30m简支箱梁计算书
30米简支梁手算计算书
学 生 毕 业 设 计设 计 计 算 书课题名称xx 大桥一阶段施工图设计 姓 名 X x 学 号 090xxxx-xx 院 系土木工程学院 专 业土木工程(桥梁与隧道) 指导教师xxx (教授)2013年 5 月28日※※※※※※※※※※※ ※※ ※※ ※※※※※※※※※ 2012届学生毕业设计材料(四)目录摘要 (1)关键词 (1)Abstract (2)Key words (2)1 设计总说明 (3)1.1 工程概况 (3)1.2 设计任务及要求 (3)1.2.1 设计任务 (3)1.2.2 设计要求 (4)1.3 设计依据与主要技术指标 (4)1.3.1 设计依据 (4)1.3.2 主要技术指标 (5)1.4 主要材料 (5)1.5 设计小结 (5)2 30m简支箱梁桥的计算分析 (7)2.1 行车道板计算 (7)2.1.1 悬臂板荷载效应计算 (7)2.1.2 连续板荷载效应计算 (8)2.1.3 内力组合计算 (12)2.1.4 行车道板配筋 (13)2.2 主梁内力计算与配筋 (15)2.2.1 主梁截面几何特性的计算 (15)2.2.2 主梁恒载内力计算 (17)2.2.3 主梁活载内力计算 (18)2.3 截面设计 (28)2.3.1 预应力钢束(筋)数量的确定及布置 (28)2.3.2 截面几何特性计算 (34)2.3.3 截面承载能力极限状态计算 (35)2.3.4 预应力损失计算 (38)2.3.5 应力验算 (45)2.3.6 抗裂性验算 (50)2.3.7 主梁变形(挠度)计算 (52)2.4 锚固区局部承压计算 (55)2.4.1 局部受压区尺寸要求 (55)2.4.2 局部抗压承载力计算 (56)3 5×40m连续梁桥的计算分析 ............................................... 错误!未定义书签。
3.1 概述.............................................................................. 错误!未定义书签。
30米预应力混凝土简支T梁计算书(H=2m)last(推荐文档)
目录1 计算依据与基础资料 (1)1.1 标准及规范 (1)1.1.1 标准 (1)1.1.2 规范 (1)1.1.3 参考资料 (1)1.2 主要材料 (1)1.3 设计要点 (2)2 横断面布置 (2)2.1 横断面布置图 (2)2.2 预制T梁截面尺寸 (3)2.3 T梁翼缘有效宽度计算 (4)3 汽车荷载横向分布系数、冲击系数的计算 (4)3.1 汽车荷载横向分布系数计算 (4)3.1.1 车道折减系数 (4)3.1.2 跨中横向分布系数 (4)3.2 汽车荷载冲击系数 值计算 (6)3.2.1汽车荷载纵向整体冲击系数 (6)3.2.2 汽车荷载的局部加载的冲击系数 (7)4 作用效应组合 (7)4.1 作用的标准值 (7)4.1.1 永久作用标准值 (7)4.1.2 汽车荷载效应标准值 (8)4.2 作用效应组合 (12)4.2.1 基本组合(用于结构承载能力极限状态设计) (12)4.2.2 作用短期效应组合(用于正常使用极限状态设计) (14)4.2.3 作用长期效应组合(用于正常使用极限状态设计) (15)4.3 截面预应力钢束估算及几何特性计算 (18)4.3.1 全预应力混凝土受弯构件受拉区钢筋面积估算 (18)4.3.2 截面几何特性计算 (23)5 持久状态承载能力极限状态计算 (25)5.1 正截面抗弯承载能力 (25)5.2 斜截面抗剪承载力验算 (26)5.2.1 验算受弯构件抗剪截面尺寸是否需进行抗剪强度计算 (26)5.2.2 箍筋设置 (30)5.2.3 斜截面抗剪承载力验算 (31)6 持久状况正常使用极限状态计算 (32)6.1 预应力钢束应力损失计算 (32)6.1.1 张拉控制应力 (32)6.1.2 各项预应力损失 (32)6.2 温度梯度截面上的应力计算 (38)6.3 抗裂验算 (41)6.3.1 正截面抗裂验算 (41)6.3.2 斜截面抗裂验算 (44)6.4 挠度验算 (47)6.4.1 汽车荷载引起的跨中挠度 (47)6.4.2 预制梁是否设置预拱值的计算 (48)7 持久状态和短暂状况构件应力验算 (50)7.1 使用阶段正截面法向应力验算 (50)7.1.1 受压区混凝土的最大压应力 (51)7.1.2 受拉区预应力钢筋的最大拉应力 (51)7.2 使用阶段混凝土主压应力、主拉应力计算 (52)7.3 施工阶段应力验算 (56)8 桥面板计算 (58)8.1 边梁内翼缘根部配筋计算 (58)8.1.1 荷载标准值计算 (58)8.1.2 极限状态承载力计算 (60)8.1.3 抗裂计算 (61)8.2 边梁外翼缘根部配筋计算 (62)8.2.1 荷载标准值计算 (62)8.2.2 极限状态承载力计算 (64)8.2.3 抗裂计算 (65)8.3 翼缘底面配筋计算 (66)8.3.1 荷载标准值计算 (66)8.3.2 极限状态承载力计算 (68)8.3.3 抗裂计算 (69)9 横隔梁计算 (70)9.1 作用于横隔梁上的计算荷载 (70)9.2 跨中横隔梁的内力影响线 (70)9.2.1 绘制弯矩影响线 (71)9.2.2 绘制剪力影响线 (72)9.2.3 车道荷载横向加载 (73)9.3 跨中横隔梁的内力计算 (73)9.4 跨中横隔梁的配筋计算 (74)9.4.1 截面特征 (74)9.4.2 配筋计算 (74)9.4.3 裂缝计算 (76)预应力混凝土公路桥梁通用设计图成套技术通用图计算书(30m预应力混凝土简支T梁)1 计算依据与基础资料1.1 标准及规范1.1.1 标准∙跨径:桥梁标准跨径30m;计算跨径(正交、简支)28.9m;预制T 梁长29.92m∙设计荷载:公路-Ⅰ级∙桥面宽度:分离式路基宽24.5m(高速公路),半幅桥全宽12.0m 0.5m(护栏墙)+11.0m(行车道)+0.5m(护栏墙)=12.0m∙桥梁安全等级为一级,环境条件为Ⅱ类1.1.2 规范∙《公路工程技术标准》JTG B01-2003∙《公路桥梁设计通用规范》JTG D60-2004(简称《通规》)∙《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004(简称《桥规》)1.1.3 参考资料∙《公路桥涵设计手册》桥梁上册(人民交通出版社2004.3)1.2 主要材料1)混凝土:预制T梁及湿接缝为C50、现浇铺装层为C40、护栏为C302)预应力钢绞线:采用钢绞线s 15.2m m φ,pk 1860MPa f =,5p 1.9510MPa E =⨯3)普通钢筋:采用HRB335,sk 335MPa f =,5s 2.010MPa E =⨯ 1.3 设计要点1)本计算中简支T 梁按全预应力构件进行设计,现浇层80mm 的C40混凝土不参与截面组合作用;2)预应力钢束张拉控制应力值con pk 0.75f σ=;3)计算混凝土收缩、徐变引起的预应力损失时传力锚固龄期为7d; 4)环境平均相对湿度RH=55%; 5)存梁时间为90d ; 6)不均匀沉降为5mm ;7)温度梯度效应计算的温度基数,114T =℃,2 5.5T =℃。
部颁图30米小箱梁计算书
目录1 计算依据与基础资料 (1)1.1 标准及规范 (1)1.1.1 标准 (1)1.1.2 规范 (1)1.1.3 参考资料 (1)1.2 主要材料 (1)1.3 设计要点 (2)2 横断面布置 (2)2.1 横断面布置图 (2)2.2跨中计算截面尺寸 (3)3 汽车荷载横向分布系数、冲击系数计算 (3)3.1 汽车荷载横向分布系数计算 (3)3.1.1 刚性横梁法 (3)3.1.2 刚接梁法 (7)3.1.3 铰接梁法 (10)3.1.4 比拟正交异性板法(G-M法) (14)3.1.5 荷载横向分布系数汇总 (17)3.2 剪力横向分布系数 (18)3.3 汽车荷载冲击系数μ值计算 (18)3.3.1汽车荷载纵向整体冲击系数μ (18)3.3.2 汽车荷载的局部加载的冲击系数 (18)4 主梁纵桥向结构计算 (18)4.1箱梁施工流程 (18)4.2 有关计算参数的选取 (19)4.3 计算程序 (20)4.4 持久状况承载能力极限状态计算 (20)4.4.1 正截面抗弯承载能力计算 (20)4.4.2 斜截面抗剪承载能力计算 (21)4.5 持久状况正常使用极限状态计算 (21)4.5.1 抗裂验算 (22)4.5.2 挠度验算 (23)4.6 持久状况和短暂状况构件应力计算 (25)4.6.1 使用阶段正截面法向应力计算 (25)4.6.2 使用阶段混凝土主压应力、主拉应力计算 (26)4.6.3 施工阶段应力验算 (27)4.7 中支点下缘配筋计算 (29)4.8 支点反力计算 (29)4.9 其他 (30)5 桥面板配筋计算 (30)5.1 荷载标准值计算(弯矩) (30)5.1.1 预制箱内桥面板弯矩计算 (31)5.1.2 现浇段桥面板弯矩计算 (33)5.1.3 悬臂段桥面板弯矩计算 (35)5.2 荷载标准值计算(支点剪力) (37)5.2.1 预制箱内桥面板支点剪力计算 (37)5.2.2 现浇段桥面板支点剪力计算 (37)5.3 持久状况承载能力极限状态计算 (38)5.3.1 预制箱内桥面板承载能力极限状态计算 (38)5.3.2 现浇段桥面板承载能力极限状态计算 (40)5.3.3 悬臂段桥面板承载能力极限状态计算 (41)5.4 持久状况抗裂计算 (44)5.4.1 预制箱内桥面板抗裂计算 (44)5.4.2 现浇段桥面板抗裂计算 (45)5.4.3 悬臂段桥面板抗裂计算 (47)6 横梁计算 (49)6.1 跨中横隔板计算 (49)6.2 端横梁、中横梁计算 (53)7 附图 (51)预应力混凝土公路桥梁通用设计图成套技术通用图计算书(30m 装配式预应力混凝土连续箱梁)1 计算依据与基础资料 1.1 标准及规范 1.1.1 标准•跨径:桥梁标准跨径30m ;跨径组合5×30m(正交); •设计荷载:公路-Ⅰ级;•桥面宽度:(路基宽28m ,高速公路),半幅桥全宽13.5m , 0.5m(护栏墙)+12.0m(行车道)+ 1.0m 波型护栏)=13.5m ; •桥梁安全等级为一级,环境条件Ⅱ类。
