高中数学茎叶图
茎叶图中的中位数问题
8月13日网络停机维护通知(8-13 14:39)
您现在所在的位置:2010年山东省高中教师全员研修> 高中数学> 作业列表> 作业内容
茎叶图的数字有顺序吗?
莘县明天中学郭强2010年7月19日21:18
现仅就个人对茎叶图发表一下浅显的认识,敬请各位老师批评指正。
在讲解茎叶图的练习题时发现有这样一道题,求出下面茎叶图的中位数
5 3 |1|
3 6 8 |2|
4 5
4 7 9 |3| 2 6
5 7 8
1 |4| 5 7
甲乙
资料的答案竟是28与35.当时我觉得有问题,查了一下必修三教材也没有发现对茎叶图中位数的解释。
于是我又查了一下人
教版初中八年级下册,教材对于中位数的定义是:将一组数据按
照从小到大(或由大到小)的顺序排列,如果数据的个数是奇数,
则处于中间位置的数称为这组数据的中位数;如果数据的个数是
偶数,则中间两个数的平均数称为这组数据的中位数。
高中人教
A版必修三中对于茎叶图也没有明确要求数字按照大小顺序,当
时不知怎么解释,后来我们全组教师讨论一致认为,应和初中教
材相衔接。
统一要求学生把茎叶图画规范(即应有大小顺序),
再求中位数。
那么此题的答案应是28与36。
高中新课程数学必修3--茎叶图ppt课件
;;
; /abcpkscum/ ; /abcfffse/ ; /abchyxd/ ; /abctitfzp/ ; /abczimow/ ; /abcfgsm/ ; /abctbe/ ; /abcjgkd/ ; /abcpfn/ ; /abcndt/ ; /abcnsughd/ ; /abckl/ ; /abcyrd/ ; /abcrxsytc/ ; /abcms/ ; /abcqsrhk/ ; /abcimmieg/ ; /abcfpla/ ; /abcpmbhmd/ ; /abccmivf/ ; /abcmuxjyp/ ; /abccj/ ; /abcfpuen/ ; /abcvluh/ ; /abcjkcn/ ; /abcfkosap/ ; /abcrg/ ; /abcvo/ ; /abcmunr/ ; /abcvupsw/ ; /abcysyy/ ; /abchndgr/ ; /abcuxmanc/ ; /abchvjnl/ ; /abckmx/ ; /abcvpa/ ; /abchuowrf/ ; /abcfm/ ; /abcwknkct/ ; /abcuge/ ; /abcrdr/ ; /abcun/ ; /abcvafdd/ ; /abclqumh/ ; /abcxkusm/ ; /abcdqgq/ ; /abcft/ ; /abctesyj/ ; /abcbkrdrq/ ; /abcmzx/ ; /abcsj/ ; /abcbyn/ ; /abcgjgj/ ; /abcjgcus/ ; /abccmw/ ; /abcas/ ; /abctc/ ; /abcus/ ; /abccfegd/ ; /abcngikt/ ; /abclk/ ; /abciozueq/ ; /abcnnyxq/ ; /abcmxhemg/ ; /abccnfxg/ ; /abcikar/ ; /abcshy/ ; /abcdmv/ ; /abciisd/ ; /abcpgtcsn/ ; /abcbecqtl/ ; /abcjmx/ ; /abcdnx/ ; /abcobm/ ; /abcngag/ ; /abcsmbish/ ; /abcbhzr/ ; /abckihtm/ ; /abcmm/ ; /abcaosc/ ; /abcmqoi/ ; /abcpdy/ ; /abclwebzs/ ; /abcwpapuq/ ; /abcmnz/ ; /abchm/ ; /abcbp/ ; /abcjnrosn/ ; /abcsedhwk/ ; /abcsvlsmm/ ; /abcsdtsmj/ ; /abcvdmbqx/ ; /abcgqmsug/ ; /abcdmdjo/ ; /abcje/ ; /abcqvv/ ; /abchsioyu/ ; /abcxor/ ; /abccyq/ ; /abcoaq/ ; /abcsqwmnl/ ; /abcmptzhk/ ; /abchn/ ; /abcbqezjk/ ; /abcfkonyv/ ; /abcav/ ; /abckshd/ ; /abcgmr/ ; /abcbzmpxo/ ; /abcjpkdm/ ; /abczso/ ; /abcvynbtn/ ; /abcyc/ ; /abceap/ ; /abcpizga/ ; /abcsefar/ ; /abcruonec/ ; /abctjh/ ; /abcavtz/ ; /abchf/ ; /abcrnone/ ; /abcim/ ; /abcsiuenk/ ; /abcpjtck/ ; /abcfp/ ; /abckdzxm/ ; /abcpxo/ ; /abczzw/ ; /abccnkobb/ ; /abcsp/ ; /abccs/ ; /abcxxsezo/ ;
(易错题)高中数学高中数学选修2-3第一章《计数原理》检测(答案解析)(2)
一、选择题1.在某次联考数学测试中,学生成绩ξ服从正态分布2(100,)(0)σσ>,若ξ在(80,120)内的概率为0.8,则任意选取一名学生,该生成绩不高于80的概率为( ) A .0.05 B .0.1C .0.15D .0.22.甲乙两人投篮,投中的概率分别为0.6,0.7.若两人各投2次,则两人投中次数相等的概率为( ) A .0.2484B .0.25C .0.90D .0.39243.西大附中为了增强学生对传统文化的继承和发扬,组织了一场类似《诗词大会》的PK 赛,A 、B 两队各由4名选手组成,每局两队各派一名选手PK ,除第三局胜者得2分外,其余各胜者均得1分,每局的负者得0分.假设每局比赛A 队选手获胜的概率均为23,且各局比赛结果相互独立,比赛结束时A 队的得分高于B 队的得分的概率为( ) A .2027B .5281C .1627D .794.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,则质点P 移动六次后位于点(2,4)的概率是( )A .612⎛⎫ ⎪⎝⎭B .44612C ⎛⎫ ⎪⎝⎭C .62612C ⎛⎫ ⎪⎝⎭D .6246612C C ⎛⎫ ⎪⎝⎭5.设1~(10,)B p ξ,2~(10,)B q ξ,且14pq >,则“()()12E E ξξ>”是“()()12D D ξξ<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.下列命题中真命题是( )(1)在18的二项式展开式中,共有4项有理项;(2)若事件A 、B 满足()0.15P A =,()0.60P B =,()0.09P AB =,则事件A 、B 是相互独立事件;(3)根据最近10天某医院新增疑似病例数据,“总体均值为2,总体方差为3”,可以推测“最近10天,该医院每天新增疑似病例不超过7人”. A .(1)(2) B .(1)(3)C .(2)(3)D .(1)(2)(3)7.设102x <<,随机变量ξ的分布列如下:ξ0 1 2P0.50.5x -x则当x 在10,2⎛⎫ ⎪⎝⎭内增大时( )A .()E ξ减小,()D ξ减小B .()E ξ增大,()D ξ增大C .()E ξ增大,()D ξ减小D .()E ξ减小,()D ξ增大8.先后抛掷三次一枚质地均匀的硬币,落在水平桌面上, 设事件A 为“第一次正面向上”,事件B 为“后两次均反面向上”,则概率(|)P B A =( ) A .12B .13C .14D .389.有10件产品,其中3件是次品,从中任取两件,若X 表示取得次品的个数,则P (X <2)等于 A .715B .815C .1415D .110.随机变量X 的分布列如下表,且E (X )=2,则D (2X -3)=( )A .2B .3C .4D .511.某工厂生产的零件外直径(单位:cm )服从正态分布()10,0.04N ,今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为9.75cm 和9.35cm ,则可认为( )A .上午生产情况异常,下午生产情况正常B .上午生产情况正常,下午生产情况异常C .上、下午生产情况均正常D .上、下午生产情况均异常12.小明的妈妈为小明煮了 5 个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件‘‘"A 取到的两个为同一种馅,事件‘‘"B =取到的两个都是豆沙馅,则()P B A =∣ ( )A .14B .34C .110D .310二、填空题13.随着电商的兴起,物流快递的工作越来越重要了,早在周代,我国便已出现快递制度,据《周礼·秋官》记载,周王朝的官职中设置了主管邮驿,物流的官员“行夫”,其职责要求是“虽道有难,而不时必达”.现某机构对国内排名前五的5家快递公司的某项指标进行了3轮测试(每轮测试的客观条件视为相同),每轮测试结束后都要根据该轮测试的成绩对这5家快递公司进行排名,那么跟测试之前的排名比较,这3轮测试中恰好有2轮测试结果都出现2家公司排名不变的概率为_________.14.3月5日为“学雷锋纪念日”,某校将举行“弘扬雷锋精神做全面发展一代新人”知识竞赛,某班现从6名女生和3名男生中选出5名学生参赛,要求每人回答一个问题,答对得2分,答错得0分,已知6名女生中有2人不会答所有题目,只能得0分,其余4人可得2分,3名男生每人得2分的概率均为12,现选择2名女生和3名男生,每人答一题,则该班所选队员得分之和为6分的概率__________.15.某大厦的一部电梯从底层出发后只能在第18,19,20层停靠.若该电梯在底层有6个乘客,且每位乘客在这三层的每一层下电梯的概率均为13,用X表示这6位乘客在第20层下电梯的人数,则(4)P X==________.16.若随机变量3~34X B⎛⎫⎪⎝⎭,, 则方差()D x=____________.17.甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球.现分别从甲、乙两袋中各随机抽取1个小球,记抽取到红球的个数为X,则随机变量X的均值EX=_____.18.小李练习射击,每次击中目标的概率均为13,若用ξ表示小李射击5次击中目标的次数,则ξ的均值E(ξ)与方差D(ξ)的值分别是____.19.运动员参加射击比赛,每人射击4次(每次射一发),比赛规定:全不中得0分,只中一弹得15分,中两弹得40分,中三弹得65分,中四弹得100分.已知某一运动员每一次射击的命中率为35,则他的得分期望为_____.20.投到某出版社的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则直接予以利用,若两位初审专家都未予通过,则不予录用,若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用,设稿件能通过各初审专家评审的概率均为12,复审的稿件能通过评审的概率为13,若甲、乙两人分别向该出版社投稿1篇,两人的稿件是否被录用相互独立,则两人中恰有1人的稿件被录用的概率为__________.三、解答题21.《中华人民共和国道路交通安全法》第47条规定:机动车行经人行横道时,应当减速慢行;遇到行人正在通过人行横道,应当停车让行,即“行让行人”.下表是某十字路口监控设备所抓拍的6个月内驾驶员不“礼让行人”行为的统计数据:月份x1 2 3 4 5 6 不“礼让斑马线"驾驶员人数y120105100859080(1)请根据表中所给前5个月的数据,求不“礼让行人”的驾驶员人数y 与月份x 之间的回归直线方程ˆˆˆy bx a =+;(2)若该十字路口某月不“礼让行人”驾驶员人数的实际人数与预测人数之差小于5,则称该十字路口“礼让行人”情况达到“理想状态”.试判断6月份该十字路口“礼让行人”情况是否达到“理想状态”?(3)自罚单日起15天内需完成罚款缴纳,记录5月不“礼让行人”驾驶员缴纳罚款的情况,缴纳日距罚单日天数记为X ,若X 服从正态分布()~8,9X N ,求该月没能在 14天内缴纳人数. 参考公式:()()()112211ˆˆˆ,nni i i ii i nniii i x x y yx y nxybay bx x x xnx====---===---∑∑∑∑()()()0.6826,220.9544,330.9974P Z P Z P Z μσμσμσμσμσμσ-<<+=-<<+=-<<+=22.某运动会将在深圳举行,组委会招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如图所示的茎叶图(单位:cm ),身高在175cm 以上(包括175cm )定义为“高个子”,身高在175cm 以下(不包括175cm )定义为“非高个子”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,求至少有一人是“高个子”的概率;(2)若从身高180cm 以上(包括180cm )的志愿者中选出男、女各一人,设这2人身高相差cm ξ(0ξ≥),求ξ的分布列和数学期望(均值).23.某大型电器企业,为了解组装车间职工的生活情况,从中随机抽取了100名职工进行测试,得到频数分布表如下: 日组装个数 [)155,165[)165,175[)175,185[)185,195[)195,205[]205,215人数6123430108(1)现从参与测试的日组装个数少于175的职工中任意选取3人,求至少有1人日组装个数少于165的概率;(2)由频数分布表可以认为,此次测试得到的日组装个数Z 服从正态分布(),169N μ,μ近似为这100人得分的平均值(同一组数据用该组区间的中点值作为代表).(i )若组装车间有20000名职工,求日组装个数超过198的职工人数;(ii )为鼓励职工提高技能,企业决定对日组装个数超过185的职工日工资增加50元,若在组装车间所有职工中任意选取3人,求这三人增加的日工资总额的期望.附:若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-<<+=,()220.9545P X μσμσ-<<+=,()330.9973P X μσμσ-<<+=.24.某高三年级学生为了庆祝教师节,同学们为老师制作了一大批同一种规格的手工艺品,这种工艺品有A 、B 两项技术指标需要检测,设各项技术指标达标与否互不影响,若A 项技术指标达标的概率为3,4B 项技术指标达标的概率为89,按质量检验规定:两项技术指标都达标的工艺品为合格品.(1)求一个工艺品经过检测至少一项技术指标达标的概率;(2)任意依次抽取该工艺品4个,设ξ表示其中合格品的个数,求ξ的分布列. 25.