考研数学证明题的知识点总结

合集下载

考研高等数学重要基础知识点单调有界收敛准则及其应用

考研高等数学重要基础知识点单调有界收敛准则及其应用

考研高等数学重要基础知识点单调有界收敛准则及其应用
2023考研高等数学重要基础知识点:单调有界收敛准则及其应用_中公教育网
一、单调有界准则
单调且有界的数列必收敛。

理解:单调递增且有上界的级数必收敛;具有下界的单调递减序列必定收敛。

题型:已知数列极限的递推关系,试图证明数列极限的存在性,并求出这个极限。

总结:
1)根据递推公式证明数列极限存在的基本思想:首先证明数列是单调有界的,从而得到数列极限的存在性;然后同时取方程两边的极限,得到方程,求出极限值。

2)证明数列单调有界的主要方法:
①先设出极限再求出极限值,对比极限值与数列前三项的大小关系确定证明数列单调递增还是单调递减、有上界还是有下界,以及上界或下界各是多少;
②证明时,先证有界性,再证单调性;
③为了更好地运用递推公式,证明过程中一般会用到数学归纳法。

以上根据具体问题给大家展示了利用单调有界收敛准则证明数列极限存在的具体分析思路和解题步骤,希望大家多总结方法,从题目中总结解题技巧和书写规范。

考研线代证明题

考研线代证明题

考研线代证明题摘要:1.考研线代证明题概述2.线性无关组的概念及性质3.证明题的解题思路和方法4.举例说明5.结论正文:一、考研线代证明题概述线性代数是考研数学的重要组成部分,其中证明题是历年考研数学试卷中必考的内容。

线代证明题主要涉及到向量空间、线性变换、特征值与特征向量、二次型等知识点。

这类题目不仅考查考生的数学知识,还考查考生的逻辑思维和推理能力。

二、线性无关组的概念及性质线性无关组是线性代数中一个基本概念,是指一组向量线性无关。

线性无关组的性质有:1.线性无关组中的向量可以线性表示其他向量;2.线性无关组中的向量数量是最大的;3.线性无关组中的向量具有线性无关性,即任意一个向量都不能由其他向量线性表示。

三、证明题的解题思路和方法解线代证明题,首先要理解题目所给出的已知条件,然后找到解题的思路。

具体方法如下:1.利用已知条件,通过线性组合将向量表示出来;2.利用线性无关组的性质,判断向量是否线性无关;3.利用矩阵的性质,如行列式、秩等,推导出所需结论。

四、举例说明假设有一个线性无关组a(1), a(2),..., a(s),现在需要证明这个线性无关组是极大线性无关组。

我们可以按照以下步骤进行证明:1.假设a(1), a(2),..., a(s) 不是极大线性无关组,即存在一个向量a(i) 可以表示为a(1), a(2),..., a(s) 的线性组合,其中i 不属于{1, 2,..., s}。

2.根据线性组合的定义,可以得到一个矩阵方程,即a(i) = A * a(1) + B * a(2) +...+ D * a(s),其中A、B、...、D 为待定系数。

3.由于a(1), a(2),..., a(s) 线性无关,所以矩阵方程中系数矩阵的行列式不为0,即|A * a(1) + B * a(2) +...+ D * a(s)| ≠0。

4.根据矩阵的秩的定义,系数矩阵的秩等于矩阵方程中未知数的个数,即r(A * a(1) + B * a(2) +...+ D * a(s)) = s。

考研数学:中值定理相关命题的证明方法总结

考研数学:中值定理相关命题的证明方法总结

考研数学:中值定理相关命题的证明方法总结中值定理这一块是考研数学的重点同时也是难点,对于中值定理这一块的相关证明题,很多同学一碰到,多数是束手无措,难以找到解题的突破口,现在跨考教育数学教研室易老师就这一问题做详细的方法介绍。

这一类型的问题,从待证的结论入手,首先看结论中有无导数,若无导数则采用闭区间连续函数的性质来证明(介值或零点定理),若有导数则采用微分中值定理来证明(罗尔、拉格朗日、柯西定理),这个大方向首先要弄准确,接下来就待证结论中有无导数分两块来讲述。

一、结论中无导数的情况结论中无导数,接下来看要证明的结论中所在的区间是闭区间还是开区间,若为闭区间则考虑用介值定理来证明,若为开区间则考虑用零点定理来证明。

例1 ()f x 在[]0,3上连续,且(0)(1)(2)3f f f ++=,证明:至少存在一点[]0,3c ∈,使得() 1.f c =分析:待证结论中无导数,则用闭区间连续函数的性质来证,且待证的结论的中值在闭区间上,故应采用介值定理来证明。

证明:()f x 在[]0,2上连续,,m M ∴∃使3(0)(1)(2)3m f f f M ≤++≤1m M ⇒≤≤,∴由介值定理可得结论。

二、结论中有导数情况① 结论中有导数,无端点信息,则采用罗尔定理来证明。

用罗尔定理来证明的常见题型:● 型一:()()0n f ξ=● 型二:结论中仅有ξ的相关表达式,且导数相差一阶用罗尔定理来证明题时,难点就在找原函数上,找原函数的常用方法分为两种,一为观察法,二为积分法。