30m箱梁通用图设计计算书
30m组合箱梁上部结构计算书Ⅰ、设计资料和结构尺寸 (2)一、设计资料 (2)二、结构尺寸 (3)三、箱梁的横截面几何特性计算 (4)Ⅱ、荷载计算 (5)一、电算模型 (5)二、恒载作用计算 (6)三、活载作用计算 (6)四、内力组合 (8)Ⅲ、预应力钢束的估算和布置 (10)一、截面钢束的估算与确定 (10)二、预应力钢束的布置 (10)三、预加应力后荷载组合(持久状况承载能力极限组合) (11)Ⅳ、普通钢筋配筋估算 (11)一、截面普通钢筋的估算与确定 (11)二、普通钢筋的布置 (11)Ⅴ、持久状况承载能力极限状态计算 (12)一、结果显示单元号的确定 (12)二、正截面抗弯承载力计算 (12)三、斜截面抗剪承载力计算 (15)Ⅶ、持久状况正常使用极限状态计算 (17)一、电算应力结果 (17)二、截面抗裂验算 (19)Ⅷ、持久状况和短暂状况构件的应力验算 (20)一、混凝土最大拉应力 (20)二、受拉区预应力钢筋最大拉应力 (20)三、最大主拉应力计算 (21)四、压应力计算 (23)Ⅸ、结论 (23)Ⅰ、设计资料和结构尺寸一、设计资料1.标准跨径:30.0m;2.计算跨径:边跨29.24m,中跨29m;3.桥面宽度:全宽2×(0.5+11.5+0.75)+0.5=26m;净宽2×11.5m;4.设计荷载:公路-I级;5.材料及特性(1)混凝土:预应力混凝土预制箱梁、横梁及现浇接头湿接缝混凝土均为C50。
6cm 调平层混凝土为C40,桥面铺装层采用10cm厚沥青混凝土。
(2)钢绞线:采用符合GB/T 5224-1995技术标准的低松弛钢绞线。
(3)非预应力钢筋:采用符合新规范的R235,HRB335钢筋。
凡钢筋直径≥12毫米者,采用HRB335(20MnSi)热轧螺纹钢;凡钢筋直径<12毫米者,采用R235钢。
(4)钢板应符合GB700-88规定的Q235钢板。
30m小箱梁模板计算书
30m 小箱梁模板计算书(一)设计原始数据1、模板材料:面板:5mm ;连接法兰:-80×12;横肋:[8#;桁架:槽钢组合(详见图纸)。
2、 桁架最大间距为800mm 一道。
3、施工数据:上升速度V=2.8m/h ;混凝土初凝时间:t o =3h 。
(二)模板侧压力计算F=0.22γc t o β1β2V 1/2其中:γc 为混凝土重力密度,γc =26kN/m 3;t o 为混凝土初凝时间;β1为外加剂影响修正系数,β1=1.1 ; β2为混凝土坍落度影响修正系数. β2=1.15。
计算得:F=0.22*26*3*1.1*1.15*2.81/2=36.32kN/m 2。
考虑可能的外加剂最大影响,取系数1.2,则混凝土计算侧压力标准值:F 1=1.2*36.32=43.58 kN/m 2当采用泵送混凝土浇筑时,侧压力取6 kN/m 2,并乘以活荷载分项系数1.4。
F 2=1.4×6=8.4 kN/m 2侧压力合计:F 3= F1+ F2=43.58+8.4=51.98 kN/m 2 1.面板强度、刚度验算竖肋间距为0.8米,横肋间距为0.3米 计算跨径l=0.3米取板宽b=1米,面板上的均布荷载qq=F 3×l=51.98×1=51.98 kN/m考虑到板连续性,其强度、刚度可按下计算: 最大弯矩:M max =2101ql =0.1*51.98*0.3*0.3=0.468KN.m 截面系数:W=3622106006.016161m b -⨯=⨯⨯=δ最大应力:MPa MPa W M 215][7810610468.063max max =<=⨯⨯==-σσ强度符合要求刚度验算:mm mm EIql f 5.187.01012006.0110101.21283.01098.511283365434max <=⨯⨯⨯⨯⨯⨯⨯⨯==刚度满足要求。
30米箱梁吊装计算书
30米箱梁安装计算书1、作业吊车30m箱梁吊装选用汽车吊吊装施工,桥梁横跨高速公路,地质条件较好,经处理后能满足汽车吊施工要求。
以30m箱梁为验算对象,边梁吊装重量为35.4m3×2.6t/m3=92.04吨(1)本工程30m箱梁采用双机抬吊机作业。
(Q主+Q副)K≥Q1+Q2根据设计图纸计算中梁最重按92.04吨,即Q1=92.04吨,考虑索具重量Q2=2.0吨,K为起重机降低系数,取0.75。
即:Q主+Q副≥125.39吨。
(2)起重高度计算H≥H1+H2+H3+H4式中 H——起重机的起重高度(m),停机面至吊钩的距离;H1——安装支座表面高度(m),停机面至安装支座表面的距离;H2——安装间隙,视具体情况而定,一般取0.2~0.3m;H3——绑扎点至构件起吊后底面的距离(m);H4——索具高度(m),绑扎点至吊钩的距离,视具体情况而定。
取H1=7米,H2=0.2米,H3=0.95米,H4取3米。
选用起重机的起重高度H≥11.15米,起重高度取11.5m。
(3)起重臂长度计算:l≥(H+h0-h)/sinα式中 l——起重臂长度(m);H——起重高度(m);h0——起重臂顶至吊钩底面的距离(m);h——起重臂底铰至停机面距离(m),本工程取1m;α——起重臂仰角,一般取70°~77°,本工程取70°。
l≥(11.5-1)/sin(70°)=11.17。
(4)吊车工作半径取6m,参考150吨汽车起重机起重性能表,可得(Q主+Q副)K≥Q1+Q2,即(80.3+80.3)×0.75=120.45>94.04,所有综合考虑1)、2)、3)及起重机的工作幅度,选用两台150吨汽车吊满足施工要求。
12.0 29.829.829.227.7 24.6 23.3 21.8 21.3 17.6 14.0 21.6 21.6 21.6 21.621.4 20.4 19.5 17.4 16.0 16.0 16.3 16.3 16.3 16.316.316.3 15.2 13.718.0 12.6 12.6 12.6 12.6 12.6 12.612.6 12.219.0 9.7 9.7 9.7 9.7 9.7 9.710.7 23.0 6.7 6.7 6.7 6.7 6.7 9.1 26.0 4.6 4.6 4.6 4.6 4.6 6.8 29.0 3.0 3.0 3.0 3.0 4.5 35.0 1.7 1.7 1.7 3.0 38.0 0.5 0.5 1.8 41.0 0.9 2、索具选择钢丝绳拉力计算:梁体采用每端为2个吊钩,以两根钢丝绳进行计算。
30m箱梁伸长量计算书
30m箱梁伸长量计算书一、中跨钢绞线束伸长量计算:根据图纸说明:κ=0.0015,μ=0.25, Ap=140mm2,Ep=1.95*105mm 1、N1:由图纸计算得孔道长度为29.56m,由于两端张拉,按一半长进行计算。
即X=14.78m单根张拉力设计值P=1860MPa*0.75*140mm2=195300(N),孔道的切线角为5°则平均张拉力P p=P*(1-e-(κx+μθ))/(κx+μθ)=195300*(1-e-(0.0015*14.78+0.25*π*5/180))/(0.0015*14.78+0.25*π*5/180)=191067(N)钢绞线的伸长量计算:钢绞线的长度=孔道长度+两端工作长度=29.56+0.35*2(0.35为千斤顶和工作锚垫板的长度之和)=30.26m=30260mm则伸长量△L=P p*L/(A p*E p) =191067*30260/(140*1.95*105 )=212(mm) 2、N2:由图纸计算得孔道长度为29.59m,由于两端张拉,按一半长进行计算。
即X=14.795m。
孔道的切线角为5°则平均张拉力P p=P*(1-e-(κx+μθ))/(κx+μθ)=195300*(1-e-(0.0015*14.795+0.25*π*5/180))/(0.0015*14.795+0.25*π*5/180)=191066(N)钢绞线的伸长量计算:钢绞线的长度=孔道长度+两端工作长度=29.59+0.35*2=30.29m=30290mm则伸长量△L=P p*L/(A p*E p) =191066*30290/(140*1.95*105 )=211(mm) 3、N3由图纸计算得孔道长度为29.62m,由于两端张拉,按一半长进行计算。
即X=14.81m单根张拉力设计值P=1860MPa*0.75*140mm2=195300(N),孔道的切线角为5°则平均张拉力P p=P*(1-e-(κx+μθ))/(κx+μθ)=195300*(1-e-(0.0015*14.81+0.25*π*5/180))/(0.0015*14.81+0.25*π*5/180)=191066(N)钢绞线的伸长量计算:钢绞线的长度=孔道长度+两端工作长度=29.62+0.35*2=30.32m=30320mm则伸长量△L=P p*L/(A p*E p) =191066*30320/(140*1.95*105 )=212(mm) 4、N4由图纸计算得孔道长度为29.40m,由于两端张拉,按一半长进行计算。