近期,某超市针对一款饮料推出刷脸支付活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用刷脸支付.该超市统计了活动刚推出一周内每一天使用刷脸支付的人次,用x 表示活动推出的天数,y 表示每天使用刷脸支付的人次,统计数据如下表所示:(1)在推广期内,与y c d =⋅(均为大于零的常数)哪一个适宜作为刷脸支付的人次y 关于活动推出天数x 的回归方程类型?(给出判断即可,不必说明理由); (2)根据(1)的判断结果及表1中的数据,求y 关于x 的回归方程,并预测活动推出第8天使用刷脸支付的人次;(3)已知一瓶该饮料的售价为2元,顾客的支付方式有三种:现金支付、扫码支付和刷脸支付,其中有10%使用现金支付,使用现金支付的顾客无优惠;有40%使用扫码支付,使用扫码支付享受8折优惠;有50%使用刷脸支付,根据统计结果得知,使用刷脸支付的顾客,享受7折优惠的概率为16,享受8折优惠的概率为13,享受9折优惠的概率为12.根据所给数据估计购买一瓶该饮料的平均花费.参考数据:其中1i i v g y =,7117i i v v ==∑参考公式:对于一组数据1122,),,(,)n n x v x v ,其回归直线ˆˆˆv a bx=+的斜率和截距的最小二乘估计公式分别为:1221ˆ,ni i i nii x v nxvbxnx==-=-∑∑ˆˆa v bx=-. 26.2020年1月10日,引发新冠肺炎疫情的COVID -9病毒基因序列公布后,科学家们便开始了病毒疫苗的研究过程.但是类似这种病毒疫苗的研制需要科学的流程,不是一朝一夕能完成的,其中有一步就是做动物试验.已知一个科研团队用小白鼠做接种试验,检测接种疫苗后是否出现抗体.试验设计是:每天接种一次,3天为一个接种周期.已知小白鼠接种后当天出现抗体的概率为12,假设每次接种后当天是否出现抗体与上次接种无关. (1)求一个接种周期内出现抗体次数k 的分布列;(2)已知每天接种一次花费100元,现有以下两种试验方案:①若在一个接种周期内连续2次出现抗体即终止本周期试验,进行下一接种周期,试验持续三个接种周期,设此种试验方式的花费为X 元;②若在一个接种周期内出现2次或3次抗体,该周期结束后终止试验,已知试验至多持续三个接种周期,设此种试验方式的花费为Y 元. 比较随机变量X 和Y 的数学期望的大小.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】1(80120)(80)(120)0.12P X P X P X -<<≤=≥== ,选B.2.D解析:D 【分析】根据题意,两人投中次数相等:两人两次都未投中,两人各投中一次,和两人两次都投中,进而根据相互独立事件概率乘法公式和互斥事件概率加法公式,得到答案. 【详解】由题意,甲、乙两人投篮,投中的概率分别为0.6,0.7,则甲、乙两人各投2次: 两人两次都未投中的概率:()()22010.610.70.0144P =-⨯-=;两人各投中一次的概率:()()111220.610.60.710.70.2016P C C =⨯⨯-⨯⨯⨯-=;两人两次都投中的概率:2220.60.70.1764P =⨯=.所以,两人投中次数相等的概率为:0120.3924P P P P =++=. 故选:D. 【点睛】本题主要考查相互独立事件的概率乘法公式的应用,体现了分类讨论的数学思想,属于基础题.3.A解析:A 【分析】比赛结束时A 队的得分高于B 队的得分的情况有3种:A 全胜;A 三胜一负、A 第三局胜,另外三局一胜两负.利用独立重复试验的概率公式可求得所求事件的概率. 【详解】比赛结束时A 队的得分高于B 队的得分的情况有3种:A 全胜;A 三胜一负、A 第三局胜,另外三局一胜两负.所以,比赛结束时A 队的得分高于B 队的得分的概率为43232432212122033333327P C C ⎛⎫⎛⎫⎛⎫=+⋅⋅+⋅⋅=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:A. 【点睛】本题考查概率的求解,考查独立重复试验概率的求解,考查计算能力,属于中等题.4.C解析:C 【分析】根据题意,质点P 移动六次后位于点(4,2),在移动过程中向右移动4次向上移动2次,即6次独立重复试验中恰有4次发生,由其公式计算可得答案. 【详解】根据题意,易得位于坐标原点的质点P 移动六次后位于点(2,4),在移动过程中向上移动4次向右移动2次,则其概率为4262466111222C P C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==. 故选:C . 【点睛】本题考查二项分布与n 次独立重复试验的模型,考查对基础知识的理解和掌握,考查分析和计算能力,属于常考题.5.C解析:C【分析】根据二项分布的期望和方差公式,可知()110E p ξ=,()210E q ξ=,那么()()12E E ξξ>等价于1010p q >,即p q >,并且()()1101D p p ξ=-,()()2101D q q ξ=-,则()()12D D ξξ>等价于()()101101pp q q -<-,即()()11p p q q -<-,分情况讨论,看这两个条件是否可以互相推出即得. 【详解】由题得,()110E p ξ=,()210E q ξ=,故()()12E E ξξ>等价于1010p q >,即p q >. 又()()1101D p p ξ=-,()()2101D q q ξ=-,故()()12D D ξξ>等价于()()101101p p q q -<-,即()()11p p q q -<-.若p q >,因为14pq >,说明12p >,且()()211124p p p p pq +-⎛⎫-<=< ⎪⎝⎭,故1p q -<,故有1122p q ->-.若12q <,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,若12q ≥,则自然有11022p q ->->,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,故221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭即()()11p p q q -<-.若()()11p p q q -<-,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,又因为()()1114p p q q pq -<-≤<,1p q -<,即1122p q ->-.若102p -≤,则与221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭矛盾,故12p >,若12q ≤,则自然有p q >,若12q >,则由221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭知1122p q ->-,即p q >. 所以是充要条件.故选:C 【点睛】本题综合的考查了离散型随机变量期望方差和不等式,属于中档题.6.D解析:D 【分析】对三个命题分别判断真假,即可得出结论. 【详解】对于(1),18的二项展开式的通项为1815163621818rrrr rC x x C x ---⎛⎫⎛⎫⋅⋅=⋅ ⎪ ⎪⎝⎭⎝⎭, 当0r =、6、12、18时,为有理项,共有4个有理项,故(1)正确; 对于(2),事件A 、B 满足()0.15P A =,()0.60P B =,()0.09P AB =, 所以()()()0.150.600.09P AB P A P B =⨯==,满足A 、B 为相互独立事件,故(2)正确;对于(3),当总体平均数是2,若有一个数据超过7,则方差就接近于3, 所以,总体均值为2,总体方差为3时,没有数据超过7,故(3)正确. 故选:D. 【点睛】本题考查命题真假的判断,考查分析法与基本运算能力,考查分析问题和解决问题的能力,属于中等题.7.B解析:B 【分析】分别计算()E ξ和()D ξ的表达式,再判断单调性. 【详解】()00.51(0.5)20.5E x x x ξ=⨯+⨯-+=+,当x 在10,2⎛⎫⎪⎝⎭内增大时, ()E ξ增大()222210.5(0.50)(0.5)(0.51)(0.52)24D x x x x x x x ξ=⨯+-+-⨯+-++-=-++ ()25(1)4D x ξ=--+,当x 在10,2⎛⎫⎪⎝⎭内增大时, ()D ξ增大 故答案选B 【点睛】本题考查了()E ξ和()D ξ的计算,函数的单调性,属于综合题型.8.C解析:C 【分析】由先后抛掷三次一枚质地均匀的硬币,得出事件A “第一次正面向上”,共有4种不同的结果,再由事件A “第一次正面向上”且事件B “后两次均反面向上”,仅有1中结果,即可求解. 【详解】由题意,先后抛掷三次一枚质地均匀的硬币,共有2228⨯⨯=种不同的结果, 其中事件A “第一次正面向上”,共有4种不同的结果,又由事件A “第一次正面向上”且事件B “后两次均反面向上”,仅有1中结果,所以()()1(|)4P AB P B A P A ==,故选C. 【点睛】本题主要考查了条件概率的计算,其中解答中认真审题,准确得出事件A 和事件A B 所含基本事件的个数是解答的关键,着重考查了运算能力,属于基础题.9.C解析:C 【分析】根据超几何分布的概率公式计算各种可能的概率,得出结果 【详解】由题意,知X 取0,1,2,X 服从超几何分布, 它取每个值的概率都符合等可能事件的概率公式,即P(X =0)=27210715C C =,P(X =1)=1173210715C C C =⋅,P(X =2)=23210115C C =, 于是P(X<2)=P(X =0)+P(X =1)=7714151515+= 故选C 【点睛】本题主要考查了运用超几何分布求概率,分别求出满足题意的情况,然后相加,属于中档题.10.C解析:C 【解析】1111632p =--=,111()0223623E X a a =⨯+⨯+⨯=⇒=∴222111()(02)(22)(32)1623D X =-⨯+-⨯+-⨯=∴2(23)2()4D X D X -==点晴:本题考查的是离散型随机变量的期望,方差和分布列中各个概率之间的关系.先根据概率之和为1,求出p 的值,再根据数学期望公式,求出a 的值,再根据方差公式求出D (X ),继而求出D (2X-3).解决此类问题的关键是熟练掌握离散型随机变量的分布列与数学期望.11.B解析:B 【解析】分析:根据3σ原则判断.详解:因为服从正态分布()10,0.04N ,所以10,0.2(100.23,100.23)(9.4,10.6)x μσ==∴∈-⨯+⨯= 所以上午生产情况正常,下午生产情况异常, 选B.点睛:利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.12.B解析:B 【详解】由题意,P (A )=222310C C +=410,P (AB )=2310C =310, ∴P (B|A )=()AB A)P P (=34, 故选B .二、填空题13.【分析】根据题意求出家快递公司进行排名与测试之前的排名比较出现家公司排名不变的概率根据题意满足二项分布根据二项分布概率计算即可【详解】解:首先在一轮测试中家快递公司进行排名与测试之前的排名比较出现家解析:572【分析】根据题意求出5家快递公司进行排名与测试之前的排名比较出现2家公司排名不变的概率,根据题意满足二项分布,根据二项分布概率计算即可. 【详解】解:首先,在一轮测试中5家快递公司进行排名与测试之前的排名比较出现2家公司排名不变的概率为255522011206C A ⨯==, 其次,3轮测试每次发生上述情形的概率均为16P =, 故3轮测试中恰好有2轮测试结果都出现2家公司排名不变的概率为223155()6672C ⨯⨯=. 故答案为:572. 【点睛】独立重复试验与二项分布问题的常见类型及解题策略:(1)在求n 次独立重复试验中事件恰好发生k 次的概率时,首先要确定好n 和k 的值,再准确利用公式求概率;(2)在根据独立重复试验求二项分布的有关问题时,关键是理清事件与事件之间的关系,确定二项分布的试验次数n 和变量的概率,求得概率.14.【分析】首先对事件进行分类分成女生0分男生6分或女生2分男生4分或女生4分男生2分女生的概率可以按照超几何概率求解男生按照独立重复求解概率【详解】依题意设该班所选队员得分之和为6分记为事件A 则可分为 解析:43120【分析】首先对事件进行分类,分成女生0分,男生6分,或女生2分,男生4分,或女生4分,男生2分,女生的概率可以按照超几何概率求解,男生按照独立重复求解概率. 【详解】依题意设该班所选队员得分之和为6分记为事件A ,则可分为下列三类:女生得0分男生得6分,设为事件1A ;女生得2分男生得4分,设为事件2A ;女生得4分男生得2分,设为事件3A ,则:()32321326112120C P A C C ⎛⎫=⨯= ⎪⎝⎭, ()211224232611241221205C C P A C C ⎛⎫⎛⎫=⨯== ⎪ ⎪⎝⎭⎝⎭,()22143326111832212020C P A C C ⎛⎫⎛⎫=⨯== ⎪⎪⎝⎭⎝⎭, ()()()()12343120P A P A P A P A =++=. 故答案为:43120【点睛】本题考查概率的应用问题,重点考查分类讨论,转化与化归的思想,熟练掌握概率类型,属于中档题型.本题的关键是对事件分类.15.【分析】根据次独立重复试验的概率公式进行求解即可【详解】解:考查一位乘客是否在第20层下电梯为一次试验这是次独立重复试验故即有123456故答案为:【点睛】本题主要考查次独立重复试验的概率的计算根据 解析:20243【分析】根据n 次独立重复试验的概率公式进行求解即可. 【详解】解:考查一位乘客是否在第20层下电梯为一次试验,这是6次独立重复试验, 故1~6,3X B ⎛⎫ ⎪⎝⎭.即有6612()()()33k kk P X k C -==⨯,0k =,1,2,3,4,5,6.42641220(4)()()33243P X C ∴==⨯=.故答案为:20243【点睛】本题主要考查n 次独立重复试验的概率的计算,根据题意确实是6次独立重复试验,是解决本题的关键,属于中档题.16.【分析】利用方差公式即可得出答案【详解】结合方差【点睛】本题考查了方差计算公式记住即可 解析:916【分析】利用方差公式()D x npq =,即可得出答案. 【详解】结合方差()31934416D x npq ==⋅⋅=. 【点睛】本题考查了方差计算公式,记住()D x npq =,即可.17.【分析】结合题意分别计算对应的概率计算期望即可【详解】列表:X 0 1 2 P 所以【点睛】本道题考查了数学期望计算方法结合题意即可属于中等难度的题解析:56【分析】结合题意,分别计算0,1,2x =对应的概率,计算期望,即可. 