观察法:i )待证结论若为这种形式'()g()()g'()0()()f f f x g x ξξξξ+=⇐原函数为ii )待证结论若为这种形式()'()()()'()0()f x fg f g g x ξξξξ-=⇐原函数为积分法:i )待证结论若为这种形式()'()()()0()()g x dx f g f F x e f x ξξξ⎰+=⇐=原函数为ii )待证结论若为这种形式()"()()'()0()'()g x dxf g f F x e f x ξξξ⎰+=⇐=原函数为 例2 ()f x 在[]0,1上连续,在(0,1)内可导,(1)0,f =证明:(0,1)ξ∃∈,使得 '()2()0f f ξξξ+=分析:有导数,无端点信息,采用罗尔定理。

考研数学解答证明题的思路与方法

考研数学解答证明题的思路与方法

考研数学解答证明题的思路与方法一、引言在考研数学中,解答证明题是一项重要的任务。

要正确解答证明题,需要具备一定的思路和方法。

本文将介绍考研数学解答证明题的常用思路和方法,帮助考生提高解题的能力。

二、归纳法归纳法是解答证明题常用的一种方法。

其基本思路是通过证明结论在某个特殊情况成立的前提下,在下一个更一般的情况中同样成立。

归纳法可以分为数学归纳法和强归纳法两种。

1. 数学归纳法数学归纳法通常适用于证明一些递推关系或与正整数相关的结论。

其基本步骤包括:首先证明当n=1时结论成立;然后假设当n=k时结论成立,利用这个假设证明当n=k+1时结论也成立。

通过这种方法可以推广到所有的正整数n。

2. 强归纳法与数学归纳法类似,强归纳法也通过已知结论在某一情况下成立的前提下,推广到更一般的情况中。

不同之处在于强归纳法在假设某个情况成立时,同时假设之前的情况也成立。

通过这种方法可以解决一些复杂的证明问题。

三、反证法反证法是另一种常用的证明方法。

其基本思路是假设结论不成立,然后推导出与已知的事实相矛盾的结论,从而证明原命题的正确性。

反证法常用于证明一些唯一性问题,或证明某个命题的否定推出矛盾。

四、递推法递推法是解答证明题的又一重要方法。

其基本思路是利用已知条件和递推公式,从已知情况出发,通过递推关系逐步推导出目标结论。

五、条件必要性与充分性在解答某些证明题时,需要分别证明条件的必要性和充分性。

必要性是指如果某个条件成立,则结论必然成立;充分性是指如果结论成立,则条件必然成立。

通过证明必要性和充分性可以确保得到正确的结论。

六、举反例有时候,在解答证明题时,可以通过举反例来证明某个命题是错误的。

只要找到一个例子使得命题不成立,就可以推断该命题是错误的。

七、总结考研数学解答证明题需要掌握一定的思路和方法。

本文介绍了几种常用的解题方法,包括归纳法、反证法、递推法、条件必要性与充分性以及举反例法。

掌握这些方法,将有助于考生在考试中解答证明题时更加得心应手。

2020考研数学:极限计算方法之定义证明法

2020考研数学:极限计算方法之定义证明法

版权所有翻印必究1 2020考研数学:极限计算方法之定义证明法极限是高数整个学科的基石,是高数处理问题的基本思想;在考试中每年分值在10分左右,主要考查计算,而极限的计算方法较为灵活,定义证明法虽然在考试中并未直接涉及,但是了解定义证明法求极限对于理解极限的定义非常有帮助。

利用极限定义证明极限存在一直以来都是考研数学关于讨论极限存在方法中的难点,也是大家必须掌握的内容,同时本考点会结合着其他知识点进行考查。

相对来说,利用极限的定义证明极限存在是讨论极限存在的基本方法,接下来讲解一下利用定义证明极限存在的知识点。

1、函数极限定义(1)设函数()f x 在0x 的某去心邻域内有定义,如果存在实数A ,使得0ε∀>,∃0δ>,当0000(,)(,)x x x x x δδ∈-+ 时,有()|f x A ε-<|,则称()f x 在0x 点处的极限值为A ,记作0lim ()x x f x A →=。

设函数()f x 在0x 的某左邻域内有定义,如果存在实数A ,使得0ε∀>, 0δ∃>当00(,)x x x δ∈-时,有()|f x A ε-<|,则称()f x 在0x 点处的左极限为A ,记作0lim ()x x f x A -→=。

或0()f x -,或0(0)f x -。

类似地,可以定义右极限,记作0lim ()x x f x A +→=,或0()f x +,或0(0)f x +。

左极限和右极限统称为单侧极限。

(2)设函数()f x 在()(),,X X -∞-+∞ 上有定义(X 为某正数),如果存在实数A ,使得0ε∀>, 0M ∃>,当x M >时,有()|f x A ε-<|,则称当x →∞时()f x 的极限值为A ,记作lim ()x f x A →∞=。