部颁图30米小箱梁计算书
部颁图30米小箱梁计算书目录1 计算依据与基础资料 (1)1.1 标准及规范 (1)1.1.1 标准 (1)1.1.2 规范 (1)1.1.3 参考资料 (1)1.2 主要材料 (1)1.3 设计要点 (2)2 横断面布置 (2)2.1 横断面布置图 (2)2.2跨中计算截面尺寸 (3)3 汽车荷载横向分布系数、冲击系数计算 (4)3.1 汽车荷载横向分布系数计算 (4)3.1.1 刚性横梁法 (4)3.1.2 刚接梁法 (8)3.1.3 铰接梁法 (13)3.1.4 比拟正交异性板法(G-M法) .. 163.1.5 荷载横向分布系数汇总 (21)3.2 剪力横向分布系数 (22)3.3 汽车荷载冲击系数μ值计算 (23)3.3.1汽车荷载纵向整体冲击系数μ (23)3.3.2 汽车荷载的局部加载的冲击系数 (23)4 主梁纵桥向结构计算 (23)4.1箱梁施工流程 (23)4.2 有关计算参数的选取 (24)4.3 计算程序 (25)4.4 持久状况承载能力极限状态计算 (25)4.4.1 正截面抗弯承载能力计算 (25)4.4.2 斜截面抗剪承载能力计算 (26)4.5 持久状况正常使用极限状态计算 (28)4.5.1 抗裂验算 (28)4.5.2 挠度验算 (31)4.6 持久状况和短暂状况构件应力计算 (35)4.6.1 使用阶段正截面法向应力计算 (35)4.6.2 使用阶段混凝土主压应力、主拉应力计算 (37)4.6.3 施工阶段应力验算 (39)4.7 中支点下缘配筋计算 (41)4.8 支点反力计算 (42)4.9 其他 (43)5 桥面板配筋计算 (43)5.1 荷载标准值计算(弯矩) (43)5.1.1 预制箱内桥面板弯矩计算 (44)5.1.2 现浇段桥面板弯矩计算 (46)5.1.3 悬臂段桥面板弯矩计算 (48)5.2 荷载标准值计算(支点剪力) (51)5.2.1 预制箱内桥面板支点剪力计算 (51)5.2.2 现浇段桥面板支点剪力计算 (51)5.3 持久状况承载能力极限状态计算 (52)5.3.1 预制箱内桥面板承载能力极限状态计算 (52)5.3.2 现浇段桥面板承载能力极限状态计算 (53)5.3.3 悬臂段桥面板承载能力极限状态计算 (55)5.4 持久状况抗裂计算 (58)5.4.1 预制箱内桥面板抗裂计算 (58)5.4.2 现浇段桥面板抗裂计算 (59)5.4.3 悬臂段桥面板抗裂计算 (61)6 横梁计算 (63)6.1 跨中横隔板计算 (63)6.2 端横梁、中横梁计算 (68)7 附图 (51)预应力混凝土公路桥梁通用设计图成套技术通用图计算书(30m 装配式预应力混凝土连续箱梁)1 计算依据与基础资料1.1 标准及规范1.1.1 标准∙跨径:桥梁标准跨径30m ;跨径组合5×30m(正交);∙设计荷载:公路-Ⅰ级;∙桥面宽度:(路基宽28m ,高速公路),半幅桥全宽13.5m , 0.5m(护栏墙)+12.0m(行车道)+ 1.0m 波型护栏)=13.5m ;∙桥梁安全等级为一级,环境条件Ⅱ类。
(完整word版)30m简支箱梁计算书
30m预应力混凝土简支小箱梁计算书一、主要设计标准1、公路等级:城市支路,双向四车道2、桥面宽度:3m人行道+0.25m路缘带+2x3.5m车行道+0.5m双黄线+2x3.5m车行道+0.25m路缘带+3m人行道=21m3、荷载等级:汽车-80级4、设计时速:30Km/h5、地震动峰值加速度0.2g6、设计基准期:100年二、计算依据、标准和规范1、《厂矿道路设计规范》(GBJ22-87)2、《公路桥涵设计通用规范》(JTG D60-2004)3、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)三、计算理论、荷载及方法1、计算理论桥梁纵向计算按照空间杆系理论,采用Midas Civil2012软件计算。
2、计算荷载(1)自重:26KN/ m3(2)桥面铺装:10cm沥青铺装层+8cm钢筋混凝土铺装(3)人行道恒载:20KN/ m(4)预应力荷载:采用4束5φs15.2和6束4φs15.2 fpk=1860MPa钢绞线,张控应力1395MPa。
(5)汽车荷载:本桥由于是物流园区内部道路,通行的重车较多,本次设计考虑《厂矿道路设计规范》(GBJ22-87)汽车-80级,计算图示如下:根据图示,汽车荷载全桥横桥向布置三辆车。
冲击系数按照《公路桥涵设计通用规范》(JTG D60-2004)4.3.2条考虑。
(6)人群荷载:3.5 KN/ m2(7)桥面梯度温度:正温差:T1=14°,T2=5.5°负温差:正温差效应乘以-0.53、计算方法(1)将桥梁在纵横梁位置建立梁单元,然后采用虚拟梁考虑横向刚度,以此来建立模型。
(2)根据桥梁施工方法划分为四个施工阶段:架梁阶段、现浇横向湿接缝阶段、二期恒载阶段、收缩徐变阶段。
(3)进行荷载组合,求得构件在施工阶段和使用阶段时的应力、内力和位移。
(4)根据规范规定的各项容许指标。
按照A类构件验算是否满足规范的各项规定。
四、计算模型全桥采用空间梁单元建立模型,共划分为273节点和448个单元。
30米箱梁吊装计算书
30米箱梁安装计算书1、作业吊车30m箱梁吊装选用汽车吊吊装施工,桥梁横跨高速公路,地质条件较好,经处理后能满足汽车吊施工要求.以30m箱梁为验算对象,边梁吊装重量为35。
4m3×2.6t/m3=92。
04吨(1)本工程30m箱梁采用双机抬吊机作业。
(Q主+Q副)K≥Q1+Q2根据设计图纸计算中梁最重按92.04吨,即Q1=92.04吨,考虑索具重量Q2=2。
0吨,K为起重机降低系数,取0。
75.即:Q主+Q副≥125。
39吨。
(2)起重高度计算H≥H1+H2+H3+H4式中 H——起重机的起重高度(m),停机面至吊钩的距离;H1-—安装支座表面高度(m),停机面至安装支座表面的距离;H2—-安装间隙,视具体情况而定,一般取0.2~0.3m;H3—-绑扎点至构件起吊后底面的距离(m);H4-—索具高度(m),绑扎点至吊钩的距离,视具体情况而定。
取H1=7米,H2=0.2米,H3=0。
95米,H4取3米。
选用起重机的起重高度H≥11.15米,起重高度取11。
5m。
(3)起重臂长度计算:l≥(H+h0-h)/sinα式中 l-—起重臂长度(m);H-—起重高度(m);h0——起重臂顶至吊钩底面的距离(m);h—-起重臂底铰至停机面距离(m),本工程取1m;α——起重臂仰角,一般取70°~77°,本工程取70°.l≥(11。
5—1)/sin(70°)=11。
17。
(4)吊车工作半径取6m,参考150吨汽车起重机起重性能表,可得(Q主+Q副)K≥Q1+Q2,即(80。
3+80。
3)×0。
75=120.45>94.04,所有综合考虑1)、2)、3)及起重机的工作幅度,选用两台150吨汽车吊满足施工要求。
12.0 29.829.829.227。
7 24.6 23。
3 21。
8 21.3 17.6 14.0 21.6 21.6 21。
6 21.621.4 20.4 19.5 17.4 16。
30m箱梁模板计算书
精心整理中铁三局五公司右平项目30m箱梁模板计算书山西昌宇工程设备制造有限公司技术部2015年11月21日30米箱梁模计算书本工程所用30m箱梁,梁底模板直接采用混凝土台座,不再另行配置底模板。
1.砼侧压力计算最大侧压力可按下列二式计算,并取其最小值:F=0.22γc tβ1β2V1/2F=γcH式中F------新浇筑混凝土对模板的最大侧压力(KN/m2)γc----混凝土的重力密度(kN/m3)取26kN/m3t------新浇混凝土的初凝时间(h),h=3.5小时。
V------混凝土的浇灌速度(m/h);取27方/h,即27/25/1=1.08mH------混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m);取1.4mβ1------外加剂影响修正系数,不掺外加剂时取1;β2------混凝土塌落度影响系数,当塌落度小于30mm时,取0.85;50—90mm时,取1;110—150mm时,取1.15。
此处取1.15,F=0.22γc tβ1β2V1/2.081/2=24kN/m2F=γcH=26x1.4=36.4kN/m2取二者中的较小值,F=24kN/m2作为模板侧压力的标准值,并考虑倾倒混凝土产生的水平载荷标准值4kN/m2,分别取荷载分项系数1.2和1.4,则作用于模板的总荷载设计值为:F=24x1.2+4x1.4=34.4kN/m2,取为35kN/m2有效压头高度:H0=35/26=1.35m2.面板验算(6mm钢板)最大跨距:l=300mm,每米长度上的荷载:q=FD=35x0.8=28KN/m。
D为背杠的间距弯矩:Mmax=0.1ql2=0.1x28x0.32=0.252KN.m惯性距:I=1.0416cm4截面系数:W=4.166cm3应力:ó=M/W=0.252KN.m/4.166cm3=60.48N/mm2<fm=215N/mm2满足要求跨中部分挠度ω=0.677ql4/(100EI)=0.677x(35x0.8)x3004/(100x2.1x105x1.0416x104)=0.7mm<[ω]=1.5mm故满足要求3.横肋验算(8#槽钢)竖肋槽钢(8#)间距最大为l=300mm,其跨距等于横向背杠的间距为L=800mm。
30米预应力简支箱形梁桥结构设计(迈达斯计算)
