人教版八年级数学上期中复习教案全等三角形复习导学案

合集下载

全等三角形复习导学案

全等三角形复习导学案

E DCBAN MO 八年级数学上册第十二章全等三角形导学案全等三角形(复习课)备课人:陈军营 审核人:余国霞 张金锋 备课时间:9.17 上课时间:学习目标:1、掌握全等三角形的性质.2、掌握三角形全等的判定方法。

2、熟练运用三角形全等的性质和判定方法解决线段相等及平行、角相等的相关问题。

一、课前知识回顾:1、(1)全等三角形的性质:全等三角形的对应边 、对应角 。

(2)全等三角形的判定(用字母表示):判断三角形全等的方法有: 、 、 、 。

判断直角三角形全等的方法有: 、 、 、 、 。

2、如图,AM=AN , BM=BN 说明△AMB ≌△ANB 的理由。

解:在△AMB 和△ANB 中⎪⎩⎪⎨⎧===)_________(_______)(___________)_______(__公共边已知BN AM ∴ △AMB ≌ ( )3、如图,∠B=∠DEF, BC= EF, 补充条件,使得ΔABC ≌ ΔDEF 。

(1) 若要以“SAS ”为依据,可补充条件 ; (2) 若要以“ASA ”为依据,可补充条件 (3) 若要以“AAS ”为依据,可补充条件 ;(4) 若补充条件AC=DF ,则 ΔABC 与 ΔDEF 一定全等吗?二、自主练习与合作探究:1、如图,线段AB 、CD 相交于O 点,AO=CO ,BO=DO ,试证明:AD=BC 。

2、24. 如图,已知: AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .4.如图,AD 、A ′D ′分别是锐角△ABC 和△A ′B ′C ′中BC 、B ′C ′边上的高,且AB =A ′B ′,AD =A ′D ′,若使△ABC ≌△A ′B ′C ′,请你补充条件________(只需填写一个你认为适当的条件).并证明三、当堂检测:1、如图,D 点在AB 上,E 点在AC 上,且∠B =∠C ,AB = AC,那么△ABE ≌△ACD 吗?为什么?2、如图,∠ACB =∠FDE ,AC =DF ,BD =EC ,请判断AB 与EF 是否平行,并说明理由。

人教版八年级数学第十二章全等三角形导学案

人教版八年级数学第十二章全等三角形导学案

第十二章全等三角形12.1 全等三角形一、课前预习(一)全等形1.定义:能够完全_____的两个图形.2.特点:_____和_____完全相同.二、全等三角形1.定义:能够完全_____的两个三角形.2.对应元素:两个全等的三角形重合在一起有如下对应元素(1)对应顶点:_____的顶点.(2)对应边:_____的边.(3)对应角:_____的角.3.表示方法:(1)表示:△ABC和△DEF全等,记作△ABC___△DEF.(2)注意:记两个三角形全等时,把表示对应顶点的字母写在_____位置上.4.性质:(1)全等三角形的_______相等.(2)全等三角形的_______相等.思维诊断(打“√”或“×”)(1)两个形状相同的图形是全等形.( )(2)比例尺相同的两张中国地图是全等形.( )(3)所有的正方形都是全等形.()(4)全等三角形的面积相等.()(5)两个三角形全等时,两个三角形中最长的边是对应边. ()二、课内探究知识点 1 找全等三角形的对应元素【例1】如图所示,△ABC≌△EDA,∠BAC与∠DEA是对应角,AB与ED是对应边,写出其他对应边及对应角.【解题探究】1.两个三角形全等时,对应角所对的边是对应边,由∠BAC与∠DEA是对应角可得的一组对应边是什么?2.AB与ED是一组对应边,那么另一组对应边是什么?3.根据对应边所对的角是对应角,可知这两个三角形中未知的两组对应角是什么?【互动探究】此题还有另外的方法找对应边和对应角吗?提示:可以根据所给字母的顺序确定对应关系.【总结提升】确定两个全等三角形对应边、对应角的方法(1)确定对应边的“三种方法”①若全等三角形中有公共边,则公共边是对应边.②若已知对应角或对应顶点,则对应角或对应顶点所对的边为对应边.③若已知全等三角形中有最长(或最短)边,则一对最长(或最短)边是对应边.(2)确定对应角的“四种方法”①若全等三角形中有公共角,则公共角为对应角.②若全等三角形中有对顶角,则对顶角为对应角.③若已知全等形的对应顶点,则以对应顶点为顶点的角为对应角.④若已知全等三角形中有最大(或最小)角,则一组最大(或最小)角是对应角.知识点 2 全等三角形性质的应用【例2】如图所示,已知△ABD≌△ACE,AD=6 cm,AC=4 cm,∠ABD=50°,∠E=30°,求BE的长及∠COD的度数.【思路点拨】△ABD≌△ACE→求AE,AB的长→BE的长;根据∠ABD和∠E的大小→∠BOE的大小→∠COD的大小【总结提升】全等三角形性质的两点应用(1)求线段:全等三角形的对应边相等,可以直接确定对应边的数量关系,也可以间接求解相关线段的长度等.(2)求角:全等三角形的对应角相等,可以直接确定对应角的数量关系,也可以间接求解相关角的大小等.三、限时练习1.一个图形经过下列变换得到的图形与原图形不全等的是( )A.平移B.旋转C.翻折D.放大2.下列四个图形中,与图1全等的是( )3.如图所示,△ABC≌△CDA,且AB与CD是对应边,那么下列说法错误的是( )A.∠1与∠2是对应角B.∠B与∠D是对应角C.BC与AC是对应边D.AC与CA是对应边3题4题5题6题4.如图,小强利用全等三角形的知识测量池塘两端M,N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( )A.POB.QPC.MOD.MQ5.如图所示,沿直线AC对折,△ABC与△ADC重合,则△ABC≌______,AB的对应边是______,AC的对应边是______,∠B的对应角是______,∠BCA的对应角是______.6.如图,△ABC≌△ADE,写出其对应顶点、对应边、对应角.7.△ABC与△DEF的边长均为整数,且△ABC≌△DEF,若AB=2,BC=4,△DEF的周长为奇数,则DF的取值为( )A.3B.4C.3或5D.3或4或58.如图,△ABC绕点A旋转到△ADE,则下列说法不正确的是( )A. AB与DE是对应边B. △ABC≌△ADEC. ∠BAD=∠CAED. AC=AE9.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是( )A.5B.4C.3D.210.如图,将长方形ABCD沿AE折叠,使点D落在BC边上的F处,如果AD=9 cm,DE=2.4 cm,∠BAF=60°,则AF=________cm,EF=________cm, ∠DAE=________.8题9题10题11题11.如图所示,将△ABC沿直线BC平移到点D,使BC=CD.(1)相等的边有________,相等的角有________.(2)∠ACE=∠E吗?为什么?四、自助练习1.如果∆ABC ≌∆ADC ,AB=AD ,∠B=70°,BC=3cm,那么∠D=____,DC=____cm.2.如果 ∆ABC ≌∆DEF,且∆ABC 的周长为100 cm,A,B 分别与D,E 对应, AB=30 cm,DF=25 cm,则BC 的长为( )A.45 cmB.55 cmC.30 cmD. 25 cm3.如图,矩形ABCD 沿AM 折叠,使D 点落在BC 上的N 点处,如果 AD=7cm,DM=5cm,则AN=___cm,NM=___cm.4.如图所示,已知△ABD ≌△ACE ,AD=6 cm ,AC=4 cm ,∠ABD=50°, ∠E=30°,求BE 的长及∠COD 的度数.5.如图,△ABD ≌△EBC ,AB=2 cm,BC=5 cm,求DE 的长.6、【想一想错在哪?】如图,△ABC ≌△DEF ,则此图中相等的线段有( ) A.1对 B.2对 C.3对 D.4对M DNBC12.2 三角形全等的判定第1课时 SSS一、课前预习1.判定三角形全等的方法: 已知:△ABC.画△A ′B ′C ′,使A ′B ′=AB,B ′C ′=BC,A ′C ′=AC. 请同学们参照下面的步骤画△A ′B ′C ′. (1)画B ′C ′=___.(2)分别以B ′,C ′为圆心,线段___,___长为半径画弧, 两弧相交于点A ′.(3)连接线段_______,_______,得△A ′B ′C ′. 请同学们把画得的△A ′B ′C ′剪下来,放到△ABC 上, 观察可发现△A ′B ′C ′与△ABC_________,即 △A ′B ′C ′___△ABC.【归纳】(1)判定方法: 分别相等的两个三角形全等. (简写成_______或____)(2)应用格式:在△ABC 和△A ′B ′C ′中,∴△ABC ≌△A ′B ′C ′(____).2.用直尺和圆规作一个角等于已知角的依据是 .(打“√”或“×”)(1)当两个三角形的三边和三角中有两个条件分别相等时,这两个三角形不一定全等.( ) (2)当两个三角形的三边和三角中有三个条件分别相等时,这两个三角形可能全等.( ) (3)当一个三角形的三边确定时,这个三角形的形状就确定了. ( ) (4)两个三角形中,只要三条边分别相等,这两个三角形就一定全等.( )AB A B ,BC B C ,AC A C ,=''⎧⎪=''⎨⎪=''⎩∵二、课内探究知识点1 应用“SSS”证明两个三角形全等【例1】如图,点B,C,D,F在同一直线上,已知AB=EC, AD=EF,BC=DF,探索AB与EC的位置关系,并说明理由.【思路点拨】先判定AB与EC的位置关系,由BC=DF先证出BD=CF,再由SSS证出△ABD与△ECF全等,得出∠B=∠ECF,从而得出答案.【总结提升】证明三角形全等的步骤及寻找边相等的方法(1)证明三角形全等的“四个步骤”①准备条件:未知的条件要先证明(公共边相等可以直接应用,不必推理说明).②写出在哪两个三角形中.③列出三个条件用大括号括起来.④写出全等结论.(2)寻找边相等的“三种方法”①图形中的隐含条件,如公共边.②利用线段中点的定义说明边相等.③多条线段共线时,利用线段的和(差)关系证明边相等.知识点2 “SSS”的实际应用【例2】如图是工人师傅自己设计的测量垂直的仪器.仪器中的AB=AC,D是BC的中点,让BC平行于地面,当铅锤经过D点时,工人师傅就断定AD垂直于地面.工人师傅的判断有道理吗?你能说明理由吗?【思路点拨】证△ABD≌△ACD→∠ADB=∠ADC→∠ADB=90°→AD⊥BC→BC∥地面→结论【总结提升】利用“SSS”解决实际问题“三步法”(1)建模:把实际问题转化为数学问题,构造两个三角形.(2)证明:利用“SSS”证明两个三角形全等.(3)应用:应用全等三角形的性质说明线段或角的大小关系.三、限时训练1.下列说法中正确的个数为( )①周长相等的两个三角形全等②周长相等的两个等腰三角形全等③周长相等的两个等边三角形全等④有三条边分别相等的两个三角形全等A.1B.2C.3D.42.如图,已知AB=AC,BD=DC,那么下列结论中不正确的是( )A.△ABD≌△ACDB.∠ADB=90°C.∠BAD是∠B的一半D.AD平分∠BAC3.如图,在△ABC中,AB=AC,EB=EC,则由“SSS”可以判定( )A.△ABD≌△ACDB.△ABE≌△ACEC.△BDE≌△CDED.以上答案都不对2题3题4题5题4.如图,若AB=AC,AD=AE,则需要______条件就可根据“SSS”判断△ABE≌△ACD.5.如图,AC=DF,BC=EF,AD=BE,∠BAC=72°,∠F=32°,则∠ABC=__________.6.如图,已知AB=DC,DB=AC,(1)求证:∠ABD=∠DCA.(注:证明过程要求给出每一步结论成立的依据.)(2)在(1)的证明过程中,需要作辅助线,它的目的是什么?7为稳固电线杆,从A处拉了两根等长的铁丝AC,AD,且C,D到杆脚B的距离相等,则有( )A.∠1>∠2B.∠1<∠2C.∠1=∠2D.∠1与∠2大小不能确定8.小明用四根竹棒扎成如图所示的风筝框架,已知AB=CD,AD=CB,下列判断不正确的是( )A.∠A=∠CB.∠ABC=∠CDAC.∠ABD=∠CDBD.∠ABD=∠C9.长为3 cm,4 cm,6 cm,8 cm的木条各两根,小明与小刚分别取了3 cm和4 cm的两根,要使两人所拿的三根木条组成的两个三角形全等,则他俩取的第三根木条应为( )A.一个人取6 cm的木条,一个人取8 cm的木条B.两人都取6 cm的木条C.两人都取8 cm的木条D. B,C中的两种取法都可以10.如图为一三角形钢架(AB=AC),为使钢架更坚固,需在点A和BC间做一个支架,且使AD⊥BC于D,但只有一把可测长度的皮尺,应如何确定点D的位置.7题8题10题四、自助练习1、如图,D ,F 是线段BC 上的两点,AB=EC ,AF=ED ,要使△ABF ≌△ECD, 还需要条件2、如图,在四边形ABCD 中AB=CD ,则∠A=∠C ,请说明理由。