类似地,可以分别定义x →-∞和x →+∞时()f x 的极限lim ()x f x →-∞和lim ()x f x →+∞。

2019考研数学三证明题详解及答案

2019考研数学三证明题详解及答案

2019考研数学三证明题详解及答案一、问题背景介绍2019考研数学三中的证明题是该科目中的一项重要部分。

本文将对2019年考研数学三的证明题进行详细解析,并提供答案及说明。

二、第一道证明题详解题目:证明若函数f(x) 在区间[a,b] 上连续,则必在该区间上有界。

证明过程:首先,我们可以利用反证法来证明这个结论。

假设函数 f(x) 在区间[a,b] 上连续,但却无界。

由于 f(x) 在 [a,b] 上连续,所以在该区间上 f(x) 是有界的。

根据闭区间上连续函数的性质,连续函数在闭区间上一定有最大值和最小值。

所以,我们可以找到 f(x) 在 [a,b] 上的最大值 M 和最小值 m。

假设 f(x) 在 [a,b] 上无界,那么必然存在一个数 A,使得对于任意的x∈[a,b],f(x) > A。

在区间 [a,b] 上,我们可以找到无限个点 x1,x2,x3...,它们都满足 f(x) > A。

由于 f(x) 是有界的,所以必然存在一条水平线 y = M+1,位于最大值 M 上方。

根据连续函数的性质,我们可以找到开区间 (c,d),其中 c∈[a,b],这样在 (c,d) 内的任意一个点 x 都满足 f(x) > A。

然而,由于连续性的定义,我们知道 f(x) 是有界函数,所以在 (c,d) 的某一点 x' 上,f(x') ≤ M。

这与 f(x') > A 相矛盾。

因此,假设不成立。

即证明了函数 f(x) 在区间 [a,b] 上连续时必有界。

三、第二道证明题详解题目:证明方程 x^2 - 4x + 3 = 0 的解集为{1, 3}。

证明过程:首先,我们可以通过求根公式来解方程 x^2 - 4x + 3 = 0。

根据求根公式,对于一元二次方程 ax^2 + bx + c = 0,它的解可以表示为 x = (-b ± √(b^2 - 4ac)) / (2a)。

考研数学重要定理性质及公式证明总结

考研数学重要定理性质及公式证明总结

考研数学重要定理、性质及公式证明总结1. 证明一元函数可微、可导及连续的关系 :(1) 函数y = f ( x )在点x 0处可微的充分必要条件是函数y = f ( x )在点x 0处可导,且当函数y = f (x )在点x 0处可微时,有dy = f '( x 0 ) ∆x = f '( x 0 ) d x ; (2) 如果函数y = f ( x )在点x 0处可导,则函数函数y = f ( x )在点x 0处必连续,反之不一定.证明:(1)参看同济教材七版上册111页; (2)参看同济教材七版上册82页.2. 证明费马定理 :设函数f ( x )在x = x 0处可导且取极值,则f '( x 0 ) =0. 证明:参看同济教材七版上册125页.3. 证明罗尔定理 :设f ( x )在[a , b ]上连续,在(a , b )内可导,且f (a ) = 证明:参看同济教材七版上册126页.4. 证明柯西中值定理 :f (b ),则至少存在一点ξ ∈(a ,b ), 使得f '(ξ ) =0. 设f ( x )、g ( x )在[a , b ]上连续, (a , b )内可导, 且g '( x ) ≠ 0,则∃ξ ∈(a , b ),使得f (b ) - f (a ) = f '(ξ ).证明:参看同济教材七版上册130页.5. 证明洛必达法则:设f ( x ), g ( x )在点x 0的某去心邻域内可导,且g '( x ) ≠ 0, 又满足:f '( x )f ( x )g (b ) - g (a )f '( x )g '(ξ )(1)lim f ( x ) = lim g ( x ) = 0(, 2)极限lim 存在或为∞;则lim = lim .x →x 0 x → x 0 x →x 0 g '( x ) x →x 0 g ( x ) x → x 0 g '( x ) 证明:参看同济教材七版上册133页.6. 证明函数单调性的充分判别法 :设f ( x )在[a , b ]上连续, 在(a , b )内可导,且f '( x ) > 0 (< 0), 则f ( x )在[a , b ]上单调增加(单调减少). 证明:参看同济教材七版上册144页.7. 证明曲线凹凸性的充分判别法 :设f ( x )在[a , b ]上连续, 在(a , b )内二阶可导,且f ''( x ) > 0 (< 0), 则f ( x )在[a , b ]上的图形是凹的(凸的). 证明:参看同济教材七版上册148页.8. 证明极值点的充分条件 :设f (x )在x = x 0处二阶可导, f '( x 0 ) = 0, 若f '( x 0 ) > (0 证明:参看同济教材七版上册155页.< 0),则x = x 0是极小(大)值点.a∆ → a 9. 