本科毕业设计题目: 30m预应力简支箱形梁桥结构设计学院: 土木工程学院专业: 土木工程(交通土建工程)班级: 1111班学号: 1vnvn学生姓名:hgjfgfh指导教师: 李建vn 职称:讲师二○一四年四月三十日30m预应力混凝土简支箱梁计算书摘要预应力混凝土简支箱梁桥以结构受力性能好、变形小、行车平顺舒适、养护工程量小、抗震能力强等而成为最富有竞争力的主要桥型之一。
预应力混凝土简支梁桥是一种预先储存了足够预加应力的新型梁桥,预加应力可大幅度提高梁体的抗裂性,并增加了梁的耐久性,截面尺寸减小,高跨比减小,受力明确,理论计算较简单,设计和施工的方法日趋完善和成熟。
简支箱形截面梁具有优良的力学特性:较大的刚度和强大的抗扭性能、结构简单、受力明确、节省材料、架设安装方便,跨越能力较大、桥下视觉效果好,因而被广泛地应用于城市桥梁和高等级公路立交桥的上部结构中。
本次设计的主要内容是关于预应力简支箱形梁桥的结构设计。
设计跨度是30m,双向四车道,桥面宽度15m(0.5m防撞墙+4×3.5m行车道+0.5m防撞墙),采用单箱双室箱形截面,桥轴线为直线,荷载等级:公路I级汽车荷载,地震设防烈度:7级。
梁高采用变高度梁,因梁桥在支点处截面的剪力过大,故在梁桥支点处选择变截面过渡,按一次曲线变化。
设计主要进行了桥梁总体布置及结构尺寸拟定、桥梁荷载内力计算、桥梁预应力钢束的估算与布置、桥梁预应力损失及应力的验算、内力组合验算、主梁截面应力验算。
利用软件Midas Civil 进行结构分析,根据桥梁的尺寸拟定建立桥梁基本模型,然后进行内力分析,计算配筋结果,进行施工各阶段分析及截面验算。
关键词:预应力混凝土、简支、箱梁、结构分析、内力验算30m prestressed concrete box girder calculationsBecause of the long-span pre-stressed concrete continuous box Girder Bridge have many advantages such as its big span ability, flexible construction methods, adaptability, structural rigidity, anti-seismic capability, Structure stress performance good, small deformation, less expansion joints, driving smooth and comfortable, beautiful forms, small maintenance quantity and etc a,it become the most competitive one of the main bridge ,and it becomes more and more widely used in China.This graduate design is mainly about the design of the superstructure of the road pre-stressed concrete Charpy Bridge. The span of the bridge is 30m. This design is a continuous bridge which has four lanes. The bridge deck is made of C50 water-protected concrete. It consists of 3.5m (the width of road deck) ×4 + 0.5m (the width of the sidewalk) ×2=15m; The axis of this bridge is a straight line, The design load standard is the Road One-Level Load,Seismic fortification intensity 7. And the height of girder is changing in the form of conic.The design of pre-stressed concrete continuous girder bridge is mainly the upper structure design , in the design of the main bridge layout and structure size, load calculation, bridge pre-stressing tendons estimation and layout ,the loss of pre-stress and stress of the bridge, the resultant checked, internal combination calculation, section stress calculation girder. This design using the Midas software analysis the structure, according to the size of the bridge, the basic model establishment bridge worked, then force analysis, calculation results of reinforced, for each phase analysis and construction. At the same time, consider the concrete shrinkage, Creep force times and temperature resultant t ime’s factors.Key word: Pre-stressed Concrete; Simple Support; Box girder; Structural Analysis; Checking the internal forces目录第一章绪论 (1)1.1概述 (1)1.2预应力梁桥受力特点 (1)1.3预应力混凝土梁桥发展综述 (2)1.3.1国外预应力混凝土梁桥的发展 (2)1.3.2国内预应力混凝土梁桥的发展 (3)1.4我国高速公路桥梁的发展 (4)1.4.1公路桥梁发展现状 (5)1.4.2我国高速公路桥梁建设特点 (5)1.5桥梁设计的基本原则 (6)1.6预应力混凝土简支梁桥的特点 (7)1.7预应力混凝土梁桥施工技术 (8)1.8毕业设计主要内容 (8)1.9毕业设计的目的和意义 (9)第二章设计要点及构造、材料、尺寸的拟定 (10)2.1桥梁选取的基本原则 (10)2.2设计的基本资料 (10)2.3箱形截面桥梁的特点 (10)2.4主要技术标准 (11)2.5主要材料及材料性能 (11)2.6设计参数取值 (11)2.7结构概述 (13)2.7.1截面形式及截面尺寸拟定 (13)2.8计算原则及控制标准 (15)第三章结构有限元模型的建造过程 (16)3.1 Midas Civil软件介绍 (16)3.2模型建立过程 (17)3.2.1设定建模环境 (17)3.2.2设置结构类型 (18)3.2.3定义材料和截面特性值 (19)3.2.4建立结构有限元模型 (21)3.2.5定义边界条件 (23)3.2.6定义荷载 (23)3.2.7定义施工阶段 (29)3.2.8汽车荷载 (29)每四章主梁作用效应计算 (32)4.1作用分类 (32)4.2公路预应力钢筋混凝土(psc)桥梁设计设计验算内容 (34)4.2.1施工阶段法向压应力验算 (34)4.2.2受拉区钢筋的接应力验算 (41)4.2.3使用阶段正截面抗裂验算 (43)4.2.4使用阶段斜截面抗裂验算 (50)4.2.5使用阶段正截面压应力验算 (55)4.2.6使用阶段斜截面主压应力验算 (60)4.2.7使用阶段正截面抗弯验算 (65)4.2.8使用阶段斜截面抗剪验算 (71)4.2.9使用阶段抗扭验算 (78)结论 (89)致谢 (90)参考文献 (91)第一章绪论1.1概述我在进行毕业设计之前,先阅读了各种文献,对桥梁的历史和发展有一个初步的了解,同时也要对桥梁结构的各种形式有系统的了解,以便今后对毕业设计有更好的把握。
30箱梁模板计算书
目录30m预制箱梁模板计算书 (2)一、工程概况 (2)二、预制箱梁模板体系说明 (2)三、箱梁模板力学验算原则 (2)四、计算依据 (3)五、箱梁模板计算 (3)4.1 荷载计算及组合 (3)4.2 模板材料力学参数 (6)4.3 力学验算 (8)4.3.2 横肋力学验算 (9)4.3.3 竖肋支架验算 (10)4.3.4 拉杆验算 (10)30m预制箱梁模板计算书一、工程概况呼和浩特市2012年南二环快速路工程二标段,在2013年5月份进场施工。
原设计为3km整体现浇,考虑到整体现浇工期长,前期投入大,经项目部前期策划,变更为装配式30m预制箱梁,预制部分梁长为29.4m,梁高为1.6m,设计图纸为国家标准通用图,移梁采用兜底吊,预制数量为1327片,采用预制厂集中生产。
二、预制箱梁模板体系说明箱梁模板分为底模、侧模、芯模三部分,底模焊接在预制台座上,台座设计时需考虑箱梁在预制过程中分阶段受力状态,即:浇注时,底座承受箱梁混凝土自重下的均布力;在预应力张拉后,台座承受箱梁两端支点的集中力。
所以在台座设计时,需在台座两端设置扩大基础来满足集中荷载形式下的承载力需要。
内模在箱梁预制过程中承受腹板混凝土侧向力以及顶板混凝土竖向力,侧模承受底腹板混凝土侧压力。
箱梁侧模承载箱梁外露面混凝土的重量,混凝土侧压力向外传递顺序为:面板→横肋→纵肋→拉杆。