8.2 《全等三角形》导学案

8.2 《全等三角形》导学案

8.2 《全等三角形》导学案辛兴初中八年级数学组主备人:臧运建一、学习目标:1.理解全等三角形的概念,能识别全等三角形的对应顶点、对应边、对应角。

2.掌握全等三角形的对应边相等,对应角相等的性质,并运用这一性质解决有关的问题。

3.会用符号表示全等三角形及他们的对应元素,培养学生的符号意识、空间观念和几何直观。

二、教材分析:1、本节在学生了解全等形的基础上,研究在图形与几何领域中,最常见,最基本也是最简单的一类全等图形,即全等三角形。

本节的主要内容是全等三角形的概念及性质、全等三角形的对应元素、全等三角形的符号表示。

2、本书中所说的对应顶点、对应边、对应角的概念是在三角形全等的前提下提出的,其内涵是两个三角形完全重合时,相互重合的三角形的元素,它们是成对出现的。

3、全等三角形的对应边相等、对应角相等,这是今后研究边相等、角相等的重要依据,所以教科书先让学生观察图8—4,并提出两个问题,让学生思考,然后设计了两个小伙伴的对话。

在此基础上,教科书由具体到抽象,由特殊到一般,归纳出“全等三角形的对应边相等、对应角相等”的性质。

4、例1、例2都是在具体问题中,识别全等三角形的对应边和对应角。

这两个例子的图形都是涉及到公共边,习题8.2中3(1)题涉及到公共角。

发现公共边(角)是学生学习的一个难点。

三、教学过程:(一)自主预习课本25——27页内容,独立完成课后练习1,2后,与小组同学交流(课前完成)。

(二)通过预习课本25——27页内容,回答下列问题,并在小组内交流:1、把一张纸对折以后随意剪出一个图案,然后展开,比较得到的两个图形在形状、大小方面的关系是。

按同样的办法剪出一个三角形图案,然后展开,比较得到的两个三角形在形状、大小方面的关系是。

2、归纳:①能够完全重合的两个图形叫全等形。

同理:②能够完全重合的两个三角形叫。

③能够的两个四边形叫。

④能够的两个叫全等五边形,等等。

3、全等三角形的表示:三角形全等用符号“≌”表示,如△ABC与△DEF全等,记作:△ABC≌△DEF,读作:三角形ABC全等于三角形DEF,“≌”读作“全等于”.4、把两个全等的三角形重合到一起,相互重合的顶点叫对应顶点,相互重合的边叫,相互重合的角叫①已知,△ABC≌△DEF,则顶点A与顶点D是对应顶点,顶点B与顶点是对应顶点,顶点F与顶点是对应顶点.②∠A与是对应角, ∠E与是对应角, ∠F与是对应角.③AB与是对应边,DF与是对应边,FE与是对应边注意:相互重合的顶点的字母一定要写在相互对应的位置上。

全等三角形复习导学案

全等三角形复习导学案

全等三角形复习导学案一、学习目标1、理解全等三角形的概念和性质,能够准确识别全等三角形的对应边和对应角。

2、掌握全等三角形的判定方法(SSS、SAS、ASA、AAS、HL),并能熟练运用这些方法证明两个三角形全等。

3、能够运用全等三角形的性质和判定解决与三角形有关的计算和证明问题。

4、通过复习,提高逻辑推理能力和综合运用知识的能力。

二、知识梳理1、全等三角形的概念能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质(1)全等三角形的对应边相等。

(2)全等三角形的对应角相等。

3、全等三角形的判定方法(1)“边边边”(SSS):三边对应相等的两个三角形全等。

(2)“边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。

(3)“角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。

(4)“角角边”(AAS):两角和其中一角的对边对应相等的两个三角形全等。

(5)“斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。

三、典型例题例 1:已知,如图,△ABC≌△DEF,AB = DE,∠A =∠D,求证:BC = EF。

证明:因为△ABC≌△DEF,AB = DE,∠A =∠D,所以∠B =∠E。

又因为 AB = DE,∠A =∠D,所以△ABC≌△DEF(ASA),所以 BC = EF。

例 2:如图,在△ABC 中,AD 是中线,BE⊥AD 于点 E,CF⊥AD 交 AD 的延长线于点 F。

求证:BE = CF。

证明:因为 AD 是中线,所以 BD = CD。

因为 BE⊥AD,CF⊥AD,所以∠BED =∠CFD = 90°。

在△BED 和△CFD 中,∠BED =∠CFD,∠BDE =∠CDF,BD = CD,所以△BED≌△CFD(AAS),所以 BE = CF。

例 3:如图,已知 AC = BD,∠C =∠D = 90°,求证:Rt△ABC≌Rt△BAD。

直角三角形全等的判定(HL)(导学案)八年级数学上册系列(人教版)

直角三角形全等的判定(HL)(导学案)八年级数学上册系列(人教版)

12.2.4 直角三角形全等的判定(HL) 导学案一、学习目标:1.探索并理解直角三角形全等的判定方法“HL”.2.会用直角三角形全等的判定方法“HL”判定两个直角三角形全等.重点:掌握判定两个直角三角形全等的特殊方法-HL.难点:熟练选择判定方法,判定两个直角三角形全等.二、学习过程:课前自测1.判定两个三角形全等方法____________________.2.如图,AB⊥BE于B,DE⊥BE于E.(1)若∠A=∠D,AB=DE. 则△ABC与△DEF______(填“全等”或“不全等”)根据______(用简写法).(2)若∠A=∠D,BC=EF. 则△ABC与△DEF______(填“全等”或“不全等”)根据______(用简写法).(3)若AB=DE,BC=EF. 则△ABC与△DEF_______(填“全等”或“不全等”)根据______(用简写法).思考:若AB=DE,AC=DF,此时△ABC与△DEF还会全等吗?_______________合作探究探究:任意画出一个Rt△ABC,使∠C=90°,再画一个Rt△A′B′C′,使得∠C′=90°,B′C′=BC,A′B′=A B. 把画好的Rt△A′B′C′剪下,放到Rt△ABC上,它们全等吗?作图区:【归纳】直角三角形“HL”判定方法文字语言:____________ ____________ ____________ ____________ _________几何语言:典例解析例1.如图,AC ⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证BC=AD.【针对练习】如图,C是路段AB的中点,两人从C同时出发,以相同的速度分别沿两条直线行走,并同时到达D、E两地. DA⊥AB,EB⊥A B. D,E与路段AB的距离相等吗?为什么?例2.如图,AC⊥AD,BC⊥BD,AC=BD,求证:AD=B C.【针对练习】已知:如图,AB BC⊥,AD DC⊥,AB AD=,求证:BC DC=.例3.如图,已知AD是△ABC的角平分线,且BD=CD,DE、DF分别垂直于AB、AC,垂足分别为E、F.求证BE=CF.【针对练习】已知:如图,点A、E、C同一条直线上,AB⊥BC,AD⊥DC,AB=A D.求证:BE=DE.例4.如图,在△AB C中,∠C =90°,AD是∠CAB的角平分线,DE⊥AB 于E,点F在边AC上,连接DF.(1)求证:AC =AE;(2)若DF=DB,试说明∠B与∠AFD的数量关系;(3)在(2)的条件下,若AB=m,AF=n,求BE的长(用含m,n 的代数式表示).达标检测1.判定两个直角三角形全等的方法有________________________________.2.如图,已知∠C=∠D=90°,要使△ABC≌△BAD还需增加一个什么条件?把增加的条件填在横线上,并在后面相应括号内填上判定它们全等的理由.(1)________________( )(2)________________( )(3)________________( )(4)________________( )3.如图,AB=AC,AD⊥BC,垂足为D,若BC=10cm,则BD=______cm.4.如图,AB=CD,AE⊥BC,DF⊥BC,垂足分别为E、F,CE=BF.求证AE=DF.5.如图,已知,AB⊥BD于B,ED⊥BD于D,AB=CD,AC=CE.求证:AC⊥CE.6.如图,在△ABC和△ADE中,B,E,C,F在同一直线上,下面有四个条件,请你在其中选3个作为题设,余下的1个作为结论,写一个真命题,并加以证明.①AB=DE,②AC=DF,③∠ABC=∠DEF,④BE=CF.己知:____________(填序号),求证:____________(填序号)。

