文科立体几何线面角二面角专题带答案

合集下载

专题35 空间中线线角、线面角,二面角的求法-

专题35   空间中线线角、线面角,二面角的求法-

专题35 空间中线线角、线面角、二面角的求法【高考地位】立体几何是高考数学命题的一个重点,空间中线线角、线面角的考查更是重中之重. 其求解的策略主要有两种方法:其一是一般方法,即按照“作——证——解”的顺序进行;其一是空间向量法,即建立直角坐标系进行求解. 在高考中常常以解答题出现,其试题难度属中高档题.类型一 空间中线线角的求法方法一 平移法例1正四面体ABCD 中, E F ,分别为棱AD BC ,的中点,则异面直线EF 与CD 所成的角为 A.6π B. 4π C. 3π D. 2π 【变式演练1】【2021届全国著名重点中学新高考冲刺】如图,正方体1111ABCD A B C D -,的棱长为6,点F 是棱1AA 的中点,AC 与BD 的交点为O ,点M 在棱BC 上,且2BM MC =,动点T (不同于点M )在四边形ABCD 内部及其边界上运动,且TM OF ⊥,则直线1B F 与TM 所成角的余弦值为( )A B C D .79【变式演练2】【江苏省南通市2020-2021学年高三上学期9月月考模拟测试】当动点P 在正方体1111ABCD A B C D -的棱DC 上运动时,异面直线1D P 与1BC 所成角的取值范围( )A .,64ππ⎡⎤⎢⎥⎣⎦B .,63ππ⎡⎤⎢⎥⎣⎦C .,43ππ⎡⎤⎢⎥⎣⎦D .,32ππ⎡⎫⎪⎢⎣⎭【变式演练3】【甘肃省白银市靖远县2020届高三高考数学(文科)第四次联考】在四面体ABCD 中,2BD AC ==,AB BC CD DA ====E ,F 分别为AD ,BC 的中点,则异面直线EF 与AC 所成的角为( )A .π6B .π4C .π3D .π2【变式演练4】【2020年浙江省名校高考押题预测卷】如图,在三棱锥S ABC -中,SA ⊥平面ABC ,4AB BC ==,90ABC ∠=︒,侧棱SB 与平面ABC 所成的角为45︒,M 为AC 的中点,N 是侧棱SC上一动点,当BMN △的面积最小时,异面直线SB 与MN 所成角的余弦值为( )A .16B .3C D .6方法二 空间向量法例2、【重庆市第三十七中学校2020-2021学年高三上学期10月月考】在长方体1111ABCD A B C D -中,E ,F ,G 分别为棱1AA ,11C D ,1DD 的中点,12AB AA AD ==,则异面直线EF 与BG 所成角的大小为( ) A .30B .60︒C .90︒D .120︒例3、【四川省泸县第四中学2020-2021学年高三上学期第一次月考】在长方体1111ABCD A B C D -中,2BC =,14AB BB ==,E ,F 分别是11A D ,CD 的中点,则异面直线1A F 与1B E 所成角的余弦值为( )A .34B .34-C D .6【变式演练5】【2021届全国著名重点中学新高考冲刺】《九章算术》是古代中国乃至东方的第一部自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3π D .2π 【变式演练6】【云南省云天化中学、下关一中2021届高三复习备考联合质量检测卷】如图所示,在正方体1111ABCD A B C D -中,点E 为线段AB 的中点,点F 在线段AD 上移动,异面直线1B C 与EF 所成角最小时,其余弦值为( )A .0B .12C D .1116类型二 空间中线面角的求法方法一 垂线法第一步 首先根据题意找出直线上的点到平面的射影点;第二步 然后连接其射影点与直线和平面的交点即可得出线面角; 第三步 得出结论.例3如图,四边形ABCD是矩形,1,AB AD ==E 是AD 的中点,BE 与AC 交于点F ,GF ⊥平面ABCD .(Ⅰ)求证:AF ⊥面BEG ;(Ⅰ)若AF FG =,求直线EG 与平面ABG 所成角的正弦值.【变式演练7】已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC 的中心,则1AB 与底面ABC 所成角的正弦值为( )A .13 B. C.3 D .23【变式演练8】【北京市朝阳区2020届高三年级下学期二模】如图,在五面体ABCDEF 中,面ABCD 是正方形,AD DE ⊥,4=AD ,2DE EF ==,且π3EDC ∠=.(1)求证:AD ⊥平面CDEF ;(2)求直线BD 与平面ADE 所成角的正弦值;GFEDCBA(3)设M 是CF 的中点,棱AB 上是否存在点G ,使得//MG 平面ADE ?若存在,求线段AG 的长;若不存在,说明理由.方法二 空间向量法第一步 首先建立适当的直角坐标系并写出相应点的空间直角坐标; 第二步 然后求出所求异面直线的空间直角坐标以及平面的法向量坐标;第三步 再利用a bsin a bθ→→→→⋅=即可得出结论.例4 【内蒙古赤峰市2020届高三(5月份)高考数学(理科)模拟】在四棱锥P ABCD -中,底面ABCD 为等腰梯形,//BC AD ,222AD BC CD ===,O 是AD 的中点,PO ⊥平面ABCD ,过AB 的平面交棱PC 于点E (异于点C ,P 两点),交PO 于F .(1)求证://EF 平面ABCD ;(2)若F 是PO 中点,且平面EFD 与平面ABCD 求PC 与底面ABCD 所成角的正切值.【变式演练9】【2020年浙江省名校高考仿真训练】已知三棱台111ABC A B C -的下底面ABC 是边长为2的正三角形,上地面111A B C △是边长为1的正三角形.1A 在下底面的射影为ABC 的重心,且11A B A C ⊥.(1)证明:1A B ⊥平面11ACC A ;(2)求直线1CB 与平面11ACC A 所成角的正弦值.类型三 空间二面角的求解例4【江西省部分省级示范性重点中学教科研协作体2021届高三统一联合考试】三棱锥S ABC -中,2SA BC ==,SC AB ==,SB AC ==记BC 中点为M ,SA 中点为N(1)求异面直线AM 与CN 的距离; (2)求二面角A SM C --的余弦值.【变式演练10】【2021年届国著名重点中学新高考冲刺】如图,四边形MABC 中,ABC 是等腰直角三角形,90ACB ∠=︒,MAC △是边长为2的正三角形,以AC 为折痕,将MAC △向上折叠到DAC △的位置,使D 点在平面ABC 内的射影在AB 上,再将MAC △向下折叠到EAC 的位置,使平面EAC ⊥平面ABC ,形成几何体DABCE .(1)点F 在BC 上,若//DF 平面EAC ,求点F 的位置; (2)求二面角D BC E --的余弦值. 【高考再现】1.【2020年高考山东卷4】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角为 ( )A .20︒B .40︒C .50︒D .90︒2. 【2017课标II ,理10】已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A B C D 3.【2020年高考全国Ⅰ卷理数16】如图,在三棱锥P ABC -的平面展开图中,1,3,,,30AC AB AD AB AC AB AD CAE ===⊥⊥∠=︒,则cos FCB ∠=_____________.4.【2020年高考全国Ⅱ卷理数20】如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,,M N 分别为11,BC B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:1AA //MN ,且平面1A AMN ⊥平面11EB C F ;(2)设O 为Ⅰ111C B A 的中心,若F C EB AO 11平面∥,且AB AO =,求直线E B 1与平面AMN A 1所成角的正弦值.5.【2020年高考江苏卷24】在三棱锥A —BCD 中,已知CB =CD BD =2,O 为BD 的中点,AO Ⅰ平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=14BC,设二面角F—DE—C的大小为θ,求sinθ的值.6.【2020年高考浙江卷19】如图,三棱台DEF—ABC中,面ADFC⊥面ABC,∠ACB=∠ACD=45°,DC =2BC.(I)证明:EF⊥DB;(II)求DF与面DBC所成角的正弦值.7.【2020年高考山东卷20】如图,四棱锥P ABCD-的底面为正方形,PD⊥底面ABCD,设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知1PD AD==,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.【反馈练习】1.【江西省乐平市第一中学2021届高三上学期联考理科】已知正方体1111ABCD A B C D -中,点E ,F 分别是线段BC ,1BB 的中点,则异面直线DE 与1D F 所成角的余弦值为( )A B C .35 D .452.【湖南省永州市宁远、道县、东安、江华、蓝山、新田2020届高三下学期六月联考】某四棱锥的三视图如图所示,点E 在棱BC 上,且2BE EC =,则异面直线PB 与DE 所成的角的余弦值为( )A .BCD .153.【2020届河北省衡水中学高三下学期第一次模拟】如图,在棱长为3的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足12DP PB +=1B P 与直线1AD 所成角的余弦值的取值范围为( )A .10,2⎡⎤⎢⎥⎣⎦B .10,3⎡⎤⎢⎥⎣⎦C .12⎡⎢⎣⎦D .1,22⎡⎢⎣⎦4.【广西玉林市2021届高三11月教学质量监测理科】如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AD ,CC 1的中点,则异面直线A 1E 与BF 所成角的大小为( )A .6πB .4πC .3πD .2π 5.【山东省泰安市2020届高三第四轮模拟复习质量】如图,在三棱锥A —BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别为AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是( )A .58B .8C .78D .86.【福建省厦门市2020届高三毕业班(6月)第二次质量检查(文科)】如图,圆柱1OO 中,12OO =,1OA =,1OA O B ⊥,则AB 与下底面所成角的正切值为( )A .2BC .2D .127.【内蒙古赤峰市2020届高三(5月份)高考数学(理科)】若正方体1AC 的棱长为1,点P 是面11AA D D 的中心,点Q 是面1111D C B A 的对角线11B D 上一点,且//PQ 面11AA B B ,则异面直线PQ 与1CC 所成角的正弦值为__.8.【吉林省示范高中(四平一中、梅河口五中、白城一中等)2020届高三第五次模拟联考】如图,已知直三棱柱ADF BCE -,AD DF ⊥,2AD DF CD ===,M 为AB 上一点,四棱锥F AMCD -的体积与该直三棱柱的体积之比为512,则异面直线AF 与CM 所成角的余弦值为________.9.【湖北省华中师大附中2020届高三下学期高考预测联考文科】如图,AB 是圆O 的直径,点C 是圆O 上一点,PA ⊥平面ABC ,E 、F 分别是PC 、PB 边上的中点,点M 是线段AB 上任意一点,若2AP AC BC ===.(1)求异面直线AE 与BC 所成的角:(2)若三棱锥M AEF -的体积等于19,求AM BM10.【广东省湛江市2021届高三上学期高中毕业班调研测试】如图,三棱柱111ABC A B C -中,底面ABC 是边长为2的等边三角形,侧面11BCC B 为菱形,且平面11BCC B ⊥平面ABC ,160CBB ∠=︒,D 为棱1AA 的中点.(1)证明:1BC ⊥平面1DCB ;(2)求二面角11B DC C --的余弦值.11.【河南省焦作市2020—2021学年高三年级第一次模拟考试数学(理)】如图,四边形ABCD 为菱形,120ABC ∠=︒,四边形BDFE 为矩形,平面BDFE ⊥平面ABCD ,点P 在AD 上,EP BC ⊥.(1)证明:AD ⊥平面BEP ;(2)若EP 与平面ABCD 所成角为60°,求二面角C PE B --的余弦值.12.【广西南宁三中2020届高三数学(理科)考试】如图1,在直角ABC 中,90ABC ∠=︒,AC =AB =D ,E 分别为AC ,BD 的中点,连结AE 并延长交BC 于点F ,将ABD △沿BD 折起,使平面ABD ⊥平面BCD ,如图2所示.(1)求证:AE CD ⊥;(2)求平面AEF 与平面ADC 所成锐二面角的余弦值.13.【广西柳州市2020届高三第二次模拟考试理科】已知三棱锥P ABC -的展开图如图二,其中四边形ABCD ABE △和BCF △均为正三角形,在三棱锥P ABC -中:(1)证明:平面PAC ⊥平面ABC ;(2)若M 是PA 的中点,求二面角P BC M --的余弦值.14.【浙江省“山水联盟”2020届高三下学期高考模拟】四棱锥P ABCD -,底面ABCD 为菱形,侧面PBC 为正三角形,平面PBC ⊥平面ABCD ,3ABC π∠=,点M 为AD 中点.;(1)求证:CM PB(2)若点N是线段PA上的中点,求直线MN与平面PCM所成角的正弦值.。