三、箱梁模板力学验算原则1、在满足结构受力(强度)情况下考虑挠度变形(刚度)控制;2、根据侧压力的传递顺序,先后对面板、横肋、纵肋支架、拉杆进行力学验算。
3、根据受力分析特点,简化成受力模型,进行力学验算。
四、计算依据1、《路桥施工计算手册》,人民交通出版社2、《公路桥涵施工技术规范》(JTG/T F50-2011)3、《建筑施工模板安全技术规范》(JGJ162-2008)五、箱梁模板计算图4.1 箱梁外模构造尺寸图模板说明:30m预制小箱梁中心梁高1.6m,侧模面板厚5mm,横肋采用1cm铁条,间距40cm;竖肋及支撑架采用10cm槽钢通过横向焊接而成,间距为75cm;上下对拉杆采用27mm圆钢。
30米箱梁计算设计书
学校代码学号********分类号密级本科毕业论文(设计)学院、系鄂尔多斯学院土木工程系专业名称土木工程年级2008学生姓名韩志东指导教师年月日装配式预应力混凝土箱型梁桥摘要:装配式箱型梁桥设计本着“安全、经济、美观、实用”的八字原则,根据设计任务书的要求和《公桥规》的规定,对Y河大桥进行方案比选和设计的。
本论文提出三种不同的桥型方案进行比较和选择:方案一为预应力混凝土连续箱型梁桥,方案二为预应力混凝土简支T型梁桥,方案三为钢筋混凝土拱桥。
经由以上的八字原则以及设计施工等多方面考虑、比较确定预应力混凝土连续箱型梁桥为推荐方案。
在设计中,桥梁上部结构的计算着重分析了桥梁在使用工程中恒载以及活载的作用力,采用整体的体积以及自重系数,荷载集度进行恒载内力的计算。
运用杠杆原理法、修正偏心压力法求出活载横向分布系数,并运用最大荷载法进行活载的加载。
根据所得内力,进行了梁的预应力钢筋估算,估算了钢绞线的各种预应力损失,并进行预应力阶段和使用阶段主梁截面的强度和变形验算、挠度的计算。
下部结构采用以钻孔灌注桩为基础的双柱式桥墩,并简要介绍了施工方案。
关键词:预应力连续箱梁桥、内力、体系转换、预应力损失、验算、钻孔灌注桩、双柱式桥墩、预应力混凝土Assembly type prestressed concrete box girder bridge Abstract:Prefabricated Box Beam Bridge Design in the "safe, economy, beautiful, practical" eight-character principle, according to the requirements of the design task and" the bridge" provisions, on the Y River Bridge for scheme selection and design. This paper presents three different bridge type scheme comparison and selection: scheme for the prestressed concrete continuous box girder bridge, scheme for the prestressed concrete simply supported T beam bridge, scheme three is a reinforced concrete arch bridge. Based on the character and the principle of design construction and other aspects to consider, the comparison to determine the prestressed concrete continuous box girder bridge as the recommended scheme.In the design, the bridge upper structure calculation analyzes bridge in use of dead load and live load force, the overall volume and weight coefficient, load collection degree of constant load internal force calculation. Using the lever principle method, modified excentral pressure method for live load transverse distribution coefficient, and the maximum load live load.According to the internal force of the beam, the prestressed steel strand estimation, estimation of loss of prestress, and prestressed phase and use phase of the main beam section of the strength and deformation calculation, the calculation of deflection. The substructure adopts to bored pile based on double column pier, and briefly introduces the construction scheme.Keywords: prestressed continuous box beam bridge internal force, system, conversion, prestress loss, checking, bored pile, double column pier, prestressed concrete目录总论 ............................................................................................................................................................... - 1 -1 概述 ................................................................................................................................................... - 1 -1.1 预应力混凝土梁桥概述......................................................................................................... - 1 -1.2 我国预应力混凝土梁桥的发展............................................................................................. - 2 - 第一章方案比选.................................................................................................................................... - 3 - 1具体方案比选..................................................................................................................................... - 3 -1.1 预应力混凝土箱型梁桥方案................................................................................................. - 3 -1.2 部分预应力混凝土斜拉桥方案............................................................................................. - 3 -1.3 上承式刚架拱桥方案............................................................................................................. - 3 -2 方案比选 ........................................................................................................................................... - 4 - 第二章Y河水文设计原始资料及计算....................................................................................................... - 5 -1 设计原始资料.................................................................................................................................... - 