新人教版八年级数学上册第十二章全等三角形导学案

新人教版八年级数学上册第十二章全等三角形导学案

新人教版八年级数学上册第十二章全等三角形导教案一、本章地位中学阶段要点研究的两个平面图形间的关系是全等和相像,本章以三角形为例研究全等.对全等三角形研究的问题和研究方法将为后边相像的学习供给思路,并且全等是一种特别的相像,全等三角形的内容是学生学习相像三角形的重要基础.本章还借助全等三角形进一步培育学生的推理论证能力,主要包含用剖析法剖析条件与结论的关系,用综合法书写证明格式,以及掌握证明几何命题的一般过程.因为利用全等三角形能够证明线段、角等基本几何元素相等,因此本章的内容也是后边将学习的等腰三角形、四边形、圆等内容的基础.二、课程学习目标(1)理解全等三角形的观点,能辨别全等三角形中的对应边、对应角,掌握并能运用全等三角形的性质.(2)经历研究三角形全等条件的过程,掌握判断三角形全等的基本领实(“边边边”“边角边”和“角边角” )和定理(“角角边”),能判断两个三角形全等.(3)能利用三角形全等证明一些结论.(4)研究并证明角均分线的性质定理,能运用角的均分线的性质.三、本章知识构造图四、课时安排:共安排11 课时(仅供参照)12. 1全等三角形 1 课时12. 2三角形全等的判断 6 课时12. 3角的均分线的性质 2 课时数学活动小结 2 课时五、教课建议1.用研究几何图形的基本思想和方法贯串本章的教课学生在前面的几何学习中研究了订交线与平行线、三角形等几何图形,关于研究几何图形的基本问题、思路和方法形成了必定的认识,本章在教课中要充足利用学生已有的研究几何图形的思想方法,用几何思想贯串全章的教课.2.让学生充足经历研究过程本章在编排判断三角形全等的内容时建立了一个完好的研究活动,包含研究的目标、研究的思路和分阶段的研究活动.教课中能够让学生充足经历这个研究过程,在明确研究目标、形成研究思路的前提下,按计划逐渐研究两个三角形全等的条件.本章在编排中将绘图与研究三角形的全等条件联合起来,既实用尺规画一个三角形与已知三角形全等,又实用技术手段依据已知数据画三角形.教课中要充足利用研究绘图方法的过程对形成结论的价值,让学生自主研究绘图的步骤、创建多种画法、解说作图依照等,在活动中发现结论.3.重视对学生推理论证能力的培育本章是初中阶段培育逻辑推理能力的重要内容,主要包含证明两个三角形全等,经过证明三角形全等进而证明两条线段或两个角相等.教课中要在学生已有推理论证经验的基础上,利用三角形全等的证明,进一步培育学生推理论证的能力.依照整套教科书对推理能力培育的顺序渐进的目标,本章的教课要点是指引学生剖析条件与结论的关系,书写谨慎的证明格式,关于以文字形式给出的几何命题,从详细问题的证明中总结出证明的一般步骤.六、详细内容12.1 全等三角形【教课要点】1.理解全等三角形的观点;2.能辨别全等三角形中的对应边、对应角;3.初步掌握并能运用全等三角形的性质.【教课难点】在全等三角形中正确地找出对应边、对应角.第一课时:全等三角形【参照例题】1.下边是两个全等的三角形,按以下图形的地点摆放,指出它们的对应极点、对应边、对应角.ADB C AA C CoOOB EC FDA D BDBDAAC CCD DDCDC CBD B AAD BBABB2.如图 1,△ADC≌△ AEB,A43 , B30,求ADC的大小.3.如图 2,△ EFG ≌△ NMH ,∠ F 和∠ M 是对应角,在△EFG 中, FG 是最长边,在△NMH 中,MH 是最长边, EF=2.1 ㎝, EH =1.1 ㎝, HN =3.3 ㎝.求线段MN 及线段 HG 的长度.4.如图 3,把△ ABC 绕点 C 顺时针旋转35 度,获得△ A ′ ′′ ′交 AC 于点 D,已知B C,A B∠ A′ DC=90 °,则∠ A=.ADEB C图 1图 2图 3练习 :1.全等用符号表示,读作:.2.若△ ABC≌△ DEF ,则∠ B=,∠ BAC=, BC=, AC=.3.判断题1)全等三角形的对应边相等,对应角相等.()2)全等三角形的周长相等.()3)全等三角形的面积不相等.()4.找一找ADA DC E DOBB CA CB①若△ AOC≌△ BOD , AC=_______ ∠A= ______② ②若△ ABD ≌△ ACE , BD=∠ BDA=③若△ ABC≌△ CDA, AB =∠ BAC=_____5.拼一拼请你利用两个全等三角形画出有公共极点或公共边或公共角的图形.有公共边:有公共点:6.如图,小强利用全等三角形的知识丈量池塘两头M、 N 的距离,假如△PQO ≌△ NMO ,则只要测出其长度的线段是A.PO B. PQ C.MO D.MQ7.如图,长方形 ABCD 沿 AM 折叠,使 D 点落在 BC 上的 N 点处,AD =7cm,DM =5cm,∠ DAM =39°,则△ ABC≌△ EFD AN =___cm, NM =___cm,∠ NAB=___.8.△ ABC≌△ FED(1)写出图中相等的线段,相等的角;(2)图中线段除相等外,还有什么关系吗.A D AD B CEMFB N C12. 2 三角形全等的判断【教课要点】1.研究判断三角形全等的条件;2.利用三角形全等进行简单的证明.【教课难点】利用三角形全等的判断方法进行推理论证.第二课时:三角形全等的判断SSS(一 ) 【参照例题】1.如图, AB= AC,BD =CD ,BH= CH ,图中有几组全等的三角形.它们全等的条件是什么.2.如图,已知 AB=CD, BC=DA.你能说明△ ABC 与△ CDA 全等吗.你能说明 AB∥ CD ,AD ∥ BC 吗.为何.ADBH CADBC练习:1.如图,在四边形ABCD 中, AB=AD, CB=CD.求证:∠ B=∠ D.2.如图,已知点A, D, C, F 在同一条直线上,AB=DE ,BC=EF ,要使△ ABC ≌△ DEF ,还需要增添一个条件是B EA D C FA . ∠ BCA=∠F B. AD =CF∥ EF D. ∠ A=∠ EDF3.如图,等腰梯形ABCD 中,点 M 是 AD 的中点,且MB=MC ,若 AD =4, AB=6,BC=8 ,则梯形ABCD 的周长为A .22B. 24C. 26D. 284.( 2015 广西玉林)依据图中尺规作图的印迹,先判断得出结论:,而后证明你的结论(不要求写已知、求证)第三课时 :三角形全等的判断SAS (二 )【讲堂练习】练习一 :在以下图中找出全等三角形,并把它们用线连起来.8?8830ocm 8cm8cm ⅠⅡcmⅢcm30o9cm30o5 cmⅢ Ⅳ ??Ⅳ5 cm3xm8 cm8 30o8 cm8?ⅤⅥcmⅧcm9530o8cmⅦcmcm【例题】1.如图, AC =BD ,∠ CAB= ∠DBA ,你能判断∠ C=∠D 吗.说明原因.2.如图, 有—池塘, 要测池塘两头 A 、B 的距离, 可先在平川上取一个能够直接抵达 A 和 B 的点 C ,连结 AC 并延伸到 D ,使 CD = CA ,连结 BC 并延伸到 E ,使 CE =CB .连结 DE ,那么量出 DE 的长就是 A 、 B 的距离,为何.CDA B练习:1.如图 CE=CB ,CD =CA ,∠ DCA=∠ ECB ,求证: DE =AB .2.如图, AB =AE , AD=AC ,∠ BAD =∠EAC , BC 、 DE 交于点 O . 求证:∠ ABC=∠AED .ADDCOEFBEO3.如图,在△ ABC 中, AB=AC,点 D 是 BC 的中点,点 E 在 AD 上.求证:(1)△ ABD ≌△ ACD ,(2) BE=CE4.小明用六根竹签做了一个以下图的风筝,此中ED =FD ,HE =HF .小明不丈量就能知道EO=FO .你知道小明是如何想的.5.(2015 杭州 )如图,在△ ABC 中,已知 AB=AC, AD 均分∠ BAC,点 M、 N 分别在 AB、 AC 边上, AM=2MB, AN=2NC,求证: DM =DNAABM N EFB DCDC6.( 2015 燕山毕业)如图,点E, F 在线段 AC 上, AB∥ CD, AB= CD, AE=CF .求证: BE =DF .7. ( 2015 丰台一模)已知:如图,点 B,F,C,E 在一条直线上, BF = CE,AC= DF ,且 AC∥ DF .求证:∠ B=∠E.AAE CCBF EB DD8.( 2015 平谷一模)如图, AB =AD,AC=AE,∠ CAD=∠EAB.求证: BC=DE .第四课时:三角形全等的判断ASA, AAS (三 )【参照例题】1.已知:点 D 在 AB 上,点 E 在 AC 上,BE 和 CD 订交于点O,AB=AC,∠ B=∠ C,求证:BD =CE .2.在 Rt△ ABC 中,∠ ACB =90°, BC=2cm , CD ⊥AB,在 AC 上取一点 E,使 EC=BC,过点 E 作EF ⊥ AC 交 CD 的延伸线于点 F ,若 EF=5cm ,则 AE=cm.3.如图,点A、 B、 D、 E 在同向来线上,AD =EB, BC∥ DF ,∠ C=∠ F,求证: AC=EF.ADEOBC练习:1.如图,在△AEC 和△ DFB 中,∠ E=∠F ,点 A, B, C,D 在同向来线上,有以下三个关系式:①AE∥ DF ,② AB=CD ,③ CE=BF.M ( 1)请用此中两个关系式作为条件,另一个作为结论,写出你以为正确的全部命题(用序号写出命题书写形式:“假如,,那么”),C ( 2)选择( 1)中你写出的一个命题,说明它正确的原因.ADE B 2.如图,在△ ABC 中,C9 0o,点 D 是 AB 边上一点, D M A B且DMAC,过点 M 作3.( 2015 永州)如图,在△ME ⊥BC,交 AB 于点 E.求证:△ ABC ≌△ MED .ABC 中,已知∠ 1=∠2, BE=CD, AB=5,AE =2,则 CE=.EFA B C D4.( 2015 通辽)如图,四边形 ABCD 中,E 点在 AD 上,此中∠ BAE=∠ BCE=∠ ACD=90°,且 BC=CE ,求证:△ ABC 与△ DEC 全等.5.( 2015 海淀一模)如图,点A,B,C, D 在同一条直线上,AB=FC ,∠ A=∠ F ,∠ EBC=∠ FCB .求证:BE=CD .6.( 2015 门头沟一模)如图,点 A、 B、 C、 D 在同一条直线上, BE∥ DF ,∠ A=∠ F ,AB=FD .求证: AE=FC .EFA CB D7. 如图,点 O 是直线 l 上一点,点 A、B 位于直线l 的双侧,且∠°,分别过 A、AOB=90 , OA=OBB 两点作 AC⊥ l ,交直线 l 于点 C, BD⊥ l,交直线 l 于点 D .求证: AC=OD.8. ( 2015 西城一模)如图,∠C=∠E,∠ EAC=∠ DAB, AB=AD .求证: BC=DE .EEA CD CDA BB9. ( 2015 昌平二模)如图,ABAD ,AE AC, E C,DEBC.求证: ADAB10. ( 2015 海淀二模)如图,已知∠BAC=∠ BCA ,∠ BAE=∠ BCD=90 °,BE=BD .求证:∠ E=∠D .11.( 2015 旭日二模)已知:如图,在△ ABC 中,∠ ACB=90 °, AC=BC , BE⊥ CE 于点 E,AD⊥ CE 于点 D.求证: BE=CD .第五课时:全等三角形的判断(四)HL【参照例题】例如图,AC BC ,BD AD ,AC BD求证:BC AD.练习: 1.如图,两根长度为12 米的绳索,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗.请说明你的原因.2. 如图,有两个长度同样的滑梯,左侧滑梯的高度AC 与右侧滑梯水平方向的长度 DF 相等,两个滑梯的倾斜角∠ ABC 和∠ DFE 的大小有什么关系.3.