【详解】()112511665018C C P x C C ===,()111452116611118C C C P x C C +===,()11411166129C C P x C C === 列表:所以012181896EX =⨯+⨯+⨯= 【点睛】本道题考查了数学期望计算方法,结合题意,即可,属于中等难度的题.18.【解析】试题分析:的可能取值是012345 0 1 2 3 4 5 考点:期望方差的计算解析:510 , 39【解析】试题分析:ξ的可能取值是0,1,2,3,4,5,012345.考点:期望、方差的计算.19.552【解析】分析:由次独立重复试验的概率公式计算出射中01234次的概率得到得分的分布列再由期望公式得期望详解:设该运动员中弹数为ξ得分数为η则P(ξ=4)==01296P(ξ=3)==03456解析:552.【解析】分析:由n次独立重复试验的概率公式计算出射中0,1,2,3,4次的概率得到得分的分布列,再由期望公式得期望.详解:设该运动员中弹数为ξ,得分数为η,则P(ξ=4)=435⎛⎫⎪⎝⎭=0.129 6,P(ξ=3)=33432C?·55⎛⎫⎪⎝⎭=0.345 6,P(ξ=2)=222432C?·55⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭=0.345 6,P(ξ=1)=31432C?·55⎛⎫⎪⎝⎭=0.153 6,P(ξ=0)=425⎛⎫⎪⎝⎭=0.025 6.由题意可知P (η)=P (ξ),所以E (η)=100×0.129 6+65×0.345 6+40×0.345 6+15×0.153 6+0×0.025 6=51.552.点睛:本题考查随机变量的分布列与期望.解题时关键是理解射击时命中n 次就是n 次独立重复试验,由此可由概率公式计算出概率,从而可得得分的分布列,由分布列的期望公式计算出期望.20.【分析】计算出每人的稿件能被录用的概率然后利用独立重复试验的概率公式可求得结果【详解】记事件甲的稿件被录用则因此甲乙两人分别向该出版社投稿篇则两人中恰有人的稿件被录用的概率为故答案为:【点睛】思路点 解析:3572【分析】计算出每人的稿件能被录用的概率,然后利用独立重复试验的概率公式可求得结果. 【详解】记事件:A 甲的稿件被录用,则()2212111522312P A C ⎛⎫⎛⎫=+⋅⋅= ⎪ ⎪⎝⎭⎝⎭,因此,甲、乙两人分别向该出版社投稿1篇,则两人中恰有1人的稿件被录用的概率为125735121272P C =⋅⋅=. 故答案为:3572. 【点睛】思路点睛:独立重复试验概率求法的三个步骤:(1)判断:依据n 次独立重复试验的特征,判断所给试验是否为独立重复试验; (2)分拆:判断所求事件是否需要分拆;(3)计算:就每个事件依据n 次独立重复试验的概率公式求解,最后利用互斥事件概率加法公式计算.三、解答题21.(1)ˆ8124yx =-+;(2)达到“理想状态”;(3)2. 【分析】(1)请根据表中数据计算x 、y ,求出回归系数,写出回归直线方程;(2)利用回归方程计算6x =时ˆy的值,比较即可得出结论; (3)根据正态分布的性质,结合()2140.9544P X <<=即可得答案. 【详解】(1)请根据表中所给前5个月的数据,计算1(12345)35x =⨯++++=, 1(1201051008590)1005y =⨯++++=;12222221()()(2)20(1)5001(15)2(10)ˆ8(2)(1)012()nii i nii xx y y bxx ==---⨯+-⨯+⨯+⨯-+⨯-===--+-+++-∑∑,ˆˆ100(8)3124ay bx =-=--⨯=; y ∴与x 之间的回归直线方程ˆ8124y x =-+;(2)由(1)知ˆ8124yx =-+,当6x =时,ˆ8612476y =-⨯+=; 且807645-=<,6∴月份该十字路口“礼让斑马线”情况达到“理想状态”;(3)因为X 服从正态分布()~8,9X N , 所以()2140.9544P X <<=, 该月没能在14天内缴纳人数为10.95449022-⨯=, 【点睛】方法点睛:求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算211,,,nnii ii i x y x x y ==∑∑的值;③计算回归系数,a b ;④写出回归直线方程为ˆy bx a=+. 22.(1)710p =;(2)分布列见解析,()116E ξ= 【分析】(1)根据分层抽样的比例关系得到人数,再计算概率得到答案.(2)ξ的可能取值为0,1,2,3,4,计算概率得到分布列,再计算数列期望得到答案. 【详解】(1)根据茎叶图:“高个子”有12个,“非高个子”有18个, 故抽取的“高个子”为125230⨯=个,抽取的“非高个子”有3个. 至少有一人是“高个子”的概率为232537111010C p C =-=-=. (2)身高180cm 以上(包括180cm )的志愿者中选出男,女各有3人和2人, 故ξ的可能取值为0,1,2,3,4, 故()1113206p ξ==⨯=,()11111321323p ξ=⨯+⨯==, ()1113226p ξ==⨯=, ()1113236p ξ==⨯=,()1113246p ξ==⨯=.故分布列为:故()01234636666E ξ=⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查了分层抽样,概率的计算,分布列,数学期望,意在考查学生的计算能力和综合应用能力. 23.(1)149204(2)(i )3173人(ii )75 【分析】(1)利用对立事件公式结合古典概型求解(2)(i )先求平均数185μ=,结合σ公式求得()10.68271980.158652P X ->==,再求人数;(ii )先由正态分布得日组装个数为185以上的概率为0.5.设三人中日组装个数超过185个的人数为ξ,增加的日工资总额为η,得到ξ服从二项分布,由50ηξ=求得期望【详解】(1)设至少有1人日组装个数少于165为事件A ,则()3123181491204C P A C =-=,(2)1606170121803419030200102108185100X ⨯+⨯+⨯+⨯+⨯+⨯==(个)又2169σ=,所以13σ=,所以185μ=,13σ=, 所以198μσ+=.(i )()10.68271980.158652P X ->==, 所以日组装个数超过198个的人数为0.15865200003173⨯=(人)(ii )由正态分布得,日组装个数为185以上的概率为0.5.设这三人中日组装个数超过185个的人数为ξ,这三人增加的日工资总额为η,则50ηξ=,且()~3,0.5B ξ,所以()30.5 1.5E ξ=⨯=,所以()()5075E E ηξ==. 【点睛】本题考查古典概型,考查正态分布的概率,考查二项分布,考查转化化归能力,其中确定人数与工资总额的函数关系是关键,是中档题 24.(1)3536;(2)见解析 【分析】(1)结合对立事件的概率关系可求出至少一项技术指标达标的概率; (2)由题意知,2~4,3B ξ⎛⎫⎪⎝⎭,从而可求出()0P ξ=,(1)P ξ=,()2P ξ=,()3P ξ=,()4P ξ=的值,从而可求出分布列.【详解】(1)设:M 一个工艺品经过检测至少一项技术指标达标,则38()1-11493635P M ⎛⎫⎛⎫=-⨯-= ⎪ ⎪⎝⎭⎝⎭;(2)依题意知2~4,3B ξ⎛⎫ ⎪⎝⎭,则411(0)381P ξ⎛⎫=== ⎪⎝⎭,1314218(1)3381P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()222421823327P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()334213233381P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()42164381P ξ⎛⎫=== ⎪⎝⎭分布列为:本题考查了独立事件的概率,考查了离散型随机变量的分布列求解.本题关键是求出ξ每种可能取值下的概率.求离散型随机变量的分布列时,第一步写出变量的可能取值,第二步求出每种取值下的概率,第三步写出分布列.25.(1)x y c d =⋅适宜(2)23.210320y =⨯=,活动推出第8天使用刷脸支付的人次为320(3)平均花费为251150(元) 【分析】(1)直接根据统计数据表判断,x y c d =⋅适宜;(2)把x y c d =⋅,两边同时取常用对数,1gy 11gc gd x =+⋅,则lg y 与x 两者线性相关,根据已知条件求出lg y 关与x 的线性回归方程,进而转化为y 关与x 的线性回归方程;(3)记购买一瓶该饮料的花费为Z (元),则Z 的取值可能为:2,1.8,1.6,1.4,求出Z 的分布,进而求出Z 的期望. 【详解】(1)直接根据统计数据表判断,x y c d =⋅适宜作为扫码支付的人数y 关于活动推出天数x 的回归方程类型;。
新教材高中数学第5章统计数据的直观表示学案含解析新人教B版必修第二册
新教材高中数学学案含解析北师大版必修第二册:5.1.3 数据的直观表示学习任务核心素养(教师独具)1.了解柱形图、折线图、扇形图的定义.2.能够利用茎叶图解决实际问题.(重点) 3.会列频数分布直方图,会列频率分布直方图.(难点)1.通过频率分布直方图及频率分布折线图的学习,培养数据分析的核心素养.2.借助茎叶图及频率分布直方图解决实际问题,提升数学运算的核心素养.2020年某市居民的支出构成情况如下表所示:食品衣着家庭设备用品及服务医疗保健交通和通信教育文化娱乐服务居住杂项商品和服务39.4% 5.9% 6.2% 7.0% 10.7% 15.9% 11.4% 3.5%问题:(1)要直观、形象地表示这些数据间的数量关系,应作出哪种统计图?(2)要直观、形象地表示这些数据在全部数据中所占的比例,应作出哪种统计图?[提示](1)柱形圆.(2)扇形图.知识点1柱形图、折线图、扇形图1.柱形图(也称为条形图)作用形象地比较各种数据之间的数量关系特征(1)一条轴上显示的是所关注的数据类型,另一条轴上对应的是数量、个数或者比例(2)每一矩形都是等宽的2.折线图作用形象地表示数据的变化趋势特征一条轴上显示的通常是时间,另一条轴上是对应的数据3.扇形图(也称为饼图、饼形图)作用形象地表示出各部分数据在全部数据中所占的比例特征每一个扇形的圆心角以及弧长,都与这一部分表示的数据大小成正比1.关于如图所示的统计图中(单位:万元),下列说法正确的是()A .第一季度总产值4.5万元B .第二季度平均产值6万元C .第二季度比第一季度增加5.8万元D .第二季度比第一季度增长33.5% C [依次分析选项可得:A .第一季度总产值3+4+4.5=11.5万元,错误;B .第二季度平均产值为4.5+6+6.83≈5.77万元,错误;C .第二季度比第一季度增加(4.5+6+6.8)-(3+4+4.5)=5.8万元,正确;D .第二季度比第一季度增长 5.811.5≈50%,错误.故选C .]知识点2 茎叶图作用(1)如果每一行的数都是按从大到小(或从小到大)顺序排列,则从中可以方便地看出这组数的最值、中位数等数字特征(2)可以看出一组数的分布情况,可能得到一些额外的信息 (3)比较两组数据的集中或分散程度特征所有的茎都竖直排列,而叶沿水平方向排列1.一般情况下,茎叶图中的“茎”“叶”分别指哪些数?[提示] “叶”是数据的最后一个数字,其前面的数字作为“茎”.2.如图是一个班的语文成绩的茎叶图(单位:分),则优秀率(90分以上)是________,最低分是________.4% 51 [由茎叶图知,样本容量为25,90分以上的有1人,故优秀率为125=4%,最低分为51分.]知识点3 频率(或频数)分布直方图(或折线图) 1.画频数分布直方图与频率分布直方图的步骤(1)找出最值,计算极差;(2)合理分组,确定区间;(3)整理数据;(4)作出有关图示:频数分布直方图纵坐标是频数,每一组数对应的矩形的高度与频数成正比频率分布直方图纵坐标是频率组距,每一组数对应的矩形高度与频率成正比,每个矩形的面积等于这一组数对应的频率,所有矩形的面积之和为12.频数分布折线图和频率分布折线图把频数分布直方图和频率分布直方图中把每个矩形上面一边的中点用线段连接起来,且画成与横轴相交.3.甲、乙两个城市2020年4月中旬,每天的最高气温统计图如图所示,这9天里,气温比较稳定的城市是________.甲[从折线统计图中可以很清楚的看到乙城市的气温变化较大,而甲城市气温相对来说较稳定,变化基本不大.]类型1条形图、折线图、扇形图的应用【例1】现在的青少年由于沉迷电视、手机、网络游戏等,视力日渐减退,某市为了了解学生的视力变化情况,从全市九年级随机抽取了1 500名学生,统计了每个人连续三年视力检查的结果,根据视力在4.9以下的人数变化制成折线统计图,并对视力下降的主要因素进行调查,制成扇形统计图.解答下列问题:(1)图中D所在扇形的圆心角度数为________.(2)若2020年全市共有30 000名九年级学生,请你估计视力在4.9以下的学生约有多少名?(3)根据扇形统计图信息,你觉得中学生应该如何保护视力?[思路探究](1)由扇形统计图中的数据求出D占的百分比,乘以360°即可得到结果;(2)由样本中视力在4.9以下的人数占的百分比,乘以30 000即可得到结果;(3)根据扇形统计图中影响视力的因素,提出合理化建议即可.[解](1)根据题意得:360°×(1-40%-25%-20%)=54°.(2)根据题意得:30 000×8001 500=16 000(名),则估计视力在4.9以下的学生约有16 000名.(3)建议中学生应少看电视,少玩游戏,少看手机,才能保护视力.扇形统计图、条形统计图、折线统计图的特点1.扇形统计图的特点(1)用扇形的面积表示部分在总体中所占的百分比.(2)易于显示每组数据相对于总数的大小.2.条形统计图的特点(1)条形统计图能清楚地表示出每个项目中的具体数目.(2)易于比较数据之间的差别.3.折线统计图的特点(1)能清楚地反映事物的变化情况.(2)显示数据变化趋势.[跟进训练]1.某校公布了该校反映各年级学生体育达标情况的两张统计图(如图),该校七、八、九三个年级共有学生800人,甲、乙、丙三个同学看了这两张统计图后,甲说:“七年级的体育达标率最高”.乙说:“八年级共有学生264人.”丙说:“九年级的体育达标率最高.”甲、乙、丙三个同学中,说法正确的是()A .甲和乙B .乙和丙C .甲和丙D .甲、乙和丙B [由扇形统计图可以看出:八年级共有学生800×33%=264人; 七年级的达标率为260800×37%×100%≈87.8%;九年级的达标率为235800×30%×100%≈97.9%;八年级的达标率为250264×100%≈94.7%.