣10﹣20﹣25﹣30﹣10=5故答案为:60,5(2)D组教师有:60×30%=18(名)F组教师有:60×5%=3(名)(3)E组共有6名教师,4男2女,F组有三名教师,1男2女共有18种可能,∴P一男一女==答:所选派的两名教师恰好是1男1女的概率为20.(7.00分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m 的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.21.(8.00分)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y轴交于点C,且△ABO的面积为,求直线BC的解析式.【分析】(1)将A点坐标代入直线y=﹣x中求出m的值,确定出A的坐标,将A的坐标代入反比例解析式中求出k的值,即可确定出反比例函数的解析式;(2)根据直线的平移规律设直线BC的解析式为y=﹣x+b,由同底等高的两三角形面积相等可得△ACO与△ABO面积相等,根据△ABO的面积为列出方程OC•2=,解方程求出OC=,即b=,进而得出直线BC的解析式.【解答】解:(1)∵直线y=﹣x过点A(m,1),∴﹣m=1,解得m=﹣2,∴A(﹣2,1).∵反比例函数y=(k≠0)的图象过点A(﹣2,1),∴k=﹣2×1=﹣2,∴反比例函数的解析式为y=﹣;(2)设直线BC的解析式为y=﹣x+b,∵三角形ACO与三角形ABO面积相等,且△ABO的面积为,∴△ACO的面积=OC•2=,∴OC=,∴b=,∴直线BC的解析式为y=﹣x+.22.(8.00分)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.【分析】(1)连接OC,如图,利用圆周角定理得到∠ACB=90°,再根据斜边上的中线性质得MC=MG=ME,所以∠G=∠1,接着证明∠1+∠2=90°,从而得到∠OCM=90°,然后根据直线与圆的位置关系的判断方法可判断CM为⊙O的切线;(2)先证明∠G=∠A,再证明∠EMC=∠4,则可判定△EFC∽△ECM,利用相似比先计算出CE,再计算出EF,然后计算ME﹣EF即可.【解答】解:(1)CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线;(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°,∴∠1=∠5,而∠1=∠G,∠5=∠A,∴∠G=∠A,∵∠4=2∠A,∴∠4=2∠G,而∠EMC=∠G+∠1=2∠G,∴∠EMC=∠4,而∠FEC=∠CEM,∴△EFC∽△ECM,∴==,即==,∴CE=4,EF=,∴MF=ME﹣EF=6﹣=.23.(10.00分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?【分析】(1)根据线段EF经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(2)显然,当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,利用待定系数法确定一次函数的表达式即可;(3)利用:总利润=每千克利润×产量,根据x的取值范围列出有关x的二次函数,求得最值比较可得.【解答】解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.24.(10.00分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC ;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.25.(12.00分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为(,0),(3,0),(,);(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x 轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用二次函数图象上点的坐标特征可求出点A、B的坐标,再利用配方法即可找出抛物线的顶点D的坐标;(2)由点D的坐标结合对称找出点E的坐标,根据点B、C的坐标利用待定系数法可求出直线BC的解析式,再利用一次函数图象上点的坐标特征即可得出关于t的一元一次不等式组,解之即可得出t的取值范围;(3)假设存在,设点P的坐标为(m,0),则点Q的横坐标为m,分m<或m>3及≤m≤3两种情况,利用勾股定理找出关于m的一元二次方程,解之即可得出m的值,进而可找出点P的坐标,此题得解.【解答】解:(1)当y=0时,有﹣x2+x﹣1=0,解得:x1=,x2=3,∴点A的坐标为(,0),点B的坐标为(3,0).∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+,∴点D的坐标为(,).故答案为:(,0);(3,0);(,).(2)∵点E、点D关于直线y=t对称,∴点E的坐标为(,2t﹣).当x=0时,y=﹣x2+x﹣1=﹣1,∴点C的坐标为(0,﹣1).设线段BC所在直线的解析式为y=kx+b,将B(3,0)、C(0,﹣1)代入y=kx+b,,解得:,∴线段BC所在直线的解析式为y=x﹣1.∵点E在△ABC内(含边界),∴,解得:≤t≤.(3)当x<或x>3时,y=﹣x2+x﹣1;当≤x≤3时,y=x2﹣x+1.假设存在,设点P的坐标为(m,0),则点Q的横坐标为m.①当m<或m>3时,点Q的坐标为(m,﹣x2+x﹣1)(如图1),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(﹣m2+m)2=m2+1+m2+(﹣m2+m﹣1)2,整理,得:m1=,m2=,∴点P的坐标为(,0)或(,0);②当≤m≤3时,点Q的坐标为(m,x2﹣x+1)(如图2),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(m2﹣m+2)2=m2+1+m2+(m2﹣m+1)2,整理,得:11m2﹣28m+12=0,解得:m3=,m4=2,∴点P的坐标为(,0)或(1,0).综上所述:存在以CQ为直径的圆与x轴相切于点P,点P的坐标为(,0)、(,0)、(1,0)或(,0).。
2018年湖北省仙桃市数学中考模拟试卷(一)(含解析)
湖北省仙桃市西流河镇初级中学2018届数学中考模拟试卷(一)一、单选题1.下表是某水库一周内水位高低的变化情况(用正数记水位比前一日上升数,用负数记下降数).那么本周星期几水位最低()星期一二三四五六日水位变化/米 0.12 ﹣0.02 ﹣0.13 ﹣0.20 ﹣0.08 ﹣0.02 0.32A.星期二B.星期四C.星期六D.星期五【答案】C【考点】正数和负数的认识及应用【解析】【解答】解:由于用正数记水位比前一日上升数,用负数记下降数,由图表可知,周一水位比上周末上升0.12米,从周二开始水位下降,一直降到周六,所以星期六水位最低.故答案为:C.【分析】由于用正数记水位比前一日上升数,用负数记水位比前一日下降数,由图表即可知答案。
2.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5 300万美元,“5 300万”用科学记数法可表示为()A. 5.3×103B. 5.3×104C. 5.3×107D. 5.3×108【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】5300万=53000000= .故答案为:C.【分析】科学记数法表示绝对值较大的数,一般表示成a ×10n,的形式,其中1 ≤∣a ∣<10, n是原数的整数位数减一。
3.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A. 76°B. 78°C. 80°D. 82°【答案】B【考点】角的平分线,平行线的性质【解析】【解答】如图,分别过K、H作AB的平行线MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE= ∠ABK,∠SHC=∠DCF= ∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故答案为:B.【分析】分别过K、H作AB的平行线MN和RS,根据平行线的性质和角平分线的性质可用∠ABK 和∠DCK分别表示出∠H和∠K,从而可找到∠H和∠K的关系,结合条件可求得∠K。
中考数学真题模拟试卷 (51)