求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等.4.如图 6,A, F 和 B 三点在一条直线上,CF⊥ AB 于 F, AF =FH ,CF= FB.求证:BE⊥ AC.第六课时:全等三角形的习题课【复习小结】全等的常有图形BA B A CA BO OC O DD D C DA D D AB EC F F B E C BA AB DB DBE C EC A BA BFE F ECD CD AAC B F C EA ADB DC E C 判断两个三角形全等的方法有:________________________ ______________________.【练习】1.如图,在△ ABC 中,点 D 是 BC 的中点,作射线AD ,在线段 AD 及其延伸线上分别取点E、F ,连结 CE、 BF .增添一个条件,使得△ BDF≌△ CDE,并加以证明.你增添的条件是.(不增添协助线).2.在 Rt△ ABC 中,∠ ACB =90°, BC=2cm , CD ⊥ AB,在 AC 上取一点E,使 EC=BC,过点 E 作EF⊥ AC 交 CD 的延伸线于点 F,若 EF=5cm ,求 AE.3.如图,点 D 在 AB 上,点 E 在 AC 上, AB =AC,∠ B=∠C.求证: BE=CD .4.如图,点 B 在射线 AE 上,∠ CAE=∠ DAE ,∠ CBE=∠DBE .求证: AC =AD .5.如图,点A、 B、 D、 E 在同向来线上,AD =EB, BC∥ DF ,∠ C=∠ F.求证: AC =EF .6. ( 2015 宜昌)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中 AD=CD, AB=CB,詹姆斯在研究筝形的性质时,获得以下结论:① AC⊥ BD ;② AO=CO= AC ;③△ABD≌△ CBD ,此中正确的结论有()A.0 个B.1 个C.2 个D.3 个-11-12. 3 角的均分线的性质(一)【教课要点】1.研究并证明角的均分线的性质定理及其逆定理;2.能用角的均分线的性质解决简单问题.【教课难点】利用角的均分线的性质定理解题.【参照例题】1.如图 1,AB =AC ,BD=CD , DE⊥ AB 于 E, DF ⊥ AC 于 F.A 求证: DE =DF .E EFBDAC F图 1B D C图 22.如图 2,D 、E、 F 分别是△ ABC 的三边上的点,CE =BF ,△ DCE 和△ DBF 的面积相等.求证: AD 均分∠ BAC.练习:1.已知△ ABC 中,∠ A=80°,∠ B 和∠ C 的角均分线交于O 点,则∠ BOC =.2.如图,已知订交直线AB 和 CD,及另向来线EF.假如要在EF 上找出与AB、 CD 距离相等的点,方法是,这样的点起码有个,最多有个.3.以下图,已知△ ABC 中,∠ C=90°,AC=BC,AD 均分∠ CAB,交 BC 于点 D,DE⊥ AB 于点 E,且 AB=6 cm, 则△ DEB 的周长为A . 9 cm B. 5 cm C. 6 cm D. 不可以确立4. 如图, AB// CD ,CE 均分∠ ACD ,若∠ 1=250,那么∠ 2 的度数是.5.如图, OP 均分AOB , PA OA,PB O B ,A 垂足分别为 A,B.以下结论中不必定建立的是A.PA P B B.PO均分APBC.OA O B D.AB垂直均分O P6.( 2015?永州)如图,在四边形 ABCD 中, AB=CD ,BA 和 CD 的延伸线交于点E,若点 P 使得S△PAB=S△PCD,则知足此条件的点P()A .有且只有 1 个B .有且只有 2 个C.构成∠ E 的角均分线D .构成∠E 的角均分线所在的直线( E 点除外)角均分线的性质(二)【复习】1.以下图,在△ABC 中,∠ A=90°, BD 均分∠ ABC, AD = 2 cm,则点 D 到 BC 的距离为________ cm.AC D B2.如图,在△ABC 中,∠ C=900, BC= 40,AD 是∠ BAC 的均分线交 BC 于 D,且 DC∶ DB= 3∶5,则点 D 到 AB 的距离是.3.如图,已知BD 是∠ ABC 的内角均分线,CD 是∠ ACB 的外角平分线,由 D 出发,作点 D 到 BC、AC 和 AB 的垂线 DE 、DF 和 DG ,垂足分别为E、F 、G,则 DE 、DF 、DG 的关系是.4. AD 是△ BAC 的角均分线,自 D 向 AB、 AC 两边作垂线,垂足为E、F,那么以下结论中错误的选项是A . DE =DF B. AE=AF C.BD=CD D.∠ADE =∠ ADF5.如图,已知AB∥ CD ,O 为∠ A、∠ C 的角均分线的交点,OE⊥AC于 E,且 OE=2,则两平行线间AB、 CD 的距离等于.6.到三角形三条边的距离都相等的点是这个三角形的()A .三条中线的交点B .三条高的交点C.三条边的垂直均分线的交点 D .三条角均分线的交点【例题】1.如图,已知AC∥ BD、EA 、EB 分别均分∠ CAB 和△ DBA , CD 过点 E,则 AB 与 AC+BD?相等吗.请说明原因.CED 2.在△ ABC 中,∠ B=60°,∠ A,∠ C 的角均分线AE ,CF 订交于点O,( 1)如图 1,若 AB=BC,求证: OE=OF;( 2)如图 2,若 AB≠BC,试判断线段OE 与 OF 能否相等,并说明原因A B练习:1. 如图,已知BD ⊥ AE 于 B, DC ⊥ AF 于 C,且 DB = DC,∠ BAC= 40o,∠ ADG =130o,则∠ DGFD C=_________F BGCMDA B E C AM A B( 1 题图 )(2题图)(3题图)2.如图,在△oABC 中,∠ C= 90 , AM 是∠ CAB 的均分线, CM = 20cm,那么 M 到 AB 的距离为.o,M 是 BC 上一点,且∠o,DM 均分∠ ADC ,3. 如图,∠ B=∠ C= 90AMD = 90求证: AM 均分∠ DAB .4. 如图, BD =CD , BF ⊥ AC, CE⊥ AB.求证: D 在∠ BAC 的角均分线上.NBCAED CD OPA EB BA MF C(4 题图)(5 题图)(6 题图)o, AC= BC, AD 为∠ BAC 的均分线, AE= BC, DE⊥ AB 垂5. 已知:如图, Rt △ABC 中,∠ C= 90足为 E,求证△ DBE 的周长等于 AB.6. 如图,已知PA⊥ ON 于 A, PB⊥ OM 于 B,且 PA= PB.∠ MON = 50o,∠ OPC= 30o,求∠ PCA的大小.A专题练习 1:常有协助线1.倍长中线法【例 1】如图,△ ABC 中, AD 为中线.(1)求证: AB+AC>2AD ;B D C(2)若 AB=5, AC=3,则中线 AD 的取值范围是 _________________ .A【例 2】如图,△ ABC 中, E、F 分别在 AB 、AC 上, DE ⊥ DF ,D 是中点.E 试比较 BE+CF 与 EF 的大小.F 练习: 1. 已知:如图, AD 是△ ABC 的中线, AB=AE,B CD AC=AF ,∠ BAE=∠ FAC=90° .尝试究线段AD 与 EF 数目和地点关系.提示:EEN7FFA 6 5A341B DC BD 2CM2.如图,已知AD 是△ ABC 的中线, BE 交 AC 于 E,提示:交 AD 于 F,且 AE=EF.求证: AC=BFAAEFBD CEFBD CG2.截长补短法【例 1】如图, AD∥ BC, EA, EB 分别均分∠ DAB,∠ ABC, CD 过点 E.求证: AB= AD+BC.【例 2】如图,在四边形ABCD 中, BC> BA, AD =CD , BD 均分ABC ,求证:AA DC 180.ADEBC BC练习: 1.已知:如图,在△ ABC中,AB = AC,D为△ ABC外一点,∠ABD = 60,∠ADB = 90 1 ∠BDC.2求证: AB=BD+DC提示:DDE3.借助角均分线造全等【例 1】如图,已知在△ ABC 中,∠B=60°,△ ABC 的角均分线AD,CE 订交于点O,求证:OE=ODA AEO EGBCB C FDD【例 2】如图,△ ABC 中, AD 均分∠ BAC, DG⊥ BC 且均分 BC,DE ⊥ AB 于 E,DF ⊥ AC 于 F.(1)说明 BE=CF 的原因;( 2)假如 AB= a, AC=b,求 AE、BE 的长 .练习: 1. 已知△ ABC 中,∠ B=2∠ A,AB=2BC求证:△ ABC 是直角三角形 .A提示:C B4.三垂直问题基本图形:【例 1】如图,∠ ABC= 90°, AB= BC, D 为为 E、F,求证:△ ABE≌△ CBFAE CDFA EB C AC 上一点,分别过A、 C 作 BD 的垂线,垂足分别DB练习:如图,已知AC⊥ AB,DB⊥ AB,AC= BE,AE= BD ,试猜想线段 CE 与 DE 的大小与地点关系,并证明你的结论 .5.共极点的两个特别的图形(手拉手)基本图形O21C D1= 2AOC= BODAB【例 1】已知:如图,ABC 中,AB=BC,ABC90 ,点D在AC上, DBE90,BE=BD .求证: CD=AE .FA EE A DAE DMB C B CB C【例 2】以下图,已知AE⊥ AB, AF⊥ AC, AE=AB, AF=AC.求证:( 1) EC=BF,( 2)EC ⊥BF练习:如图,在 Rt△ ABC 中,∠ BAC=90°, AC=2AB,点 D 是 AC 的中点,将一块锐角为45°的直角三角板如图搁置,使三角板斜边的两个端点分别与A、D 重合,连结 BE、 EC.试猜想线段BE 和 EC 的数目及地点关系,并证明你的猜想.七、与中考链接(一)基础题A1. (06 北京 ) 已知:如图, AB∥ED ,点 F、点 C 在 AD 上,FEAB =DE, AF =DC .求证: BC=EF.BCD2. (07北京)已知:如图,OP是AOC 和BOD 的均分线,OO A OC, OB OD .求证: AB CD .A B DC 3. (08 北京 ) 已知:如图, C 为 BE 上一点,点 A、D 分别在 BE 双侧, AB∥ ED,AB=CE ,BC=ED .P求证: AC=CD.4. (09 北京 ) 已知:如图,在△ABC 中,∠ ACB=90 °, CD⊥ AB 于点 D,点 E 在 AC上, CE =BC,过 E 点作 AC 的垂线,交 CD 的延伸线于点 F .求证: AB =FC .5. (10 北京 ) 已知:如图,点A、 B 、 C 、 D 在同一条直线上, EA AD ,FD AD,AE DF ,AB DC.求证:AC E DBF .6. (11 北京 ) 已知:如图,点A、C、B、D 在同一条直线上,BE //DF ,A F,ABFD .求证: AE F C .7. (12 北京 ) 已知:如图,点 E,A, C 在同向来线上, AB// CD ,EABCE,ACCD.新人教版八年级数学上册第十二章全等三角形导教案 21 / 21求证:BC ED .8. (13 北京 ) 已知:如图, D 是 AC 上一点, AB =DA , DE ∥ AB ,B DAE .求证: BC=AE .9. (14 北京 ) 已知:如图,点B 在线段 AD 上, BC ∥ DE , A B ED ,BCDB . 求证: AE .10.( 15 北京)如图,在求证:ABC 中, ABAC ,AD 是 BC 边上的中线, B E AC 于点 E. CBEBAD .AEB D C-20-。