证明拐点的必要条件及充分条件 :(1)设f ( x )在x = x 0处二阶可导,且点( x 0 , f ( x 0 ))是曲线f (x )的拐点,则f ''( x 0 ) = 0; (2)设f (x )在x = x 0处三阶可导, f ''( x 0 ) = 0, 若f ''( x 0 ) ≠ 0, 则点(x 0 , f ( x 0 ))是曲线f (x )的拐点. 证明:(1)设f ''( x 0 )∃ ⇒ f ( x )在x = x 0的某邻域可导,因( x 0 , f ( x 0 ))是曲线的拐点 ⇒ f ( x )在x = x 0的两侧凹凸性相反⇒ f '( x )在x = x 0的两侧单调性相反,又f '( x )在x = x 0连续 ⇒ x = x 0是f '( x )的极值点,对f '( x )使用费马定理, 得f ''( x 0 ) = 0.(2)f ''( x ) = lim f '( x ) - f '( x 0 ) = lim f '( x ) > 0或< 0 ⇒ f '( x )在x = x 两侧异号 0x → x 0 x - x x →x 0 x - x0 0 0⇒ ( x 0 , f ( x 0 ))是曲线f (x )的拐点.10. 证明积分中值定理 :设f ( x )在[a , b ]上连续,则至少存在一点ξ ∈(a , b ), 使得⎰b f ( x )dx =f (ξ )(b - a ). 证明:参看同济教材七版上册242页例6.11. 证明变限积分函数的连续性 :设f ( x )在[a , b ]上可积,则对∀x 0 ∈[a , b ], 有F ( x ) = xf (t )dt 在[a ,b ]上连续.证明:因f ( x )在[a , b ]上可积, 故f ( x )在[a , b ]上有界,则可设 f ( x ) ≤ M (x ∈[a , b ]).x +∆xx +∆x 又∀x , x + ∆x ∈[a , b ], 有 ∆F = F ( x + ∆x ) - F ( x ) = ⎰xf (t ) d t - ⎰x f (t )dt = ⎰xf (t )dtx +∆x x +∆x≤ ⎰xf (t ) d t ≤ ⎰xMdt = M ∆x ,因此,当x , x + ∆x ∈[a ,b ]时,lim ∆F = 0,即F ( x )在[a , b ]上连续.x 012. 证明牛顿 — 莱布尼茨公式:设F ( x )是连续函数f ( x )在区间[a , b ]上的一个原函数,则⎰bf ( x )dx = F (b ) - F (a ). 证明:参看同济教材七版上册240页.13. 证明二元函数可微的必要条件 :设z = f ( x , y )在点( x , y )处可微,则z = f ( x , y )在点( x , y )处可导,且z = f ( x , y )在点( x , y )处的 全微分dz = ∂z dx + ∂zdy .∂x ∂y证明: 参看同济教材七版下册73页.14. 证明二元函数可微的充分条件 :设z = f (x , y )的两个偏导数∂z , ∂z在点( x , y )处都连续,则z = f ( x , y )在点( x , y )处可微. ∂x ∂y证明: 参看同济教材七版下册74页.⎰x⎰L Pdx + Qdy = ⎪ ∑ ∞15. 证明比值判别法(数一数三):⎧⎪⎪ρ < 1 ⇒ ∑ n =1u n 收敛 ∞ u n +1 ⎪ ∞设∑u n 为正项级数, 设ρ = lim ,则⎨ ρ > 1 ⇒ ∑u n 发散n =1 n →∞ u n⎪⎪ρ = 1 ⇒ ∞ n =1u n 可能收敛也可能发散 ⎩证明: 参看同济教材七版下册262页.16.证明阿贝尔定理(数一数三):∞n =1 如果级数∑ a x n 当x = x ( x ≠ 0)时收敛,那么满足 x < x 的一切x 都使该幂级数绝对收敛;nn =0 ∞反之,如果级数∑ a x n 当x = x 时发散,那么满足 x > x 的一切x 都使该幂级数发散.nn =0证明: 参看同济教材七版下册274页.17. 证明格林公式(数一):设区域D 由分段光滑的闭曲线L 围成,函数P ( x , y )及Q ( x , y )在D 上具有一阶连续偏导数,则 ⎛ ∂Q - ∂P ⎫⎰⎰ ∂x ∂y ⎪dxdy . D ⎝ ⎭证明: 参看同济教材七版下册205页.18. 证明曲线积分与路径无关问题(数一):我们已知:设P ( x , y ), Q ( x , y )在区域D 上连续,则曲线积分⎰LPdx + Qdy 在D 内与路径无关⇔ 对区域D 内∀ 分段光滑闭曲线C , 有⎰CPdx + Qdy = 0.证明: 设区域D 是一个单连通区域,函数P ( x , y ), Q ( x , y )在D 上具有一阶连续偏导数,则曲线积分⎰ Pdx + Qdy 在D 内与路径无关 ⇔ ∂Q = ∂P(( x , y )∈ D ).L证明: 参看同济教材七版下册209页.∂x ∂y 证明: 设区域D 是一个单连通区域,函数P ( x , y ), Q ( x , y )在D 上具有一阶连续偏导数,则Pdx + Qdy 在D 内是某一函数u ( x , y )的全微分⇔ ∂Q = ∂P(( x , y )∈ D ).∂x ∂y (这里的u ( x , y )也称为Pdx + Q dy 的一个原函数) 证明: 参看同济教材七版下册211页.。