2018年湖北省仙桃市中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3.00分)8的倒数是()A.﹣8 B.8 C.﹣ D.2.(3.00分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥3.(3.00分)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×10104.(3.00分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30°B.36°C.45°D.50°5.(3.00分)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a|B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b 6.(3.00分)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定7.(3.00分)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240° D.300°8.(3.00分)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤49.(3.00分)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG 对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.510.(3.00分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3.00分)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.12.(3.00分)计算:+|﹣2|﹣()﹣1=.13.(3.00分)若一个多边形的每个外角都等于30°,则这个多边形的边数为.14.(3.00分)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为件.15.(3.00分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C 附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile处,则海岛A,C之间的距离为n mile.16.(3.00分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.三、解答题(本大题共9个小题,满分72分.)17.(5.00分)化简:•.18.(5.00分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.19.(7.00分)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了名教师,m=;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.20.(7.00分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.21.(8.00分)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k ≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y 轴交于点C,且△ABO的面积为,求直线BC的解析式.22.(8.00分)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.23.(10.00分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?24.(10.00分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.25.(12.00分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为,,;(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.2018年湖北省仙桃市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3.00分)8的倒数是()A.﹣8 B.8 C.﹣ D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.【点评】此题主要考查倒数的概念及性质,属于基础题,注意掌握倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3.00分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:观察图形可知,这个几何体是三棱柱.故选:A.【点评】本题考查的是三棱柱的展开图,考法较新颖,需要对三棱柱有充分的理解.3.(3.00分)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:数350亿用科学记数法表示为3.5×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3.00分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30°B.36°C.45°D.50°【分析】直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB 的度数,即可得出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠ADC=150°,∠ADB=∠DBC,∵∠ADB:∠BDC=1:2,∴∠ADB=×150°=50°,∴∠DBC的度数是50°.故选:D.【点评】此题主要考查了平行线的性质,正确得出∠ADB度数是解题关键.5.(3.00分)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a|B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b【分析】根据图示可以得到a、b的取值范围,结合绝对值的含义推知|b|、|a|的数量关系.【解答】解:A、如图所示,|b|<2<|a|,故本选项不符合题意;B、如图所示,a<b,则2a<2b,由不等式的性质知1﹣2a>1﹣2b,故本选项不符合题意;C、如图所示,a<﹣2<b<2,则﹣a>2>b,故本选项符合题意;D、如图所示,a<﹣2<b<2且|a|>2,|b|<2.则a<﹣2<﹣b,故本选项不符合题意;故选:C.【点评】此题考查了绝对值意义,比较两个负数大小的方法,有理数的运算,解本题的关键是掌握有理数的运算.6.(3.00分)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定【分析】直接利用方差的意义以及中位数的定义和众数的定义分别分析得出答案.【解答】解:A、了解某班学生的身高情况,适宜采用全面调查,故此选项错误;B、数据3,5,4,1,1的中位数是:3,故此选项错误;C、数据5,3,5,4,1,1的众数是1和5,正确;D、甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明甲的射击成绩比乙稳定.故选:C.【点评】此题主要考查了方差的意义以及中位数的定义和众数的定义,正确把握相关定义是解题关键.7.(3.00分)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240° D.300°【分析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,则=2πr=πR,解得,n=180°,故选:B.【点评】本题考查的是圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.8.(3.00分)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤4【分析】先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m 的不等式,再求出解集即可.【解答】解:,∵解不等式①得:x>3,解不等式②得:x>m﹣1,又∵关于x的一元一次不等式组的解集是x>3,∴m﹣1≤3,解得:m≤4,故选:D.【点评】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出关于m的不等式是解此题的关键.9.(3.00分)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG 对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.5【分析】根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE;在直角△ECG中,根据勾股定理即可求出DE的长.【解答】解:∵AB=AD=AF,∠D=∠AFE=90°,在Rt△ABG和Rt△AFG中,∵,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则EC=6﹣x.∵G为BC中点,BC=6,∴CG=3,在Rt△ECG中,根据勾股定理,得:(6﹣x)2+9=(x+3)2,解得x=2.则DE=2.故选:C.【点评】本题考查了翻折变换,解题的关键是掌握翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理.10.(3.00分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:A.【点评】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3.00分)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.【分析】根据概率公式进行计算即可.【解答】解:任选一个字母,这个字母为“s”的概率为:=,故答案为:.【点评】此题主要考查了概率公式,关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数.12.(3.00分)计算:+|﹣2|﹣()﹣1=0.【分析】根据二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则计算即可.【解答】解:原式=+2﹣﹣2=0故答案为:0.【点评】本题考查的是二次根式的混合运算,掌握二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则是解题的关键.13.(3.00分)若一个多边形的每个外角都等于30°,则这个多边形的边数为12.