八年级数学上学期期中复习《全等三角形》课案(教师用) 新人教版【精品教案】

八年级数学上学期期中复习《全等三角形》课案(教师用) 新人教版【精品教案】

课案(教师用)全等三角形(复习课)【理论支持】九年义务教育阶段的数学课程应该突出体现基础性、普及性、和发展性,使数学教育面向全体学生。

《数学新课程标准》中指出:对学生数学学习的评价,既要关注学生的在学习过程中的变化和发展,也要关注学生数学学习的水平,更要关注他们在数学实践活动中所表现出来的情感和态度。

《三角形全等复习课内容》选用义务教育课程标准实验教科书《数学》八年级上册第十一章的内容,三角形全等是初中数学中重要的学习内容之一。

本套教材把三角形全等看作是几何证明的重要基础,同时三角形全等的概念,三角形全等的判别方法,与命题与证明,尺规作图几部分内容相互联系紧密,尤其是尺规作图中作法的合理性和正确性的解释依赖于全等知识。

本章中三角形全等的识别方法的给出都通过学生画图、讨论、交流、比较得出,注重学生实际操作能力,为培养学生参与意识和创新意识提供了机会。

针对教材内容和初二学生的实际情况,组织学生通过摆拼全等三角形和探求全等三角形的活动,让学生感悟到图形全等与平移、旋转、对称之间的关系,并通过学生动手操作,让学生掌握全等三角形的一些基本形式,在探求全等三角形的过程中,做到有的放矢。

然后利用角平分线为对称轴来画全等三角形的方法来解决实际问题,从而达到会辨、会找、会用全等三角形知识的目的。

教学目标:1、通过全等三角形的概念和识别方法的复习,让学生体会辨别、探寻、运用全等三角形的一般方法,体会主动实验,探究新知的方法。

2、培养学生观察和理解能力,几何语言的叙述能力及运用全等知识解决实际问题的能力。

3、在学生操作过程中,激发学生学习的兴趣,培养学生主动探索,敢于实践的精神,培养学生之间合作交流的习惯。

教学重难点:重点:运用全等三角形的识别方法来探寻三角形以及运用全等三角形的知识解决实际问题。

难点:运用全等三角形知识来解决实际问题。

课时安排一课时【教学设计】课前延伸1、______________三角形是全等三角形,________________是对应角,____________是对应边,________________是对应顶点。

全等三角形复习课导学案

全等三角形复习课导学案

全等三角形复习导学案学习目标:1.能说出全等三角形的概念,知道两个三角形全等的条件.2.在图形变换中,能熟练地把握全等三角形,进一步发展直觉思维能力.一.知识梳理、形成框架:1.两个 的三角形是全等三角形.2.全等三角形的对应边 ,对应角 .3.两个三角形全等的条件: , , , .4. 的两个直角三角形全等.简写为“HL ”. 二.自查疑惑、合作交流:例1.填空:如图1,请你选择合适的条件填入空格内,使△DEF ≌△DGF (1)因为DF=DF, , ,根据SAS,可知道△DEF ≌△DGF. (2) 因为 , DF=DF, ,根据ASA,可知道△DEF ≌△DGF. (3) 因为 , , DF=DF,根据AAS,可知道△DEF ≌△DGF. (4) 因为DF=DF, , ,根据SSS,可知道△DEF ≌△DGF.(5) 若∠E=∠G=90°, , DF=DF,根据HL,可知道Rt △DEF ≌Rt △DGF.三、重点题型、集中再现:变式一:如图2,若△DEF ≌△AGB,你能得到哪些结论变式二:如图3,AC ⊥BC,AD ⊥BD,垂足分别为C 、D,AC=BD,△ABC ≌△BAD 吗为什么图1DE F G 图2 B AD E F GDB变式三: 如图4,AC ⊥BC,ED ⊥BD ,BE ⊥BC 垂足分别为C 、D 、B,AB=BE.试探究BE 与AC+AD 之间的关系.变式四:如图5,AC ⊥BC,AD ⊥BD,垂足分别为C 、D,AD=BC, 问(1)AE=BE 吗请说明你的理由.(2)如图6,在上述条件不变的情况下,连接AB,OE,你认为OE 具有哪些性质能说明你的理由吗四.回顾反思、强化小结:教师引导学生按本课时目标小结:图4E D CBA 图5OED C B AB五.当堂训练、分层达标:1.如图7,要使△ABC ≌△ABD,下面给出的四组条件中,错误的一组是( ) =BD ,∠BAC=∠BAD B.∠C=∠D ,∠BAC=∠BAD C.∠BAC=∠BAD ,∠ABC=∠ABD =BD ,AC=AD2.如图8,已知AC=FE ,BC=DE ,点A 、D 、B 、F 在一条直线上,要使△ABC ≌△FDE ,还需添加一个..条件,这个条件可以是 .3.如图11,已知AD AB =,DAC BAE ∠=∠,要使 ABC △≌ADE △,可补充的条件是 (写出一个即可).4.如图9,在△ABC 中,∠ACB=90°,AC=BC,CE ⊥BE,CE 与AB 相交于点⊥CF 于点D,且AD 平分∠FAC .请写出图中两对..全等三角形,并选择其中一对加以证明.6.如图12,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连结AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ;(2)AB =BC +AD .图7 AB C D 图8 FE DC BA ACEB D图11BC图12AB DC EF拓展提高:如图①所示,已知AE ⊥FE ,垂足为E ,且E 是DC 的中点.(1)如图13①,如果FC ⊥DC ,AD ⊥DC ,垂足分别为C 、D ,且AD=DC ,判断AE 是∠FAD 的角平分线吗(不必说明理由)(2)如图13②,如果(1)中的条件去掉“AD=DC ”,其余条件不变,(1)中的结论仍成立吗请说明理由.(3)如图13③,如果(1)的条件改为,AD ∥FC ,(1)中的结论仍成立吗请说明理由.AFC E DAFC E DAFC D E ①② ③图13。