高考立体几何文科大题及答案

高考立体几何文科大题及答案
(Ⅰ)证明: ;
(Ⅱ)求二面角A— —B的大小。
14.(2009宁夏海南卷文)如图,在三棱锥 中,⊿ 是等边三角形,∠PAC=∠PBC=90(Ⅰ)证明:AB⊥PC
(Ⅱ)若 ,且平面 ⊥平面 ,
求三棱锥 体积。
15.(2009福建卷文)如图,平行四边形 中, , 将
沿 折起到 的位置,使平面 平面
(I)求证:
又底面ABCD是正方形, CD AD,又SD AD=D, CD 平面SAD。
过点D在平面SAD内做DF AE于F,连接CF,则CF AE,
故 CFD是二面角C-AE-D的平面角,即 CFD=60°
在Rt△ADE中, AD= , DE= ,AE= 。
于是,DF=
在Rt△CDF中,由 cot60°=
得 ,即 =3
【解法2】如图,以D为原点建立空间直角坐标系 ,

则 ,
(Ⅰ)∵ ,
∴ ,
∴AC⊥DP,AC⊥DB,∴AC⊥平面PDB,
∴平面 .
(Ⅱ)当 且E为PB的中点时, ,
设AC∩BD=O,连接OE,
由(Ⅰ)知AC⊥平面PDB于O,
∴∠AEO为AE与平面PDB所的角,
∵ ,
∴ ,
∴ ,即AE与平面PDB所成的角的大小为 .
由 得2AD= ,解得AD= 。
故AD=AF。又AD⊥AF,所以四边形ADEF为正方形。
因为BC⊥AF,BC⊥AD,AF∩AD=A,故BC⊥平面DEF,因此平面BCD⊥平面DEF。
连接AE、DF,设AE∩DF=H,则EH⊥DF,EH⊥平面BCD。
连接CH,则∠ECH为 与平面BCD所成的角。
因ADEF为正方形,AD= ,故EH=1,又EC= =2,
(Ⅰ)设 ,则

第8章立体几何专题7 线面角的求解常考题型专题练习——【含答案】

第8章立体几何专题7 线面角的求解常考题型专题练习——【含答案】

线面角的求解【方法总结】1、线面角的范围:[0°,90°]2、线面角求法(一):先确定斜线与平面,找到线面的交点A为斜足;找线在面外的一点B,过点B向平面α做垂线,确定垂足O;连结斜足与垂足为斜线AB在面α上的投影;投影AO与斜线AB之间的夹角为线面角;把投影AO与斜线AB归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。

注意:以上第二步过面外一点向平面做垂线的方法有一下几种:1)线在面外的一点B与平面上某点的连线正垂直于面α,无需再做辅助线;2)题中已知有与面α垂直的直线,过线在面外的一点B直接做此垂线的平行线;3)过线在面外的一点B做两垂直平面交线的垂线,利用面面垂直的性质证明OB⊥面α(这两个垂直平面一个是面α,另一个是过点B且与α垂直的平面)。

3、线面角求法(二)用等体积法,求出斜线PA在面外的一点P到面的距离,利用三角形的正弦公式进行求解。

114、线面角求法(三)利用空间向量进行求解,高二再学。

【巩固练习】1、已知正方体1111ABCD A B C D -的体积为162,点P 在正方形1111D C B A 上,且1,A C 到P 的距离分别为2,23,则直线CP 与平面11BDD B 所成角的正切值为( )A.2 B.3 C.12D.13【答案】A【解析】易知22AB =;连接1C P ,在直角1CC P ∆中,可计算22112C P CP CC =-=;又1112,4A P A C ==,所以点P 是11A C 的中点;连接AC 与BD 交于点O ,易证AC ⊥平面11BDD B ,直线CP 在平面11BDD B 内的射影是OP ,所以CPO ∠就是直线CP 与平面11BDD B 所成的角,在直角CPO ∆中,2tan 2CO CPO PO ∠== .2、把正方形沿对角线折起,当以四点为顶点的三棱锥体积最大时,直线和平面所成的角的大小为A.B.C.D.[来源网ZXXK]【答案】C【解析】如图所示,当平面平面时,三棱锥的体积最大,取的中点,则平面,故直线和平面所成的角为,则,所以,故选C.3、如图,在三棱锥P-ABC中,,PA AB⊥PC BC⊥,,AB BC⊥22,AB BC==5PC=,则PA与平面ABC所成角的大小为_______.【答案】45︒【解析】如图,作平行四边形ABCD,连接PD,由AB BC⊥,则平行四边形ABCD是矩形.由BC CD⊥,BC PC⊥,PC CD C=,∴BC⊥平面PCD,而PD⊂平面PCD,∴BC PD⊥,同理可得AB PD⊥,又AB BC B⋂=,∴PD⊥平面11ABCD .,PD CD PD AD ⊥⊥,PAD ∠是PA 与平面ABC 所成角.由2,5CD AB PC ===得1PD =,又1AD BC ==,∴45PAD ∠=︒.∴PA 与平面ABC 所成角是45︒.4、已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心O ,则AB 1与底面ABC 所成角的正弦值为( )A .23B .13C .33D .23【答案】A【解析】作1A H ⊥面ABC 于点H ,延长11B A 到D ,延长BA 到E 使得111B A A D =,,BA AE =如图则有11A EAB ,又因为1A O ⊥面ABC ,故1A EO ∠为所求角,且111sin AO A EO A E∠=。

立体几何中二面角和线面角

立体几何中二面角和线面角

立体几何中的角度问题一、 异面直线所成的角1、如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求: (1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小。

2、如图6,已知正方体1111ABCD A B C D -的棱长为2,点E是正方形11BCC B 的中心,点F、G分别是棱111,C D AA 的中点.设点11,E G 分别是点E,G在平面11DCC D 内的正投影. (1)求以E为顶点,以四边形FGAE 在平面11DCC D 内的正投影为底面边界的棱锥的体积; (2)证明:直线11FG FEE ⊥平面; (3)求异面直线11E G EA 与所成角的正弦值二、直线与平面所成夹角1、如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC ,90BAD ∠=,PA ⊥ 底面ABCD ,且2PA AD AB BC ===,M N 、分别为PC 、PB 的中点。

求CD 与平面ADMN 所成的角的正弦值。

2、长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角的正弦值。

三、二面角与二面角的平面角问题1、如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60︒,2PA PD ==,PB=2,E,F 分别是BC,PC 的中点. (1) 证明:AD ⊥平面DEF; (2) 求二面角P-AD-B 的余弦值.2、如图5,AEC 是半径为a 的半圆,AC 为直径,点E 为AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足5FB FD a ==,6EF a =。

(1)证明:EB FD ⊥;(2已知点,Q R 为线段,FE FB 上的点,23FQ FE =,23FR FB =,求平面BED 与平面RQD 所成二面角的正弦值。

高二数学二面角专项练习题及参考答案(精品)

高二数学二面角专项练习题及参考答案(精品)

高二数学二面角专项练习题及参考答案班级_____________姓名_____________一、定义法:直接在二面角的棱上取一点,分别在两个半平面内作棱的垂线,得出平面角. 例1 在四棱锥P-ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。

二、垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例2 在四棱锥P-ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A 的正切。

三、垂面法:作棱的垂直平面,则这个垂面与二面角两个面的交线所夹的角就是二面角的平面角 例3 在四棱锥P-ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,求B-PC-D 的大小。

四、投影面积法:一个平面α上的图形面积为S ,它在另一个平面β上的投影面积为S',这两个平面的夹角为θ,则S'=Scos θ或cos θ=/SS .例4 在四棱锥P-ABCD 中,ABCD 为正方形,PA ⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PDC 所成二面角的大小。

五、补形法:对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上述方法(尤其要考虑射影法)。

例5、在四棱锥P-ABCD 中,ABCD 为正方形,PA ⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PDC 所成二面角的大小。

方法归纳:二面角的类型和求法可用框图展现如下: [基础练习]1. 二面角是指 ( ) A 两个平面相交所组成的图形B 一个平面绕这个平面内一条直线旋转所组成的图形C 从一个平面内的一条直线出发的一个半平面与这个平面所组成的图形D 从一条直线出发的两个半平面所组成的图形2.平面α与平面β、γ都相交,则这三个平面可能有 ( ) A 1条或2条交线 B 2条或3条交线C 仅2条交线D 1条或2条或3条交线3.在300的二面角的一个面内有一个点,若它到另一个面的距离是10,则它到棱的距离是( )A 5B 20C 210 D225 4.在直二面角α-l-β中,RtΔABC 在平面α内,斜边BC 在棱l 上,若AB 与面β所成的角为600,则AC 与平面β所成的角为 ( ) A 300 B 450 C 600 D 1200 5.如图,射线BD 、BA 、BC 两两互相垂直,AB=BC=1,BD=26, 则弧度数为3的二面角是( ) A D-AC-B B A-CD-BC A-BC-D D A-BD-C6.△ABC 在平面α的射影是△A 1B 1C 1,如果△ABC 所在平面和平面α成θ,则有( ) A S △A1B1C1=S △ABC ·sinθ B S △A1B1C1= S △ABC ·cosθC S △ABC =S △A1B1C1·sinθD S △ABC =S △A1B1C1·cosθ7.如图,若P 为二面角M-l-N 的面N 内一点,PB ⊥l ,B 为垂足,A 为l 上一点,且∠PAB=α,PA 与平面M 所成角为β,二面角M-l-N 的 大小为γ,则有 ( )A.sinα=sinβsinγB.sinβ=sinαsinγC.sinγ=sinαsinβ D 以上都不对AB C DAB M NP l C1A1B1D8.在600的二面角的棱上有两点A 、B ,AC 、BD 分别是在这个二面角的两个面内垂直于AB 的线段,已知:AB=6,AC=3,BD=4,则CD= 。

2018高考数学真题 文科 8.5考点3 线面角、二面角的求法

2018高考数学真题 文科 8.5考点3 线面角、二面角的求法

第八章立体几何第五节直线、平面垂直的判定与性质考点3 线面角、二面角的求法(2018·浙江卷)已知四棱锥S-ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S-AB-C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1【解析】如图,不妨设底面正方形的边长为2,E为AB上靠近点A的四等分点,E′为AB的中点,S到底面的距离SO=1,以EE′,E′O为邻边作矩形OO′EE′,则∠SEO′=θ1,∠SEO=θ2,∠SE′O=θ3.由题意,得tan θ1=SO′EO′=√52,tan θ2=SOEO =√52=√5,tan θ3=1,此时tan θ2<tan θ3<tan θ1,可得θ2<θ3<θ1.当E在AB中点处时,θ2=θ3=θ1.故选D.【答案】D(2018·浙江卷)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A =4,C1C=1,AB=BC=B1B=2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.【解析】方法一 (1)证明 由AB =2,AA 1=4,BB 1=2,AA 1⊥AB ,BB 1⊥AB ,得AB 1=A 1B 1=2√2,所以A 1B 12+A B 12=A A 12,故AB 1⊥A 1B 1.由BC =2,BB 1=2,CC 1=1,BB 1⊥BC ,CC 1⊥BC ,得B 1C 1=√5.由AB =BC =2,∠ABC =120°,得AC =2√3.由CC 1⊥AC ,得AC 1=√13,所以A B 12+B 1C 12=A C 12,故AB 1⊥B 1C 1.又因为A 1B 1∩B 1C 1=B 1,A 1B 1,B 1C 1⊂平面A 1B 1C 1,因此AB 1⊥平面A 1B 1C 1.(2)如图,过点C 1作C 1D ⊥A 1B 1,交直线A 1B 1于点D ,连接AD .由AB 1⊥平面A 1B 1C 1,得平面A 1B 1C 1⊥平面ABB 1.由C 1D ⊥A 1B 1,平面A 1B 1C 1∩平面ABB 1=A 1B 1,C 1D ⊂平面A 1B 1C 1,得C 1D ⊥平面ABB 1.所以∠C 1AD 是AC 1与平面ABB 1所成的角.由B 1C 1=√5,A 1B 1=2√2,A 1C 1=√21,得cos ∠C 1A 1B 1=√427,sin ∠C 1A 1B 1=√77,所以C 1D =√3,故sin ∠C 1AD =C 1DAC 1=√3913. 因此直线AC 1与平面ABB 1所成的角的正弦值是√3913.方法二 (1)证明 如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系Oxyz .由题意知各点坐标如下:A (0,-√3,0),B (1,0,0),A 1(0,-√3,4),B 1(1,0,2),C 1(0,√3,1).因此AB 1⃗⃗⃗⃗⃗⃗⃗ =(1,√3,2),A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,√3,-2),A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2√3,-3). 由AB 1⃗⃗⃗⃗⃗⃗⃗ ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得AB 1⊥A 1B 1.由AB 1⃗⃗⃗⃗⃗⃗⃗ ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得AB 1⊥A 1C 1.又A 1B 1∩A 1C 1=A 1,A 1B 1,A 1C 1⊂平面A 1B 1C 1,所以AB 1⊥平面A 1B 1C 1.(2)设直线AC 1与平面ABB 1所成的角为θ.由(1)可知AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2√3,1),AB ⃗⃗⃗⃗⃗ =(1,√3,0),BB 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2). 设平面ABB 1的一个法向量为n =(x ,y ,z ).由{n ·AB ⃗⃗⃗⃗⃗ =0,n ·BB 1⃗⃗⃗⃗⃗⃗⃗ =0,得{x +√3y =0,2z =0, 可取n =(-√3,1,0).所以sin θ=|cos 〈AC 1⃗⃗⃗⃗⃗⃗⃗ ,n 〉|=|AC 1⃗⃗⃗⃗⃗⃗⃗⃗ ·n||AC 1⃗⃗⃗⃗⃗⃗⃗⃗ ||n|=√3913. 因此直线AC 1与平面ABB 1所成的角的正弦值是√3913.【答案】见解析(2018·天津卷(文))如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =2√3,∠BAD =90°.(1)求证:AD ⊥BC ;(2)求异面直线BC 与MD 所成角的余弦值;(3)求直线CD 与平面ABD 所成角的正弦值.【解析】(1)证明 由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,AD ⊂平面ABD ,可得AD ⊥平面ABC ,故AD ⊥BC .(2)如图,取棱AC 的中点N ,连接MN ,ND .因为M 为棱AB 的中点,所以MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角.在Rt △DAM 中,AM =1,故DM =√AD 2+AM 2=√13.因为AD ⊥平面ABC ,所以AD ⊥AC .在Rt △DAN 中,AN =1,故DN =√AD 2+AN 2=√13.在等腰三角形DMN 中,MN =1,可得cos ∠DMN =12MN DM =√1326.所以异面直线BC 与MD 所成角的余弦值为√1326. (3)如图,连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,所以CM ⊥AB ,CM =√3.又因为平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,而CM ⊂平面ABC ,故CM ⊥平面ABD ,所以∠CDM 为直线CD 与平面ABD 所成的角.在Rt △CAD 中,CD =√AC 2+AD 2=4.在Rt △CMD 中,sin ∠CDM =CM CD =√34.所以直线CD 与平面ABD 所成角的正弦值为√34.【答案】见解析。