【分析】根据已知和多边形的外角和求出边数即可.【解答】解:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,∴多边形的边数是=12,故答案为:12.【点评】本题考查了多边形的内角和外角,能熟记多边形的外角和等于360°是解此题的关键.14.(3.00分)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为3200件.【分析】设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据发往A、B两区的物资共6000件,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据题意得:x+1.5x﹣1000=6000,解得:x=2800,∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.15.(3.00分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C 附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile处,则海岛A,C之间的距离为18n mile.【分析】作AD⊥BC于D,根据正弦的定义、正切的定义分别求出BD、CD,根据题意列式计算即可.【解答】解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=x,则CD=x,在Rt△ABD中,BD=x,则x+x=18(1+),解得,x=18,答:A,C之间的距离为18海里.故答案为:18【点评】本题考查的是解直角三角形的应用,掌握方向角的概念、锐角三角函数的定义是解题的关键.16.(3.00分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.【分析】分别过点P1、P2、P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【解答】解:如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,∵P1(3,3),且△P1OA1是等腰直角三角形,∴OC=CA1=P1C=3,设A1D=a,则P2D=a,∴OD=6+a,∴点P2坐标为(6+a,a),将点P2坐标代入y=﹣x+4,得:﹣(6+a)+4=a,解得:a=,∴A1A2=2a=3,P2D=,同理求得P3E=、A2A3=,∵S1=×6×3=9、S2=×3×=、S3=××=、……∴S2018=,故答案为:.【点评】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题,属于中考常考题型.三、解答题(本大题共9个小题,满分72分.)17.(5.00分)化简:•.【分析】先将分子、分母因式分解,再约分即可得.【解答】解:原式=•=.【点评】本题主要考查分式的乘除法,解题的关键是掌握分式乘除运算顺序和运算法则.18.(5.00分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;(2)利用菱形以及平行线的性质即可解决问题;【解答】解:(1)如图所示,射线OP即为所求.(2)如图所示,点C即为所求;【点评】本题考查作图﹣应用与设计、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(7.00分)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了60名教师,m=5;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E 组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.【分析】(1)根据:某组的百分比=×100%,所有百分比的和为1,计算即可;(2)先计算出D、F组的人数,再补全条形统计图;(3)列出树形图,根据总的情况和一男一女的情况计算概率.【解答】解:(1)由条形图知,C组共有15名,占25%所以本次共随机采访了15÷25%=60(名)m=100﹣10﹣20﹣25﹣30﹣10=5故答案为:60,5(2)D组教师有:60×30%=18(名)F组教师有:60×5%=3(名)(3)E组共有6名教师,4男2女,F组有三名教师,1男2女共有18种可能,==∴P一男一女答:所选派的两名教师恰好是1男1女的概率为【点评】本题考查了条形图、频率分布图、树形图、概率等相关知识,难度不大,综合性较强.概率=所求情况数与总情况数之比20.(7.00分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为﹣6.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.21.(8.00分)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k ≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y 轴交于点C,且△ABO的面积为,求直线BC的解析式.【分析】(1)将A点坐标代入直线y=﹣x中求出m的值,确定出A的坐标,将A的坐标代入反比例解析式中求出k的值,即可确定出反比例函数的解析式;(2)根据直线的平移规律设直线BC的解析式为y=﹣x+b,由同底等高的两三角形面积相等可得△ACO与△ABO面积相等,根据△ABO的面积为列出方程OC•2=,解方程求出OC=,即b=,进而得出直线BC的解析式.【解答】解:(1)∵直线y=﹣x过点A(m,1),∴﹣m=1,解得m=﹣2,∴A(﹣2,1).∵反比例函数y=(k≠0)的图象过点A(﹣2,1),∴k=﹣2×1=﹣2,∴反比例函数的解析式为y=﹣;(2)设直线BC的解析式为y=﹣x+b,∵三角形ACO与三角形ABO面积相等,且△ABO的面积为,∴△ACO的面积=OC•2=,∴OC=,∴b=,∴直线BC的解析式为y=﹣x+.【点评】此题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,三角形的面积求法,以及一次函数图象与几何变换,熟练掌握待定系数法是解题的关键.22.(8.00分)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.【分析】(1)连接OC,如图,利用圆周角定理得到∠ACB=90°,再根据斜边上的中线性质得MC=MG=ME,所以∠G=∠1,接着证明∠1+∠2=90°,从而得到∠OCM=90°,然后根据直线与圆的位置关系的判断方法可判断CM为⊙O的切线;(2)先证明∠G=∠A,再证明∠EMC=∠4,则可判定△EFC∽△ECM,利用相似比先计算出CE,再计算出EF,然后计算ME﹣EF即可.【解答】解:(1)CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线;(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°,∴∠1=∠5,而∠1=∠G,∠5=∠A,∴∠G=∠A,∵∠4=2∠A,∴∠4=2∠G,而∠EMC=∠G+∠1=2∠G,∴∠EMC=∠4,而∠FEC=∠CEM,∴△EFC∽△ECM,∴==,即==,∴CE=4,EF=,∴MF=ME﹣EF=6﹣=.【点评】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l 的距离为d:直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了圆周角定理.23.(10.00分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?【分析】(1)根据线段EF经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(2)显然,当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,利用待定系数法确定一次函数的表达式即可;(3)利用:总利润=每千克利润×产量,根据x的取值范围列出有关x的二次函数,求得最值比较可得.【解答】解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x ≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.【点评】本题考查了二次函数的应用,待定系数法求二次函数的解析式,解题的关键是从实际问题中抽象出二次函数模型.24.(10.00分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.【点评】本题考查的是全等三角形的判定和性质、勾股定理、以及旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题的关键.25.(12.00分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为(,0),(3,0),(,);(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用二次函数图象上点的坐标特征可求出点A、B的坐标,再利用配方法即可找出抛物线的顶点D的坐标;(2)由点D的坐标结合对称找出点E的坐标,根据点B、C的坐标利用待定系数法可求出直线BC的解析式,再利用一次函数图象上点的坐标特征即可得出关于t的一元一次不等式组,解之即可得出t的取值范围;(3)假设存在,设点P的坐标为(m,0),则点Q的横坐标为m,分m<或m>3及≤m≤3两种情况,利用勾股定理找出关于m的一元二次方程,解之即可得出m的值,进而可找出点P的坐标,此题得解.【解答】解:(1)当y=0时,有﹣x2+x﹣1=0,解得:x1=,x2=3,∴点A的坐标为(,0),点B的坐标为(3,0).∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+,∴点D的坐标为(,).故答案为:(,0);(3,0);(,).(2)∵点E、点D关于直线y=t对称,∴点E的坐标为(,2t﹣).当x=0时,y=﹣x2+x﹣1=﹣1,∴点C的坐标为(0,﹣1).。