新人教版八年级上册数学第十二章《全等三角形》四步导学案

新人教版八年级上册数学第十二章《全等三角形》四步导学案

新人教版八年级上册数学第十二章《全等三角形》四步导学案学习目标1.知道什么是全等形、全等三角形;2.能熟练找出全等三角形的对应元素,能用符号正确地表示两个三角形全等;3.掌握全等三角形的性质.学习重点:1全等三角形的概念、性质。

学习难点:1.在具体的图形中不重复,且不遗漏地识别所有三角形.2.用三角形三边不等关系判定三条线段可否组成三角形.教学流程【导课】有现实生活中三角形的实例导入新课【阅读质疑 自主探究】一、全等形、全等三角形的概念阅读课本P2内容,回答课本思考问题,并完成下面填空:1. 能够完全重合的两个图形叫做 .全等图形的特征:全等图形的 和 都相同.2.能够完全重合的两个三角形叫做 .二、全等三角形的对应元素及表示阅读课本P3第一个思考及下面两段内容,完成下面填空:1.平移 翻折 旋转启示:一个图形经过平移、翻折、旋转后, 变化了,•但 、 都没有改变,所以平移、翻折、旋转前后的图形 ,这也是我们通过运动的方法寻全等的一种策略.2.全等三角形的对应元素(1)对应顶点(三个)---重合的顶点(2)对应边(三条)--- 重合的边(3)对应角(三个)--- 重合的角请同学们写出上图甲、乙、丙的对应顶点、对应边、对应角图甲:对应边是: 对应顶点是: 对应角是:图乙:对应边是: 对应顶点是: 对应角是:图丙:对应顶点是: 对应边是: 对应角是:寻找对应元素的规律(1)有公共边的,公共边是对应边;(2)有公共角的,公共角是对应角;(3)有对顶角的,对顶角是对应角;(4)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(5)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

3.“全等”用“≌”表示,读作“全等于”乙D C A B 甲D C A B F E 丙D C AB E如图甲记作:△ABC ≌△DEF 读作:△ABC 全等于△DEF如图乙记作: 读作:如图丙记作: 读作:注意:两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.三、全等三角形的性质阅读课本P3第二个思考及下面内容,完成下面填空:全等三角形的性质:全等三角形的 相等, 相等.【多元互动 合作探究】1.如图1,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,说出这两个三角形中相等的边和角.图1 图22.如图2,已知△ABE ≌△ACD ,∠ADE=∠AED ,∠B=∠C ,•指出其他的对应边和对应角.【训练检测 目标探究】1.全等用符号 表示,读作: .2.若△BCE ≌△CBF ,则∠CBE= , ∠BEC= ,BE= , CE= .3.判断题1)全等三角形的对应边相等,对应角相等.( )2)全等三角形的周长相等,面积也相等. ( )3)面积相等的三角形是全等三角形. ( )4)周长相等的三角形是全等三角形. ( )4.如图:△ABC ≌△DBF,找出图中的对应边,对应角.答:∠B 的对应角是 ,∠C 的对应角是 ,∠BAC 的对应角是 ;AB 的对应边是 ,AC 的对应边是 ,BC 的对应边是 .【迁移应用 拓展探究】基础训练有关训练【布置作业】课本P69习题7.1第 1、2、6、7题.【板书设计】12.1.1 全等三角形一、全等形、全等三角形的概念二、全等三角形的对应元素及表示三、全等三角形的性质【教后反思】B D AC F DC A B OD C A B EB CA DFE授课时间:累计课时:12.2.1 三角形全等的判定学习目标1.理解三边对应相等的两个三角形全等的内容.2.会运用“边边边”条件证明两个三角形全等.3. 会作一个角等于已知角.学习重点:1.理解三边对应相等的两个三角形全等的内容.学习难点:1运用“边边边”条件证明两个三角形全等.教学流程【导课】一、课前准备1. 叫做全等三角形2.全等三角形的和相等3.将△ABC沿直线BC平移,得到△DEF,说出你得到的结论,说明理由?如果AB=5, ∠A=55°, ∠B=45°,那么DE= ,∠F= .【阅读质疑自主探究】自主探究三角形全等的条件:阅读课本P6探究2之前,回答下面问题:通过探究(1)只给一个条件对应相等的两个三角形一定全等吗?①只给一条边时;②只给一个角时;(2)如果给出两个条件画三角形,你能说出有哪几种可能的情况?①给出两个角时;②给出两条边时;③给出一条边和一个角时;3㎝3㎝3cm 45◦45◦45◦BC D A(3)由上面的几种情景,两个三角形满足一个或两个条件时,它们一定全等吗?(4)如果两个三角形有三个条件对应相等,这两个三角形全等吗?我们也可以分情况讨论,有哪几种情况? ①我们先来探究两个三角形三个角相等的情况:②画出一个三角形,使它的三边长分别为3cm 、 4cm 、6cm ,把你画的三角形与小组内画的进行比较,它们一定全等吗?③上面的探究反映了什么规律?阅读课本P6-7探究2至例1前,回答下面问题:的两个三角形全等,简写为“ ”或“ ”.三、例题学习阅读课本P7例1,学习“边边边”证明两个三角形全等的格式.【多元互动 合作探究】1. 如图,AB=AD ,BC=CD ,求证:(1)△ABC ≌△ADC (2)∠B=∠D2.如图,已知AC=FE 、BC=DE ,点A 、D 、B 、F 在一条直线上,AD=FB .要用“边边边”证明△ABC ≌△FDE ,除了已知中的AC=FE ,BC=DE 以外,还应该有什么条件?怎样才能得到这个条件?【训练检测 目标探究】如图,AB=CD ,AC=BD ,△ABC 和△DCB 是否全等?试说明理由。

八年级上册全等三角形导学案

八年级上册全等三角形导学案

八年级上册全等三角形导学案(一)学习目标:1. 能说出什么是全等形,什么是全等三角形.2. 能指出什么是全等三角形的对应点、对应边、对应角,会找出对应顶点、对应边、对应角,会表示两个三角形全等.3.能找出全等三角形的对应边、对应角相等.(二)学习重点和难点:1.重点:全等三角形的概念.2.难点:找对应顶点、对应边、对应角.二、自主学习:阅读P1—4页回答下列问题:1.指出P2页中彩图中形状、大小相同的图形。

(与同学交流)2.回答本页中的“小云朵”和“思考”问题(答案写在教材空白处)3.说明全等形与全等三角形。

________________________________________________________________________________________________________________________________________4.回答本节课中“思考2”问题,给我们带来启示是什么?________________________________________________________________________________________________________________________________________5. P3页中的“便签”说明什么?________________________________________________________________________________________________________________________________________ 6.说明“对应顶点”、“对应边”和“对应角”图11.1—1 △ABC和△______全等,记做:___________________对应顶点有:A和__,B和__,C和__等对应. 对应边有:AB和____,BC和____,AC和____等对应. 对应角有: ∠A和____, ∠B和____, ∠C和____等对应.图11.1—2 △ABC和△______全等,记做:___________________对应顶点有:A和__,B和__,C和__等对应. 对应边有:AB和____,BC和____,AC和____等对应. 对应角有: ∠A和____, ∠ABC和______, ∠ACB和________等对应. 图11.1—3 △ABC和△______全等,记做:___________________对应顶点有:A和__,B和__,C和__等对应. 对应边有:AB和____,BC和____,AC和____等对应. 对应角有: ∠BAC和____, ∠B和____, ∠C和____等对应.7. 回答“思考3”问题,并说明得到的结论是什么?________________________________________________________________________________________________________________________________________8、拿一张纸对折后,剪成两个全等的三角形,把这两个三角形一起放在下列图中△ABC的位置上,试一试,如果其中一个三角形不动,怎样移动另一个三角形,能够得到下列图中的各图形.并总结出寻找对应边、对应角的方法。

全等三角形全章导学案

全等三角形全章导学案

1全等三角形 导学案 一、学习目标:1.理解全等三角形的概念,能识别全等三角形的对应顶点、对应边、对应角。

2.掌握全等三角形的性质,并运用性质解决有关的问题。

3.会用符号表示全等三角形及他们的对应元素,培养大家的符号意识。

二、重点难点:运用全等三角形的性质解决相关的计算及证明等问题。

三、学习过程(一)、自主预习课本内容,回答下列问题:1、能够________的图形就是全等图形, 两个全等图形的_______和________完全相同。

2、一个图形经过______、______、_________后所得的图形与原图形 。

3、把两个全等的三角形重合在一起,重合的顶点叫做 ,重合的边叫做 ,重合的角叫做 。

“全等”用“ ”表示,读作 。

4、如图所示,△OCA ≌△OBD ,对应顶点有:点___和点___,点___和点___,点___和点___; 对应角有:____和____,_____和_____,_____和_____; 对应边有:____和____,____和____,_____和_____.5、全等三角形的性质:全等三角形的 相等, 相等。

(二)、练一练1.如图,△AB C ≌△CDA ,AB 和CD ,BC 和DA 是对应边。

写出其他对应边及对应角。

2如图,△ABN ≌△ACM ,∠B 和∠C 是对应角,AB 与AC 是对应边。

写出其他对应边及对应角。

《课内探究》1.如图△EFG ≌△NMH,∠F 和∠M 是对应角.在△EFG 中,FG 是最长边. 在△NMH 中,MH 是最长边.EF=2.1㎝,EH=1.1㎝,HN=3.3㎝. (1)写出其他对应边及对应角. (2)求线段MN 及线段HG 的长.2.如图,△ABC ≌△DEC,CA 和CD,CB 和CE 是对应边.∠ACD 和∠BCE 相等吗? 为什么?课题:《三角形全等的判定》(SSS)导学案【学习目标】 1、能自己试验探索出判定三角形全等的SSS 判定定理。