立体几何线面角二面角解答题练习

立体几何线面角二面角解答题练习

立体几何线面角二面角解答题练习1.四棱锥S -ABCD 中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD 。

已知∠ABC =45°,AB =2,BC=22,SA =SB =3。

(Ⅰ)证明:SA ⊥BC ;(Ⅱ)求直线SD 与平面SAB 所成角的大小; 解答:解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥. (Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC ∥, 故SA AD ⊥,由22AD BC ==,3SA =,2AO =,得1SO =,11SD =.SAB △的面积22111222S ABSA AB ⎛⎫=-= ⎪⎝⎭.连结DB ,得DAB △的面积21sin13522S AB AD ==设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S =, 解得2h =.设SD 与平面SAB 所成角为α,则222sin 1111h SD α===. 所以,直线SD 与平面SBC 所成的我为22arcsin 11. 解法二: (Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥.如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O xyz -,(200)A ,,,(020)B ,,,(020)C -,,,(001)S ,,,(201)SA =-,,, (0220)CB =,,,0SA CB =,所以SA BC ⊥.(Ⅱ)取AB 中点E ,22022E ⎛⎫⎪⎪⎝⎭,,,连结SE ,取SE 中点G ,连结OG ,221442G ⎛⎫ ⎪ ⎪⎝⎭,,. 221442OG ⎛⎫= ⎪ ⎪⎝⎭,,,22122SE ⎛⎫= ⎪ ⎪⎝⎭,,,(220)AB =-,,.0SE OG =,0AB OG =,OG 与平面SAB 两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.(2220)D ,,,(2221)DS =-,,.22cos 11OG DS OG DSα==,22sin 11β=,所以,直线SD 与平面SAB 所成的角为22arcsin11.BCASOEGyxzODCAS7、如图1,E F ,分别是矩形ABCD 的边AB CD ,的中点,G 是EF 上的一点,将GAB △,GCD △分别沿AB CD ,翻折成1G AB △,2G CD △,并连结12G G ,使得平面1G AB ⊥平面ABCD ,12G G AD ∥,且12G G AD <.连结2BG ,如图2. (I )证明:平面1G AB ⊥平面12G ADG ;(II )当12AB =,25BC =,8EG =时,求直线2BG 和平面12G ADG 所成的角; 解:解法一:(I)因为平面1G AB ⊥平面ABCD ,平面1G AB平面ABCD AB =,AD AB ⊥,AD ⊂平面ABCD ,所以AD ⊥平面1G AB ,又AD ⊂平面12G ADG ,所以平面1G AB ⊥平面12G ADG .(II )过点B 作1BH AG ⊥于点H ,连结2G H .由(I )的结论可知,BH ⊥平面12G ADG , 所以2BG H ∠是2BG 和平面12G ADG 所成的角.因为平面1G AB ⊥平面ABCD ,平面1G AB平面ABCD AB =,1G E AB ⊥,1G E ⊂平面1G AB ,所以1G E ⊥平面ABCD ,故1G E EF ⊥.因为12G G AD <,AD EF =,所以可在EF 上取一点O ,使12EO G G =,又因为12G G AD EO ∥∥,所以四边形12G EOG 是矩形.由题设12AB =,25BC =,8EG =,则17GF =.所以218G O G E ==,217G F =,15OF ==,1210G G EO ==.因为AD ⊥平面1G AB ,12G G AD ∥,所以12G G ⊥平面1G AB ,从而121G G G B ⊥.故222222221126810200BG BE EG G G =++=++=,2BG =.又110AG ==,由11BH AG G E AB =得81248105BH ⨯==.故2248sin 525BH BG H BG ∠===.即直线2BG 与平面12G ADG所成的角是arcsin 解法二:(I )因为平面1G AB ⊥平面ABCD ,平面1G AB平面ABCD AB =,1G E AB ⊥,1G E ⊂平面1G AB ,所以1G E ⊥平面ABCD ,从而1G E AD ⊥.又AB AD ⊥,所以AD ⊥平面1G AB .因为AD ⊂平面12G ADG ,所以平面1G AB ⊥平面12G ADG .(II )由(I )可知,1G E ⊥平面ABCD .故可以E 为原点,分别以直线1EB EF EG ,,为x 轴、y 轴、z 轴建AE BGDFCAEBCFDG 1G 2图1图2立空间直角坐标系(如图),由题设12AB =,25BC =,8EG =,则6EB =,25EF =,18EG =,相关各点的坐标分别是(600)A -,,, (6250)D -,,,1(008)G ,,,(600)B ,,. 所以(0250)AD =,,,1(608)AG =,,.设()n x y z =,,是平面12G ADG 的一个法向量,由100n AD n AG ⎧=⎪⎨=⎪⎩,.得250680y x z =⎧⎨+=⎩,故可取(403)n =-,,.过点2G 作2G O ⊥平面ABCD 于点O ,因为22G C G D =,所以OC OD =,于是点O 在y 轴上.因为12G G AD ∥,所以12G G EF ∥,218G O G E ==.设2(08)G m ,, (025m <<),由222178(25)m =+-,解得10m =,所以2(0108)(600)(6108)BG =-=-,,,,,,.设2BG 和平面12G ADG 所成的角是θ,则22222224|sin 25643BG n BG nθ===++.故直线2BG 与平面12G ADG 所成的角是arcsin 25.16、(理19)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,2AC BC BD AE ===,M 是AB 的中点。

文科立体几何线面角二面角专的题目-带答案

文科立体几何线面角二面角专的题目-带答案

连结 OB.因为 AB=BC= ,所以△ABC 为等腰直角三角形,且 OB⊥AC,OB= =2.

知,OP⊥OB.
由 OP⊥OB,OP⊥AC 知 PO⊥平面 ABC.
精彩文档
实用标准文案
(2)作 CH⊥OM,垂足为 H.又由(1)可得 OP⊥CH,所以 CH⊥平面 POM. 故 CH 的长为点 C 到平面 POM 的距离.
(2)求直线 与平面 所成角的正弦值.
9.在多面体
中,底面 是梯形,四边形 是正方形,




(1)求证:平面
平面 ;
(2)设 为线段 上一点,
,求二面角
的平面角的余弦值.
10.如图,在多面体
中,四边形 为等腰梯形,
,已知


,四边形 为直角梯形,

.
精彩文档
实用标准文案
(1)证明: 平面 ,平面
.
由已知得 .
精彩文档
取平面 的法向量
实用标准文案

,则
.
设平面 的法向量为
.


,可取

所以
.由已知得
.
所以 所以
.解得 (舍去), .
.又
,所以
.
所以 与平面 所成角的正弦值为 . 点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空 间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”, 求出平面的法向量;第四,破“应用公式关”. 2.解: (1)因为 AP=CP=AC=4,O 为 AC 的中点,所以 OP⊥AC,且 OP= .
中,
(1)证明: 平面 ;

专题22 异面直线所成的角、线面角与二面角(解析版)

专题22 异面直线所成的角、线面角与二面角(解析版)