考研数学备考复习有些证明

考研数学备考复习有些证明

考研数学备考复习有些证明我们在准备考研数学的备考时,需要把一些证明的题型了解清楚。

为大家精心准备了考研数学复习证明的指导,欢送大家前来阅读。

一、数列极限的证明数列极限的证明是数一、二的重点,特别是数二最近几年考的非常频繁,已经考过好几次大的证明题,一般大题中涉及到数列极限的证明,用到的方法是单调有界准那么。

二、微分中值定理的相关证明微分中值定理的证明题历来是考研的重难点,其考试特点是综合性强,涉及到知识面广,涉及到中值的等式主要是三类定理:1.零点定理和介质定理;2.微分中值定理;包括罗尔定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用来处理高阶导数的相关问题,考查频率底,所以以前两个定理为主。

3.微分中值定理积分中值定理的作用是为了去掉积分符号。

在考查的时候,一般会把三类定理两两结合起来进行考查,所以要总结到现在为止,所考查的题型。

三、方程根的问题包括方程根唯一和方程根的个数的讨论。

四、不等式的证明五、定积分等式和不等式的证明主要涉及的方法有微分学的方法:常数变异法;积分学的方法:换元法和分布积分法。

六、积分与路径无关的五个等价条件这一局部是数一的考试重点,最近几年没设计到,所以要重点关注。

首先是确定做题顺序,可以采用填空、计算、选择、证明的顺序。

因为尽管选择题的分数相对要少一些,但它们一般对根底知识要求较高,选项迷惑性大,有时需要花很多时间去分析也难以取舍;而且有些选择题的计算量也是很大的,如果在做题的开始就感觉不顺而花太多时间的话,会影响考试的心理状态。

证明题考查的是严密的逻辑推理,难度也比拟大。

因此,建议这两类题型可以放在后面做,而先做相对简单的。

一般来说,平时复习的时候要尽量从自己薄弱的方面“榨取”分数,而正式考试时,先通观整个试卷,迅速客观地评估自己的实力,明确哪些分数是必得的,哪些是可能得到的,哪些是根本得不到的,再采取不同的应对方式,才能镇定自假设,进退有据,最终从整体上获胜。

考研数学证明题解题技巧总结

考研数学证明题解题技巧总结

人的学习过程与数学历史的惊人的相似。

数学理论的常常是结论早早得出,但对其正确性的证明往往滞后,有时甚至滞后上百年时间.人在学习数学的时候也会出现类似状况,接受其结论,对其推理过程的理解会延迟理解,特别是高等数学,它与初等数学中形象思维占核心位置的情况完全不同.
在看教材或辅导书的时候,如果不看其中的分析思路,直接看证明,需要考生花大量时间思考其联系,比如构造一个辅助函数,考生常常会问为什么这样构造,没有依据的空降一个函数出来,即使能解决问题,依然会使解答天马行空。

事实上,证明题的证路都是有门路的,惯常的思路是从结论出发,分析结论与题干条件间的联系,搜索与之相关的理论方法,选择可能解决问题的方法,将之进行简单推理或变形看是否可行。

经过多次试探,最终确定使用的方法。

构造辅助函数有点类似于中学几何上添加辅助线,性质是一样的.
2021考研数学真题让大家又一次确信,要成功拿下证明题,掌握基本证明方法是关键!。

证明数列极限存在的方法大总结

证明数列极限存在的方法大总结

证明数列极限存在的方法大总结最近几年证明数列极限存在已经成为考研数学的压轴大题了,而且有的题目确实挺操蛋的,关于证明数列极限存在的问题确实有一定的难度,这里唐老师给大家进行详细的总结这类问题的方法:一、利用夹逼准则夹逼准则利用夹逼准则关键是进行不等式放缩,这里是有一定技巧的。

1.比如在求数列n项和极限利用夹逼准则时,往往对分母进行统一化放缩,分母都取最大的,整体就放小了;分母都取最小的,整体就放大了,然后再计算两边的极限即可,这里举一道例题2.关于数列非n项和(不妨称为m项和),其计算方法也是利用夹逼准则,但是我们可以将其总结为固定的答题公式,关于公式怎么来的,我们不在这里详述(主要是因为不太方便打字,哈哈哈哈哈哈),其经典模式及公式为数列m项和极限计算公式照猫画虎,我们举例说明本题也是2023年数学四考研真题稍加改变再给出一道经典例题,改题的出法就明显高于上面的考研真题了,请同学们好好琢磨:4.有的考研真题需要综合利用定积分定义和夹逼准则方可解决,如何1998年数学一的真题二、利用单调有界准则当然,以上还没有涉及到证明数列极限存在的难题。