人教初中数学八上《全等三角形》导学案(打印版)

人教初中数学八上《全等三角形》导学案(打印版)

全等三角形一学习目标1.知道什么是全等形、全等三角形及全等三角形的对应元素; 2.知道全等三角形的性质,能用符号正确地表示两个三角形全等; 3.能熟练找出两个全等三角形的对应角、对应边.思考 1.什么样的两个三角形全等?2.全等三角形有什么性质?察以下图案,指出这些图案中中形状与大小相同的图形2.学生自己动手〔同桌两名同学配合〕取一张纸,将自己事先准备好的三角板按在纸上,画以下图形,照图形裁下来,纸样与三角板 、 完全一样.3.获取概念形状与大小都完全相同的两个图形就是 .〔要是把两个图形放在一起,能够完全重合,•就可以说明这两个图形的形状、大小相同.〕即:全等形的准确定义:能够完全重合的两个图形叫做全等形. 推得出全等三角形的概念:对应顶点: 、对应角: 、 对应边: 。

“全等〞符号: 读作“全等于〞 三合作探究1.问题:将△ABC 沿直线BC 平移得△DEF ;将△ABC 沿BC 翻折180°得到△DB C ;将△ABC 旋转180°得△AED .甲DCABFE 乙DCAB丙DCABE议一议:各图中的两个三角形全等吗?不难得出: ≌△DEF ,△ABC ≌ ,△ABC ≌ . 〔注意强调书写时对应顶点字母写在对应的位置上〕启示:一个图形经过平移、翻折、旋转后,位置变化了,•但 、 都没有改变,所以平移、翻折、旋转前后的图形 ,这也是我们通过运动的方法寻求全等的一种策略. 观察与思考:寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢? 全等三角形的性质: , 。

符号语言: 四符号表示1、如图1,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,•说出这两个三角形中相等的边和角.DC ABO图 12、如图2,△ABE ≌△ACD ,∠ADE=∠AED ,∠B=∠C ,•指出其他的对应边和对应角.DCABE图2〔1〕全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边. 〔2〕全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.五目标检测1、如图3 △ABC ≌△ADE ,试找出对应边、对应角.DC ABEO图32、P4:练习 :1、2 六反思角的平分线的性质一、学习目标1、会表达角的平分线的性质及“到角两边距离相等的点在角的平分线上〞.2、能应用这两个性质解决一些简单的实际问题.3、极度热情、高度责任、自动自发、享受成功。

全等三角形复习导学案[1]

全等三角形复习导学案[1]

全等三角形复习课(一)学习目标: 1、认识全等三角形2、能利用全等判断两线段或者两角的相等关系3、能判断两个三角形全等学习重点、难点:能用不同方法判断两个三角形全等 [知识要点]一、全等三角形② 全等三角形面积相等. 2.证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 一、 预习、交流1,两个能够完全重合的图形称为 .全等图形的 和 完全相同. 2.如图1,若△ABC ≌△EFC,且CF=3cm,∠EFC=64°,则BC=_____cm,∠B=___.BA EF A 21CDB AEC DBAD(图1) (图2) (图3) (图4) 3.如图2,AC=DB,∠1=∠2,则△ABC ≌△______,∠ABC=∠______. 4.如图3,在△ABC 和△ADE 中,∠CAE=∠BAD,AC=AE (1)若加条件_________,可用SAS 推得△ABC ≌△ADE; (2)若加条件_________,可用ASA 推得△ABC ≌△ADE.5.(1)如图4,已知△ABC中AD平分∠BAC,∠ABD=∠ACD,则再由“___ ”, 就可判定△ABD≌△ACD.(2)如图5,已知AD∥BC,∠ABC=∠CDA,则可由“AAS”直接判定△_______ ≌________,(3)如图6,已知△ABC中,AD是BC边上的高,要根据“AAS”证明△ABC≌△ACD, 还需加条件∠_________=∠__________.B ACDBACD BA EF CDO(图5)(图6)(图7)6. 如图7,AD∥BC,AD=BC,AC与BD交于点O,EF过点O并分别交AD、BC于E、F, 则图中的全等三角形共有( ) A.1对 B.2对 C.3对 D.4对7. 如图,△ABC≌△DEF,求证:AD=BE.8.如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE交CD于F,且AD=DF,求证:AC= BF.9.如图,已知:AC和BD相交于点O,OA=OC,OB=OD,AB与DC平行吗?说明理由。

八年级数学上册《第12章 全等三角形》导学案(新版)新人教版

八年级数学上册《第12章 全等三角形》导学案(新版)新人教版

八年级数学上册《第12章全等三角形》导学案(新版)新人教版【学习目标】知识与技能:掌握全等形、全等三角形及相关概念和全等三角形性质。

过程与方法:理解“平移、翻折、旋转”前后的图形全等,确定全等三角形的对应元素。

情感态度与价值观:培养学生对三角形的认识及推理论证能力。

【学习重点】掌握全等形、全等三角形及相关概念。

【学习难点】全等三角形性质。

【自学展示】自学课本P31-32页,完成下列要求:1、理解并背诵全等形及全等三角形的定义。

2、注意全等中对应点位置的书写。

3、理解并记忆全等三角形的性质。

4、自学后完成展示的内容,20分钟后,进行展示。

【合作学习】1、________相同的图形放在一起能够____。

这样的两个图形叫做____。

2、能够_____的两个三角形叫做全等三角形。

3、一个图形经过__、__、__后位置变化了,但形状‘大小都没有改变,即平移、翻折‘旋转前后的图形____。

4、______叫做对应顶点。

_______叫做对应边。

_____叫做对应角。

5、全等三角形的对应边__。

____相等。

【质疑导学】1、课本P32练习1、22、如图1,若△ABC≌△EFC,且CF=3cm,∠EFC=64,则BC=_____cm,∠B=___、毛图1 图23、如图2,△ABC≌△DEF,求证:AD=BE、【学习检测】1、如图1,△ABC≌△DEF,对应顶点是____对应角是____________,对应边是__________2、如图2,△ABC≌△CDA,AB和CD,BC和DA是对应边,写出其他对应边及对应角________________3、如图3,△ABN≌△ACM,∠B=∠C,AC=AB,则BN=____,∠BAN=______,_____=AN,_____= ∠AMC、图3 图44、如图4,△ABC≌△DEC,CA和CD,CB和CE是对应边,∠ACD和∠BCE相等吗?为什么?【学后反思】板书设计:课题:12、2三角形全等的判定(1)【学习目标】知识与技能:掌握三角形全等的判定(SSS)过程与方法:初步体会尺规作图,掌握简单的证明格式情感态度与价值观:初步体会三角形全等的认识,从而提高对几何图形的推理论证能力。

初中数学_全等三角形(复习)教学设计学情分析教材分析课后反思

初中数学_全等三角形(复习)教学设计学情分析教材分析课后反思

《全等三角形(复习)》教学设计教学目标1.熟练掌握全等三角形的性质与判定定理;2.会用全等三角形性质与判定定理解决实际问题;3.通过复习,领悟数形结合思想、以及构建全等三角形在解决几何问题中的重要作用。

重难点、关键1.重点:熟练掌握全等三角形的性质与判定定理,会用它解决实际问题。

2.难点与关键:会用全等三角形性质与判定定理解决实际问题,领悟数形结合思想、以及构建全等三角形在解决几何问题中的重要作用。

教学过程一、课前热身(一)判断1.面积相等的三角形一定全等. ( )2.全等三角形的对应中线一定相等. ( )3.两边及其任意一边的对角对应相等的两个三角形全等 ( )4.有一边对应相等的等边三角形一定全等. ( )5.三个角对应相等的三角形一定全等. ( )(二)、判断下面各组的两个三角形是否全等并说明理由(1)(2)已知:AB=CD AB∥CD (3)已知:AC=AD,BC=BD二、典例分析一【例1】(2016·重庆)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.三、跟踪训练一:1.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙 B.乙和丙 C.只有乙 D.只有丙2.如图,已知CD⊥AB于点D,BE⊥AC于点E,CD、BE交于点O,且AO平分∠BAC,则图中的全等三角形共有()A.1对 B.2对 C.3对D.4对3、如图,A在DE上,F在AB上,且AC=CE, ∠1=∠2=∠3,求证:DE=AB四、典例分析二【例2】(2016·济宁)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,请你添加一个适当条件 ,使△AEH≌△CEB.并证明五、跟踪训练二4、如图:已知AB=CD, AD=BC则图中有()对全等三角形。

5、如图:已知AC=AD,只需附加一个条件,就能使△ACB≌△ADB,请写出一个符合的条件__________ 。

XX八年级上册数学期中复习集体备课教案(人教版)

XX八年级上册数学期中复习集体备课教案(人教版)

XX八年级上册数学期中复习集体备课教案(人教版)初二数学集体备课资料§期中考试复习主讲人:XX.11.06一、本部分知识结构二、教学目标解读学生通过探究实际问题,认识全等三角形、轴对称、实数、一次函数、整式乘除和因式分解,掌握有关规律、概念、性质和定理,并能进行简单的应用。

进一步提高必要的运算技能和作图技能,提高应用数学语言的应用能力,通过一次函数的学习初步建立数形结合的思维模式。

掌握提取实际问题中的数学信息的能力,并用有关的代数和几何知识表达数量之间的相互关系;通过探究全等三角形的判定、轴对称性质进一步培养学生的识图能力;通过探究一次函数图象与性质之间的关系,初步建立数形结合的数学模式;通过对整式乘除和因式分解的探究,培养学生发现规律和总结规律的能力,建立数学类比思想。