专题22 异面直线所成的角、线面角与二面角一、单选题1.某圆锥的侧面展开图是面积为3π,圆心角为23π的扇形,则该圆锥的母线与底面所成的角的余弦值为A .12 B .13 C .14D .15【试题来源】【市级联考】安徽省淮南市2019届高三第一次模拟考试 【答案】B 【解析】圆锥的侧面展开图是面积为3π,圆心角为23π的扇形,则圆锥的母线l 满足:2133l ππ⋅=,故圆锥的母线长为3,又由232r l ππ=,可得圆锥的底面半径为1,故该圆锥的母线与底面所成的角的余弦值为13.故选B .2.直线a 与平面α所成的角为50°,直线b ∥a ,则直线b 与平面α所成的角等于 A .40° B .50° C .90°D .150°【试题来源】人教A 版(2019) 必修第二册 必杀技 第8章 【答案】B【解析】两条直线平行,它们与同一平面所成的角相等,直线a 与平面α所成的角为50°,直线b ∥a ,则直线b 与平面α所成的角等于050,选B .3.若两个三角形不在同一平面内,它们的边两两对应平行,那么这两个三角形 A .全等B .相似C .仅有一个角相等D .全等或相似【试题来源】【新教材精创】人教B 版高中数学必修第四册 【答案】D【解析】由等角定理知,这两个三角形的三个角分别对应相等.故选D .4.在长方体1111ABCD A BC D -中,二面角1D AB D --的大小为60︒,1DC 与平面ABCD 所成角的大小为30,那么异面直线1AD 与1DC 所成角的余弦值是A.4BCD【试题来源】2020高考数学压轴题命题区间探究与突破 【答案】B【解析】连接1AB ,由11//AB DC 可得11B AD ∠为异面直线1AD 与1DC 所成角,如图,由二面角1D AB D --的大小为60,可知1160,3D AD AA ∠=∴=, 又1DC 与平面ABCD 所成角的大小为30,1111122,DC CC AA DC ∴===,连接111,AB B D,设1ADAA ==,则AB =,1111=,2,33AD a AB a B D ∴==,在11AB D ∆中,由余弦定理可得,22211444cos a a a B AD +-∠==,∴异面直线1AD与1DC 故选B .5.攒尖是古代中国建筑中屋顶的一种结构形式依其平面有圆形攒尖、三角攒尖、四角攒尖、六角攒尖等,多见于亭阁式建筑如图所示,某园林建筑为六角攒尖,它的主要部分的轮廓可近似看作一个正六棱锥,设正六棱锥的侧面等腰三角形的顶角为2θ,则侧棱与底面内切圆半径的比为A .3sin θB .3cos θ C .12sin θD .12cos θ【试题来源】江苏省南通市通州区、启东市2020-2021学年高三上学期期末【答案】A【解析】如图,正六边形时正六棱锥的底面,等腰三角形是正六棱在的侧面,设侧棱SA SB b ==,底面边长AB a ,底面内切圆半径OC r =,2ASB θ∠=,则OAB 是等边三角形,3sin 60r a ==,侧面SAB 中,2sin a b θ=,sin r θ∴=,即b r ==.故选A6.如下图所示,在正方体1111ABCD A BC D -中,下列结论正确的是A .直线1A B 与直线AC 所成的角是45︒ B .直线1A B 与平面ABCD 所成的角是30 C .二面角1A BC A --的大小是60︒D .直线1A B 与平面11A B CD 所成的角是30【试题来源】云南省丽江市第一高级中学2020-2021学年高二上学期第二次月考 【答案】D【解析】A 选项,连接11AC ,1BC ,因为11ACAC ∥,所以直线1A B 与直线AC 所成的角为11=60C A B ∠,故A 错;B 选项,因为1A A ⊥平面ABCD ,故1A BA ∠为直线1AB 与平面ABCD 所成的角,根据题意1=45A A B ∠;C 选项,因为BC ⊥平面1A AB ,所以1,BC AB BC A B ⊥⊥,故二面角1A BC A --的平面角为1=45A A B ∠,故C 错;用排除法,选D7.正方体1111ABCD A BC D -中,直线AC 与直线1BC 所成的角、直线AC 与平面1A D 所成的角分别为 A .45,60︒︒ B .90,45︒︒ C .60,60︒︒D .60,45︒︒【试题来源】2020-2021学年高一数学一隅三反系列(人教A 版2019必修第二册) 【答案】D【解析】如图:因为11//AD BC ,所以直线AC 与直线1BC 所成角为1D AC ∠,因为1ACD △是等边三角形,所以160D AC ∠=︒,因为CD ⊥平面11ADD A ,所以直线AC 与平面1A D 所成角为CAD ∠, 因为ADC 是等腰直角三角形,所以45CAD ∠=︒,故选D . 8.如图是正方体的平面展开图,在这个正方体中,正确的命题是A .AB 与CF 成60°角 B .BD 与EF 成60°角C .AB 与CD 成60°D .AB 与EF 成60°角【试题来源】江苏省盐城市伍佑中学2020-2021学年高三上学期期末 【答案】C【解析】由正方体的平面展开图,还原成如图所示的正方体, 由CF ⊥ 平面ABC ,AB平面ABC ,所以CF AB ⊥所以AB 与CF 成90︒角,故A 错误;由BD ⊥ 平面1A EDF ,EF ⊂平面1A EDF ,所以BD 与EF 成90°角,故B 错误; 又//AE CD ,所以BAE ∠是AB 与CD 所成角,又ABE △是等边三角形,则60=︒∠BAE ,所以AB 与CD 成60°角,故C 正确; 因为1//AB A D ,又1A D EF ⊥,所以AB 与EF 成90°角,故D 错误.故选C .9.直线l 与平面α所成的角是45°,若直线l 在α内的射影与α内的直线m 所成的角是45°,则l 与m 所成的角是 A .30° B .45° C .60°D .90°【试题来源】人教B 版(2019) 选择性必修第一册 必杀技 第一章 空间向量与立体几何 【答案】C【解析】如图,在平面α内,lA α=,过l 上一点B 作BC α⊥,垂足为C ,则直线AC即为l 在α内的射影'l ,45BAC ∠=,设1AC =,则1BC =,AB =,过C 作CD m ⊥,由题可知45CAD ∠=,则AD CD ==, 在Rt BCD 中,2262BD BC CD ,BAD ∠是l 与m 所成的角,在BAD 中,2221cos 22AB AD BD BADAB AD,60BAD .故选C .10.在正方体1111ABCD A BC D -中,下列四个结论中错误的是A .直线1BC 与直线AC 所成的角为60︒B .直线1BC 与平面1AD C 所成的角为60︒ C .直线1BC 与直线1AD 所成的角为90︒D .直线1BC 与直线AB 所成的角为90︒【试题来源】备战2021年高考数学二轮复习题型专练(新高考专用) 【答案】B【解析】连接1AB 因为1ABC 为等边三角形,所以160ACB ∠=︒,即直线1BC 与AC 所成的角为60°,故选项A 正确;连接11B D ,因为1111AB BC CD AD ===,所以四面体11AB CD 是正四面体,所以点1B 在平面1AD C 上的投影为1ADC 的中心,设为点O ,连接1B O ,OC ,则3OC BC =,设直线1BC 与平面1AD C 所成的角为θ,则11cos 32BCOC B C θ===≠,故选项B 错误;连接1BC ,因为11AD BC ,且11B C BC ⊥,所以直线1BC 与1AD 所成的角为90°,故选项C 正确;因为AB ⊥平面11BCC B ,所以1AB B C ⊥,即直线1BC 与AB 所成的角为90°,故选项D 正确.故选B .11.已知正方体1111ABCD A BC D -和空间任意直线l ,若直线l 与直线AB 所成的角为1α,与直线1CC 所成的角为2α,与平面ABCD 所成的角为1β,与平面11ACC A 所成的角为2β,则A .122παα+= B .122παα+≥ C .122πββ+=D .122πββ+≥【试题来源】江西省九所重点中学(玉山一中、临川一中等)2021届高三3月联合考试 【答案】B【解析】若//l 平面ABCD ,则10β=,此时2β可以是0,2π⎡⎤⎢⎥⎣⎦的任意值,此时122πββ+≤,故CD 错误;当直线//l BC 时,1,BC AB BC CC ⊥⊥,此时12ααπ+=,故A 错误.故选B .12.如图,三棱锥P ABC -中,ABC ∆为边长为3的等边三角形,D 是线段AB 的中点,DE PB E =,且DE AB ⊥,32PA =,PB =PA 与平面CDE所成角的正切值为AB.2CD【试题来源】人教B 版(2019)选择性必修第一册 过关斩将 第一章 空间向量与立体几何 【答案】A【解析】由勾股定理222PA PB AB PA PB +=⇒⊥,过P 作PM AB ⊥于M ,由,,DE AB AB DC DE DC D ⊥⊥⋂=可得AB ⊥平面DCE ,所以APM ∠为PA 与平面CDE 所成的角,在直角三角形APB 中, APM PBA ∠=∠,3tan tan APM PBA ∠=∠==.故选A .13.如图所示,在长方体1111ABCD A BC D -中,1BC 和1C D 与底面所成的角分别为60和45,则异面直线1BC 和1C D 所成角的余弦值为A.B .3 CD【试题来源】2020-2021学年高二数学单元测试定心卷(人教B 版2019选择性必修第一册)【答案】A【解析】如图所示:因为1B B ⊥平面ABCD ,所以1BCB ∠是1BC 与底面所成角,所以160BCB ∠=.因为1C C ⊥底面ABCD ,所以1CDC ∠是1C D 与底面所成的角,所以145CDC ∠=.连接1A D ,11AC ,则11//AD B C .所以11A DC ∠或其补角为异面直线1BC 与1C D 所成的角.不妨设1BC =,则112CB DA ==,11BB CC CD ==,所以1C D =,112AC =.在等腰11AC D 中,111112cos 4C D A DC A D ∠==,所以面直线1BC 和1C DA . 14.如图,四棱锥P ABCD -的侧面PAB ⊥底面ABCD ,PAB △为等边三角形,22AB AD BC ===,AB AD ⊥,//AD BC ,点H 为PB 的中点,则直线HD 与底面ABCD 所成的角的正弦值为ABCD【试题来源】江西省临川一中暨临川一中实验学校2020-2021学年高二上学期期中考试【答案】A【解析】作HE AB ⊥于E ,连接,ED BD ,侧面PAB ⊥底面ABCD ,HE ∴⊥底面ABCD ,ED ⊂底面ABCD ,HE ED ∴⊥,HDE ∴∠即为直线HD 与底面ABCD 所成的角,设22AB AD BC ===,又PAB △为等边三角形,11111,2242BH BP AB BE AB ∴=====,2HE BD ∴===HD ∴sin 14HE HDE HD ∴∠==A 15.如图,正三角形ABC 为圆锥的轴截面,D 为AB 的中点,E 为弧BC 的中点,则直线DE 与AC 所成角的余弦值为A .13B .12C D .34【试题来源】2021年新高考数学一轮复习讲练测 【答案】C【解析】如图所示,取BC 中点O ,BO 中点F ,连接,,,OD OE FE DF ,则//OD AC , 所以ODE ∠就是直线DE 与AC 所成角,设4AB =,则2OD =,1OF =,2OE =,可得DF ,EF =则DE =因为E 为弧BC 的中点,可得OE BC ⊥,进而可得OE ⊥平面ABC ,因为OD ⊂平面ABC ,所以OE OD ⊥,在直角ODE ∆中,可得cos OD ODE DE ∠==,即直线DE 与AC 所成角的余弦值为2,故选C .16.如图,已知三棱锥A BCD -,记二面角A BC D --的平面角是θ,直线AB 和CD 所成的角为1θ,直线AB 与平面BCD 所成的角2θ,则A .1θθ≤B .1θθ≥C .2θθ≤D .2θθ≥【试题来源】浙江省浙北G2(嘉兴一中、湖州中学)2020-2021学年高二上学期期中联考 【答案】D【解析】结合三棱锥的特征,随着三棱锥顶点A 位置的变化,二面角可为锐角、直角、钝角,可以判断直线AB 和CD 所成角可以是锐角,也可以是直角,所以1,θθ两个角的大小是不确定的,所以A 、B 两项是错误的,排除A 、B 两项; 取棱长为2的正四面体A BCD -,取BC 中点E ,可知,AE BC DE BC ⊥⊥, 做AO ⊥平面BCD ,则O 为△BCD 的中心,所以AEO ∠是二面角A BC D --的平面角,即AED θ∠=,ABO ∠是直线AB 与平面BCD 所成的角,即2ABO θ∠=,可以判断出2θθ>,当三棱锥侧棱AB 与底面BCD 垂直时,两角相等都是直角,所以有2θθ≥,故选D . 17.已知三棱锥D ABC -,记二面角C AB D --的平面角是θ,直线DA 与平面ABC 所成的角是1θ,直线DA 与BC 所成的角是2θ,则 A .1θθ≥ B .1θθ≤ C .2θθ≥D .2θθ≤【试题来源】2021年高考数学二轮复习讲练测(浙江专用) 【答案】A【解析】设三棱锥D -ABC 是棱长为2的正四面体,取AB 中点E ,DC 中点M ,AC 中点M ,连结DE 、CE 、MN 、EN ,过D 作DO ⊥CE ,交CE 于O ,连结AO ,则DEC θ∠=,1DAO θ∠=,2MNE θ∠=,DE CE ==2DC =,所以1cos 3θ==,23AO CO CE ===所以13cos 3AO AD θ===,取BC 中点F ,连结DF 、AF ,则DF BC ⊥,AF BC ⊥,又DF AF F ⋂=,所以BC ⊥平面AFD ,所以BC AD ⊥,所以290θ=︒,所以21θθθ≥≥,排除B ,C , 当二面角C AB D --是直二面角时,2θθ≥,排除D ,故选A .18.