则九年级的达标率最高.则乙、丙的说法是正确的,故选B .] 类型2 茎叶图及其应用【例2】 (对接教材P 77练习B T 4)某中学高二(2)班甲、乙两名学生自进入高中以来,每次数学考试成绩情况如下:甲:95,81,75,91,86,89,71,65,76,88,94,110,107; 乙:83,86,93,99,88,103,98,114,98,79,78,106,101.画出两人数学成绩的茎叶图,并根据茎叶图对两人的成绩进行比较. [解] 甲、乙两人数学成绩的茎叶图如图所示.从这个茎叶图上可以看出,乙同学的得分情况是大致对称的,叶主要集中在8、9、10的茎上;甲同学的得分情况也是大致对称,叶主要集中在7、8、9的茎上.乙同学的成绩总体情况比甲同学好.1.绘制茎叶图关键是分清茎和叶.一般地说,当数据是两位数时,十位上的数字为“茎”,个位上的数字为“叶”;如果是小数,通常把整数部分作为“茎”,小数部分作为“叶”.解题时要根据数据的特点合理地选择茎和叶.2.应用茎叶图可以对两组数据进行比较,画图时,要找到两组数据共同的茎,分析时要从数据分布的对称性、中位数、稳定性等方面比较.3.茎叶图的优点是保留了原始信息,并可以随时记录数据,但当样本容量较大时就不适合了.[跟进训练]2.如图茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,若乙的平均分是89,则污损的数字是________.3 [设污损的叶对应的成绩为x ,由茎叶图可得,89×5=83+83+87+x +90+99,∴x =3.故污损的数字是3.]类型3 频率分布直方图的绘制及应用1.我们抽取样本的目的是什么?把抽出的样本数据做成频率分布表,需要对数据做什么工作?[提示] 用样本去估计总体,为决策提供依据.分组、频数累计、计算频数和频率. 2.画频率分布直方图时,如何决定组数与组距?[提示] 组数与样本容量大小有关,当样本容量不超过100时,按数据的多少,常分成5~12组,组距的选择应力求取整,一般运用“极差组距=组数”.3.同一组数据,如果组距不同,得到的频率分布直方图相同吗? [提示] 不相同.对同一组数据,不同的组距与组数对结果有一定的影响. 4.频率分布直方图的纵轴表示频率吗? [提示] 不.表示频率组距.【例3】 某省为了了解和掌握2019年高考考生的实际答卷情况,随机地取出了100名考生的数学成绩,数据如下:(单位:分)135 98 102 110 99 121 110 96 100 103 125 97 117 113 110 92 102 109 104 112 105 124 87 131 97 102 123 104 104 128 109 123 111 103 105 92 114 108 104 102 129 126 97 100 115 111 106 117 104 109 111 89 110 121 80 120 121 104 108 118 129 99 90 99 121 123 107 111 91 100 99 101 116 97 102 108 101 95 107 101 102 108 117 99 118 106 119 97 126 108123 119 98 121 101 113 102 103 104 108 (1)列出频率分布表;(2)画出频率分布直方图和折线图;(3)估计该省考生数学成绩在[100,120)分之间的比例.[思路探究] 先求极差.根据极差与数据个数确定组距、组数,然后按频率分布直方图的画法绘制图形.[解] 100个数据中,最大值为135,最小值为80,极差为135-80=55.取组距为5,则组数为555=11.(1)频率分布表如下:分组 频数 频率 频率/组距 [80,85) 1 0.01 0.002 [85,90) 2 0.02 0.004 [90,95) 4 0.04 0.008 [95,100) 14 0.14 0.028 [100,105) 24 0.24 0.048 [105,110) 15 0.15 0.030 [110,115) 12 0.12 0.024 [115,120) 9 0.09 0.018 [120,125) 11 0.11 0.022 [125,130) 6 0.06 0.012 [130,135] 2 0.02 0.004 合计1001.000.200(2)根据频率分布表中的有关信息画出频率分布直方图及折线图,如图所示:(3)从频率分布表中可知,这100名考生的数学成绩在[100,120)分之间的频率为0.24+0.15+0.12+0.09=0.60,据此估计该省考生数学成绩在[100,120)分之间的比例为60%.(0.60=60%)1.在列频率分布表时,极差、组距、组数有如下关系 (1)若极差组距为整数,则极差组距=组数; (2)若极差组距不为整数,则极差组距的整数部分+1=组数.2.组距和组数的确定没有固定的标准,将数据分组时,组数力求合适,使数据的分布规律能较清楚地呈现出来,组数太多或太少都会影响了解数据的分布情况,若样本容量不超过100,按照数据的多少常分为5~12组,一般样本容量越大,所分组数越多.[跟进训练]3.有一容量为200的样本,数据的分组以及各组的频数如下:[-20,-15),7;[-15,-10),11;[-10,-5),15;[-5,0),40;[0,5),49;[5,10),41;[10,15),20;[15,20],17.(1)列出样本的频率分布表;(2)画出频率分布直方图和频率分布折线图;(3)求样本数据不足0的频率.[解](1)频率分布表如下:分组频数频率[-20,-15)70.035[-15,-10)110.055[-10,-5)150.075[-5,0)400.200[0,5)490.245[5,10)410.205[10,15)200.100[15,20]170.085合计200 1.000(2)频率分布直方图和频率分布折线图如图所示.(3)样本数据不足0的频率为:0.035+0.055+0.075+0.200=0.365.1.如果想用统计图来反映各数据的变化趋势,比较合适的统计图是()A.条形图B.折线图C.扇形图D.其他图形B[能反映各数据变化趋势的统计图是折线图.]2.某地农村2005年到2020年间人均居住面积的统计图如图所示,则增长最多的5年为()A.2005年~2010年B.2010年~2015年C.2015年~2020年D.无法从图中看出C[2005年~2010年的增长量为3.1,2010年~2015年的增长量为3.2,2015年~2020年的增长量为3.8.]3.(多选题)下列关于茎叶图的叙述错误的是()A.将数组的数按位数进行比较,将数大小基本不变或变化不大的位作为一个主杆(茎),将变化大的位的数作为分枝(叶),列在主杆的后面B.茎叶图只可以分析单组数据,不能对两组数据进行比较C.茎叶图更不能表示三位数以上的数据D.画图时茎要按照从小到大的顺序从下向上列出,共茎的叶可随意同行列出BCD[由茎叶图的概念知,只有A选项正确,故选BCD.]4.观察如图所示的统计图,下列结论正确的是()A.甲校女生比乙校女生多B.乙校男生比甲校男生少C.乙校女生比甲校男生少D.甲、乙两校女生人数无法比较D[题图中数据只是百分比,甲、乙两个学校的学生人数不知道,因此男生、女生的具体人数也无法得知.]5.某市广播电视局欲招聘播音员一名,对A,B两名候选人进行了两项素质测试,两人的两项测试成绩如下表所示.根据实际需要,广播电视局将面试、综合知识测试的得分按3∶2的比例计算两人的总成绩,那么________(填A或B)将被录用.测试成绩测试项目A B面试9095综合知识测试8580 B[A的成绩=(90×3+85×2)÷5=88(分),B的成绩=(95×3+80×2)÷5=89(分).因此B将被录用.]回顾本节内容,自我完成以下问题:1.重复的数据在茎叶图中是如何表示的?[提示]应用茎叶图进行统计时,注意重复出现的数据要重复记录,不能遗漏.2.你认为茎叶图有哪些优点?[提示]茎叶图能保留原始数据,并方便随时添加记录数据.3.频数分布直方图与频率分布直方图有什么不同?[提示]频数分布直方图能使我们清楚地知道数据分布在各个小组的个数,而频率分布直方图则是从各小组数据在所有数据中所占的比例大小的角度来表示数据分布的规律.。
高中数学高考统计知识点总结
第二章:统计 1、抽样方法:①简单随机抽样(总体个数较少) ②系统抽样(总体个数较多) ③分层抽样(总体中差异明显)注意:在N 个个体的总体中抽取出n 个个体组成样本, 每个个体被抽到的机会(概率)均为Nn。
2、总体分布的估计: ⑴一表二图:①频率分布表——数据详实 ②频率分布直方图——分布直观③频率分布折线图——便于观察总体分布趋势 注:总体分布的密度曲线与横轴围成的面积为1。
⑵茎叶图:①茎叶图适用于数据较少的情况, 从中便于看出数据的分布, 以及中位数、众位数等。
②个位数为叶, 十位数为茎, 右侧数据按照从小到大书写, 相同的数据重复写。
3、总体特征数的估计:⑴平均数:nx x x x x n++++=Λ321; 取值为n x x x ,,,21Λ的频率分别为n p p p ,,,21Λ, 则其平均数为n n p x p x p x +++Λ2211; 注意:频率分布表计算平均数要取组中值。
⑵方差与标准差:一组样本数据n x x x ,,,21Λ方差:212)(1∑=-=ni ix xns ;标准差:21)(1∑=-=ni ix xns注:方差与标准差越小, 说明样本数据越稳定。
平均数反映数据总体水平;方差与标准差反映数据的稳定水平。
⑶线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图, 判断线性相关关系 ③线性回归方程:a bx y +=∧(最小二乘法)1221ni i i ni i x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑注意:线性回归直线经过定点),(y x 。
第三章:概率1、随机事件及其概率:⑴事件:试验的每一种可能的结果, 用大写英文字母表示;⑵必然事件、不可能事件、随机事件的特点; ⑶随机事件A 的概率:1)(0,)(≤≤=A P nmA P . 2、古典概型:⑴基本事件:一次试验中可能出现的每一个基本结果;⑵古典概型的特点: ①所有的基本事件只有有限个; ②每个基本事件都是等可能发生。
陕西高一高中数学月考试卷带答案解析
陕西高一高中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.我校在检查学生作业时,抽出每班学号尾数为5的学生作业进行检查,这里运用的是( )A.分层抽样B.抽签抽样C.随机抽样D.系统抽样2.某市有大型、中型与小型商店共1500家,它们的家数之比为1∶5∶9.用分层抽样抽取其中的30家进行调查,则中型商店应抽出( )家.A.10B.18C.2D.203.下列赋值语句中正确的是( )A.B.C.D.4.算法的三种基本结构是 ( )A.顺序结构、模块结构、条件结构B.顺序结构、循环结构、模块结构C.顺序结构、选择结构、循环结构D.选择结构、条件结构、循环结构5.阅读流程图(如图1),如输入的a,b,c分别为21,32,75。
则输出的a,b,c.分别是()A.75,21,32B.21,32,75C.32,21,75D.75,32,21.6.某程序框图(如图2)所示,该程序运行后输出的的值是 ( )A.B.C.D.7.下表是某厂1到4月份用水量情况(单位:百吨)的一组数据用水量y与月份x之间具有线性相关关系,其线性回归方程为,则a的值为()A.5.25B.C.2.5D.3.58.我市对上下班交通情况作抽样调查,作出上下班时间各抽取12辆机动车行驶时速(单位:km/h)的茎叶图(如下):上班时间下班时间8 1 6 7 98 7 6 1 0 2 2 5 7 86 5 3 2 0 3 0 0 2 6 70 4则上下班时间行驶时速的中位数分别为()A.28与28.5B.29与28.5C.28与27.5D.29与27.59.甲乙两人进行相棋比赛,甲获胜的概率是0.4,两人下成和棋的概率是0.2,则甲不输的概率是( )A.0.6B.0.8C.0.2D.0.410.下面程序输出的结果是( )S=0For i="2" To 10S=S+iNext输出SA.66B.65C.55D.54二、填空题1.204与85的最大公因数是___________2.下列算法语句表示的函数是____________3.已知一组数据的标准差为s,将这组数据都扩大3倍,所得到的一组新数据的方差是______4.在对两个变量x,y进行线性回归分析时有以下步骤:(1)利用回归方程进行预测;(2)收集数据;(3)求线性回归方程;(4)根据所收集的数据绘制散件图.则正确的操作顺序是____________5.将一枚质地均匀的一元硬币抛3次,恰好出现一次正面的概率是_________三、解答题1.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],……,(510,515],由此得到样本的频率分布直方图,如图4所示.根据频率分布直方图,求(1)重量超过500 克的产品的频率;(2)重量超过500 克的产品的数量.2.如果学生的成绩大于或等于60分,则输出“及格”,否则输出“不及格”.用算法框图表示这一算法过程.3.某车间为了规定工时定额,需要确定加个某零件所花费的时间,为此作了四次实验,得到的数据如下:(2)试预测加工10个零件需要多少时间?4.口袋内装有3个白球和2个黑球,这5个球除颜色外完全相同.每次从袋中随机地取出一个,连续取出2个球:⑴列出所有等可能的结果;⑵求取出的2个球不全是白球的概率.陕西高一高中数学月考试卷答案及解析一、选择题1.我校在检查学生作业时,抽出每班学号尾数为5的学生作业进行检查,这里运用的是( )A.分层抽样B.抽签抽样C.随机抽样D.系统抽样【答案】D【解析】略2.某市有大型、中型与小型商店共1500家,它们的家数之比为1∶5∶9.用分层抽样抽取其中的30家进行调查,则中型商店应抽出( )家.A.10B.18C.2D.20【答案】A【解析】略3.下列赋值语句中正确的是( )A.B.C.D.【答案】C【解析】略4.算法的三种基本结构是 ( )A.顺序结构、模块结构、条件结构B.顺序结构、循环结构、模块结构C.顺序结构、选择结构、循环结构D.选择结构、条件结构、循环结构【答案】C【解析】略5.阅读流程图(如图1),如输入的a,b,c分别为21,32,75。
苏教版高中数学必修三第二章-统计2.2.3ppt课件
教师用书独具演示
●三维目标 1.知识与技能 (1)通过实例体会茎叶图的意义和作用. (2)在表示样本数据的过程中,学会画茎叶图. (3)通过实例体会茎叶图的特征,从而恰当地利用茎叶图 分析样本的分布,准确地做出总体估计.