通过对数学知识的探究,进一步认识数学与生活的密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。

体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和发展的重要作用。

认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的过程。

养成独立思考和合作交流相结合的良好思维品质。

了解我国数学家的杰出贡献,增强民族的自豪感,增强爱国主义。

三、教材重点与难点的确定重点复习所有知识点,能熟练运用。

教学难点要使学生理解证明的基本过程,掌握用综合法证明的格式。

四、学情分析教学对象分析八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。

7班、8班均是刚刚接手,对班上学生不了解,从原科任老师处得知:学生的成绩分化极其明显。

差者几乎连听懂老师讲课都成奢望,优者轻松地独立完成课本学业并在课外拓展知识。

在数学学习上,学生原来的薄弱能力是逻辑思维没有真正形成,不会分析问题,对于实际问题无可奈何。

学生的能力普遍不足,尤其是自学能力。

在学习方法上,大部分学生的方法是有缺陷的。

人教版八年级上册第12章全等三角形《复习课》导学案

人教版八年级上册第12章全等三角形《复习课》导学案

第十二章复习课
1.知道全等三角形及其性质,能利用全等条件判定两三角形全等.
2.能利用全等三角形的判定和性质来证明线段相等或角相等.
3.知道角的平分线的性质,会判断一个点是否在一个角的平分线上.
4.重点:全等三角形的性质和判定的综合应用,角平分线的性质和判定.
◆体系构建
◆核心梳理
1.全等三角形的定义:能够完全重合的两个三角形叫作全等三角形.把两个全等的三角形重合在
一起,重合的顶点叫作对应顶点,重合的边叫作对应边,重合的角叫作对应角.
全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等.
2.三角形全等的判定.
(1)三边分别相等的两个三角形全等(简写成“边边边”或“SSS”);
(2)两边和它们的夹角分别相等的两个三角形全等(简写成“边角边”或“SAS”);
(3)两角和它们的夹边分别相等的两个三角形全等(简写成“角边角”或“ASA”);
(4)两角和其中一个角的对边分别相等的两个三角形全等(简写成“角角边”或“AAS”);
(5)斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边直角边”或“HL”).
3.角的平分线的性质及其应用.
角的平分线上的点到角的两边的距离相等.
到角的两边距离相等的点在角的平分线上.
【预习自测】如图,P是∠AOB平分线OF上一点,CD⊥OF于点P,并分别交OA、OB于C、D,则CD P点到∠AOB两边距离之和(B)
A.小于
B.大于
C.等于
D.不能确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
A
C
B
A
B C D
E F G C
D E B
A
P
期中复习一:全等三角形
【核心回顾】
知识点一:三角形全等的性质
1.如图,点A 、C 、F 在同一直线上,点B 在EC 上,EC ⊥AF 于C ,△ABC ≌△EFC ,且CF =
3CM ,BE =3CM ,∠F =58°.则∠A =______°,BC =________,AC =_________.
2.如图,已知∠C =∠D ,∠ABC =∠BAD ,AC 与BD 相交于点O ,请写出图中一组相等的线
段______________. F
E
C
B
A
第1题 第2题 第4题 第6题 知识点二:三角形全等的判定
3.使两个直角三角形全等的条件是( )
A .一锐角对应相等
B .两锐角对应相等
C .一条边对应相等
D .两条边对应相等 4.如图,在△ABC 中,AB =AC ,点D 、
E 在BC 上,连结AD 、 AE .如果只添加一个条件使
∠DAB =∠EAC ,则添加的条件不能为( )
A .BD =CE
B .AD =AE
C .DA =DE
D .B
E =CD 5.下列各组图形中,是全等形的是( )
A .一个钝角相等的两个等腰三角形
B .两个含60°的直角三角形
C .边长为3和5的两个等腰三角形
D .腰对应相等的两个直角三角形
6.如图,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF =CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是____________.(不添加辅助线) 7.如图,在四边形ABCD 中,AB =AD ,CB =CD ,若连接AC ,BD 相交于点O ,则图中全等
三角形共有_________对.
第7题 第8题 第9题 知识点三:全等三角形的应用
8.如图,△ABC 中,AB =5,AC =3,AD 是中线.求中线AD 的取值范围____________. 9.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB 是一个任意角,在边OA ,OB
上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 作射线OC .由此做法得△MOC ≌△NOC 的依据是
【问题探究】 探究1 求证:三角形一边的两端点到这边的中线所在的直线的距离相等.
(解题要求:补全已知、求证,写出证明............) 已知:如图,在△ABC 中,AD 是BC 边上的中线, . 求证: . 证明:
探究2 (1)如图1,∠MAN =90°,射线AE 在这个角的内部,点B 、C 分别在∠MAN 的边AM 、
AN 上,且AB =AC ,CF ⊥AE 于点F ,BD ⊥AE 于点D .求证:△ABD ≌△CAF ;
(2)如图2,点B 、C 分别在∠MAN 的边AM 、AN 上,点E 、F 都在∠MAN 内部的射线AD 上,
∠1、∠2分别是△ABE 、△CAF 的外角.已知AB =AC ,且∠1=∠2=∠BAC . 求证:△ABE ≌△CAF ;
(3)如图3,在△ABC 中,AB =AC ,AB >BC .点D 在边BC 上,CD =2BD ,点E 、F 在线段AD
上,∠1=∠2=∠BAC .若△ABC 的面积为15,求△ACF 与△BDE 的面积之和.
探究3如图,已知在△ABC 中,点D 、E 分别是AB 、AC 边上的点,BD =CE ,DF ⊥BC 于
点F ,EG ⊥BC 于点G ,且DF =EG .求证:BE =CD .
【训练巩固】
1.如图,△ABC ≌△ADE ,∠BAD =40°,则∠DCB = 度; 2.如图,△ABC 和△ADE 中,∠BAC =∠DAE ,AB =AE ,AC =AD ,连接BD ,CE ,
求证:△ABD ≌△AEC .
3.已知:如图在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD =AC ,在
CF 的延长线上截取CG =AB ,连结AD 、AG ,求证:(1)AG =AD ;(2)AG ⊥AD .
E
D C
B
A B D E C A
D E
C
F
B
A
G F
E D C
B
A
y x B A O Q
P C D E B A O 21
E D C B A 期中复习一:全等三角形
一、填空
1.如图,已知△ABC ≌△ADE , ∠BAC =∠DAE =85°, ∠DAC =35°,那么∠BAD = . 2.如图,在△AFD 和△BEC 中,AF =BE , ∠A =∠B ,只要再有 或 ,就可以
根据SAS 公理证明这两个三角形全等.
3.如图,AB =AC ,∠BAC =∠DAE ,∠ADB =∠AEC ,则图中 ≌ 。

(第1题图) (第2题图) (第3题图) (第6题图) (第7题图) 4.已知△ABC ≌△DEF , ∠C =∠F =90°,AC =3,BC =4,AB =5,那么△DEF 的周长是 ,面积是 .
5.一个三角形的三边长分别为6,8,10,另一个三角形三边长为,,a b c ,且满足2,2,16a b b c a c =+=++=,那么这两个三角形的关系 .理由是 . 6.如图,△ABE ≌△ADC ≌△ABC ,若:∠1=150°,则∠α的度数为 . 7.已知,如图把一张长方形纸片ABCD 沿BD 对折, 使C 点落在E 处,BE 与AD 相交于点O ,写出一组相等的线段 .(不包括AB =CD ,AD =BC )
8.如图, 在平面直角坐标系中,点B 的坐标为(3,2),BA ⊥x 轴于A ,若点P 在x 轴负半轴上、
Q 在y 轴正半轴上运动,则当P 点的坐标为 时,△ABO 和△AOQ 全等。

(第8题图) (第10题图) (第11题图)
二、选择题
9.在△ABC 中, ∠C =∠B ,与△ABC 全等的三角形有一个角是100°,那么△ABC 中与这个角
对应的角是( )
A . ∠
B B . ∠A
C .∠C
D . ∠B 或∠C 10.如图,已知CD ⊥AB 于D ,现有四个条件:⑴AD =ED ;⑵∠A =∠BED ;
⑶∠C =∠B ;⑷AC =EB 。

那么不能得出△ADC ≌△EDB 的条件是( ) A .⑴⑶ B .⑵⑷ C .⑴⑷ D .⑵⑶ 11.如图,已知∠1=∠2, ∠3=∠4,,则图中全等的三角形的对数为( )
A .3
B .4
C .5
D .6 12.下面结论中正确的是( )
A .一边相等的两个直角三角形全等
B .斜边相等的两个直角三角形全等
C .有两条边相等的两个三角形全等
D .两条直角边对应相等的两个直角三角形全等 13.在下列给出的四组条件中,能够判定△ABC ≌△DEF 的是 ( )
A .A
B =DE ,B
C =EF ,∠A =∠
D B .∠A =∠D ,∠C =∠F ,AC =EF
C .∠A =∠
D ,∠B =∠
E ,∠C =∠
F D .AB =DE ,BC =EF ,△ABC 的周长=△DEF 的周长
14.在△ABC 和△DEF 中,AB =DE ,AC =DF ,高AM =DN ,则∠C 与∠F 的关系是( )
A .相等
B .互补
C .相等或互补
D .无法确定 三、解答题
15.如图,点A 、D 、C 、F 在同一条直线上,AD =CF ,AB =DE ,BC =EF . (1)求证:△ABC ≌DEF ; (2)若∠A =55°,∠B =88°,求∠F 的度数.
16.已知,如图,点D 、E 在BC 上,且BD =CE ,AD =AE ,∠1=∠2.
求证:AB =AC .
17.如图,∠A =∠D =90°,AC =DB ,AC 、DB 相交于点O .求证:OB =OC .
18.证明命题“全等三角形对应边上的中线相等.”
19.如图①,AB =CD ,AD =BC .O 为AC 中点,过O 点的直线分别与AD ,BC 相交于点M ,N . (1)那么∠1与∠2有什么关系?AM ,CN 有什么关系?请说明理由.
(2)若将过O 点的直线旋转至图②③的情况时,其他条件不变,那么①中的关系还成立吗?
请说明理由.
E D C B
A E
D C B A F
E D C B A
F E D C B A
4321F E D C B A。

相关文档
最新文档