已知O 为等腰直角三角形POD 的直角顶点,以OP 为旋转轴旋转一周得到几何体τ,CD 是底面圆O 上的弦,COD △为等边三角形,则异面直线OC 与PD 所成角的余弦值为A .14B.4CD.2【试题来源】2021届高三数学新高考“8 4 4”小题狂练(18) 【答案】B【解析】设OP r =,过点D 作OC 的平行线,与CD 平行的半径交于点E ,则OE OC CD OD r ====,PC PD ==,所以PDE ∠为异面直线OC 与PD 所成的角,在三角形PDE中,PE PD ==,DE r =,所以cos rPDE ∠==.选B .19.在三棱柱111ABC A B C -中,ABC 是等边三角形,1AA ⊥平面1,2,ABC AB AA ==,则异面直线1AB 和1BC 所成角的正弦值为A .1 BC .12D 【试题来源】山西省汾阳市2020-2021学年高二上学期期末 【答案】A【解析】如图,作1//BD AB 交11A B 的延长线于D ,连接1DC :则1DBC ∠就是异面直线1AB 和1BC 所成的角(或其补角),由已知BD ==11BC C D =,由22211BD BC C D +=,知190DBC ∠=,异面直线1AB 和1BC 所成的角为直角,正弦值为1,故选A .20.如图,已知圆锥CO 的轴截面是正三角形,AB 是底面圆O 的直径,点D 在AB 上,且2AOD BOD =∠∠,则异面直线AD 与BC 所成角的余弦值为A B .12C .14D .34【试题来源】2021年新高考测评卷数学(第六模拟) 【答案】A【解析】取AC 的中点E ,劣弧BD 的中点F ,AO 的中点G ,连接OF ,OE ,,O E 分别为,AB AC 中点,//OE BC ∴,2AOD BOD ∠=∠,3BOD π∴∠=,23AOD π∠=, 又OA OD =,F 为BD 中点,∴126FOD BOD ODA π∠=∠=∠=,//AD OF ∴, 则异面直线AD 与BC 所成的角是EOF ∠或其补角. 连接EG ,GF ,EF ,易得EG GF ⊥,不妨设1OG =,则2OF =,2OE =,EG =56FOG π∠=,22252cos56GF OG OF OG OF π∴=+-⨯⨯⨯=+,则2228EF EG GF =+=+∴在OEF 中,222cos 2OE OF EF EOF OE OF +-∠==⋅异面直线所成角范围为0,2π⎛⎤⎥⎝⎦,∴异面直线AD 与BC A .21.如图,四棱锥S ABCD -的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确的是A .AC SB ⊥B .//AB 平面SCDC .平面SDB ⊥平面SACD .AB 与SC 所成的角等于DC 与SA 所成的角【试题来源】山西省运城市景胜中学2019-2020学年高二上学期12月月考 【答案】D【解析】A 选项,可知,AC BD AC SD ⊥⊥可知AC SDB ⊥平面,故AC SB ⊥,正确; B 选项,AB 平行CD ,故正确;C 选项,AC SDB ⊥平面,故平面SDB ⊥平面SAC ,正确;D 选项,AB 与SC 所成的角为SCD ∠,而DC 与SA 所成的角为090,故错误,故选D . 22.在正方体1111ABCD A BC D -中,M 是棱1CC 的中点.则下列说法正确的是A .异面直线AM 与BC 所成角的余弦值为3B .BDM 为等腰直角三角形C .直线BM 与平面11BDD B D .直线1AC 与平面BDM 相交【试题来源】安徽省淮南市2020-2021学年高二上学期期末考试 【答案】C【解析】设正方体棱长为2,A . 取1BB 的中点为N ,则//BC MN ,则AM 与BC 所成角为AMN ∠ 由BC ⊥面11ABB A ,故MN ⊥面11ABB A ,故MN AN ⊥,在Rt ANM △中,tan AMN ∠=,故2cos 3AMN ∠=,B .BM =BD =DM =C .AC BD ⊥,1AC BB ⊥,故AC ⊥面11BB D D ,1//CC 面11BB D D ,故M 到面11BB D D的距离等于C 到面11BB D D 的距离,即为12d AC ==,直线BM 与平面11BDD B 所成角为θ,sin5d BM θ===BM 与平面11BDD B D .如图ACBD O =,OM 为1ACC △的中位线,有1//OM AC ,故直线1AC 与平面BDM 平行,故选C.23.若a ,b ,l 是两两异面的直线,a 与b 所成的角是3π,l 与a 、l 与b 所成的角都是α,则α的取值范围是A .5,66ππ⎡⎤⎢⎥⎣⎦B .,32ππ⎡⎤⎢⎥⎣⎦ C .5,36ππ⎡⎤⎢⎥⎣⎦D .,62ππ⎡⎤⎢⎥⎣⎦【试题来源】【新东方】杭州新东方高中数学试卷321 【答案】D【解析】作图如下:在空间选取一点O ,过O 作'',a a b b ,设直线'a 、'b 确定的平面为β,将直线l 平移至'l ,使'l 经过点O ,当直线'l β⊥时, 'l 与''a b 、所成的角都是直角,此时所成的角达到最大值;当直线'l 恰好在平面β内,且平分''a b 、所成的锐角时,'l 与''a b 、所成的角都是6π,此时所成的角达到最小值.所以'l 与''a b 、所成的角范围是,62ππ⎡⎤⎢⎥⎣⎦. 因为''',,l l a a b b ,所以'l 与''a b 、所成的角等于l 与a b 、所成的角, 即l 与a b 、所成的角范围是,62ππ⎡⎤⎢⎥⎣⎦.故选D . 24.下列命题中,正确的结论有①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等; ③如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补; ④如果两条直线同时平行于第三条直线,那么这两条直线互相平行. A .1个 B .2个 C .3个D .4个【试题来源】人教A 版(2019) 必修第二册 必杀技 第8章 【答案】B【解析】①中,如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故①错误;②中,如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角或直角相等,故②正确;③中,如果一个角的两边和另一个角的两边分别垂直,在空间中,两角大小关系不确定,故③错误;④中,如果两条直线同时平行于第三条直线,那么这两条直线平行,故④正确;故选B .25.在《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,四棱锥S ABCD -为阳马,底面ABCD 为正方形,SD ⊥底面ABCD ,则下列结论中错误的是A .AC SB ⊥B .//AB 平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角 D .AB 与SC 所成的角等于DC 与SA 所成的角【试题来源】黑龙江省鹤岗市第一中学2020-2021学年高二上学期期末考试 【答案】D【解析】四棱锥S ABCD -为阳马,底面ABCD 为正方形,则AC BD ⊥ 又SD ⊥底面ABCD ,AC ⊂底面ABCD ,则AC SD ⊥,SD BD D AC ⋂=∴⊥平面SBD ,SB ⊂平面SBD ,AC SB ∴⊥,A 正确; //,AB CD AB ⊄平面SCD ,CD ⊂平面SCD ,∴//AB 平面SCD ,B 正确;AC ⊥平面SBD ,∴点,A C 到平面SBD 的距离12dAC =,设SA 与平面SBD 所成的角为α,则sin d SA α=,设SC 与平面SBD 所成的角为β,则sin dSCβ=,又SA SC =,所以sin sin αβ=,即SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角,C 正确;,,,CD SD CD AD SD AD D CD ⊥⊥⋂=∴⊥平面SAD ,SA ⊂平面SAD ,则CD SA ⊥,即DC 与SA 所成的角为90︒,而AB 与SC 所成的角即CD 与SC 所成的角,显然不为直角,D 错误;故选D26.已知平面α内的60APB ︒∠=,射线PC 与,PA PB 所成的角均为135°,则PC 与平面α所成的角θ的余弦值是A .- BC .3D .-【试题来源】2021年高考一轮数学单元复习一遍过【答案】B【解析】作出如下图形,令2PA PB PC ===,则135CPACPB ,AC BC ∴=,取AB 中点D ,连接PD ,则CPD ∠即为PC 与平面α所成的角的补角,在APC △中,2222cos135842AC PA PC PA PC ,∴在PCD 中,222742CD AC AD ,3PD =2226cos 2PC PD CD CPDPC PD ,∴PC 与平面α所成的角θ 故选B .27.如图,四棱锥S -ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确的是A .AC ⊥SB B .AB ∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角 D .AB 与SC 所成的角等于DC 与SA 所成的角【试题来源】广西南宁市第十中学2020-2021学年度高一12月数学月考试题 【答案】D【解析】A 中由三垂线定理可知是正确的;B 中AB ,CD 平行,所以可得到线面平行;C 中设AC ,BD 相交与O ,所以SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角分别为,ASO CSO∠∠SA SC =所以两角相等,D 中由异面直线所成角的求法可知两角不等28.如图,在四棱锥E ABCD -中,底面ABCD 是正方形,且平面ABCD ⊥平面AEB ,则A .DEC ∠可能为90︒B .若AEB △是等边三角形,则DEC 也是等边三角形C .若AEB △是等边三角形,则异面直线DE 和AB 所成角的余弦值为4 D .若AEB △是直角三角形,则BE ⊥平面ADE【试题来源】河南省驻马店市2020-2021学年高三上学期期末考试【答案】C【解析】对A ,由题意,若90DEC ∠=︒,则DC EC >,但EC BC CD >=,故A 不正确; 对B ,若AEB △是等边三角形,显然有>=EC EB DC ,所以DEC 不会是等边三角形,故B 不正确;对C ,若AEB △是等边三角形,设边长为2,则DE EC ==,//AB CD ,则CDE ∠即异面直线DE 和AB 所成角,易求cos4CDE ∠==,故C 正确;对D ,当AEB △是以AEB ∠为直角的直角三角形时,BE ⊥平面ADE ,当AEB △是以EAB ∠(或EBA ∠)为直角的直角三角形时,BE 与平面ADE 不垂直,故D 不正确.故选C .29.如图,已知三棱锥D ABC -,记二面角C AB D --的平面角为α,直线DA 与平面ABC 所成的角为β,直线DA 与BC 所成的角为,则A .αβ≥B .αβ≤C .αγ≥D .αγ≤【试题来源】浙江省杭州市高级中学2019-2020学年高二上学期期末【答案】A【解析】不妨设三棱锥D ABC -是棱长为2的正四面体,取AB 中点E ,DC 中点M ,AC 中点N ,连结DE CE MN EN 、、、,过D 作DO CE ⊥,交CE 于O ,连结AO ,则,,,DEC DAO MNE αβγ∠=∠=∠=2DE CE DC ==,所以13cos α== ,23AO CO CE ===,所以32AO cos AD β=== ,取BC 中点F ,连结DF AF 、, 则DF BC AF BC ⊥⊥,,又DF AF F ⋂=,BC ∴⊥平面AFD ,90BC AD γ∴⊥∴=︒,. γαβ∴≥≥.一般的,DO DO sin sin DEO sin DAO sin DE DA αβ=∠=≥=∠=, 当α为锐角时,由正弦函数的单调性可得αβ≥,当α为钝角或直角时,由于异面直线所成的角是锐角或直角,此时显然有αβ≥.由直线DA 与平面ABC 所成的角是与平面内所有直线所成的角中的最小角,可得βγ≤, 由于γ的范围是在β和90︒之间变化,因此α和γ的大小关系不确定.故A 正确,B ,C ,D 错误.故选A .二、多选题1.如图所示,正四棱锥P ABCD -的各棱长均相等,M N ,分别为侧棱PA PB ,的中点,则下列结论正确的是A .PC BC ⊥B .PB ⊥平面ACNC .异面直线PD 与MN 所成的角为o 60D .PC 与平面ACN 成的角为o 45【试题来源】海南省临高中学2019-2020学年度高一下学期期末考试【答案】BC【解析】因为正四棱锥P ﹣ABCD 的各棱长均相等,所以∠PCB =60°,所以PC 与BC 不垂直,故A 错误;因为正四棱锥P ﹣ABCD 的各棱长均相等,M ,N 分别为侧棱P A ,PB 的中点,所以PB ⊥AN ,PB ⊥CN ,又AN ∩CN =N ,所以PB ⊥平面CAN ,故B 正确;因为MN ∥AB ,AB ∥DC ,所以MN ∥DC ,所以异面直线PD 与MN 所成的角为∠PDC ,由已知可得∠PDC =60°,所以异面直线PD 与MN 所成的角为60o ,故C 正确;因为PB ⊥平面CAN ,所以PC 与平面ACN 所成的角为∠PCN ,又∠PCN =30°,所以D 错误.