2.过程与方法 通过对现实生活的探究,感知应用数学知识解决问题的 方法,理斛数形结合的数学思想和逻辑推理的数学方法. 3.情感态度与价值观 通过对样本分析和总体估计的过程,感受数学对实际生 活的需要,认识到数学知识源于生活并指导生活的事实,体 会数学知识与现实世界的联系.
充分发挥教师的主导作用,让学生真正成为教学活动的 主体.教学手段上通过多媒体辅助教学,充分调动学生参与 课堂教学的主动性与积极性.
●教学流程
演示结束
1.理解茎叶图的概念及作用.(重点) 课标 2.掌握茎叶图在实际生活中的应用.( 解读 难点) 3.了解统计图的区别与联系.(易混点)
(3)绘制茎叶图的关键是分清茎和叶,一般地说数据是两 位数时,十位数字为“茎”,个位数字为“叶”;如果是小 数的, 通常把整数部分作为“茎”, 小数部分作为“叶”. 解 题时要根据数据的特点合理选择茎和叶.
一家连锁超市拥有多家分店,为分析各家分店的销售状 况,管理部门调查了两家规模相近的分店,下面是 A,B 两家 分店 50 天销售额的数据(单位:万元): A 分店: 44 57 59 60 61 61 62 63 63 65 66 66 67 69 70 70 71 72 73 73 73 74 74 74 75 75 75 75 75 76 76 77 77 77 78 78 79 80 80 82 85 85 86 86 90 92 92 92 93 96
【思路探究】
以前两位数为茎,个位数为叶,可以作
2018-2019学年高中数学苏教版必修3:课时跟踪检测(十二) 茎叶图-含解析
课时跟踪检测(十二)茎叶图层级一学业水平达标1.在茎叶图中比40大的数据有________个.解析:由茎叶图知比40大的有47,48,49,共3个.答案:32.在下面的茎叶图中茎表示数据的整数部分,叶表示数据的小数部分,则比数7.5小的有________个.解析:比7.5小的有6.1,6.2,6.3,7.2,7.3,7.4,共6个.答案:63.某中学高一(1)班甲、乙两同学在高一学年度的考试成绩如下:从茎叶图中可得出________同学成绩比较好.解析:由图中数据可知甲同学的成绩多在80分以上,而乙相对差一些.答案:甲4.在如图所示的茎叶图表示的数据中,众数和中位数分别是________.解析:把这组数据从小到大排列为12,14,20,23,25,26,30,31,31,41,42,43,所以这组数据众数为31,中位数为26+302=28.答案:31,285.为缓解车堵现象,解决车堵问题,北京市交通局调查了甲、乙两个交通站的车流量,在2016年5月随机选取了14天,统计每天上午7:30~9:00间各自的车流量(单位:百辆)得到如图所示的茎叶图,根据茎叶图回答以下问题.(1)甲、乙两个交通站的车流量的中位数分别是多少?(2)甲、乙两个交通站哪个站更繁忙?说明理由. (3)试计算甲、乙两交通站的车流量在[10,40]之间的频率. 解:根据茎叶图中的数据分析并作出判断. (1)甲交通站的车流量的中位数为58+552=56.5.乙交通站的车流量的中位数为36+372=36.5.(2)甲交通站的车流量集中在茎叶图的下方,而乙交通站的车流量集中在茎叶图的上方,从数据的分布情况来看,甲交通站更繁忙.(3)甲站的车流量在[10,40]之间的有4天, 故频率为414=27,乙站的车流量在[10,40]之间的有6天,故频率为614=37.层级二应试能力达标1.数据123,127,131,151,157,135,129,138,147,152,134,121,142,143的茎叶图中,茎应取________.解析:在茎叶图中叶应是数据中的最后一位,从而茎就确定了.答案:12,13,14,152.在如图所示的茎叶图中落在[20,40]上的频数为________.解析:由茎叶图给出了12个数据,知在[20,40]上有8个.答案:83.甲、乙两名同学学业水平考试的9科成绩如茎叶图所示,请你根据茎叶图判断谁的平均分高________.以看出,x甲=19(92解析:由茎叶图可+81+89×2+72+73+78×2+68)=80,x乙=19(91+83+86+88+89+72+75+78+69)≈81.2,x乙>x甲,故乙的平均数大于甲的平均数.答案:乙4.从甲、乙两个品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),结果如下:甲品种:271273280285285287292294295301303303307308310314319323325325328331334337352乙品种:284292295304306307312313315315316318318320322322324327329331333336337343356由以上数据设计了茎叶图如图所示根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论:①________________________________________________________________________;②________________________________________________________________________.解析:由茎叶图可以看出甲棉花纤维的长度比较分散,乙棉花纤维的长度比较集中(大部分集中在312~337之间),还可以看出乙的平均长度应大于310,而甲的平均长度要小于310等,通过分析可以得到答案.答案:①甲棉花纤维的长度比较分散,乙棉花纤维的长度比较集中②甲棉花纤维的长度的平均值小于乙棉花纤维长度的平均值(答案不唯一)5 .某校开展“爱我海西、爱我家乡”摄影比赛,9位评委为参赛作品A 给出的分数如茎叶图所示. 记分员在去掉一个最高分和一个最低分后,算的平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清.若记分员计算无误,则数字x 应该是________.解析:当x ≥4时,17(89+89+92+93+92+91+94)=6407≠91,∴x <4.∴17(89+89+92+93+92+91+x +90)=91,∴x =1.答案:16.某学校为准备参加市运动会,对本校甲、乙两个田径队中30名跳高运动员进行了测试,并采用茎叶图表示本次测试30人的跳高成绩(单位:cm),跳高成绩在175 cm 以上(包括175 cm)定义为“合格”,跳高成绩在175 cm 以下(不包括175 cm)定义为“不合格”.若用分层抽样的方法从甲、乙两队所有运动员中共抽取5人,则5人中“合格”与“不合格”的人数分别为________.解析:由茎叶图可知,30人中有12人“合格”,有18人“不合格”,用分层抽样的方法,则5人中“合格”与“不合格”的人数分别为2人,3人.答案:2,37.如图是某青年歌手大奖赛上七位评委为甲、乙两选手打出的分数的茎叶图(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手的平均分数分别为a 1,a 2,则下列结论成立的是________.(填序号)①a 1>a 2;②a 1<a 2;③a 1=a 2;④a 1,a 2的大小与m 无关.解析:甲去掉的两个分数为70和90+m ,故a 1=80+15(5+4+5+5+1)=84.乙去掉的两个分数为79和93,故a 2=80+15(4+4+6+4+7)=85.故可知②和④正确.答案:②④8.甲、乙两人在10天中每天加工零件的个数用茎叶图表示如图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为________和________.解析:x 甲=110×(18+19+20+20+21+22+23+31+31+35)=24,x 乙=110×(11+17+19+21+22+24+24+30+30+32)=23.答案:24 239.有关部门从甲、乙两个城市所有的自动售货机中随机抽取了16台,记录了上午8:00~11:00之间各自的销售情况(单位:元):甲:18,8,10,43,5,30,10,22,6,27,25,58,14,18,30,41; 乙:22,31,32,42,20,27,48,23,28,43,12,34,18,10,34,23.试用两种不同的方法分别表示上面的数据,并简要说明各自的优点.解:法一:从题目中数据不易直接看出各自的分布情况,为此,我们将以上数据用条形统计图表示,如图甲、乙.法二:茎叶图表示,如图.从法一可以看出,条形统计图能直观地反映数据分布的大致情况,并且能够清晰地表示出各个区间的具体数目.从法二可以看出,用茎叶图表示有关数据,不但可以保留有关信息,而且可以随时记录,给数据的记录和表示都带来方便.10.下面茎叶图是某班在一次测验时的成绩,伪代码用来同时统计女生、男生及全班成绩的平均分.试回答下列问题:(1)在伪代码中,“k=0”的含义是什么?横线①处应填什么?(2)执行伪代码,输出S,T,A的值分别是多少?(3)请分析该班男女生的学习情况.解:(1)全班32名学生中,有15名女生,17名男生,在伪代码中,根据“S←S/15,T←T/17”可推知,“k=1”和“k=0”分别代表男生和女生;S,T,A分别代表女生、男生及全班成绩的平均分;横线①处应填“(S+T)/32”.(2)女生、男生以及全班成绩的平均分分别为S=78,T=77,A≈77.47.(3)15名女生成绩的平均分为78,17名男生成绩的平均分为77.从中可以看出女生成绩比较集中.整体水平稍高于男生;男生中的高分段比女生高,低分段比女生多.相比较男生两极分化比较严重.。
2017-2018学年高中数学苏教版3教学案:第2章2.22.2.3茎叶图含解析
2.2。
3茎叶图预习课本P60~61,思考并完成以下问题1.怎样制作茎叶图?2.用茎叶图刻画数据有哪些优缺点?错误!1.茎叶图的制作步骤(1)将数据分为“茎”“叶”两部分.若数据是两位数,一般将两位数的十位数字作为茎,个位数字作为叶.(2)将所有的茎按大小顺序(一般是由小到大的顺序)自上而下排成一列,茎相同的共用一个茎,即剔除重复的数字,再画上一条竖线作为分界线,区分茎和叶.(3)将各个数据的“叶”按一定顺序在分界线的另一侧对应茎处同行列出.2.茎叶图刻画数据的优缺点优(1)所有的信息都可以从茎叶图中得点到.(2)茎叶图便于记录和表示.缺点当样本数据很多时,茎叶图的效果就不是很好了。
错误!1.下列关于茎叶图的叙述正确的是________.①将数据按位数进行比较,将大小基本不变或变化不大的作为一个主杆(茎),将变化大的位数作为分枝(叶),列在主杆的后面;②茎叶图只可以分析单组数据,不能对两组数据进行比较;③茎叶图不能表示三位数以上的数据;④画图时茎要按照从小到大的顺序从下向上列出,共茎的叶可以随意同行列出;⑤对于重复的数据,只算一个.答案:①2.下面茎叶图中所记录的原始数据有____个.答案:63.数据101,123,125,143,150,151,152,153的茎叶图中,茎应取________.答案:10,12,14,15制作茎叶图[典例]某中学高二(2)班甲、乙两名同学自高中以来每场数学考试成绩情况如下:甲的得分:95,81,75,89,71,65,76,88,94,110,107;乙的得分:83,86,93,99,88,103,98,114,98,79,101。
画出两人数学成绩的茎叶图,请根据茎叶图对两人的成绩进行比较.[解]用中间的数字表示两位同学得分的十位数字和百位数字,两边的数字分别表示两人每场数学考试成绩的个位数字.甲、乙两人数学成绩的茎叶图如图:从这个茎叶图上可以看出,乙同学的得分情况是大致对称的,集中在90多分;甲同学的得分情况除一个特殊得分外,也大致对称,集中在80多分.因此乙同学发挥比较稳定,总体得分情况比甲同学好.画茎叶图应注意的事项(1)将每个数据分为茎(高位)和叶(低位)两部分.一般来说数据是两位数的,十位数字为“茎",个位数字为“叶”;如果是小数,通常把整数部分作为“茎”,小数部分作为“叶".解题时要根据数据特点合理选择茎和叶.(2)将表示茎的数字按大小顺序由上到下排成一列.(3)将表示叶的数字写在茎的左、右两边,因此会随样本的改变而改变.[活学活用]1.某篮球运动员在某赛季各场比赛的得分情况如下:14,15,15,20,23,23,34,36,38,45,45,50。
茎叶图
54.5 58.5 62.5 66.5 70.5 74.5
根据上图可得这100名学生中体重在[56.5,64.5] 的学生人数是( C ) A. 20 B. 30 C. 40 D. 50
频率/组距
0.036 0.032 0.028 0.024 0.020 0.016 0.012 0.008 0.004
0.04 0.02 O 13 14 15 16 17 1819 秒
课堂练习
3.某班50名学生在一次百米测试中,成绩全部介于13 秒与19秒之间,将测试结果按如下方式分成六组:第 一组,成绩大于等于13秒且小于14秒;第二组,成绩 大于等于14秒且小于15秒;…… 频率/组距 第六组,成绩大于等于18秒且小 0.36 于等于19秒.右图是按上述分组 0.34 方法得到的频率分布直方图.设 成绩小于17秒的学生人数占全班 总人数的百分比为x,成绩大于等 0.18 于15秒且小于17秒的学生人数为y, 则从频率分布直方图中可分析出x 0.06 和y分别为( A ) A.0.9,35 C.0.1,35 B.0.9,45 D.0.1,45
频率/组距
根据上图可得这100名学生中体重在[56.5,64.5] 的学生人数是( ) A. 20 B. 30 C. 40 D. 50
课堂练习
4.为了了解某地区高三学生的身体发育情况,抽 查了该地区100名年龄为17.5 岁-18岁的男生体重(kg) ,得到频率分布直方图 如下: 频率/组距 0.07
频率/组距 0.0005 0.0004 0.0003 0.0002 0.0001
月收入(元)
1000 1500 2000 2500 3000 3500 4000
课堂练习
新高考 高中数学 必修二 课件+类型题5.1.3数据的直观表示
【归纳总结】 柱形图的作法和应用 (1)在柱形图中,通常沿水平轴组织类别,而沿竖直轴组织数值. (2)用于显示一段时间内的数据变化或显示各项之间的比较情况.