5 -2 河段类型判断.................................................................................................................................... - 5 -2.1 稳定性及变化特点................................................................................................................. - 5 -2.2 河段平面图形......................................................................................................................... - 5 -2.3 断面及地址特征..................................................................................................................... - 5 -3 设计流量和设计流速的复核............................................................................................................ - 5 -3.1 根据地质纵剖面图绘出的河床桩号,绘制河流横断面图。
30米箱梁张拉计算书
30米预制箱梁张拉计算方案一、基础数据本标段30米预制箱梁正弯矩预应力钢束共有N1、N2、N3 、N4各2束,设计锚下张拉控制应力:σcon=1860×0.75=1395MP a。
按设计要求箱梁砼强度达到设计强度的100%后,且混凝土龄期不小于10d时方可张拉,并采用两端对称张拉,张拉程序为:0→σcon初应力→σcon (持荷5min)锚固,张拉顺序为N1、N3、N2、N4。
二、预应力钢束张拉力计算张拉力按公式:F n=σcon×A×n进行计算,如下:中跨箱梁N1钢束锚下张拉力:F1=σcon×A×n=1395 MP a×140㎜2×5/1000=976.5KN其中:A为每根预应力钢绞线的截面积;n为同时张拉的预应力钢绞线的根数;F为钢绞线锚下张拉力。
其余钢束张拉力计算同N1,各钢束张拉力如下表:中跨30米箱梁预应力钢束张拉力计算明细表(表一)边跨30米箱梁预应力钢束张拉力计算明细表(表二)三、理论伸长量的复核计算1、预应力钢束的平均张拉力计算因本标段内的箱梁梁长变化较大,故采用设计图纸中的标准梁长进行钢绞线平均张拉力的计算,首先要计算出钢束的锚下张拉力,然后采用如下公式计算钢束的平均的张拉力:预应力平均张拉力计算公式及参数:式中:P p=P[1- e-(kx+uθ)]/( kx+uθ)P p-----预应力筋平均张拉力(N);P-----预应力筋张拉端张拉力(N);X-----从张拉端至计算截面的孔道长度(m);θ-----从张拉端至计算截面的曲线孔道部分切线的夹角之和(rad);k------孔道每米局部偏差对摩擦的影响系数,取0.0015;μ------预应力筋与孔道壁的摩擦系数,取0.17。
故30米箱梁的平均张拉力计算如下:由设计图纸可知:K=0.0015,μ=0.17,X取14.7m(中跨)、14.8m (边跨);N1、N2、N3钢束θ为5°,弧度为0.0872 ,N4钢束θ为1.4°,弧度为0.0244。
30米预应力简支箱形梁桥结构设计(迈达斯计算)
本科毕业设计题目: 30m预应力简支箱形梁桥结构设计学院: 土木工程学院专业: 土木工程(交通土建工程)班级: 1111班学号: 1vnvn学生姓名:hgjfgfh指导教师: 李建vn 职称:讲师二○一四年四月三十日30m预应力混凝土简支箱梁计算书摘要预应力混凝土简支箱梁桥以结构受力性能好、变形小、行车平顺舒适、养护工程量小、抗震能力强等而成为最富有竞争力的主要桥型之一。
预应力混凝土简支梁桥是一种预先储存了足够预加应力的新型梁桥,预加应力可大幅度提高梁体的抗裂性,并增加了梁的耐久性,截面尺寸减小,高跨比减小,受力明确,理论计算较简单,设计和施工的方法日趋完善和成熟。
简支箱形截面梁具有优良的力学特性:较大的刚度和强大的抗扭性能、结构简单、受力明确、节省材料、架设安装方便,跨越能力较大、桥下视觉效果好,因而被广泛地应用于城市桥梁和高等级公路立交桥的上部结构中。
本次设计的主要内容是关于预应力简支箱形梁桥的结构设计。
设计跨度是30m,双向四车道,桥面宽度15m(0.5m防撞墙+4×3.5m行车道+0.5m防撞墙),采用单箱双室箱形截面,桥轴线为直线,荷载等级:公路I级汽车荷载,地震设防烈度:7级。
梁高采用变高度梁,因梁桥在支点处截面的剪力过大,故在梁桥支点处选择变截面过渡,按一次曲线变化。
设计主要进行了桥梁总体布置及结构尺寸拟定、桥梁荷载内力计算、桥梁预应力钢束的估算与布置、桥梁预应力损失及应力的验算、内力组合验算、主梁截面应力验算。
利用软件Midas Civil 进行结构分析,根据桥梁的尺寸拟定建立桥梁基本模型,然后进行内力分析,计算配筋结果,进行施工各阶段分析及截面验算。
关键词:预应力混凝土、简支、箱梁、结构分析、内力验算30m prestressed concrete box girder calculationsBecause of the long-span pre-stressed concrete continuous box Girder Bridge have many advantages such as its big span ability, flexible construction methods, adaptability, structural rigidity, anti-seismic capability, Structure stress performance good, small deformation, less expansion joints, driving smooth and comfortable, beautiful forms, small maintenance quantity and etc a,it become the most competitive one of the main bridge ,and it becomes more and more widely used in China.This graduate design is mainly about the design of the superstructure of the road pre-stressed concrete Charpy Bridge. The span of the bridge is 30m. This design is a continuous bridge which has four lanes. The bridge deck is made of C50 water-protected concrete. It consists of 3.5m (the width of road deck) ×4 + 0.5m (the width of the sidewalk) ×2=15m; The axis of this bridge is a straight line, The design load standard is the Road One-Level Load,Seismic fortification intensity 7. And the height of girder is changing in the form of conic.The design of pre-stressed concrete continuous girder bridge is mainly the upper structure design , in the design of the main bridge layout and structure size, load calculation, bridge pre-stressing tendons estimation and layout ,the loss of pre-stress and stress of the bridge, the resultant checked, internal combination calculation, section stress calculation girder. This design using the Midas software analysis the structure, according to the size of the bridge, the basic model establishment bridge worked, then force analysis, calculation results of reinforced, for each phase analysis and construction. At the same time, consider the concrete shrinkage, Creep force times and