考研中,证明数列极限存在的题目十之八九考查单调有界准则,而单调有界准则是大多数同学们比较困难的地方,因为既要证明单调性,又要证明有界性,往往这两个并不是容易证明的。

单调性的证明往往有两种手段:若某_{n+1}-某_{n}>0 ,则数列 {某_n} 单调增加,否则单调减少;若 \frac{某_{n+1}}{某_n}>1 ,则数列 {某_n} 单调增加,否则单调减少。

利用单调有界证明数列极限存在的题目往往都是已知递推式的特点,我们来看2002年数学二的一道真题2002年数学二,解析出自《考研数学核心考点1200题》这个题目的有界性证明利用了数学归纳法,这也是很多题目证明有界性的常见方法。

有的题目的有界性及单调性的证明除了利用归纳法外,还需要根据题目条件及常见的不等式来处理,比如2023年考研数学真题,这个题目成了当然的压轴题:2023年真题,解析来自《考研数学核心考点1200题》《考研数学核心考点1200题》当然,可能会出现比较操蛋的题目,就是数列不具备单调性,我们应该如何处理,这是再利用单调有界就属于重在参与了,如同学们可以观察发现数列某_n 不具备单调性(当然可能有点为难大家了,因为你们可能观察不出来),我们可以令某_{n+1}=y,某_n=某,得到函数 y=f(某) ,如果 f'(某)>0 ,可以得出数列 {某_{n}} 具备单调性。

考研数学中值定理证明题技巧以及结论汇总

考研数学中值定理证明题技巧以及结论汇总

目录第一部分:中值定理结论总结 (1)1、介值定理 (1)2、零点定理 (2)3、罗尔定理 (2)4、拉格朗日中值定理 (2)5、柯西中值定理 (2)6、积分中值定理 (3)第二部分:定理运用 (3)第三部分:构造函数基本方法 (9)一、要证明的等式是一阶导数与原函数之间的关系 (10)二、二阶导数与原函数之间关系 (11)第四部分:中值定理重点题型分类汇总(包含所有题型) (14)题型一:中值定理中关于θ的问题题型二:证明f(n)(ξ)=0题型三:证明f(n)(ξ)=C0(≠0)题型四:结论中含一个中值ξ,不含a,b,导数的差距为一阶题型五:含两个中值ξ,η的问题题型六:含a,b及中值ξ的问题题型七:杂例题型八:二阶保号性问题题型九:中值定理证明不等式问题(第一部分:中值定理结论总结1、介值定理:设函数 f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值 f(a)=A 及f(b)=B ,那么对于 A 与 B 之间的任意一个数 C ,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ<b).Ps:c 是介于 A 、B 之间的,结论中的ξ取开区间。

介值定理的推论:设函数 f(x)在闭区间[a,b]上连续,则 f(x)在[a,b]上有最大值 M ,最小值m,若 m≤C≤M,则必存在ξ∈[a,b], 使得 f(ξ)=C 。

闭区间上的连续函数必取得介于最大值 M 与最小值 m 之间的任何值。

此条推论运用较多)Ps :当题目中提到某个函数 f(x),或者是它的几阶导函数在某个闭区间上连续,那么该函数或者其几阶导函数必可以在该闭区间上取最大值和最小值,那么就对于在最大值和最小值之间的任何一个值,必存在一个变量使得该值等于变量处函数值。

2、零点定理:设函数 f(x)在闭区间[a,b]上连续,且 f(a)与 f(b)异号,即 f(a).f(b)<0, 那么在开区间内至少存在一点ξ使得 f(ξ)=0.Ps:注意条件是闭区间连续,端点函数值异号,结论是开区间存在点使函数值为 0.3、罗尔定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续;(2)、在开区间(a,b)内可导;(3)、在区间端点处函数值相等,即f(a)=f(b).那么在(a,b)内至少有一点ξ(<aξ<b),使得f`(x)=0;4、拉格朗日中值定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续;(2)、在开区间(a,b)内可导;那么在(a,b)内至少有一点ξ(<aξ<b),使得f(b)-f(a)=f`(ξ).(b-a).5、柯西中值定理:如果函数f(x)及g(x)满足(1)、在闭区间[a,b]上连续;(2)、在开区间(a,b)内可导;(3)、对任一x(a<x<b),g`(x)≠0,那么在(a,b)内至少存在一点ξ,使得f(b)-f(a) g(b)-g(a)=f`(ξ) g`(ξ)Ps:对于罗尔定理、拉格朗日中值定理、柯西中值定理结论都是开开区间内取值。