中考数学真题模拟试卷 (51)
2018年湖北省仙桃市中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3.00分)8的倒数是()A.﹣8 B.8 C.﹣ D.2.(3.00分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥3.(3.00分)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×10104.(3.00分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30°B.36°C.45°D.50°5.(3.00分)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a|B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b 6.(3.00分)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定7.(3.00分)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240° D.300°8.(3.00分)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤49.(3.00分)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG 对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.510.(3.00分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3.00分)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.12.(3.00分)计算:+|﹣2|﹣()﹣1=.13.(3.00分)若一个多边形的每个外角都等于30°,则这个多边形的边数为.14.(3.00分)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为件.15.(3.00分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C 附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile处,则海岛A,C之间的距离为n mile.16.(3.00分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.三、解答题(本大题共9个小题,满分72分.)17.(5.00分)化简:•.18.(5.00分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.19.(7.00分)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.组别发言次数n百分比A0≤n<310%B3≤n<620%C6≤n<925%D9≤n<1230%E12≤n<1510%F15≤n<18m%请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了名教师,m=;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.20.(7.00分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.21.(8.00分)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k ≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y 轴交于点C,且△ABO的面积为,求直线BC的解析式.22.(8.00分)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.23.(10.00分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?24.(10.00分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.25.(12.00分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为,,;(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.2018年湖北省仙桃市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3.00分)8的倒数是()A.﹣8 B.8 C.﹣ D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.【点评】此题主要考查倒数的概念及性质,属于基础题,注意掌握倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3.00分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:观察图形可知,这个几何体是三棱柱.故选:A.【点评】本题考查的是三棱柱的展开图,考法较新颖,需要对三棱柱有充分的理解.3.(3.00分)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:数350亿用科学记数法表示为3.5×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3.00分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30°B.36°C.45°D.50°【分析】直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB 的度数,即可得出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠ADC=150°,∠ADB=∠DBC,∵∠ADB:∠BDC=1:2,∴∠ADB=×150°=50°,∴∠DBC的度数是50°.故选:D.【点评】此题主要考查了平行线的性质,正确得出∠ADB度数是解题关键.5.(3.00分)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a|B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b【分析】根据图示可以得到a、b的取值范围,结合绝对值的含义推知|b|、|a|的数量关系.【解答】解:A、如图所示,|b|<2<|a|,故本选项不符合题意;B、如图所示,a<b,则2a<2b,由不等式的性质知1﹣2a>1﹣2b,故本选项不符合题意;C、如图所示,a<﹣2<b<2,则﹣a>2>b,故本选项符合题意;D、如图所示,a<﹣2<b<2且|a|>2,|b|<2.则a<﹣2<﹣b,故本选项不符合题意;故选:C.【点评】此题考查了绝对值意义,比较两个负数大小的方法,有理数的运算,解本题的关键是掌握有理数的运算.6.(3.00分)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定【分析】直接利用方差的意义以及中位数的定义和众数的定义分别分析得出答案.【解答】解:A、了解某班学生的身高情况,适宜采用全面调查,故此选项错误;B、数据3,5,4,1,1的中位数是:3,故此选项错误;C、数据5,3,5,4,1,1的众数是1和5,正确;D、甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明甲的射击成绩比乙稳定.故选:C.【点评】此题主要考查了方差的意义以及中位数的定义和众数的定义,正确把握相关定义是解题关键.7.(3.00分)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240° D.300°【分析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,则=2πr=πR,解得,n=180°,故选:B.【点评】本题考查的是圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.8.(3.00分)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤4【分析】先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m 的不等式,再求出解集即可.【解答】解:,∵解不等式①得:x>3,解不等式②得:x>m﹣1,又∵关于x的一元一次不等式组的解集是x>3,∴m﹣1≤3,解得:m≤4,故选:D.【点评】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出关于m的不等式是解此题的关键.9.