temperature resultant t ime’s factors.Key word: Pre-stressed Concrete; Simple Support; Box girder; Structural Analysis; Checking the internal forces目录第一章绪论 (1)1.1概述 (1)1.2预应力梁桥受力特点 (1)1.3预应力混凝土梁桥发展综述 (2)1.3.1国外预应力混凝土梁桥的发展 (2)1.3.2国内预应力混凝土梁桥的发展 (3)1.4我国高速公路桥梁的发展 (4)1.4.1公路桥梁发展现状 (5)1.4.2我国高速公路桥梁建设特点 (5)1.5桥梁设计的基本原则 (6)1.6预应力混凝土简支梁桥的特点 (7)1.7预应力混凝土梁桥施工技术 (8)1.8毕业设计主要内容 (8)1.9毕业设计的目的和意义 (9)第二章设计要点及构造、材料、尺寸的拟定 (10)2.1桥梁选取的基本原则 (10)2.2设计的基本资料 (10)2.3箱形截面桥梁的特点 (10)2.4主要技术标准 (11)2.5主要材料及材料性能 (11)2.6设计参数取值 (11)2.7结构概述 (13)2.7.1截面形式及截面尺寸拟定 (13)2.8计算原则及控制标准 (15)第三章结构有限元模型的建造过程 (16)3.1 Midas Civil软件介绍 (16)3.2模型建立过程 (17)3.2.1设定建模环境 (17)3.2.2设置结构类型 (18)3.2.3定义材料和截面特性值 (19)3.2.4建立结构有限元模型 (21)3.2.5定义边界条件 (23)3.2.6定义荷载 (23)3.2.7定义施工阶段 (29)3.2.8汽车荷载 (29)每四章主梁作用效应计算 (32)4.1作用分类 (32)4.2公路预应力钢筋混凝土(psc)桥梁设计设计验算内容 (34)4.2.1施工阶段法向压应力验算 (34)4.2.2受拉区钢筋的接应力验算 (41)4.2.3使用阶段正截面抗裂验算 (43)4.2.4使用阶段斜截面抗裂验算 (50)4.2.5使用阶段正截面压应力验算 (55)4.2.6使用阶段斜截面主压应力验算 (60)4.2.7使用阶段正截面抗弯验算 (65)4.2.8使用阶段斜截面抗剪验算 (71)4.2.9使用阶段抗扭验算 (78)结论 (89)致谢 (90)参考文献 (91)第一章绪论1.1概述我在进行毕业设计之前,先阅读了各种文献,对桥梁的历史和发展有一个初步的了解,同时也要对桥梁结构的各种形式有系统的了解,以便今后对毕业设计有更好的把握。
部颁图30米小箱梁计算书
目录1 计算依据与基础资料 (1)1.1 标准及规范 (1)1.1.1 标准 (1)1.1.2 规范 (1)1.1.3 参考资料 (1)1.2 主要材料 (1)1.3 设计要点 (2)2 横断面布置 (2)2.1 横断面布置图 (2)2.2跨中计算截面尺寸 (3)3 汽车荷载横向分布系数、冲击系数计算 (3)3.1 汽车荷载横向分布系数计算 (3)3.1.1 刚性横梁法 (3)3.1.2 刚接梁法 (7)3.1.3 铰接梁法 (10)3.1.4 比拟正交异性板法(G-M法) (14)3.1.5 荷载横向分布系数汇总 (17)3.2 剪力横向分布系数 (18)3.3 汽车荷载冲击系数μ值计算 (18)3.3.1汽车荷载纵向整体冲击系数μ (18)3.3.2 汽车荷载的局部加载的冲击系数 (18)4 主梁纵桥向结构计算 (18)4.1箱梁施工流程 (18)4.2 有关计算参数的选取 (19)4.3 计算程序 (20)4.4 持久状况承载能力极限状态计算 (20)4.4.1 正截面抗弯承载能力计算 (20)4.4.2 斜截面抗剪承载能力计算 (21)4.5 持久状况正常使用极限状态计算 (21)4.5.1 抗裂验算 (21)4.5.2 挠度验算 (23)4.6 持久状况和短暂状况构件应力计算 (25)4.6.1 使用阶段正截面法向应力计算 (25)4.6.2 使用阶段混凝土主压应力、主拉应力计算 (26)4.6.3 施工阶段应力验算 (27)4.7 中支点下缘配筋计算 (29)4.8 支点反力计算 (29)4.9 其他 (30)5 桥面板配筋计算 (30)5.1 荷载标准值计算(弯矩) (30)5.1.1 预制箱内桥面板弯矩计算 (31)5.1.2 现浇段桥面板弯矩计算 (33)5.1.3 悬臂段桥面板弯矩计算 (35)5.2 荷载标准值计算(支点剪力) (37)5.2.1 预制箱内桥面板支点剪力计算 (37)5.2.2 现浇段桥面板支点剪力计算 (37)5.3 持久状况承载能力极限状态计算 (38)5.3.1 预制箱内桥面板承载能力极限状态计算 (38)5.3.2 现浇段桥面板承载能力极限状态计算 (40)5.3.3 悬臂段桥面板承载能力极限状态计算 (41)5.4 持久状况抗裂计算 (44)5.4.1 预制箱内桥面板抗裂计算 (44)5.4.2 现浇段桥面板抗裂计算 (45)5.4.3 悬臂段桥面板抗裂计算 (47)6 横梁计算 (49)6.1 跨中横隔板计算 (49)6.2 端横梁、中横梁计算 (53)7 附图 (51)预应力混凝土公路桥梁通用设计图成套技术通用图计算书(30m 装配式预应力混凝土连续箱梁)1 计算依据与基础资料 1.1 标准及规范 1.1.1 标准∙跨径:桥梁标准跨径30m ;跨径组合5×30m(正交); ∙设计荷载:公路-Ⅰ级;∙桥面宽度:(路基宽28m ,高速公路),半幅桥全宽13.5m , 0.5m(护栏墙)+12.0m(行车道)+ 1.0m 波型护栏)=13.5m ; ∙桥梁安全等级为一级,环境条件Ⅱ类。
30箱梁模板计算书
目录30m预制箱梁模板计算书 (2)一、工程概况 (2)二、预制箱梁模板体系说明 (2)三、箱梁模板力学验算原则 (2)四、计算依据 (3)五、箱梁模板计算 (3)4.1 荷载计算及组合 (3)4.2 模板材料力学参数 (6)4.3 力学验算 (8)4.3.2 横肋力学验算 (9)4.3.3 竖肋支架验算 (10)4.3.4 拉杆验算 (11)30m预制箱梁模板计算书一、工程概况呼和浩特市2012年南二环快速路工程二标段,在2013年5月份进场施工。
原设计为3km整体现浇,考虑到整体现浇工期长,前期投入大,经项目部前期策划,变更为装配式30m预制箱梁,预制部分梁长为29.4m,梁高为1.6m,设计图纸为国家标准通用图,移梁采用兜底吊,预制数量为1327片,采用预制厂集中生产。
二、预制箱梁模板体系说明箱梁模板分为底模、侧模、芯模三部分,底模焊接在预制台座上,台座设计时需考虑箱梁在预制过程中分阶段受力状态,即:浇注时,底座承受箱梁混凝土自重下的均布力;在预应力张拉后,台座承受箱梁两端支点的集中力。
所以在台座设计时,需在台座两端设置扩大基础来满足集中荷载形式下的承载力需要。
内模在箱梁预制过程中承受腹板混凝土侧向力以及顶板混凝土竖向力,侧模承受底腹板混凝土侧压力。
箱梁侧模承载箱梁外露面混凝土的重量,混凝土侧压力向外传递顺序为:面板→横肋→纵肋→拉杆。
三、箱梁模板力学验算原则1、在满足结构受力(强度)情况下考虑挠度变形(刚度)控制;2、根据侧压力的传递顺序,先后对面板、横肋、纵肋支架、拉杆进行力学验算。
3、根据受力分析特点,简化成受力模型,进行力学验算。
四、计算依据1、《路桥施工计算手册》,人民交通出版社2、《公路桥涵施工技术规范》(JTG/T F50-2011)3、《建筑施工模板安全技术规范》(JGJ162-2008)五、箱梁模板计算图4.1 箱梁外模构造尺寸图模板说明:30m预制小箱梁中心梁高1.6m,侧模面板厚5mm,横肋采用1cm铁条,间距40cm;竖肋及支撑架采用10cm槽钢通过横向焊接而成,间距为75cm;上下对拉杆采用27mm圆钢。
20m、30m箱梁理论伸长量计算书
《20m、30m》后X法预应力箱梁理论伸长量计算书一、计算说明:1、本计算书依据中华人民某某国行业标准《公路桥涵施工技术规X》〔JTJ041-2000〕和某某省交通规划设计研究院股份某某下发的某某市羊角至水东一级公路新建工程《施工图设计》进展编制。
2、本计算书中所有计算参数均来源于施工图纸、施工技术规X与相关试验检测报告。
3、本次伸长量计算书主要分为:20米预制箱梁和30米预制箱梁两种情况。
二、X拉须知事项:1、箱梁X拉时采用X拉力和伸长量双控制,伸长量作为校核依据,误差X围为±6%,X拉力控制误差为±3%,并按设计X拉顺序为20米N1,N3,N2,N4;30米的N1,N3,N2,N5,N4,自左到右对称X拉;如果实测X拉数据超限,应暂停X拉,待查明原因并采取措施予以调整后,方可继续X。
2、实际X拉过程中按10%,20%,100%三个阶段应力来控制伸长量,X拉力所对应油表读数均以千斤顶《标定报告》中直线回归方程计算,其它须知事项参照设计规X执行。
三、主要工程量:1、谭段河中桥20米简支组合箱梁30片;2、跨铁路立交桥引桥20米简支组合箱梁160片,30米简支组合箱梁40片;3、沙琅江大桥30米简支组合箱梁90片;4、某某阁中桥30米简支组合箱梁10片;5、大器河中桥20米简支组合箱梁40片;综合以上统计,20米简支组合箱梁230片,30米简支组合箱梁140片。
设计参数:20米简支组合箱梁,梁高1.2m,梁底宽1.0m,梁顶宽2.4m;30米简支组合箱梁,梁高1.6m,梁底宽1.0m,梁顶宽2.4m。