练:1. 某企业产值在2010年~2019年的年增量(即当年产值比前一年产值增加的量)统计图如图所示(单
位:万元),下列说法正确的是 ( ) A.2011年产值比2010年产值少 B.从2013年到2017年,产值年增量逐年减少 C.产值年增量的增量最大的是2019年 D.2018年的产值年增长率可能比2014年的产值年增长率低
典型例题
类型一 对柱形图的理解及应用
例1. 如图所示的是甲、乙、丙三个企业的产品成本(单位:万元)
及其构成比例,则下列判断正确的是 ( ) A.乙企业支付的工资占成本的比重在三个企业中最大 B.由于丙企业生产规模最大,故它的其他费用占成本的比重也最大 C.甲企业本着勤俭创业的原则,将其他费用降到了最低 D.乙企业用于工资和其他费用的支出额比甲、丙都高
类型二 对折线图的理解及应用
例2[2019·河南开封高三模拟]空气质量指数AQI是检测空气质量的重要参数,其数值越大说明空气污染状
况越严重,空气质量越差.某地环保部门统计了该地区某月1日至24日连续24天的空气质量指数AQI,根据得到 的数据绘制出如图所示的折线图,则下列说法错误的是 ( ) A.该地区在该月2日空气质量最好 B.该地区在该月24日空气质量最差 C.该地区从该月7日到12日AQI持续增大 D.该地区的空气质量指数AQI与这段日期成负相关
练:2、某商场一年中各月份的收入、 支出情况如图所示,下列说法中正确的是 A.支出最高值与支出最低值的比是8∶1 B.4至6月份的平均收入为50万元 C.利润最高的月份是2月份 D.2至3月份的收入的变化率与 11至12月份的收入的变化率相同
人教版高中数学必修三课件:2.2.1第二课时茎 叶 图
(3)用茎叶图刻画数据有两个优点: 一是所有的信息都可以从茎叶图中得到; 二是茎叶图便于记录和表示,能够展示数据的分布情 况.但当样本数据较多或数据位数较多时,茎叶图就显得不太 方便了.
茎叶图有什么统计意义?
答:(1)茎叶图通常用来记录两位数的数据,可以用其分析单 组数据,也可以对两组数据进行比较. (2)茎叶图反映数据的大致集中趋势,并能直接得到中位数, 对数据的稳定性作出判断.
(2)甲、乙两组数据用茎叶图表示如图,中间一列的数字表 示该数据的十位数,两边的数字表示该数据的个位数,则甲组 数据的平均数是________,乙组数据的中位数是________.
18+19+20+22+23+21+20+35+31×2 - 【解析】 x 甲= 10 =24,又乙组数据中间两位是 24,22,故中位数是 23. 【答案】 24 23
【解析】 由给定的茎叶图可知,这10名学生身高数据的 161+163 中位数为 =162. 2 【答案】 B
(2)某苗圃基地为了解基地内甲、乙两 块地种植的同一种树苗的长势情况,从两 块地各随机抽取了10株树苗,用茎叶图表 示上述两组数据,对两块地抽取树苗的高度的平均数 - x 甲, - x 乙 和中位数y甲, y乙进行比较,下面结论正确的是( A. - x 甲>- x 乙,y甲>y乙 C.- x 甲<- x 乙,y甲 >y乙 )
2.2.1
用样本的频率分布估计总体分布 第2课时 茎 叶 图
1.理解茎叶图. 2.会画茎叶图. 3.理解平均数与中位数的概念. 4.应用茎叶图解决简单问题.
1.重点:茎叶图的画法及理解. 2.难点:用茎叶图解决问题.
要点 茎叶图 (1)统计中还有一种被用来表示数据的图叫做茎叶图,茎是 指中间的一列数,叶是从茎的旁边生长出来的数.一般情况下 茎按从小到大的顺序从上向下列出,共茎的叶同行列出.
北师大版高中数学必修 必修 课后习题答案
第一章 算法初步 1.1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数r .第二步,计算以r 为半径的圆的面积2S r π=. 第三步,得到圆的面积S .2、算法步骤:第一步,给定一个大于1的正整数n .第二步,令1i =.第三步,用i 除n ,等到余数r .第四步,判断“0r =”是否成立. 若是,则i 是n 的因数;否则,i 不是n 的因数.第五步,使i 的值增加1,仍用i 表示.第六步,判断“i n >”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度d ,令1i =.的到小数点后第i 位的不足近似值,赋给a 的到小数点后第i 位的过剩近似值,赋给b . 第三步,计算55b a m =-.第四步,若m d <,则得到25的近似值为5a ;否则,将i 的值增加1,仍用i 表示.返回第二步. 第五步,输出5a .程序框图:习题1.1 A组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为x m3,应交纳水费y元,那么y与x之间的函数关系为1.2,071.9 4.9,7x xyx x≤≤⎧=⎨->⎩我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量x.第二步:判断输入的x是否不超过7. 若是,则计算 1.2y x=;若不是,则计算 1.9 4.9y x=-.第三步:输出用户应交纳的水费y.程序框图:2、算法步骤:第一步,令i=1,S=0.第二步:若i≤100成立,则执行第三步;否则输出S.第三步:计算S=S+i2.第四步:i= i+1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x,设收取的卫生费为m元.第二步:判断x与3的大小. 若x>3,则费用为5(3) 1.2=+-⨯;m x若x ≤3,则费用为5m =.第三步:输出m .程序框图:B 组 1、算法步骤:第一步,输入111222,,,,,a b c a b c ..第二步:计算21121221b c b c x a b a b -=-.第三步:计算12211221a c a c y ab a b -=-.第四步:输出,x y .程序框图:2、算法步骤:第一步,令n=1第二步:输入一个成绩r,判断r与6.8的大小. 若r≥6.8,则执行下一步;若r<6.8,则输出r,并执行下一步.第三步:使n的值增加1,仍用n表示.第四步:判断n与成绩个数9的大小. 若n≤9,则返回第二步;若n>9,则结束算法.INPUT “a ,b=”;a ,b sum=a+b程序框图:说明:本题在循环结构的循环体中包含了一个条件结构. 1.2基本算法语句 练习(P24) 1、程序:3练习(P29)INPUT “a ,b ,c=”;a ,b ,cINPUT “F=”;F C=(F -32)*5/94、程序:INPUT “a ,b ,c=”;a ,b ,csum=10.4*a+15.6*b+25.2*c PRINT “sum =”;sum END12、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新的两位数. 如输入25,则输出52. 34练习(P32)1习题1.2 A 组(P33)1、1(0)0(0)1(0)x x y x x x -+<⎧⎪==⎨⎪+>⎩2习题1.2 B 组(P33) 1、程序:31.3算法案例 练习(P45)1、(1)45; (2)98; (3)24; (4)17.2、2881.75.3、2200811111011000=() ,820083730=() 习题1.3 A 组(P48) 1、(1)57; (2)55. 2、21324.3、(1)104; (2)7212() (3)1278; (4)6315().4、习题1.3 B组(P48)1、算法步骤:第一步,令45b=,0c=.i=,0a=,0n=,1第二步,输入()a i.第三步,判断是否0()60≤<. 若是,则1a i=+,并执行第六步.a a第四步,判断是否60()80≤<. 若是,则1a i=+,并执行第六步.b b第五步,判断是否80()100≤≤. 若是,则1a i=+,并执行第六步.c c第六步,1i≤. 若是,则返回第二步.i i=+. 判断是否45第七步,输出成绩分别在区间[0,60),[60,80),[80,100]的人数,,a b c.2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等.第二章复习参考题A组(P50)Array1、(1)程序框图:1、(2)程序框图:2、见习题1.2 B组第1题解答. Array34、程序框图:程序:5(1)向下的运动共经过约199.805 m(2)第10次着地后反弹约0.098 m(3)全程共经过约299.609 m1、3x 和它的位数n .INPUT “n=”;ni=1S=0WHILE i<=nS=S+1/ii=i+1WENDPRINT “S=”;SEND第二步,判断n 是不是偶数,如果n 是偶数,令2n m =;如果n 是奇数,令12n m -=. 第三步,令1i =第四步,判断x 的第i 位与第(1)n i +-位上的数字是否相等. 若是,则使i 的值增加1,仍用i 表示;否则,x 不是回文数,结束算法.第五步,判断“i m >”是否成立. 若是,则n 是回文数,结束算法;否则,返回第四步.第二章 统计2.1随机抽样练习(P57)1、.抽样调查和普查的比较见下表:抽样调查的好处是可以节省人力、物力和财力,可能出现的问题是推断的结果与实际情况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差.2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号.(2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生.3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本.练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差.2、(1)对这118名教师进行编号;(2)计算间隔1187.37516k==,由于k不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔7k=;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62)1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地).习题2.1 A组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间.2、调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本.(2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等.(3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量.用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为a,则编号为7(050)+≤<所对应的那些天构成样本,检测样本中所有个体的空气质a k k量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是564298+=(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取256167⨯=(人),在女运动员中随机抽取281612-=(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案.习题2.1 B组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成.例如:(1)你最喜欢哪一门课程(2)你每月的零花钱平均是多少(3)你最喜欢看《新闻联播》吗(4)你每天早上几点起床(5)你每天晚上几点睡觉要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案.2.2用样本估计总体练习(P71)1、说明:由于样本的极差为364.41362.51 1.90-=,取组距为0.19,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图.2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右.练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大.练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量496.86x≈,标准差 6.55s≈.(2)重量位于(,)x s x s-+之间有14袋白糖,所占的百分比约为66.67%.3、(1)略. (2)平均分19.25x≈,中位数为15.2,标准差12.50s≈.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,x>说明存在大的异常数据,值得关注. 这些异常数据使标准差增大.15.2习题2.2 A组(P81)1、(1)茎叶图为:(2)汞含量分布偏向于大于1.00 ppm的方向,即多数鱼的汞含量分布在大于1.00 ppm的区域.(3)不一定. 因为我们不知道各批鱼的汞含量分布是否都和这批鱼相同. 即使各批鱼的汞含量分布相同,上面的数据只能为这个分布作出估计,不能保证平均汞含量大于1.00 ppm.(4)样本平均数 1.08x≈,样本标准差0.45s≈.(5)有28条鱼的汞含量在平均数与2倍标准差的和(差)的范围内.2、作图略. 从图形分析,发现这批棉花的纤维长度不是特别均匀,有一部分的纤维长度比较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息.在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断.4、说明:(1)对,从平均数的角度考虑;(2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑;(4)对,从平均数和标准差的角度考虑;5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数.现在已知知道至少有一个人的收入为50100x=万元,那么其他员工的收入之和为4913.55010075 iix==⨯-=∑(万元)每人平均只有1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低.(2)不能,要看中位数是多少.(3)能,可以确定有75%的员工工资在1万元以上,其中25%的员工工资在3万元以上.(4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多.6、甲机床的平均数=1.5x 甲,标准差=1.2845s 甲;乙机床的平均数 1.2z y =,标准差0.8718z s =. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比甲机床少,而且更为稳定,所以乙机床的性能较好.7、(1)总体平均数为199.75,总体标准差为95.26.(2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关.(3) (4)略习题2.2 B 组(P82)1、(1)由于测试1T 的标准差小,所以测试1T 结果更稳定,所以该测试做得更好一些.(2)由于2T 测出的值偏高,有利于增强队员的信心,所以应该选择测试2T .(3)将10名运动员的测试成绩标准化,得到如下的数据:从两次测试的标准化成绩来看,运动员G的平均体能最强,运动员E的平均体能最弱.2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2.3变量间的相关关系练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不(1)散点图如下: 让天鹅活动,对比两组居民的出生率是否相同.