数学二考研证明题总结

数学二考研证明题总结

数学二考研证明题总结在数学二考研中,证明题是非常重要的一部分。

本文将从微积分证明题、线性代数证明题、概率论与数理统计证明题、解析几何证明题、数学分析证明题五个方面进行总结。

一、微积分证明题微积分证明题是数学二考研中非常重要的一部分,主要涉及极限、导数、积分等知识点。

在证明微积分题目时,需要注意以下几点:1. 对于极限的证明题,要掌握好各种极限的求法,如等价无穷小替换、洛必达法则、泰勒公式等。

2. 对于导数的证明题,要掌握好各种导数的求法,如链式法则、乘法法则、高阶导数等。

3. 对于积分的证明题,要掌握好各种积分的求法,如定积分、反常积分等。

二、线性代数证明题线性代数证明题主要涉及矩阵、向量、线性方程组等知识点。

在证明线性代数题目时,需要注意以下几点:1. 对于矩阵的证明题,要掌握好各种矩阵的计算方法,如行列式、逆矩阵、特征值等。

2. 对于向量的证明题,要掌握好各种向量的计算方法,如向量的加法、减法、数乘等。

3. 对于线性方程组的证明题,要掌握好各种线性方程组的解法,如高斯消元法、逆矩阵法等。

三、概率论与数理统计证明题概率论与数理统计证明题主要涉及随机事件、概率分布、大数定律等知识点。

在证明概率论与数理统计题目时,需要注意以下几点:1. 对于随机事件的证明题,要掌握好各种随机事件的计算方法,如互斥事件、独立事件、对立事件等。

2. 对于概率分布的证明题,要掌握好各种概率分布的计算方法,如二项分布、泊松分布、正态分布等。

3. 对于大数定律的证明题,要掌握好各种大数定律的证明方法,如切比雪夫大数定律、伯努利大数定律等。

四、解析几何证明题解析几何证明题主要涉及平面解析几何和空间解析几何的知识点。

在证明解析几何题目时,需要注意以下几点:1. 对于平面解析几何的证明题,要掌握好各种曲线的方程表示方法和平面曲线的位置关系。

2. 对于空间解析几何的证明题,要掌握好各种空间曲线和曲面的方程表示方法和空间曲线曲面的位置关系。

考研必备(数学分析知识点之_定积分之证明)

考研必备(数学分析知识点之_定积分之证明)
例5、1若 在 上二次可微,且 证明:
其中 .
证明1:将 在 处用Taylor公式展开,注意到 有

上式两端在 上积分,再两端取绝对值得
其中 .
证明2:考虑 则 在 上三阶可微,且 , , .
由Taylor公式知
其中
从而

,
于是

得证
例5、2设函数 处处二阶可导,且 又 为任意一连续函数,证明:
证明:由Taylor公式知存在
证明:由 ,对 ,有 ,又 在 上单调不增,有
.从而, .
于是,问题得证. 成立.
评注:当不等式中的积分限不同时,常借助变量代换改变积分限或被积函数,证明不等式.
例1、设 在 上连续,且单调减少 求证:对于满足 的任何 ,有 .
证明:因为 .

注意到 在 上单减,
由比较原理(两端从 )得

又 由比较原理和
证明:由于 在 上单调递减,则
对于任意 有
所以பைடு நூலகம்


所以对任何 ,有
评注:比较原理的基本思想:若
(其中等号仅当 时成立)
考察其特殊情况,主要利用定积分的单调性、绝对值及估值不等式来证明,尤其对于 以及 的不等式,可用微积分先求出 在定义的区间的最大值、最小值,再用估值定理求证.
例4、求证
证明:先求被积函数 在区间 上的最值.
所以

于是,
.
题目三:设函数 在 上连续,在 上可导, 且
证明:
分析:本题利用拉格朗日中值定理,即可证明.
证明:由拉格朗日微分中值定理
又 所以有

于是
评注:对于类似问题题型可采用的方法:

考研数学二证明题总结

考研数学二证明题总结

考研数学二证明题总结
考研数学二中的证明题主要涉及数学分析、高等代数和概率统计三个方面的内容。

以下是一些常见的证明题总结:
1. 数学分析方面:
- 极限与连续性的证明:常见的证明题包括函数极限、数列极限、函数连续性等。

- 导数与微分的证明:常见的证明题包括函数的可导性、导数
与函数之间的关系等。

- 积分与序列级数的证明:常见的证明题包括函数的可积性、
级数的敛散性等。

2. 高等代数方面:
- 矩阵与行列式的证明:常见的证明题包括矩阵乘法的性质、
行列式的计算和性质等。

- 线性方程组的证明:常见的证明题包括线性方程组的解的存
在唯一性、线性方程组的齐次与非齐次性质等。

- 向量空间的证明:常见的证明题包括向量空间的性质、子空
间的判断等。

3. 概率统计方面:
- 随机变量的证明:常见的证明题包括随机变量的性质、随机
变量之间的关系等。

- 概率分布与期望的证明:常见的证明题包括概率分布的性质、期望与方差的计算等。

- 统计推断的证明:常见的证明题包括样本的统计量性质、假
设检验的证明等。

对于这些证明题,一般需要掌握相关的定义、定理和性质,并且运用逻辑思维和数学推理进行证明。

实践中,尽量多做一些相关的证明题,加深对概念和理论的理解,并且注意分析问题的思路和方法。

数学考研常见证明题解题思路

数学考研常见证明题解题思路

数学考研常见证明题解题思路数学考研中,证明题是非常重要的一部分,它要求考生具备较高的数学思维能力和逻辑推理能力。

解答证明题需要一定的思路和方法,下面将介绍一些常见的解题思路。

一、数学归纳法数学归纳法是证明数列、等式等命题成立的一种重要方法。

它的基本思想是:首先证明当n取某个特定值时命题成立,然后假设当n=k时命题成立,再证明当n=k+1时命题也成立。

通过这个过程,可以推导出当n为任意自然数时命题都成立。

例如,在证明数列的递推公式时,常常会用到数学归纳法。

首先证明当n=1时递推公式成立,然后假设当n=k时递推公式成立,最后通过数学归纳法证明当n=k+1时递推公式也成立。

二、反证法反证法是常用的证明方法之一,它的基本思想是:假设待证命题不成立,通过推理和推导推出自相矛盾的结论,从而证明假设是错误的,即原命题成立。

在解题过程中,可以先假设待证命题不成立,然后看是否能够推导出矛盾的结论。

如果能够推导出矛盾的结论,就可以证明假设是错误的,从而证明原命题成立。

三、辅助线法辅助线法是在证明几何问题时常用的一种方法,它的基本思想是:通过画一条或多条辅助线,将原问题与一些已知的几何定理联系起来,从而简化证明过程。

在使用辅助线法时,需要根据题目的要求和已知条件,选择合适的辅助线。

通过引入辅助线,可以将原问题转化为几个相对简单的几何问题,进而证明原命题成立。

四、构造法构造法是在数学证明中常用的一种方法,它的基本思想是:通过构造一个满足题目要求的数学对象,来证明题目中所给出的性质或结论。

在使用构造法时,需要根据题目中给出的条件和要求,有针对性地构造出满足条件的数学对象。

通过构造出的对象,可以得到与题目相关的性质和结论,从而完成证明过程。

五、数学定理与公式的运用在解答证明题时,可以利用已知的数学定理和公式来推导出结论。

通过灵活运用数学定理和公式,可以简化证明过程,并提高解题效率。

在使用数学定理和公式时,需要注意其条件和适用范围。

2023年考研数学证明题

2023年考研数学证明题

2023年考研数学证明题的示例
题目:证明正弦定理
正弦定理是三角形中一个重要的定理,它描述了三角形各边与其对应角的正弦值之间的关系。

具体来说,对于任意一个三角形ABC,有:
a/sinA = b/sinB = c/sinC
其中a、b、c分别是三角形ABC的三条边的长度,A、B、C分别是三角形ABC 的三个角的度数。

证明:
第一步,我们首先引入三角函数中的恒等式,即sin(A+B) = sinC。

这个恒等式可以通过角和差公式和特殊角的三角函数值推导得到。

第二步,由于sin(A+B) = sinC,我们可以得到:
sinAcosB + cosAsinB = sinC
第三步,根据正弦定理的定义,我们有:
a/sinA = b/sinB = c/sinC
第四步,将第三步中的比例式子代入第二步中的等式,得到:
a(cosB/sinA) + b(cosA/sinB) = c
第五步,由正弦定理的定义,我们可以将第四步中的a、b、c替换为a/sinA、b/sinB、c/sinC,得到:
sinAcosB + cosAsinB = sinC
第六步,由于我们已经证明了第一步中的恒等式,所以这个等式成立。

这就证明了正弦定理。

这个证明题主要考察了三角函数中的恒等式和正弦定理这两个知识点。

在证明过程中,需要运用三角函数中的角和差公式和特殊角的三角函数值推导出sin(A+B) = sinC,然后通过正弦定理的定义得出结论。

因此,这个证明题考察了学生对三角函数基本知识、正弦定理的理解和运用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研数学证明题的知识点总结
考研数学证明题的知识点总结
考试难题一般出现在高等数学,对高等数学一定要抓住重难点进行复习。

高等数学题目中比较困难的是证明题,在整个高等数学,容易出证明题的地方如下:
一、数列极限的证明
数列极限的证明是数一、二的`重点,特别是数二最近几年考的非常频繁,已经考过好几次大的证明题,一般大题中涉及到数列极限的证明,用到的方法是单调有界准则。

二、微分中值定理的相关证明
微分中值定理的证明题历来是考研的重难点,其考试特点是综合性强,涉及到知识面广,涉及到中值的等式主要是三类定理:
1.零点定理和介质定理;
2.微分中值定理;
包括罗尔定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用来处理高阶导数的相关问题,考查频率底,所以以前两个定理为主。

3.微分中值定理
积分中值定理的作用是为了去掉积分符号。

在考查的时候,一般会把三类定理两两结合起来进行考查,所以要总结到现在为止,所考查的题型。

三、方程根的问题
包括方程根唯一和方程根的个数的讨论。

四、不等式的证明
五、定积分等式和不等式的证明
主要涉及的方法有微分学的方法:常数变异法;积分学的方法:换元法和分布积分法。

六、积分与路径无关的五个等价条件
这一部分是数一的考试重点,最近几年没设计到,所以要重点关注。

相关文档
最新文档