故选BC .2.如图,在直三棱柱111ABC A B C -中,12AA AC ==,3AB =,90BAC ∠=︒,点D ,E 分别是线段BC ,1BC 上的动点(不含端点),且1EC DC B C BC=,则下列说法正确的是A .//ED 平面1ACCB .四面体A BDE -的体积是定值C .当点E 为1BC 的中点时,直线AE 与平面11AA B B 所成的角和直线AE 与平面11A ACC 所成的角相等D .异面直线1BC 与1AA【试题来源】江苏省南京市玄武高级中学2020-2021学年高三上学期11月学情检测【答案】AD【解析】对于A ,在直三棱柱111ABC A B C -中,四边形11BCC B 是矩形, 因为1EC DC B C BC=,所以11////ED BB AA ,因为ED ⊄平面1ACC ,1AA ⊂平面1ACC , 所以//ED 平面1ACC ,所以A 正确;对于B ,设ED m =,因为90BAC ∠=︒,12AA AC ==,3AB =,所以BC因为1//ED BB ,所以1DE DC BB BC =,所以1DE BC DC BB ⋅==,所以BD =,所以1233122ABD m S ⎛⎫=⨯⨯=- ⎪⎝⎭△, 四面体A BDE -的体积为21131322m m m m ⎛⎫⨯-=- ⎪⎝⎭, 所以四面体A BDE -的体积不是定值,所以B 错误;对于C ,由于AB AC ≠,当点E 为1BC 的中点时,E 到平面11AA B B 和平面11A ACC 的距离不相等,故所成角不相等,故C 错误; 对于D ,因为11//BB AA ,所以异面直线1BC 与1AA 所成角为1BB C ∠,在1Rt B BC 中,12B B =,BC =11tan BC BB C BB ∠==D 正确;故选AD .3.如图,1111ABCD A BC D -为正方体,下列结论中正确的是A .AC ⊥平面11BB D DB .1AC 与侧面11ADD AC .1AC ⊥平面11B CDD .过点1A 且与直线AD 与1CB 都成60︒角的直线有2条【试题来源】广东省汕头市金山中学2020-2021学年高二上学期10月月考【答案】ACD【解析】对于A ,在正方体中,AC BD ⊥,1BB ⊥平面ABCD ,1BB AC ∴⊥, 1BB BD B =,∴AC ⊥平面11BB D D ,故A 正确;对于B ,连接1AD ,在正方体中,11C D ⊥平面11ADD A ,11C AD ∴∠即为1AC 与侧面11ADD A所成角,则11111tan C D C AD AD ∠==,故B 错误;对于C ,连接11AC ,可知在正方体中,1111BD AC ⊥,且1AA ⊥平面1111D C B A ,则111AA B D ⊥,则11B D ⊥平面11AAC C ,111B D AC ∴⊥, 同理可得11B C AC ⊥,1111B D B C B =,∴1AC ⊥平面11B CD ,故C 正确;对于D ,//AD BC ,则1BCB ∠即为异面直线AD 与1CB 所成角,且145BCB ∠=,∴过点1A 且与直线AD 与1CB 都成60︒角的直线有2条,故D 正确.故选ACD . 4.如图,正方体1111ABCD A BC D -的棱长是1,下列结论正确的有A .直线BC 与平面11ABC D 所成的角为4πB .C 到平面11ABCD 的距离为长2C .两条异面直线1CD 和1BC 所成的角为4πD .三棱锥1D DAB -中三个侧面与底面均为直角三角形【试题来源】湖北省鄂东南省级示范高中2020-2021学年高二上学期期中联考【答案】ABD【解析】正方体1111ABCD A BC D -的棱长为1,对于A ,连接1BC ,则1B C ⊥平面11ABC D ,故由直线与平面夹角的定义得,直线BC 与平面11ABC D 所成的角为1CBC ∠,正方体中,易见14CBC π∠=,故A 正确;对于B ,因为1B C ⊥平面11ABC D ,点C 到面11ABC D 的距离为1BC 长度的一半,正方体中,易见1BC =C 到面11ABC D 的距离为h =,故B 正确; 对于C ,因为11//BC AD ,所以异面直线1DC 和1BC 所成的角,即直线1DC 和1AD 所成的角1ADC ∠,连接AC ,易见1ADC 为等边三角形,则13AD C π∠=,故两条异面直线1DC 和1BC 所成的角为3π,故C 错误;对于D ,三棱锥1D DAB -中,1DD ⊥底面ABCD ,故1DD AD ⊥,1DD DB ⊥,即1ADD ,1BDD 是直角三角形,又AB ⊥平面11ADD A ,则1AB AD ⊥,AB AD ⊥,即1ABD ,ADB △是直角三角形,故D 正确.故选ABD .5.如图1111ABCD A BC D -为正方体,下列说法中正确的是A .三棱锥11B ACD -为正四面体B .1BC 与1AD 互为异面直线且所成的角为45C .1AD 与1A B 互为异面直线且所成的角为60D .1AA 与11B D 互为异面直线且所成的角为90【试题来源】2020-2021高中数学新教材配套提升训练(人教A 版必修第二册)【答案】ACD【解析】对于A ,因为三棱锥11B ACD -的各条棱都是正方体表面正方形的对角线,即各条棱相等,故三棱锥11B ACD -为正四面体,故A 正确;对于B ,连接1BC ,可知在正方体中,11AB CD C D ,所以四边形11ABC D 是平行四边形,所以11BC AD ,因为11BC B C ⊥,故异面直线1BC 与1AD 所成角为90,故B 错误;对于C ,由图可得1AD 与1A B 互为异面直线,连接1A B ,易得四边形11A BCD 是平行四边形,则11A BCD ,则1ADC ∠即为所成角,由1ADC 是等边三角形可得160AD C ∠=,故C 正确;对于D ,由图可知1AA 与11B D 互为异面直线,因为在正方体中,1AA ⊥平面1111D C B A ,且11B D ⊂平面1111D C B A ,故111AA B D ⊥,故D 正确.故选ACD .6.在正三棱锥A BCD -中,侧棱长为3,底面边长为2,E ,F 分别为棱AB ,CD 的中点,则下列命题正确的是A .EF 与AD 所成角的正切值为32B .EF 与AD 所成角的正切值为23C .AB 与面ACD 所成角的余弦值为7212 D .AB 与面ACD 所成角的余弦值为79 【试题来源】备战2021年高考数学全真模拟卷(山东高考专用)【答案】BC【解析】(1)设AC 中点为G ,BC 的中点为H ,连接EG 、FG 、AH 、DH ,因为AE BE =,AG GC =,CF DF =,所以//EG BC ,//FG AD ,所以EFG 就是直线EF 与AD 所成的角或补角,在三角形EFG 中,1EG =,32FG =, 由于三棱锥A BCD -是正三棱锥,BC DH ⊥,BC AH ⊥, 因为,AH HD ⊂平面ADH ,AH DH H ⋂=,所以BC ⊥平面ADH , AD ⊂平面ADH ,所以BC AD ⊥,所以EG FG ⊥,所以12tan 332EG EFG FG ∠===,所以A 错误B 正确.(2)过点B 作BO 垂直AF ,垂足为O .因为CD BF ⊥,CD AF ⊥,,,BFAF F BF AF =⊂平面ABF , 所以CD ⊥平面ABF ,BO ⊂平面ABF ,所以CD BO ⊥,因为BO AF ⊥,,,AF CD F AF CD =⊂平面ACD ,所以BO ⊥平面ACD , 所以BAO ∠就是AB 与平面ACD 所成角.由题得3BF AF AB ===,所以cosBAO ∠=== 所以C 正确D 错误.故答案为BC .7.将正方形ABCD 沿对角线BD 对折,使得平面ABD ⊥平面BCD ,则A .AC BD ⊥B .ADC ∆为等边三角形 C .AB 与CD 所成角为60° D .AB 与平面BCD 所成角为60° 【试题来源】2020年新高考新题型多项选择题专项训练【答案】ABC【解析】由题意可构建棱长均为a 的正四棱锥C ABED -,对于选项A ,显然有BD ⊥面AEC ,又AC ⊂面AEC ,则AC BD ⊥,即选项A 正确, 对于选项B ,由题意有AD AC CD ==,即ADC ∆为等边三角形,即选项B 正确, 对于选项C ,因为AB DE ∥,则CDE ∠为异面直线AB 与CD 所成角,又EDC ∆为等边三角形,即60CDE ∠=,即选项C 正确,对于选项D ,由图可知,ABD ∠为AB 与平面BCD 所成角,又45ABD ∠=,即AB 与平面BCD 所成角为45,即选项D 错误,故选ABC .8.正方体1111ABCD A BC D -中,下列叙述正确的有A .直线1AB 与1BC 所成角为60︒B .直线1AC 与1CD 所成角为90︒C .直线1AC 与平面ABCD 所成角为45︒D .直线1A B 与平面11BCC B 所成角为60︒【试题来源】江苏省南京航空航天大学苏州附属中学2020-2021学年高二上学期期初【答案】AB【解析】正方体中由11A B 与CD 平行且相等得平行四边形11A B CD ,则有11//B C A D ,异面直线1A B 与1BC 所成角是1BA D ∠(或其补角),1BA D 是正三角形,160BA D ∠=︒,A 正确;11A D ⊥平面11CDD C ,则有111A D CD ⊥,又有11CD C D ⊥,则有1CD ⊥平面1ACD ,于是有11C D AC ⊥,所以异面直线1AC 与1C D 所成角为90︒,B 正确;1AA ⊥平面ABCD ,1ACA ∠是直线1AC 与平面ABCD 所成角,此角为是45︒,C 错;11A B ⊥与平11BCC B ,11A BB ∠是直线1A B 与平面11BCC B 所成角,1145A BB ∠=︒,D 错.故选AB .9.一副三角板由一块有一个内角为60°的直角三角形和一块等腰直角三角形组成,如图所示,090B F ∠=∠=,0060,45,A D BC DE ∠=∠==,现将两块三角形板拼接在一起,得三棱锥F CAB -,取BC 中点O 与AC 中点M ,则下列判断中正确的是A .BC FM ⊥B .AC 与平面MOF 所成的角的余弦值为2C .平面MOF 与平面AFB 所成的二面角的平面角为45°D .设平面ABF 平面MOF l =,则有//l AB【试题来源】福建省德化一中、漳平一中、永安一中三校协作2020-2021学年高二12月联考【答案】AD【解析】由三角形中位线定理以及等腰三角形的性质可得,,BC OF BC OM OM OF O ⊥⊥=,所以BC ⊥面FOM BC FM ⇒⊥,故A 正确;因为BC ⊥面FOM ,所以AC 与平面MOF 所成的角为060CMO ∠=,所以余弦值为12,故B 错误;对于C 选项可以考虑特殊位置法,由BC ⊥面FOM 得面ABC ⊥面FOM ,所以点F 在平面ABC 内的射影在直线OM 上,不妨设点F 平面ABC 内的射影为M ,过点M 作//BC MN ,连结NF .易证AB ⊥面MNF ,则l ⊥面MNF ,所以MFN ∠为平面MOF 与平面AFB 所成的二面角的平面角,不妨设2AB =,因为060A ,所以BC =112OF BC OM ===,显然MFN ∠不等于45°,故C 错误. 设面MOF 与平面ABF 的交线为l ,因为//,AB OM AB ⊄面MOF ,OM ⊂面MOF ,所以//AB 面MOF ,由线面平行的性质定理可得//l AB ,故D 正确;故选AD .三、填空题1.若AB 与平面α所成的角是30°,且A α∈,则AB 与α内过点A 的所有直线所成角中的最大角为___________.【试题来源】人教B 版(2019) 选择性必修第一册 必杀技 第一章 空间向量与立体几何【答案】90【解析】在平面α内,过点A 且与AB 在平面α内的射影垂直的直线与AB 所成的角最大,为90°.故答案为90.2.已知空间中两个角α,β,且角α与角β的两边分别平行,若60α︒=,则β=_________.【试题来源】人教B 版(2019) 必修第四册 逆袭之路 第十一章 立体几何初步【答案】60︒或120︒【分析】根据空间中两个角的边分别平行时,两个角相等或互补即可得解.【解析】因为角α与角β的两边分别平行,所以α与β相等或互补.又60α︒=,所以60β︒=或120︒,故答案为60︒或120︒.3.在正方体1111ABCD A BC D -中,给出下列结论:①11AC B D ⊥;②1AC BC ⊥;③1AB 与1BC 所成的角为60;④AB 与1AC 所成的角为45.其中所有正确结论的序号为___________.【试题来源】山东省滨州市北镇中学2018-2019学年高一下学期期末【答案】①③【解析】①,由于11,//AC BD BD B D ⊥,所以11AC B D ⊥,结论成立.②,由于11//BC B C ,所以11AC B ∠是异面直线1,AC BC 所成的角.在11Rt AB C ∆中,1190AB C ∠=,所以11AC B ∠不是直角,所以②错误.③,由于11//BC AD ,所以11B AD ∠是异面直线1AB 与1BC 所成的角,而三角形11AB D 是等边三角形,所以11B AD ∠为60,所以③正确.④,在1Rt ABC ∆三角形中,190ABC ∠=,但1AB BC ≠,所以1Rt ABC ∆不是等腰直角三角形,所以AB 与1AC 所成的角不为45,故④错误.故答案为①③4.正方形ABCD 与正方形ABEF 有公共边AB ,平面ABCD 与平面ABEF 所成角为60°,则异面直线AB 与FC 所成角大小等于___________.。