(3.00分)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG 对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.5【分析】根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE;在直角△ECG中,根据勾股定理即可求出DE的长.【解答】解:∵AB=AD=AF,∠D=∠AFE=90°,在Rt△ABG和Rt△AFG中,∵,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则EC=6﹣x.∵G为BC中点,BC=6,∴CG=3,在Rt△ECG中,根据勾股定理,得:(6﹣x)2+9=(x+3)2,解得x=2.则DE=2.故选:C.【点评】本题考查了翻折变换,解题的关键是掌握翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理.10.(3.00分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:A.【点评】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3.00分)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.【分析】根据概率公式进行计算即可.【解答】解:任选一个字母,这个字母为“s”的概率为:=,故答案为:.【点评】此题主要考查了概率公式,关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数.12.(3.00分)计算:+|﹣2|﹣()﹣1=0.【分析】根据二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则计算即可.【解答】解:原式=+2﹣﹣2=0故答案为:0.【点评】本题考查的是二次根式的混合运算,掌握二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则是解题的关键.13.(3.00分)若一个多边形的每个外角都等于30°,则这个多边形的边数为12.【分析】根据已知和多边形的外角和求出边数即可.【解答】解:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,∴多边形的边数是=12,故答案为:12.【点评】本题考查了多边形的内角和外角,能熟记多边形的外角和等于360°是解此题的关键.14.(3.00分)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为3200件.【分析】设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据发往A、B两区的物资共6000件,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据题意得:x+1.5x﹣1000=6000,解得:x=2800,∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.15.(3.00分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C 附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile处,则海岛A,C之间的距离为18n mile.【分析】作AD⊥BC于D,根据正弦的定义、正切的定义分别求出BD、CD,根据题意列式计算即可.【解答】解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=x,则CD=x,在Rt△ABD中,BD=x,则x+x=18(1+),解得,x=18,答:A,C之间的距离为18海里.故答案为:18【点评】本题考查的是解直角三角形的应用,掌握方向角的概念、锐角三角函数的定义是解题的关键.16.(3.00分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.【分析】分别过点P1、P2、P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【解答】解:如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,∵P1(3,3),且△P1OA1是等腰直角三角形,∴OC=CA1=P1C=3,设A1D=a,则P2D=a,∴OD=6+a,∴点P2坐标为(6+a,a),将点P2坐标代入y=﹣x+4,得:﹣(6+a)+4=a,解得:a=,∴A1A2=2a=3,P2D=,同理求得P3E=、A2A3=,∵S1=×6×3=9、S2=×3×=、S3=××=、……∴S2018=,故答案为:.【点评】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题,属于中考常考题型.三、解答题(本大题共9个小题,满分72分.)17.(5.00分)化简:•.【分析】先将分子、分母因式分解,再约分即可得.【解答】解:原式=•=.【点评】本题主要考查分式的乘除法,解题的关键是掌握分式乘除运算顺序和运算法则.18.(5.00分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;(2)利用菱形以及平行线的性质即可解决问题;【解答】解:(1)如图所示,射线OP即为所求.(2)如图所示,点C即为所求;【点评】本题考查作图﹣应用与设计、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(7.00分)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.组别发言次数n百分比A0≤n<310%B3≤n<620%C6≤n<925%D9≤n<1230%E12≤n<1510%F15≤n<18m%请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了60名教师,m=5;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E 组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.【分析】(1)根据:某组的百分比=×100%,所有百分比的和为1,计算即可;(2)先计算出D、F组的人数,再补全条形统计图;(3)列出树形图,根据总的情况和一男一女的情况计算概率.【解答】解:(1)由条形图知,C组共有15名,占25%所以本次共随机采访了15÷25%=60(名)m=100﹣10﹣20﹣25﹣30﹣10=5故答案为:60,5(2)D组教师有:60×30%=18(名)F组教师有:60×5%=3(名)(3)E组共有6名教师,4男2女,F组有三名教师,1男2女共有18种可能,==∴P一男一女答:所选派的两名教师恰好是1男1女的概率为【点评】本题考查了条形图、频率分布图、树形图、概率等相关知识,难度不大,综合性较强.概率=所求情况数与总情况数之比20.(7.00分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为﹣6.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.21.(8.00分)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k ≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y 轴交于点C,且△ABO的面积为,求直线BC的解析式.【分析】(1)将A点坐标代入直线y=﹣x中求出m的值,确定出A的坐标,将A的坐标代入反比例解析式中求出k的值,即可确定出反比例函数的解析式;(2)根据直线的平移规律设直线BC的解析式为y=﹣x+b,由同底等高的两三角形面积相等可得△ACO与△ABO面积相等,根据△ABO的面积为列出方程OC•2=,解方程求出OC=,即b=,进而得出直线BC的解析式.【解答】解:(1)∵直线y=﹣x过点A(m,1),∴﹣m=1,解得m=﹣2,∴A(﹣2,1).∵反比例函数y=(k≠0)的图象过点A(﹣2,1),∴k=﹣2×1=﹣2,∴反比例函数的解析式为y=﹣;(2)设直线BC的解析式为y=﹣x+b,∵三角形ACO与三角形ABO面积相等,且△ABO的面积为,∴△ACO的面积=OC•2=,∴OC=,∴b=,∴直线BC的解析式为y=﹣x+.【点评】此题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,三角形的面积求法,以及一次函数图象与几何变换,熟练掌握待定系数法是解题的关键.22.(8.00分)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.【分析】(1)连接OC,如图,利用圆周角定理得到∠ACB=90°,再根据斜边上的中线性质得MC=MG=ME,所以∠G=∠1,接着证明∠1+∠2=90°,从而得到∠OCM=90°,然后根据直线与圆的位置关系的判断方法可判断CM为⊙O的切线;(2)先证明∠G=∠A,再证明∠EMC=∠4,则可判定△EFC∽△ECM,利用相似比先计算出CE,再计算出EF,然后计算ME﹣EF即可.【解答】解:(1)CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线;(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°,∴∠1=∠5,而∠1=∠G,∠5=∠A,∴∠G=∠A,∵∠4=2∠A,∴∠4=2∠G,而∠EMC=∠G+∠1=2∠G,∴∠EMC=∠4,而∠FEC=∠CEM,∴△EFC∽△ECM,∴==,即==,∴CE=4,EF=,∴MF=ME﹣EF=6﹣=.