四、《20m、30m》简支组合箱梁理论伸长量计算相关公式:1、预应力钢绞线理论X拉伸长量计算公式:ΔL=(PpL)/(ApEp)式中:Pp—预应力筋的平均X拉力〔N〕;L—预应力筋的长度〔mm〕,分为直线和曲线两种;Ap—预应力筋的总截面面积〔mm2〕;Ep—预应力筋的弹性模量〔N/mm2〕;〔2〕预应力筋平均X拉力计算公式:Pp=P×(1-e-(kx+μθ)〕/〔kx+μθ〕式中:Pp—预应力筋平均X拉力〔N〕;P—预应力筋X拉端的X拉力〔N〕;x—计算曲线截面的孔道长度〔m〕;θ—计算曲线截面的切线偏角〔rad〕,以弧度表示;k—孔道每米局部偏差对摩擦的影响系数;μ—预应力筋与孔道壁的摩擦系数;备注:当预应力筋为直线时Pp=P;2、计算公式中的主要参数值与相关参数值:〔1〕预应力钢绞线抗拉强度标准值:ƒpk=1860Mpa;〔2〕单根钢绞线公称直径:d=15.2mm;〔3〕单根预应力钢绞线X拉锚下控制应力:Σ×1860=1395Mpa×105〔N/mm2〕松弛系数0.3;〔5〕预应力筋与孔道壁的摩擦系数μ=0.25;〔7〕单根钢绞线截面面积:A=139mm2;五、《20m、30m》简支组合箱梁理论伸长量计算说明:(一)20m简支组合箱梁1、N1束〔1〕因N1束钢绞线孔道呈对称型,故取单端计算其伸长量,然后乘2为总伸长量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
30m预应力混凝土简支小箱梁计算书
一、主要设计标准
1、公路等级:城市支路,双向四车道
2、桥面宽度:3m人行道+0.25m路缘带+2x3.5m车行道+0.5m双黄线+2x3.5m 车行道+0.25m路缘带+3m人行道=21m
3、荷载等级:汽车-80级
4、设计时速:30Km/h
5、地震动峰值加速度0.2g
6、设计基准期:100年
二、计算依据、标准和规
1、《厂矿道路设计规》(GBJ22-87)
2、《公路桥涵设计通用规》(JTG D60-2004)
3、《公路钢筋混凝土及预应力混凝土桥涵设计规》(JTG D62-2004)
三、计算理论、荷载及方法
1、计算理论
桥梁纵向计算按照空间杆系理论,采用Midas Civil2012软件计算。
2、计算荷载
(1)自重:26KN/ m3
(2)桥面铺装:10cm沥青铺装层+8cm钢筋混凝土铺装
(3)人行道恒载:20KN/ m
(4)预应力荷载:
采用4束5φs15.2和6束4φs15.2 fpk=1860MPa钢绞线,控应力1395MPa。
(5)汽车荷载:
本桥由于是物流园区部道路,通行的重车较多,本次设计考虑《厂矿道路设计规》(GBJ22-87)汽车-80级,计算图示如下:
根据图示,汽车荷载全桥横桥向布置三辆车。
冲击系数按照《公路桥涵设计通用规》(JTG D60-2004)4.3.2条考虑。
(6)人群荷载:3.5 KN/ m2
(7)桥面梯度温度:
正温差:T1=14°,T2=5.5°
负温差:正温差效应乘以-0.5
3、计算方法
(1)将桥梁在纵横梁位置建立梁单元,然后采用虚拟梁考虑横向刚度,以此来建立模型。
(2)根据桥梁施工方法划分为四个施工阶段:架梁阶段、现浇横向湿接缝阶段、二期恒载阶段、收缩徐变阶段。
(3)进行荷载组合,求得构件在施工阶段和使用阶段时的应力、力和位移。
(4)根据规规定的各项容许指标。
按照A类构件验算是否满足规的各项规定。
四、计算模型
全桥采用空间梁单元建立模型,共划分为273节点和448个单元。
全桥模型如下图:
全桥有限元模型图
五、计算结果
1、施工阶段法向压应力验算
(1)架梁阶段
架设阶段正截面上缘最小压应力为1.0MPa,最大压应力为2.7MPa;正截面下缘最小压应力为12.0MPa,最大压应力为13.7MPa。
根据《公路钢筋混凝
土及预应力混凝土桥涵设计规》JTG D62-2004第7.2.8条规定1.15ftk’ =-1.484 MPa≤σ≤0.7fck’=18.144 MPa,可见加梁阶段压应力满足规要求。
架梁阶段正截面上缘压应力图(MPa)
架梁阶段正截面下缘压应力(MPa)
(2)现浇横向湿接缝阶段
现浇横向湿接缝阶段正截面上缘最小压应力为1.1MPa,最大压应力为2.8MPa;正截面下缘最小压应力为11.5MPa,最大压应力为13.4MPa。
根据《公路钢筋混凝土及预应力混凝土桥涵设计规》JTG D62-2004第7.2.8条规定
1.15ftk’ =-1.484 MPa≤σ≤0.7fck’=18.144 MPa,可见加梁阶段压应力满足规要求。
现浇横向湿接缝阶段正截面上缘压应力图(MPa)
现浇横向湿接缝阶段正截面下缘压应力图(MPa)
(3)二期恒载完成阶段
二期恒载完成阶段正截面上缘最小压应力为1.9MPa,最大压应力为5.2MPa;正截面下缘最小压应力为7.7MPa,最大压应力为11.9MPa。
根据《公路钢筋混凝土及预应力混凝土桥涵设计规》JTG D62-2004第7.2.8条规定1.15ftk’ =-1.484 MPa≤σ≤0.7fck’=18.144 MPa,可见加梁阶段压应力满足规要求。
二期恒载完成阶段正截面上缘压应力图(MPa)
二期恒载完成阶段正截面下缘压应力图(MPa)
(4)收缩徐变完成阶段
收缩徐变完成阶段正截面上缘最小压应力为1.9MPa,最大压应力为5.2MPa;正截面下缘最小压应力为6.7MPa,最大压应力为11.0MPa。
根据《公路钢筋混凝土及预应力混凝土桥涵设计规》JTG D62-2004第7.2.8条规定1.15ftk’ =-1.484 MPa≤σ≤0.7fck’=18.144 MPa,可见加梁阶段压应力满足规要求。
收缩徐变完成阶段正截面上缘压应力图(MPa)
收缩徐变完成阶段正截面下缘压应力图(MPa)2、受拉区钢筋拉应力验算
钢束编号施工阶段有效预
应力(MPa)
使用阶段钢束拉
应力(MPa)
施工阶段容许拉
应力(MPa)
使用阶段容许拉
应力(MPa)
腹板束N1 1262 1192 1395 1209
腹板束N2 1256 1191 1395 1209
腹板束N3 1249 1189 1395 1209
腹板束N4 1243 1188 1395 1209
底板束N5 1270 1193 1395 1209
根据《公路钢筋混凝土及预应力混凝土桥涵设计规》JTG D62-2004第6.1.3条施工阶段σ≤0.75fpk=1395MPa和第7.1.5条使用阶段σ≤0.65fpk=1209MPa,从上表中可以看出,钢束的拉应力满足规的要求。
3、使用阶段正截面抗裂验算
(1)短期效应正截面抗裂验算
根据《公路钢筋混凝土及预应力混凝土桥涵设计规》JTG D62-2004第6.3.1条规定短期效应组合下σst –σpc≤0.7ftk=-1.855MPa,从短期效应正截面上下缘图中可以看出各个截面的应力均符合要求。
短期效应正截面上缘应力图(MPa)
短期效应正截面下缘应力图(MPa)
(2)长期效应正截面抗裂验算
根据《公路钢筋混凝土及预应力混凝土桥涵设计规》JTG D62-2004第6.3.1条规定长期效应组合下σlt –σpc≤0MPa,从长期效应正截面上下缘图中可以看出各个截面的应力均符合要求。
长期效应正截面上缘应力图(MPa)
长期效应正截面下缘应力图(MPa)
4、使用阶段斜截面抗裂验算
根据《公路钢筋混凝土及预应力混凝土桥涵设计规》JTG D62-2004第6.3.1条规定短期效应组合下主拉应力容许值σtp≤0.7ftk=1.855MPa,从短期效应斜截面最大拉应力图中可以看出各个截面的应力均符合要求。
短期效应斜截面主最大拉应力图(MPa)
5、使用阶段正截面压应力验算
根据《公路钢筋混凝土及预应力混凝土桥涵设计规》JTG D62-2004第7.1.5条规定受压区混凝土的最大压应力σKC+σpt≤0.5fck=16.2MPa。
从使用阶段正截面上下缘压应力图中可以看出各个截面的应力均符合要求。
使用阶段正截面上缘压应力图(MPa)
使用阶段正截面下缘压应力图(MPa)
6、使用阶段斜截面压应力验算
根据《公路钢筋混凝土及预应力混凝土桥涵设计规》JTG D62-2004第7.1.6条规定受压区混凝土的最大压应力σcp≤0.6fck = 19.44MPa。
从使用阶段斜截面最大主压应力图中可以看出各个截面的应力均符合要求。
使用阶段斜截面最大主压应力图(MPa)
7、承载能力极限状态正截面抗弯承载力验算
基本组合下小箱梁跨中最小弯矩为5587 kN·m,最大弯矩为10647kN·m。
根据《公路钢筋混凝土及预应力混凝土桥涵设计规》JTG D62-2004第5.2.2条计算出结构抗弯承载力为11977 kN·m,可见结构抗弯承载力满足要求。
承载能力极限状态正截面抗弯矩络图(MPa)
8、承载能力极限状态斜截面抗剪承载力验算
基本组合下小箱梁支座处最小剪力为746 kN,最大剪力为1883kN。
根据
《公路钢筋混凝土及预应力混凝土桥涵设计规》JTG D62-2004第5.2.8~5.2.12条计算出所需的抗剪截面只有单个截面不符合要求,其余都符合要求,计算出结构抗剪承载力为3556 kN,结构抗剪承载力满足要求。
承载能力极限状态斜截面抗剪包络图(kN)
9、挠度验算
经计算,在消除结构自重产生的长期挠度,结构按照短期效应组合和
B0=0.95E c I0刚度考虑长期效应影响系数1.425计算的挠度值为
12.6x1.425=19mm。
根据《公路钢筋混凝土及预应力混凝土桥涵设计规》JTG D62-2004第6.5.3条可知,梁式桥主梁的最大挠度不应超过计算跨径的
L/600=50mm,故结构的挠度符合规的要求。
10、预拱度设置
预应力产生的跨中反拱值为45mm,考虑长期增长系数2.0,得到长期反拱值为90mm,按照荷载短期效应组合计算的跨中长期挠度值为72mm,按照《公路钢筋混凝土及预应力混凝土桥涵设计规》JTG D62-2004第6.5.5条:当预应
力产生的长期反拱值大于按照短期效应组合计算的长期挠度时,可不设预拱度。