2024年高考数学复习培优讲义专题15---几何法求二面角,线面角(含解析)

2024年高考数学复习培优讲义专题15---几何法求二面角,线面角(含解析)

专题3-1几何法求二面角,线面角立体几何空间向量求解过程,丧失了立体几何求解的乐趣,无形中也降低了学生的空间想象能力。

这是空间向量求解的巨大优点,也是缺点,就这么共存着。

其实不建系而直接计算真的很比较锻炼空间想象的能力,方法上也更灵活一些,对于备考的中档学生来说,2种方法都要熟练掌握。

方法介绍一、定义法:交线上取点 等腰三角形共底边时作二面角步骤第一步:在交线l上取一点O第二步:在α平面内过O点作l的垂线OA第三步:在β平面内过O点作l的垂线OB∠AOB即为二面角,余弦定理求角αβl OAB二、三垂线法(先作面的垂直)—后续计算小使用情况:已知其中某个平面的垂线段第二步:过垂直B作l的垂线OB∠AOB即为二面角且△AOB为直角三角形,邻比斜三、作2次交线的垂线作二面角步骤第一步:作AO⊥l第二步:作OB⊥l连接AB,∠AOB即为二面角,余弦定理求角四、转换成线面角作二面角步骤第一步:作AO⊥l第二步:作AB⊥β(找不到垂足B的位置用等体积求AB长)连接AB,∠AOB即为二面角△AOB为直角三角形,邻比斜五、转换成线线角—计算小,也是法向量的原理提问:什么时候用?若α平面存在垂线AB,且β平面存在垂线AC则α平面与β平面的夹角等于直线AC与AB的夹角αβlOABαβlOABβαOABCαβlOAB六、投影面积法——面积比(三垂线法进阶)将cos θ=边之比∣面积之比,从一维到二维,可多角度求出两面积,最后求解如图△ABC 在平面α上的投影为△A 1BC , 则平面α与平面ABC 的夹角余弦值1cos A BCABCθ=△△即cos θ=投影原S S补充:即使交线没有画出来也可以直接用例题:一题多解2023汕头二模T20如图在正方体ABCD -A 1B 1C 1D 1中,PQ 是所在棱上的中点.1C 1CD ABA B 1αBCAA 1D(1)求平面APQ 与平面ABCD 夹角的余弦值 (2)补全截面APQ2023全国乙卷数学(理)T9——由二面角求线面角P C 1CDABA B 1P C 1DABA B 1P C 1CDABA B 1P C 1DABA B 1P C 1CDABA B 1PC 1DABA B 11.已知ABC 为等腰直角三角形,AB 为斜边,ABD △为等边三角形,若二面角C AB D −−为150︒,则直线CD 与平面ABC 所成角的正切值为( )A .15B .25C .35D .252021·新高考1卷·T20——由二面角求线段长2.如图,在三棱锥A BCD −中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D −−的大小为45︒,求三棱锥A BCD −的体积.题型一 定义法1.如图,在三棱锥S—ABC 中,SC ⊥平面ABC ,点P 、M 分别是SC 和SB 的中点,设PM=AC =1,∠ACB =90°,直线AM 与直线SC 所成的角为60°.(1)求证:平面MAP ⊥平面SAC . (2)求二面角M—AC—B 的平面角的正切值;2.(湛江期末)如图,在三棱锥P -ABC 中,PA ⊥平面ABC ,点M ,N 分别是PB ,AC 的中点,且MN ⊥A C . (1)证明:BC ⊥平面PA C .(2)若PA =4,AC =BC =22,求平面PBC 与平面AMC 夹角的余弦值.(几何法比较简单)3.如图1,在平行四边形ABCD 中,60,2,4A AD AB ∠=︒==,将ABD △沿BD 折起,使得点A 到达点P ,如图2.重点题型·归类精讲(1)证明:平面BCD⊥平面P AD;(2)当二面角D PA B−−的平面角的正切值为6时,求直线BD与平面PBC夹角的正弦值.题型二三垂线法4.(佛山期末)如图,四棱锥P-ABCD中,AB∥CD,∠BAD=90°,12PA AD AB CD===,侧面PAD⊥底面ABCD,E为PC的中点.(1)求证:BE⊥平面PCD;(2)若PA=PD,求二面角P-BC-D的余弦值.5.如图,在四棱锥P -ABCD 中,△P AD 是以AD 为斜边的等腰直角三角形,,,224,23BC AD CD AD AD CD BC PB ⊥====∥ (2023广州一模T19)(1) 求证:AD PB ⊥;(2)求平面P AB 与平面ABCD 交角的正弦值.6.如图,在三棱锥A BCD −中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为2的等边三角形,点E 在棱AD 上,2DE EA =且二面角E BC D −−的大小为60,求三棱锥A BCD −的体积.7.(2023·浙江·统考二模)如图,在三棱柱111ABCA B C 中,底面ABC ⊥平面11AA B B ,ABC 是正三角形,D 是棱BC 上一点,且3CD DB =,11A A A B =.(1)求证:111B C A D ⊥;(2)若2AB =且二面角11A BC B −−的余弦值为35,求点A 到侧面11BB C C 的距离.8.如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,ABC 和ACD 均为正三角形,4AC =,3BE =.(1)在线段AC 上是否存在点F ,使得BF ∥平面ADE ?说明理由; (2)求平面CDE 与平面ABC 所成的锐二面角的正切值.题型三 作2次交线的垂线9.在三棱锥S ABC −中,底面△ABC 为等腰直角三角形,90SAB SCB ABC ∠=∠=∠=︒. (杭州二模) (1)求证:AC ⊥SB ;(2)若AB =2,22SC =,求平面SAC 与平面SBC 夹角的余弦值.题型四 找交线10.如图,在四棱锥P -ABCD 中,底面ABCI )是平行四边形,∠ABC =120°,AB =1,BC =2,PD ⊥C D . (1)证明:AB ⊥PB ;(2)若平面PAB ⊥平面PCD ,且102PA =,求直线AC 与平面PBC 所成角的正弦值. (广东省二模T19)题型五 转换成线线角湖北省武汉市江汉区2023届高三上学期7月新起点考试11.在直三棱柱111ABC A B C −中,已知侧面11ABB A 为正方形,2BA BC ==,D ,,E F 分别为AC ,BC ,CC 1的中点,BF ⊥B 1D .(1)证明:平面B 1DE ⊥平面BCC 1B 1;(2)求平面BC 1D 与平面1B DE 夹角的余弦值六、 题型六 投影面积法12.(2022·惠州第一次调研)如图,在四棱锥P -ABCD 中,已知//AB CD ,AD ⊥CD ,BC BP =,CD =2AB=4,△ADP 是等边三角形,E 为DP 的中点.(1)证明:AE ⊥平面PCD ;(2)若2,PA =求平面PBC 与平面PAD 夹角的余弦值13.(2022深圳高二期末)如图(1),在直角梯形ABCD 中,AB //CD ,AB ⊥BC ,且12,2BC CD AB ===取AB 的中点O ,连结OD ,并将△AOD 沿着OD 翻折,翻折后23AC =M ,N 分别是线段AD ,AB 的中点,如图(2).(1)求证:AC⊥OM.(2)求平面OMN与平面OBCD夹角的余弦值.专题3-1几何法求二面角,线面角立体几何空间向量求解过程,丧失了立体几何求解的乐趣,无形中也降低了学生的空间想象能力。

立体几何-空间角求法题型(线线角、线面角、二面角)

立体几何-空间角求法题型(线线角、线面角、二面角)

空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现, 也是历年来高考命题者的热点, 几乎年年必考。

空间角是线线成角、线面成角、面面成角的总称。

其取值范围分别是:0° < 90°、0°< < 90°、0° < 180°。

空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转 化为空间向量的坐标运算来解。

空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正 余弦定理)和向量法。

下面举例说明。

一、异面直线所成的角:例1如右下图,在长方体 ABCD A i BiGD i 中,已知AB 4 , AD 3, AA 2。

E 、F 分别是线段AB 、BC 上的点,且EB FB 1。

求直线EC i 与FD i 所成的角的余弦值。

思路一:本题易于建立空间直角坐标系,uuu uuu把EC i 与FD i 所成角看作向量 EC 与FD 的夹角,用向量法求 解。

思路二:平移线段C i E 让C i 与D i 重合。

转化为平面角,放到 三角形中,用几何法求解。

(图I )uuu uju umr解法一:以A 为原点,ABAD'AA 分别为x 轴、y 轴、z 轴的•••直线EC i 与FD i 所成的角的余弦值为 --- I4解法二: 延长 BA 至点 E i ,使 AE i =I ,连结 E i F 、DE i 、D i E i 、DF , 有D i C i //E i E , D i C i =E i E ,则四边形 D i E i EC i 是平行四边形。

则 E i D i //EC i 于是/ E i D i F 为直线EC i 与FD i 所成的角。

在 Rt △ BE i F 中, E i F -J E i F 2 BF 2「5 2 i 2 「‘莎。

高一寒假作业(8)——立体几何二面角专题(含答案)

高一寒假作业(8)——立体几何二面角专题(含答案)

高一寒假作业(8)—二面角专题1、正三棱柱ABC —A 1B 1C 1中,D 是BC 的中点,AA 1=AB =1. (1)求证:A 1C //平面AB 1D ;(2)求二面角B —AB 1—D 的正切值;2、如图,在长方体1111ABCD A B C D -中,11,2,AD AA AB ===点E 在线段AB 上.(1)求异面直线1D E 与1A D 所成的角;(2)若二面角1D EC D --的大小为45︒,求点B 到平面1D EC 的距离.3. 如图,四边形ABCD 是正方形,PB ⊥平面ABCD ,MA//PB ,PB=AB=2MA , (1)证明:AC//平面PMD ;(2)求直线BD 与平面PCD 所成的角的大小;(3)求平面PMD 与平面ABCD 所成的二面角(锐角)的正切值。

4、 已知斜三棱柱111ABC A B C -,90BCA ∠=,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥。

(1)求证:1AC ⊥平面1A BC ; (2)求1CC 到平面1A AB 的距离; (3)求二面角1A A B C --的正弦值。

5、 如图,已知正三棱柱ABC —A 1B 1C 1的各棱长都为a ,P 为A 1B 上的点。

(1)试确定PBP A 1的值,使得PC ⊥AB ;(2)若321=PBP A ,求二面角P —AC —B 的大小;(3)在(2)条件下,求C 1到平面PAC 的距离。

6、如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中点,PA ⊥底面ABCD ,PA =2.(1)证明:平面PBE ⊥平面PAB ;(2)求平面PAD 和平面PBE 所成二面角(锐角)的正弦值.7、如图7-29,在四棱锥P —ABCD 中,底面ABCD 是平行四边形,,32=BD ,AB=4,AD=2,侧棱PB=15,PD=3。