【点评】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l 的距离为d:直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了圆周角定理.23.(10.00分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?【分析】(1)根据线段EF经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(2)显然,当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,利用待定系数法确定一次函数的表达式即可;(3)利用:总利润=每千克利润×产量,根据x的取值范围列出有关x的二次函数,求得最值比较可得.【解答】解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x ≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.【点评】本题考查了二次函数的应用,待定系数法求二次函数的解析式,解题的关键是从实际问题中抽象出二次函数模型.24.(10.00分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.【点评】本题考查的是全等三角形的判定和性质、勾股定理、以及旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题的关键.25.(12.00分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为(,0),(3,0),(,);(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用二次函数图象上点的坐标特征可求出点A、B的坐标,再利用配方法即可找出抛物线的顶点D的坐标;(2)由点D的坐标结合对称找出点E的坐标,根据点B、C的坐标利用待定系数法可求出直线BC的解析式,再利用一次函数图象上点的坐标特征即可得出关于t的一元一次不等式组,解之即可得出t的取值范围;(3)假设存在,设点P的坐标为(m,0),则点Q的横坐标为m,分m<或m>3及≤m≤3两种情况,利用勾股定理找出关于m的一元二次方程,解之即可得出m的值,进而可找出点P的坐标,此题得解.【解答】解:(1)当y=0时,有﹣x2+x﹣1=0,解得:x1=,x2=3,∴点A的坐标为(,0),点B的坐标为(3,0).∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+,∴点D的坐标为(,).故答案为:(,0);(3,0);(,).(2)∵点E、点D关于直线y=t对称,∴点E的坐标为(,2t﹣).当x=0时,y=﹣x2+x﹣1=﹣1,∴点C的坐标为(0,﹣1).。
2018年湖北省仙桃市数学中考模拟试卷(一)--有答案
湖北省仙桃市西流河镇初级中学2018届数学中考模拟试卷(一)一、单选题1.下表是某水库一周内水位高低的变化情况(用正数记水位比前一日上升数,用负数记下降数).那么本周星期几水位最低()B.星期四C.星期六D.星期五【答案】C【考点】正数和负数的认识及应用【解析】【解答】解:由于用正数记水位比前一日上升数,用负数记下降数,由图表可知,周一水位比上周末上升0.12米,从周二开始水位下降,一直降到周六,所以星期六水位最低.故答案为:C.【分析】由于用正数记水位比前一日上升数,用负数记水位比前一日下降数,由图表即可知答案。
2.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5 300万美元,“5 300万”用科学记数法可表示为()A. 5.3×103B. 5.3×104C. 5.3×107D. 5.3×108【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】5300万=53000000= .故答案为:C.【分析】科学记数法表示绝对值较大的数,一般表示成a ×10n,的形式,其中1 ≤∣a ∣<10, n是原数的整数位数减一。
3.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A. 76°B. 78°C. 80°D. 82°【答案】B【考点】角的平分线,平行线的性质【解析】【解答】如图,分别过K、H作AB的平行线MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE= ∠ABK,∠SHC=∠DCF= ∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故答案为:B.【分析】分别过K、H作AB的平行线MN和RS,根据平行线的性质和角平分线的性质可用∠ABK和∠DCK分别表示出∠H和∠K,从而可找到∠H和∠K的关系,结合条件可求得∠K。
2018年湖北省仙桃市数学中考模拟试卷(一)(有答案)
湖北省仙桃市西流河镇初级中学2018届数学中考模拟试卷(一)一、单选题1.下表是某水库一周内水位高低的变化情况(用正数记水位比前一日上升数,用负数记下降数).那么本周星期几水位最低()星期一二三四五六日水位变化/米 0.12 ﹣0.02 ﹣0.13 ﹣0.20 ﹣0.08 ﹣0.02 0.32B.星期四C.星期六D.星期五【答案】C【考点】正数和负数的认识及应用【解析】【解答】解:由于用正数记水位比前一日上升数,用负数记下降数,由图表可知,周一水位比上周末上升0.12米,从周二开始水位下降,一直降到周六,所以星期六水位最低.故答案为:C.【分析】由于用正数记水位比前一日上升数,用负数记水位比前一日下降数,由图表即可知答案。
2.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5 300万美元,“5 300万”用科学记数法可表示为()A. 5.3×103B. 5.3×104C. 5.3×107D. 5.3×108【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】5300万=53000000= .故答案为:C.【分析】科学记数法表示绝对值较大的数,一般表示成a ×10n,的形式,其中1 ≤∣a ∣<10, n是原数的整数位数减一。
3.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K ﹣∠H=27°,则∠K=()A. 76°B. 78°C. 80°D. 82°【答案】B【考点】角的平分线,平行线的性质【解析】【解答】如图,分别过K、H作AB的平行线MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE= ∠ABK,∠SHC=∠DCF= ∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故答案为:B.【分析】分别过K、H作AB的平行线MN和RS,根据平行线的性质和角平分线的性质可用∠ABK和∠DCK 分别表示出∠H和∠K,从而可找到∠H和∠K的关系,结合条件可求得∠K。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年湖北省仙桃市中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3.00分)(2018•天门)8的倒数是()A.﹣8 B.8 C.﹣ D.2.(3.00分)(2018•天门)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥3.(3.00分)(2018•天门)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×10104.(3.00分)(2018•天门)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30°B.36°C.45°D.50°5.(3.00分)(2018•天门)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a|B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b 6.(3.00分)(2018•天门)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定7.(3.00分)(2018•天门)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240° D.300°8.(3.00分)(2018•天门)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤49.(3.00分)(2018•天门)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.510.(3.00分)(2018•天门)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h 的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3.00分)(2018•天门)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.12.(3.00分)(2018•天门)计算:+|﹣2|﹣()﹣1=.13.(3.00分)(2018•天门)若一个多边形的每个外角都等于30°,则这个多边形的边数为.14.(3.00分)(2018•天门)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为件.15.(3.00分)(2018•天门)我国海域辽阔,渔业资源丰富.