练习(P92)1、当0x =时,$147.767y =,这个值与实际卖出的热饮杯数150不符,原因是:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x ,预报值$y 能够等于实际值y . 事实上:y bx a e =++. (这里e 是随机变量,是引起预报值$y 与真实值y 之间的误差的原因之一,其大小取决于e 的方差.)2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793). 但是从散点图的分布特点来看,它们之间的线性相关性不强. 习题2.3 A 组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等.2、(3)基本成正相关关系,即食品所含热量越高,口味越好.(2)回归直线如下图所示:(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好.3、(1)散点图如下:(2)回归方程为:$0.66954.933=+.y x(3)加工零件的个数与所花费的时间呈正线性相关关系.4、(1)散点图为:(2)回归方程为:$0.546876.425=+.y x(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高.习题2.3 B组(P95)1、(1)散点图如下:(2)回归方程为:$1.44715.843y x=-.(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为$42.037y≈(万元).2、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可.第二章复习参考题A组(P100)1、A.2、(1)该组的数据个数,该组的频数除以全体数据总数;(2)nm N.3、(1)这个结果只能说明A城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖啡色,因为光顾连锁店的人使一种方便样本,不能代表A城市其他人群的想法.(2)这两种调查的差异是由样本的代表性所引起的. 因为A 城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.4、说明:这是一个敏感性问题,可以模仿阅读与思考栏目“如何得到敏感性问题的诚实反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高.(2)A 组的样本标准差为 3.730A S ≈,B 组的样本标准差为11.789B S ≈. 由于专业裁判给分更符合专业规则,相似程度应该高,因此A 组更像是由专业人士组成的.7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好.8、(1)略.(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42%.(3)城市的大学入学率年增长最快.说明:(4)可以模仿(1)(2)(3)的方法分析数据.第二章复习参考题B组(P101)1、频率分布如下表:从表中看出当把指标定为17.46千元时,月65%的推销员经过努力才能完成销售指标.2、(1)数据的散点图如下:(2)用y表示身高,x表示年龄,则数据的回归方程为$ 6.31771.984=+.y x (3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3~16岁的身高年均增长约为6.323 cm.(5)斜率与每年平均增长的身高之间之间近似相等.第三章概率3.1随机事件的概率练习(P113)1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面.(2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25.2、略3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1.练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次.1、0.72、0.6153、0.44、D5、B 习题3.1 A组(P123)1、D.2、(1)0;(2)0.2;(3)1.3、(1)430.067645≈;(2)900.140645≈;(3)7010.891645-≈.4、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为110,在第二种下也为110. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是1 10.习题3.1 B组(P124)1、D.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率1、110. 2、17. 3、16.练习(P133)1、38,38.2、(1)113;(2)1213;(3)14;(4)313;(5)0;(6)213;(7)12;(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为49;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1)16;(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为12,因此规则是公平的.游戏2:取两球同色的概率为13,异色的概率为23,因此规则是不公平的.游戏3:取两球同色的概率为12,异色的概率为12,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1)190;(2)18919090-=;(3)9919010-=3、(1)0.52;(2)0.18.4、(1)12;(2)16;(3)56;(4)16.5、(1)25;(2)825.6、(1)920;(2)920;(3)12.习题3.2 B组(P134)1、(1)13;(2)14.2、(1)35;(2)310;(3)910.说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M 三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1, G1=H1,。
茎叶图
高中数学新课程中茎叶图的考点茎叶图又称“枝叶图”,与频率分布直方图一样,都是用来表示样本数据的一种统计图。
通常我们将数的大小基本不变或者变化不大的位作为“茎”,将变化大的位作为“叶”。
1.茎叶图的书写规则书写规则是:“茎”一般要求按照从小到大的顺序从上到下列出。
公用“茎”的“叶”一般也按照从小到大的顺序同行列出,注意重复的项也必须写上。
2.特点图形形状的特点:(1)若图形扁而宽,则说明整体的样本数据集中,样本数据的差异性不大。
(2)若图形长而窄,则说明样本数据比较分散,标准差较大,距组较大。
3.优缺点同频率分布直方图比较,茎叶图中所有的原始数据都可以得到。
并且在以后新增加数据的时候容易修改,但直方图这样操作起来就很困难了。
茎叶图也有其缺点,就是当样本数据比较多的时候,很难进行此操作。
如果我们将茎叶图的茎和叶按逆时针方向旋转90度,得到的是一个没有坐标的直方图。
通过此操作,很容易求出各个数据段的频率分布或频率百分比。
下面我们通过几个例子来阐述上述问题。
例1右图是根据某校10位高一同学的身高(单位:cm)画出的茎叶图。
其中左边两位数字从左到右的分别表示学生身高的百位数字和十位数字, 15 5 5 7 8 右边的数字表示学生身高的个位数字,从图中可以得到这10个同学 16 1 3 3 5身高的中位数是() 17 1 2A.161cm B. 162cm C.163cm D.164cm解析:15 ∣5表示身高155cm。
这10个数字分别是:155cm、155cm、157cm、158cm、161cm、163cm、163cm、165cm、171cm、172cm。
所以中位数为 =162cm。
评注:由样本数据来求样本的中位数,一般先将所有的数据按从小到大排序。
若个数为奇数则取正中间一个,若个数为偶数,则取中间两个数的平均值。
茎叶图的优点就是对数据不需要排序,可以快速的求出统计量。
例2某中学高一(1)班中段考试数学成绩的茎叶图如右图所示,那么优秀率(90分以上)和最低分分别是() 5 1235A.15%,15B.15%,51 6 023*******C.10%,51D.10%,15 7 122345556677898 023367789 1245解析:我们可以将茎叶图转化为样本数据,可以知道最低分为51分。
高中数学第二章统计2_2_3茎叶图课件苏教版
1.利用茎叶图进行分析时要首先分清楚茎与叶所表示的意义及叶的排列规 律,茎叶图直观地表示了数据的集中、离散的程度以及中位数、众数等特征.
2.茎叶图既可以用于分析单组数据,也可以用于对两组数据进行比较分析.
[再练一题] 2.下面是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图2-2-16可知, 下列说法不正确的是________.(填序号)
2.在茎叶图2-2-18中比40大的数据有________个.
图2-2-18 【解析】 由茎叶图知比40大的有47,48,49,共3个. 【答案】 3
3.甲、乙两个班级各随机选出15名同学进行测试,成绩(单位:分)的茎叶图如 图2-2-19所示.
图2-2-19
则甲、乙两班的最高成绩各是________分,从图中看,________班的平均成 绩较高.
图2-2-16
①甲运动员的成绩好于乙运动员; ②乙运动员的成绩好于甲运动员; ③甲、乙两名运动员的成绩没有明显的差异; ④甲运动员的最低得分为0分. 【解析】 由图可知,甲运动员的成绩比较集中,且平均得分大约在30多 分,乙运动员得分也大致对称,平均得分在20多分,甲运动员最低分10分,乙运 动员最低分8分,故①正确.
图2-2-14 【解析】 由茎叶图知“茎”表示十位“叶”表示个位. 【答案】 45,45,52,56,57,58,60,63
[质疑·手记] 预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:
茎叶图的画法
[小组合作型]
某中学甲、乙两名同学在一学年内的数学考试成绩情况如下: 甲的得分:95,81,75,89,71,65,76,88,94,110,107; 乙的得分:83,86,93,99,88,103,98,114,98,79,101. 画出两人数学成绩的茎叶图,并根据茎叶图对两人的成绩进行比较. 【导学 号:90200046】
全国通用版高中数学第九章统计经典知识题库
(名师选题)全国通用版高中数学第九章统计经典知识题库单选题1、设一组样本数据x1,x2,…,xn的方差为0.01,则数据10x1,10x2,…,10xn的方差为()A.0.01B.0.1C.1D.10答案:C分析:根据新数据与原数据关系确定方差关系,即得结果.因为数据ax i+b,(i=1,2,⋯,n)的方差是数据x i,(i=1,2,⋯,n)的方差的a2倍,所以所求数据方差为102×0.01=1故选:C小提示:本题考查方差,考查基本分析求解能力,属基础题.2、为调查参加考试的高二级1200名学生的成绩情况,从中抽查了100名学生的成绩,就这个问题来说,下列说法正确的是()A.1200名学生是总体B.每个学生是个体C.样本容量是100D.抽取的100名学生是样本答案:C分析:根据总体、个体、样本容量、样本的定义,结合题意,即可判断和选择.根据题意,总体是1200名学生的成绩;个体是每个学生的成绩;样本容量是100,样本是抽取的100名学生的成绩;故正确的是C.故选:C.3、某单位有男职工56人,女职工42人,按性别分层,用分层随机抽样的方法从全体职工中抽出一个样本,如果样本按比例分配,男职工抽取的人数为16人,则女职工抽取的人数为()A.12B.20C.24D.28答案:A分析:根据题意,结合分层抽样的计算方法,即可求解.根据题意,设抽取的样本人数为n,因男职工抽取的人数为56n56+42=16,所以n=28,因此女职工抽取的人数为28−16=12(人).故选:A.4、下列调查方式较为合适的是()A.为了了解灯管的使用寿命,采用普查的方式B.为了了解我市中学生的视力状况,采用抽样调查的方式C.调查一万张面值为100元的人民币中有无假币,采用抽样调查的方式D.调查当今中学生喜欢什么体育活动,采用普查的方式答案:B分析:根据实际情况选择合适的调查方式即可判断.对A,为了了解灯管的使用寿命,应采用抽样调查的方式,故A错误;对B,为了了解我市中学生的视力状况,采用抽样调查的方式,故B正确;对C,调查一万张面值为100元的人民币中有无假币,采用抽样普查的方式,故C错误;对D,调查当今中学生喜欢什么体育活动,采用抽样普查的方式,故D错误.故选:B.5、新莽铜嘉量是由王莽国师刘歆等人设计制造的标准量器,它包括了龠(yuè)、合、升、斗、斛这五个容量单位.每一个量又有详细的分铭,记录了各器的径、深、底面积和容积.现根据铭文计算,当时制造容器时所用的圆周率分别为3.1547,3.1992,3.1498,3.2031,比《周髀算经》的“径一而周三”前进了一大步,则上面4个数据与祖冲之给出的约率(227≈3.1429)、密率(355113≈3.1416)这6个数据的中位数与极差分别为()A .3.1429,0.0615B .3.1523,0.0615C .3.1498,0.0484D .3.1547,0.0484 答案:B分析:先对这6个数由小到大(或由大到小)排列,然后利用中位数和极差的定义求解即可 所给6个数据由小到大排列依次为3.1416,3.1429,3.1498,3.1547,3.1992,3.2031, 所以这6个数据的中位数为(3.1498+3.1547)÷2≈3.1523, 极差为3.2031−3.1416=0.0615, 故选:B.6、已知某6个数据的平均数为4,方差为8,现加入数据2和6,此时8个数据的方差为( ) A .8B .7C .6D .5 答案:B分析:由平均数和方差的计算公式求出平均数和方差即可得出答案.设原数据为a 1,a 2,a 3,a 4,a 5,a 6,则∑a i 6i=1=6×4=24,16∑(a i −4)26i=1=8,加入数据2和6,后,所得8个数据的平均数x̅=∑a i 6i=1+2+68=4,方差s 2=∑(a i −4)26i=1+(2−4)2+(6−4)28=48+4+48=7.故选:B .7、某校高一、高二、高三的学生人数分别为800,750,650,为了解学生的视力情况,现用分层随机抽样的方法从中抽取部分学生进行调查,若样本中高二学生的人数为30,则这次调查的样本容量为( ) A .88B .90C .92D .94 答案:A分析:设样本容量为x ,然后由分层抽样的定义列方程求解即可 设样本容量为x ,则x800+750+650=30750,解得x =88.故选:A8、从某中学随机抽取100名学生,将他们的身高数据(单位cm)绘制成频率分布直方图,若要从身高在[150,160),[160,170),[170,180]三组内的学生中,用分层抽样的方法选取16人参加一次活动.则从身高在[170,180]内的学生中选取的人数应为()A.3B.4C.5D.7答案:B分析:先求得a的值,然后结合分层抽样的知识计算出正确答案.