如图,现有渔船B 在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile处,则海岛A,C之间的距离为n mile.16.(3.00分)(2018•天门)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.三、解答题(本大题共9个小题,满分72分.)17.(5.00分)(2018•天门)化简:•.18.(5.00分)(2018•天门)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.19.(7.00分)(2018•天门)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.组别发言次数n百分比A0≤n<310%B3≤n<620%C6≤n<925%D9≤n<1230%E12≤n<1510%F15≤n<18m%请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了名教师,m=;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.20.(7.00分)(2018•天门)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.21.(8.00分)(2018•天门)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y 轴交于点C,且△ABO的面积为,求直线BC的解析式.22.(8.00分)(2018•天门)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.23.(10.00分)(2018•天门)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?24.(10.00分)(2018•天门)问题:如图①,在Rt△ABC中,AB=AC,D为BC 边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.25.(12.00分)(2018•天门)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A 在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为,,;(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.2018年湖北省仙桃市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3.00分)(2018•天门)8的倒数是()A.﹣8 B.8 C.﹣ D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.【点评】此题主要考查倒数的概念及性质,属于基础题,注意掌握倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3.00分)(2018•天门)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:观察图形可知,这个几何体是三棱柱.故选:A.【点评】本题考查的是三棱柱的展开图,考法较新颖,需要对三棱柱有充分的理解.3.(3.00分)(2018•天门)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:数350亿用科学记数法表示为3.5×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3.00分)(2018•天门)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30°B.36°C.45°D.50°【分析】直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB 的度数,即可得出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠ADC=150°,∠ADB=∠DBC,∵∠ADB:∠BDC=1:2,∴∠ADB=×150°=50°,∴∠DBC的度数是50°.故选:D.【点评】此题主要考查了平行线的性质,正确得出∠ADB度数是解题关键.5.(3.00分)(2018•天门)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a|B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b【分析】根据图示可以得到a、b的取值范围,结合绝对值的含义推知|b|、|a|的数量关系.【解答】解:A、如图所示,|b|<2<|a|,故本选项不符合题意;B、如图所示,a<b,则2a<2b,由不等式的性质知1﹣2a>1﹣2b,故本选项不符合题意;C、如图所示,a<﹣2<b<2,则﹣a>2>b,故本选项符合题意;D、如图所示,a<﹣2<b<2且|a|>2,|b|<2.则a<﹣2<﹣b,故本选项不符合题意;故选:C.【点评】此题考查了绝对值意义,比较两个负数大小的方法,有理数的运算,解本题的关键是掌握有理数的运算.6.(3.00分)(2018•天门)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定【分析】直接利用方差的意义以及中位数的定义和众数的定义分别分析得出答案.【解答】解:A、了解某班学生的身高情况,适宜采用全面调查,故此选项错误;B、数据3,5,4,1,1的中位数是:3,故此选项错误;C、数据5,3,5,4,1,1的众数是1和5,正确;D、甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明甲的射击成绩比乙稳定.故选:C.【点评】此题主要考查了方差的意义以及中位数的定义和众数的定义,正确把握相关定义是解题关键.7.(3.00分)(2018•天门)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240° D.300°【分析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,则=2πr=πR,解得,n=180°,故选:B.【点评】本题考查的是圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.8.(3.00分)(2018•天门)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤4【分析】先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m 的不等式,再求出解集即可.【解答】解:,∵解不等式①得:x>3,解不等式②得:x>m﹣1,又∵关于x的一元一次不等式组的解集是x>3,∴m﹣1≤3,解得:m≤4,故选:D.【点评】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出关于m的不等式是解此题的关键.9.(3.00分)(2018•天门)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.5【分析】根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE;在直角△ECG中,根据勾股定理即可求出DE的长.【解答】解:如图,连接AE,∵AB=AD=AF,∠D=∠AFE=90°,在Rt△AFE和Rt△ADE中,∵,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则EC=6﹣x.∵G为BC中点,BC=6,∴CG=3,在Rt△ECG中,根据勾股定理,得:(6﹣x)2+9=(x+3)2,解得x=2.则DE=2.故选:C.【点评】本题考查了翻折变换,解题的关键是掌握翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理.10.(3.00分)(2018•天门)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h 的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:A.【点评】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3.00分)(2018•天门)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.【分析】根据概率公式进行计算即可.【解答】解:任选一个字母,这个字母为“s”的概率为:=,故答案为:.【点评】此题主要考查了概率公式,关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数.12.(3.00分)(2018•天门)计算:+|﹣2|﹣()﹣1=0.【分析】根据二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则计算即可.【解答】解:原式=+2﹣﹣2=0故答案为:0.【点评】本题考查的是二次根式的混合运算,掌握二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则是解题的关键.13.(3.00分)(2018•天门)若一个多边形的每个外角都等于30°,则这个多边形的边数为12.【分析】根据已知和多边形的外角和求出边数即可.【解答】解:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,∴多边形的边数是=12,故答案为:12.【点评】本题考查了多边形的内角和外角,能熟记多边形的外角和等于360°是解此题的关键.14.(3.00分)(2018•天门)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为3200件.【分析】设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据发往A、B两区的物资共6000件,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据题意得:x+1.5x﹣1000=6000,解得:x=2800,∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.15.(3.00分)(2018•天门)我国海域辽阔,渔业资源丰富.如图,现有渔船B 在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile处,则海岛A,C之间的距离为18n mile.【分析】作AD⊥BC于D,根据正弦的定义、正切的定义分别求出BD、CD,根据题意列式计算即可.【解答】解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=x,则CD=x,在Rt△ABD中,BD=x,则x+x=18(1+),解得,x=18,答:A,C之间的距离为18海里.故答案为:18【点评】本题考查的是解直角三角形的应用,掌握方向角的概念、锐角三角函数的定义是解题的关键.16.(3.00分)(2018•天门)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.【分析】分别过点P1、P2、P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【解答】解:如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,∵P1(3,3),且△P1OA1是等腰直角三角形,∴OC=CA1=P1C=3,设A1D=a,则P2D=a,∴OD=6+a,∴点P2坐标为(6+a,a),将点P2坐标代入y=﹣x+4,得:﹣(6+a)+4=a,解得:a=,∴A1A2=2a=3,P2D=,同理求得P3E=、A2A3=,∵S1=×6×3=9、S2=×3×=、S3=××=、……∴S2018=,故答案为:.【点评】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题,属于中考常考题型.三、解答题(本大题共9个小题,满分72分.)17.(5.00分)(2018•天门)化简:•.【分析】先将分子、分母因式分解,再约分即可得.【解答】解:原式=•=.【点评】本题主要考查分式的乘除法,解题的关键是掌握分式乘除运算顺序和运算法则.18.(5.00分)(2018•天门)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;(2)利用菱形以及平行线的性质即可解决问题;【解答】解:(1)如图所示,射线OP即为所求.(2)如图所示,点C即为所求;【点评】本题考查作图﹣应用与设计、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(7.00分)(2018•天门)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.组别发言次数n百分比A0≤n<310%B3≤n<620%C6≤n<925%D9≤n<1230%E12≤n<1510%F15≤n<18m%请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了60名教师,m=5;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E 组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.【分析】(1)根据:某组的百分比=×100%,所有百分比的和为1,计算即可;(2)先计算出D、F组的人数,再补全条形统计图;(3)列出树形图,根据总的情况和一男一女的情况计算概率.【解答】解:(1)由条形图知,C组共有15名,占25%所以本次共随机采访了15÷25%=60(名)m=100﹣10﹣20﹣25﹣30﹣10=5故答案为:60,5(2)D组教师有:60×30%=18(名)F组教师有:60×5%=3(名)(3)E组共有6名教师,4男2女,F组有三名教师,1男2女共有18种可能,∴P==一男一女答:所选派的两名教师恰好是1男1女的概率为【点评】本题考查了条形图、频率分布图、树形图、概率等相关知识,难度不大,综合性较强.概率=所求情况数与总情况数之比20.(7.00分)(2018•天门)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.21.(8.00分)(2018•天门)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y 轴交于点C,且△ABO的面积为,求直线BC的解析式.【分析】(1)将A点坐标代入直线y=﹣x中求出m的值,确定出A的坐标,将A的坐标代入反比例解析式中求出k的值,即可确定出反比例函数的解析式;(2)根据直线的平移规律设直线BC的解析式为y=﹣x+b,由同底等高的两三角形面积相等可得△ACO与△ABO面积相等,根据△ABO的面积为列出方程OC•2=,解方程求出OC=,即b=,进而得出直线BC的解析式.【解答】解:(1)∵直线y=﹣x过点A(m,1),∴﹣m=1,解得m=﹣2,∴A(﹣2,1).∵反比例函数y=(k≠0)的图象过点A(﹣2,1),∴k=﹣2×1=﹣2,∴反比例函数的解析式为y=﹣;(2)设直线BC的解析式为y=﹣x+b,∵三角形ACO与三角形ABO面积相等,且△ABO的面积为,∴△ACO的面积=OC•2=,∴OC=,∴b=,∴直线BC的解析式为y=﹣x+.【点评】此题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,三角形的面积求法,以及一次函数图象与几何变换,熟练掌握待定系数法是解题的关键.22.(8.00分)(2018•天门)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.【分析】(1)连接OC,如图,利用圆周角定理得到∠ACB=90°,再根据斜边上的中线性质得MC=MG=ME,所以∠G=∠1,接着证明∠1+∠2=90°,从而得到∠OCM=90°,然后根据直线与圆的位置关系的判断方法可判断CM为⊙O的切线;(2)先证明∠G=∠A,再证明∠EMC=∠4,则可判定△EFC∽△ECM,利用相似比先计算出CE,再计算出EF,然后计算ME﹣EF即可.【解答】解:(1)CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线;(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°,∴∠1=∠5,而∠1=∠G,∠5=∠A,∴∠G=∠A,∵∠4=2∠A,∴∠4=2∠G,而∠EMC=∠G+∠1=2∠G,∴∠EMC=∠4,而∠FEC=∠CEM,∴△EFC∽△ECM,∴==,即==,∴CE=4,EF=,∴MF=ME﹣EF=6﹣=.【点评】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l 的距离为d:直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了圆周角定理.23.(10.00分)(2018•天门)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?【分析】(1)根据线段EF经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(2)显然,当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,利用待定系数法确定一次函数的表达式即可;(3)利用:总利润=每千克利润×产量,根据x的取值范围列出有关x的二次函数,求得最值比较可得.【解答】解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x ≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.【点评】本题考查了二次函数的应用,待定系数法求二次函数的解析式,解题的关键是从实际问题中抽象出二次函数模型.24.(10.00分)(2018•天门)问题:如图①,在Rt△ABC中,AB=AC,D为BC 边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.【点评】本题考查的是全等三角形的判定和性质、勾股定理、以及旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题的关键.25.(12.00分)(2018•天门)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A 在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为(,0),(3,0),(,);(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用二次函数图象上点的坐标特征可求出点A、B的坐标,再利用配方法即可找出抛物线的顶点D的坐标;(2)由点D的坐标结合对称找出点E的坐标,根据点B、C的坐标利用待定系数法可求出直线BC的解析式,再利用一次函数图象上点的坐标特征即可得出关于t的一元一次不等式组,解之即可得出t的取值范围;。