依题意(0.005+0.015+a+0.035+0.02)×10=1,解得a=0.025,身高在[150,160),[160,170),[170,180]三组内的学生比例为0.025:0.035:0.02=5:7:4,用分层抽样的方法选取16人参加一次活动,则从身高在[170,180]内的学生中选取的人数应为4人故选:B9、关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请全校m名同学每人随机写下一个都小于1的正实数对(x,y);再统计两数能与1构成钝角三角形三边的数对(x,y)的个数a;最后再根据统计数a估计π的值,那么可以估计π的值约为()A.4am B.a+2mC.a+2mmD.4a+2mm答案:D解析:由试验结果知m对0~1之间的均匀随机数x,y,满足{0<x<10<y<1,面积为1,再计算构成钝角三角形三边的数对(x,y),满足条件的面积,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,即可估计π的值.解:根据题意知,m 名同学取m 对都小于1的正实数对(x,y ),即{0<x <10<y <1,对应区域为边长为1的正方形,其面积为1,若两个正实数x,y 能与1构成钝角三角形三边,则有{x 2+y 2<1x +y >10<x <10<y <1,其面积S =π4−12;则有am =π4−12,解得π=4a+2m m故选:D .小提示:本题考查线性规划可行域问题及随机模拟法求圆周率的几何概型应用问题. 线性规划可行域是一个封闭的图形,可以直接解出可行域的面积;求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.10、从某网络平台推荐的影视作品中抽取400部,统计其评分数据,将所得400个评分数据分为8组:[66,70)、[70,74)、⋯、[94,98],并整理得到如下的频率分布直方图,则评分在区间[82,86)内的影视作品数量是( )A .20B .40C .64D .80 答案:D分析:利用频率分布直方图可计算出评分在区间[82,86)内的影视作品数量.由频率分布直方图可知,评分在区间[82,86)内的影视作品数量为400×0.05×4=80. 故选:D.11、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率直方图如图所示,估计棉花纤维的长度的样本数据的80百分位数是()A.29 mmB.29.5 mmC.30 mmD.30.5 mm答案:A分析:先求得棉花纤维的长度在30 mm以下的比例为85%,在25 mm以下的比例为85%-25%=60%,从而可得80百分位数一定位于[25,30)内,进而可求出答案棉花纤维的长度在30 mm以下的比例为(0.01+0.01+0.04+0.06+0.05)×5=0.85=85%,在25 mm以下的比例为85%-25%=60%,因此,80百分位数一定位于[25,30)内,=29,由25+5×0.80−0.600.85−0.60可以估计棉花纤维的长度的样本数据的80百分位数是29 mm.故选:A12、“中国天眼”为500米口径球面射电望远镜,是具有我国自主知识产权、世界最大单口径、最灵敏的射电望远镜.建造“中国天眼”的目的是()A.通过调查获取数据B.通过试验获取数据C.通过观察获取数据D.通过查询获得数据答案:C分析:直接由获取数据的途径求解即可.“中国天眼”主要是通过观察获取数据.故选:C.填空题13、已知一组数据6,7,8,8,9,10,则该组数据的方差是____.答案:53.分析:由题意首先求得平均数,然后求解方差即可.由题意,该组数据的平均数为6+7+8+8+9+106=8,所以该组数据的方差是16[(6−8)2+(7−8)2+(8−8)2+(8−8)2+(9−8)2+(10−8)2]=53.小提示:本题主要考查方差的计算公式,属于基础题.14、为了分析高三年级的8个班400名学生第一次高考模拟考试的数学成绩,决定在8个班中每班随机抽取12份试卷进行分析,这个问题中样本容量是________.答案:96分析:由于每个班抽12份,所以8个班共抽96份,所以样本容量为96本题中,400名学生第一次高考模拟考试的数学成绩是总体,从8个班中每班抽取的12名学生的数学成绩是样本,400是总体个数,96是样本容量.所以答案是:9615、某公司青年、中年、老年员工的人数之比为10∶8∶7,从中抽取100名作为样本,若每人被抽中的概率是0.2,则该公司青年员工的人数为__________.答案:200分析:先根据分层抽样的方法计算出该单位青年职工应抽取的人数,进而算出青年职工的总人数.由题意,从中抽取100名员工作为样本,需要从该单位青年职工中抽取1010+8+7×100=40(人).因为每人被抽中的概率是0.2,所以青年职工共有400.2=200(人).所以答案是:200.16、已知一组数据4,2a,3−a,5,6的平均数为4,则a的值是_____.答案:2分析:根据平均数的公式进行求解即可.∵数据4,2a,3−a,5,6的平均数为4∴4+2a+3−a+5+6=20,即a=2.所以答案是:2.小提示:本题主要考查平均数的计算和应用,比较基础.17、为了了解初中生的身体素质,某地区随机抽取了n名学生进行跳绳测试,根据所得数据画样本的频率分布直方图如图所示,且从左到右第一小组的频数是100,则n=_____ .答案:1000解析:由频率分布直方图求出从左到右第一小组的频率,再利用样本容量等于频数和频率的比值求出n.由频率分布直方图知,从左到右第一小组的频率为0.004×25=0.1,且从左到右第一小组的频数是100,所=1000.以n=1000.1所以答案是:1000解答题18、某商店销售了30双皮鞋,其中各种尺码的销售量如下表所示:(1)计算30双皮鞋尺码的平均数、中位数、众数;(2)从实际出发,问题(1)中的三种统计特征量对商店有无指导意义?答案:(1)平均数为23.55 cm,中位数为23.5 cm,众数为23.5 cm(2)众数对商店进货有实际指导意义分析:(1)直接结合平均数,中位数,众数概念计算即可;(2)结合生活实际考虑,众数对进货量有指导意义.(1)(1)30双皮鞋尺码的平均数为:22+2×22.5+4×23+14×23.5+5×24+3×24.5+25=23.55cm;30由于小于23.5 cm的皮鞋的销售量为1+2+4=7(双),大于23.5 cm的皮鞋的销售量为5+3+1=9(双),故将数据从小到大排序后,处于正中间位置的两个数均为23.5 cm,从而中位数为23.5 cm;又23.5 cm共出现14次,所以众数也为23.5 cm;(2)(2)众数对商店进货有实际指导意义,因为尺码为23.5 cm的皮鞋销量最多,所以商店应多进货,而尺码为22 cm,25 cm的皮鞋销量较少,故应少进货.19、某中学要从高一年级甲乙两个班级中选择一个班参加电视台组织的“环保知识竞赛”,该校对甲乙两班的参赛选手(每班7人)进行了一次环保知识测试,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生的平均分是85,乙班学生成绩的中位数是85.(1)求x,y的值;(2)根据茎叶图,求甲乙两班同学方差的大小,并从统计学角度分析,该校应选择甲班还是乙班参赛.答案:(1)x=9,y=5;(2)乙班成绩比较稳定,故应选乙班参加.分析:(1)利用茎叶图,根据甲班7名学生成绩的平均分是85,乙班7名学生成绩的中位数是85.先求出x,y,(2)求出乙班平均分,再求出甲班7名学生成绩方差和乙班名学生成绩的方差,由此能求出结果.解:(1)甲班的平均分为:17(75+78+80+80+x+85+92+96)=85;解得x=9,∵乙班7名学生成绩的中位数是85,∴y=5,(2)乙班平均分为:17(75+80+80+85+90+90+95)=85;甲班7名学生成绩方差S12=17(102+72+52+42+02+72+112)=3607,乙班名学生成绩的方差S22=17(102+52+52+02+52+52+102)=3007,∵两个班平均分相同,S22<S12,∴乙班成绩比较稳定,故应选乙班参加.小提示:本题考查茎叶图的应用,解题时要认真审题,属于基础题.20、第24届北京冬季奥林匹克运动会于2022年2月4日至2月20日在北京和张家口联合举办.这是中国历史上第一次举办冬季奥运会,它掀起了中国人民参与冬季运动的大热潮.某市举办了中学生滑雪比赛,从中抽取40名学生的测试分数绘制成茎叶图和频率分布直方图如下,后来茎叶图受到了污损,可见部分信息如图.(1)求频率分布直方图中a的值,并根据直方图估计该市全体中学生的测试分数的平均数(同一组中的数据以这组数据所在区间中点的值作代表,结果保留一位小数);(2)现要对测试成绩在前26%的中学生颁发“滑雪达人”证书,并制定出能够获得证书的测试分数线,请你用样本来估计总体,给出这个分数线的估计值.答案:(1)a=0.02,平均数为74.5(2)82分析:(1)计算出测试分数位于[90,100]个数,可求得测试分数位于[80,90)的个数,由此可求得a的值,将每个矩形底边的中点值乘以对应矩形的面积,将所得结果全加可得样本的平均数;(2)设能够获得证书的测试分数线为x,分析可得80<x<90,根据已知条件可得出关于x的等式,求解即可.(1)解:由频率分布直方图可知,测试分数位于[90,100]的频率为10×0.01=0.1,则测试分数位于[90,100]个数为40×0.1=4,所以,测试分数位于[80,90)的个数为40−(4+10+14+4)=8,÷10=0.02.所以a=840估计平均数为55×0.1+65×0.25+75×0.35+85×0.2+95×0.1=74.5.(2)解:因为测试分数位于[90,100]的频率为0.1,测试分数位于[80,90)的频率为0.2,能够获得“滑雪达人”证书的中学生测试分数要在前26%,故设能够获得证书的测试分数线为x,则80<x<90,由(90−x)×0.02=0.26−0.1,可得x=82,所以分数线的估计值为82.。
茎叶图
高中数学新课程中茎叶图的考点茎叶图又称“枝叶图”,与频率分布直方图一样,都是用来表示样本数据的一种统计图。
通常我们将数的大小基本不变或者变化不大的位作为“茎”,将变化大的位作为“叶”。
1.茎叶图的书写规则书写规则是:“茎”一般要求按照从小到大的顺序从上到下列出。
公用“茎”的“叶”一般也按照从小到大的顺序同行列出,注意重复的项也必须写上。
2.特点图形形状的特点:(1)若图形扁而宽,则说明整体的样本数据集中,样本数据的差异性不大。
(2)若图形长而窄,则说明样本数据比较分散,标准差较大,距组较大。
3.优缺点同频率分布直方图比较,茎叶图中所有的原始数据都可以得到。
并且在以后新增加数据的时候容易修改,但直方图这样操作起来就很困难了。
茎叶图也有其缺点,就是当样本数据比较多的时候,很难进行此操作。
如果我们将茎叶图的茎和叶按逆时针方向旋转90度,得到的是一个没有坐标的直方图。
通过此操作,很容易求出各个数据段的频率分布或频率百分比。
下面我们通过几个例子来阐述上述问题。
例1右图是根据某校10位高一同学的身高(单位:cm)画出的茎叶图。
其中左边两位数字从左到右的分别表示学生身高的百位数字和十位数字,15 5 5 7 8右边的数字表示学生身高的个位数字,从图中可以得到这10个同学16 1 3 3 5身高的中位数是()17 1 2A.161cm B. 162cm解析:15 ∣5表示身高155cm。
这10个数字分别是:155cm、155cm、157cm、158cm、161cm、163c m、163cm、165cm、171cm、172cm。
所以中位数为 =162cm。
评注:由样本数据来求样本的中位数,一般先将所有的数据按从小到大排序。
若个数为奇数则取正中间一个,若个数为偶数,则取中间两个数的平均值。
茎叶图的优点就是对数据不需要排序,可以快速的求出统计量。
例2某中学高一(1)班中段考试数学成绩的茎叶图如右图所示,那么优秀率(90分以上)和最低分分别是() 5 1235%,15 %,51 6 09%,51 %,15 7 98 023367789 1245解析:我们可以将茎叶图转化为样本数据,可以知道最低分为51分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.2 第6课时 茎叶图
教学目标
(1)掌握茎叶图的意义及画法,并能在实际问题中用茎叶图用数据统计;
(2)通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.
教学重点
茎叶图的意义及画法.
教学难点
茎叶图用数据统计.
教学过程
一、复习练习: 为了了解高一学生的体能情况,某校抽取部
分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.
(1) 第二小组的频率是多少?样本容量是多
少?
(2) 若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少? (3) 在这次测试中,学生跳绳次数的中位数落在
哪个小组内?请说明理由。
分析:在频率分布直方图中,各小长方形的面
积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于1。
解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小, 因此第二小组的频率为:40.0824171593
=+++++ 又因为频率=第二小组频数样本容量
所以 121500.08=
==第二小组频数样本容量第二小组频率 (2)由图可估计该学校高一学生的达标率约为
171593100%88%24171593
+++⨯=+++++ (3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为
69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组.
二、问题情境
1.情境:某篮球运动员在某赛季各场比赛的得分情况如下:
12,15,24,25,31,31,36,36,37,39,44,49,50.
2.问题:如何有条理地列出这些数据,分析该运动员的整体水平及发挥的稳定程度?三、建构数学
1.茎叶图的概念:
一般地:当数据是一位和两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图。
茎按从小到大的顺序从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出。
2.茎叶图的特征:
(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时
添加,方便记录与表示;
(2)茎叶图只便于表示两位(或一位)有效数字的数据,对位数多的数据不太容易操作;而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但
是没有表示两个记录那么直观,清晰;
(3)茎叶图对重复出现的数据要重复记录,不能遗漏.
四、数学运用
1.例题:
例1.(1)情境中的运动员得分的茎叶
图如图:
(2)从这个图可以直观的看出该运动
员平均得分及中位数、众数都在20和
40之间,且分布较对称,集中程度高,
说明其发挥比较稳定.
例2.甲、乙两篮球运动员在上赛季每场比赛的得分如下,试比较这两位运动员的得分水平.
甲 12,15,24,25,31,31,36,36,37,39,44,49,50.
乙8,13,14,16,23,26,28,33,38,
39,51
解:画出两人得分的茎叶图
从这个茎叶图可以看出甲运动员的得分大致
对称平均得分及中位数、众数都是30多分;乙运动员的得分除一个51外,也大致对称,平均得分及中位数、众数都是20多分,因此甲运动员发挥比较稳定,总体得分情况比乙好.
2.练习:
(1)右面是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知( A )A.甲运动员的成绩好于乙运动员
B.乙运动员的成绩好于甲运动员
C.甲、乙两名运动员的成绩没有明显的差异D.甲运动员的最低得分为0分
(2)课本第58页,练习第1、2题.
五、回顾小结:
1.绘制茎叶图的一般方法;
2.茎叶图的特征.
六、课外作业:
课本第60页第7、8、9题.
甲
1
2
3
4
5
乙
8
247
199
36
2
50
32
875421
944
1。