34 高中数学立体几何(解答题)二面角计算专题训练

34 高中数学立体几何(解答题)二面角计算专题训练

专题3高中数学立体几何(解答题)二面角计算专题训练【方法总结】 1.二面角(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=<AB →,CD →>.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos <n 1,n 2>|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).2.平面与平面的夹角如图,平面α与平面β相交,形成四个二面角,我们把四个二面角中不大于90°的二面角称为平面α与平面β的夹角.若平面α,β的法向量分别是n 1和n 2,则平面α与平面β的夹角即为向量n 1和n 2的夹角或其补角.设平面α与平面β的夹角为θ,则cos θ=|cos <n 1,n 2>|=|n 1·n 2||n 1||n 2|. 3.利用空间向量计算二面角大小的常用方法(1)找法向量:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小;(2)找与棱垂直的方向向量:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.【高考真题】1.(2022新高考Ⅰ卷)如图,直三棱柱111ABC A B C 的体积为4,1A BC 的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.2.(2022新高考Ⅱ卷)如图,PO 是三棱锥P ABC -的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ︒∠=∠=,3PO =,5PA =,求二面角C AE B --的正弦值. 【题型突破】1.(2020·全国Ⅲ改编)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.(1)证明:点C 1在平面AEF 内;(2)若AB =2,AD =1,AA 1=3,求平面AEF 与平面EF A 1夹角的正弦值.2.(2019·全国Ⅲ)图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE = BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B -CG -A 的大小.3.(2019·全国Ⅱ)如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B-EC-C1的正弦值.4.(2019·全国Ⅰ改编)如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求平面AMA1与平面MA1N夹角的正弦值.5.(2020·全国Ⅰ)如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE=AD.△ABC是底面的内接正三角形,P为DO上一点,PO=66DO.(1)证明:P A⊥平面PBC;(2)求二面角B-PC-E的余弦值.6.(2021·全国新Ⅱ)在四棱锥Q-ABCD中,底面ABCD是正方形,若AD=2,QD=QA=5,QC=3.(1)证明:平面QAD ⊥平面ABCD ; (2)求二面角B -QD -A 的平面角的余弦值.7.(2021·全国乙)如图,四棱锥P —ABCD 的底面是矩形,PD ⊥底面ABCD ,PD =DC =1,M 为BC 的 中点,且PB ⊥AM . (1)求BC ;(2)求二面角A -PM -B 的正弦值.8.(2018·全国Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD ︵ 所在平面垂直,M 是CD ︵上异 于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M -ABC 体积最大时,求面MAB 与面MCD 所成二面角的正弦值.9.(2021·全国新Ⅰ)如图,在三棱锥A -BCD 中,平面ABD ⊥平面BCD ,AB =AD ,O 为BD 的中点. (1)证明:OA ⊥CD ;(2)若△OCD 是边长为1的等边三角形,点E 在棱AD 上,DE =2EA ,且二面角E -BC -D 的大小为45°,求三棱锥A -BCD 的体积.DABCQDABCPM10.(2021·全国甲)已知直三棱柱ABC -A 1B 1C 1中,侧面AA 1B 1B 为正方形,AB =BC =2,E ,F 分别为AC和CC 1的中点,D 为棱A 1B 1上的点,BF ⊥A 1B 1. (1)证明:BF ⊥DE ;(2)当B 1D 为何值时,面BB 1C 1C 与面DFE 所成的二面角的正弦值最小?11.(2021·北京)已知正方体ABCD -A 1B 1C 1D 1,点E 为A 1D 1中点,直线B 1C 1交平面CDE 于点F .(1)证明:点F 为B 1C 1的中点;(2)若点M 为棱A 1B 1上一点,且二面角M -CF -E 的余弦值为53,求A 1M A 1B 1的值.12.如图所示的几何体由平面PECF 截棱长为2的正方体得到,其中P ,C 为原正方体的顶点,E ,F 为原 正方体侧棱长的中点,正方形ABCD 为原正方体的底面,G 为棱BC 上的动点. (1)求证:平面APC ⊥平面PECF ;(2)设BG →=λBC →(0≤λ≤1),当λ为何值时,平面EFG 与平面ABCD 所成的角为π3?ABCDOEBACA 1B 1C 1D FEBAD CA 1B 1C 1D 1E FM13.如图,已知直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC =1,AB ⊥AC ,M ,N ,Q 分别是CC 1,BC ,AC的中点,点P 在直线A 1B 1上运动,且A 1P →=λA 1B 1→(λ∈[0,1]). (1)证明:无论λ取何值,总有AM ⊥平面PNQ ;(2)是否存在点P ,使得平面PMN 与平面ABC 的夹角为60°?若存在,试确定点P 的位置,若不存在,请说明理由.14.已知在四棱锥P -ABCD 中,平面PDC ⊥平面ABCD ,AD ⊥DC ,AB ∥CD ,AB =2,DC =4,E 为PC的中点,PD =PC ,BC =22. (1)求证:BE ∥平面P AD ;(2)若PB 与平面ABCD 所成角为45°,点P 在平面ABCD 上的射影为O ,问:BC 上是否存在一点F ,使平面POF 与平面P AB 所成的角为60°?若存在,试求点F 的位置;若不存在,请说明理由.15.如图所示,在梯形ABCD 中,AB ∥CD ,∠BCD =120°,四边形ACFE 为矩形,且CF ⊥平面ABCD ,AD =CD =BC =CF . (1)求证:EF ⊥平面BCF ;(2)点M 在线段EF 上运动,当点M 在什么位置时,平面MAB 与平面FCB 所成的锐二面角最大,并求此时二面角的余弦值.16.如图所示,正方形AA 1D 1D 与矩形ABCD 所在平面互相垂直,AB =2AD =2,点E 为AB 的中点.(1)求证:BD 1∥平面A 1DE ;(2)设在线段AB 上存在点M ,使二面角D 1-MC -D 的大小为π6,求此时AM 的长及点E 到平面D 1MC的距离.17.(2017·全国Ⅱ)如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点. (1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M -AB -D 的余弦值.18.如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠ABC =60°,AB =2BC =2CD ,四边形DCEF 是正方形,N ,G 分别是线段AB ,CE 的中点. (1)求证:NG ∥平面ADF ;(2)设二面角A -CD -F 的大小为θ⎝⎛⎭⎫π2<θ<π,当θ为何值时,二面角A -BC -E 的余弦值为1313?19.已知三棱锥P -ABC (如图1)的平面展开图(如图2)中,四边形ABCD 为边长等于2的正方形,△ABE和△BCF 均为正三角形.在三棱锥P -ABC 中: (1)证明:平面P AC ⊥平面ABC ;(2)若点M 在棱P A 上运动,当直线BM 与平面P AC 所成的角最大时,求二面角P -BC -M 的余弦值.20.如图所示,在四棱锥P-ABCD中,侧面P AD⊥底面ABCD,侧棱P A=PD=2,P A⊥PD,底面ABCD 为直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O为AD的中点.(1)求直线PB与平面POC所成角的余弦值;(2)求B点到平面PCD的距离;(3)线段PD上是否存在一点Q,使得二面角Q-AC-D的余弦值为63若存在,求出PQQD的值;若不存在,请说明理由.。

立体几何-空间角求法题型(线线角、线面角、二面角)

立体几何-空间角求法题型(线线角、线面角、二面角)

空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现, 也是历年来高考命题者的热点, 几乎年年必考。

空间角是线线成角、线面成角、面面成角的总称。

其取值范围分别是:0° < 90°、0°< < 90°、0° < 180°。

空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转 化为空间向量的坐标运算来解。

空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正 余弦定理)和向量法。

下面举例说明。

一、异面直线所成的角:例1如右下图,在长方体 ABCD A i BiGD i 中,已知AB 4 , AD 3, AA 2。

E 、F 分别是线段AB 、BC 上的点,且EB FB 1。

求直线EC i 与FD i 所成的角的余弦值。

思路一:本题易于建立空间直角坐标系,uuu uuu把EC i 与FD i 所成角看作向量 EC 与FD 的夹角,用向量法求 解。

思路二:平移线段C i E 让C i 与D i 重合。

转化为平面角,放到 三角形中,用几何法求解。

(图I )uuu uju umr解法一:以A 为原点,ABAD'AA 分别为x 轴、y 轴、z 轴的•••直线EC i 与FD i 所成的角的余弦值为 --- I4解法二: 延长 BA 至点 E i ,使 AE i =I ,连结 E i F 、DE i 、D i E i 、DF , 有D i C i //E i E , D i C i =E i E ,则四边形 D i E i EC i 是平行四边形。

则 E i D i //EC i 于是/ E i D i F 为直线EC i 与FD i 所成的角。

在 Rt △ BE i F 中, E i F -J E i F 2 BF 2「5 2 i 2 「‘莎。

文科立体几何线面角二面角专题_带答案解析

文科立体几何线面角二面角专题_带答案解析
5.(1)见解析;(2) .
【解析】试题分析:(1)由题意,可取 中点 ,连接 ,则易知平面 ∥平面 ,由条件易证 平面 ,则 平面 ,又 平面 ,根据线面垂直的定义,从而问题可得证;(2)由题意,采用坐标法进行求解,可取 中点 为坐标原点,过 点作平行于 的直线为 轴, 为 轴, 为 轴,建立空间直角坐标系,分别算出平面 和平面 的法向量,结合图形,二面角 为锐角,从而问题可得解.
6.(1)见解析(2)见解析(3)
【解析】分析:(1)先证明 ,再证明 平面 .(2)先证明 面 ,再证明平面 平面 .(3)利用异面直线所成的角的定义求直线 与直线 所成角的正弦值为 .
详解:(1)证明:连接 ,
∵ 、 分别是 、 的中点,
∴ , ,
∵三棱柱 中,∴ , ,
又 为棱 的中点,∴ , ,
∴四边形 是平行四边形,∴ ,
又∵ 平面 , 平面 ,∴ 平面 .
(2)证明:∵ 是 的中点,∴ ,
又∵ 平面 , 平面 ,
∴ ,又∵ ,
∴ 面 ,又 面 ,
∴平面 平面 ;
(3)解:∵ , ,
∴ 为直线 与直线 所成的角.
设三棱柱 的棱长为 ,则 ,
∴ ,∴ .
即直线 与直线 所成角的正弦值为 .
8.(1)见解析;(2)
【解析】分析:(1)由题意得 是等边三角形,故得 ,于是 ,从而得 ,所以 ,然后根据线面平行的判定定理可得结论成立.(2)由 平面 可得 ,于是 平面 .又 ,所以直线 与平面 所成角即直线 与平面 所成角,从而得到 即为所求角,然后根据解三角形可得所求.
详解:(1)因为 , 为 的中点,所以 ,且 .
连结 .因为 ,所以 为等腰直角三角形,
且 , .

线线角、线面角,二面角(高考立体几何法宝)

线线角、线面角,二面角(高考立体几何法宝)

1A 1B 1C 1D ABCD E FG线线角、线面角、二面角的求法1.空间向量的直角坐标运算律:⑴两个非零向量与垂直的充要条件是1122330a b a b a b a b ⊥⇔++=⑵两个非零向量与平行的充要条件是a ·b =±|a ||b | 2.向量的数量积公式若a 与b 的夹角为θ(0≤θ≤π),且123(,,)a a a a =,123(,,)b b b b =,则 (1)点乘公式: a ·b =|a ||b | cos θ(2)模长公式:则212||a a a a a =⋅=++2||b b b b =⋅=+(3)夹角公式:2cos ||||a ba b a b a ⋅⋅==⋅+(4)两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则2||(AB AB x ==,A B d =①两条异面直线a 、b 间夹角0,2πα⎛⎫∈ ⎪⎝⎭在直线a 上取两点A 、B ,在直线b 上取两点C 、D ,若直线a 与b 的夹角为θ,则cos |cos ,|AB CD θ=<>=例1 (福建卷)如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是( )A .515arccosB .4π C .510arccosD .2π(向量法,传统法)PBCA例 2 (2005年全国高考天津卷)如图,PA ⊥平面ABC ,90ACB ∠=︒且PA AC BC a ===,则异面直线PB 与AC 所成角的正切值等于_____.解:(1)向量法(2)割补法:将此多面体补成正方体'''DBCA D B C P -,PB 与AC 所成的角的大小即此正方体主对角线PB 与棱BD 所成角的大小,在Rt △PDB中,即t a n 2PDDBA DB∠==. 点评:本题是将三棱柱补成正方体'''DBCA D B C P -②直线a 与平面α所成的角0,2πθ⎛⎤∈ ⎥⎝⎦(重点讲述平行与垂直的证明)可转化成用向量→a 与平面α的法向量→n 的夹角ω表示,由向量平移得:若ππ(图);若ππ平面α的法向量→n 是向量的一个重要内容,是求直线与平面所成角、求点到平面距离的必备工具.求平面法向量的一般步骤:(1)找出(求出)平面内的两个不共线的向量的坐标111222(,,),(,,)a a b c b a b c == (2)设出平面的一个法向量为(,,)n x y z =(3)根据法向量的定义建立关于x,y,z 的方程组(0a <(4)解方程组,取其中的一组解,即得法向量。

线面角、二面角练习(含答案)

线面角、二面角练习(含答案)
(D) 证 明 , 4B L PD; G)若 P4 = PD = AB, /APD = 90“, 设 Q 为 PB 中 点 , 求 直 线 4Q 与 平 面 PBC 所 成 角 的 余 弦 值
.(10分 ) 如 图 , 在 四 楂 锥 P 一 4BC 丁 中 , 底 面 4BC是D矩 形 ,M7 是 P4 的 中 点 ,PD 平 _ 面 4L BCD,
心 的 M L DN, 即 异 面 直 线 4M 与 DN 所 成 角 大 小 为 90., 故 选 D.
2. ( AP4D 为 直 角 三 角 形 , 且 P4 = 4D, …LP4D 二 90., 即 P4 L 4D, 四 边 形 4B8为C正 D方 形 , - DA L BA, N PANBA= 4, P4 c 面 P4B,PB C 面 P4B,
A. 307
B. 45°
二 、 解 答 题 ( 共 14 小 题 , 每 小 题 10 分 , 共 140分 )
C. 60°
D. 90°
2.(分1) 0如 图 , 平面 P4D L 平 面 4BCD,4B为 C正D方 形 ,AP 是 4 直 角D 三 角 形 , 且 P4 = 4D 二 2, E
、 友 、G 分 别 是 线 段 P4、PD、CD 的 中 点 。
(D) 证 明 , PB平 |面 4BC ) 设 二 面 角 D - 4F - C 为 60“,=4P 1,4一Dv, 求 三 棒 锥 丁 一 4CD 的 体 积 .
三 、 填 空 题 ( 共 1 小 题 ,每小 题 5 分 , 共 5 分 )
16.(5 分 ) 已 知 长 方 体 A4BCD 一 4 BCLD 中 ,4B 万 2,4D = AA; 三 1, 则的 线 BDu 与 平 面
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文科立体几何线面角二面角专题学校:___________姓名:___________班级:___________考号:___________一、解答题1.如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值.2.如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且,求点到平面的距离.3.(2018年浙江卷)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.4.如图,在三棱柱中,点P,G分别是,的中点,已知⊥平面ABC,==3,==2.(I)求异面直线与AB所成角的余弦值;(II)求证:⊥平面;(III)求直线与平面所成角的正弦值.5.如图,四棱锥,底面是正方形,,,,分别是,的中点.(1)求证;(2)求二面角的余弦值.6.如图,三棱柱中,侧棱底面,且各棱长均相等.,,分别为棱,,的中点.(1)证明:平面;(2)证明:平面平面;(3)求直线与直线所成角的正弦值.7.如图,在四边形ABCD中,AB//CD,∠AB D=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF.(Ⅰ)求证:平面ADE⊥平面BDEF;(Ⅱ)若二面角C BF D的大小为60°,求CF与平面ABCD所成角的正弦值.8.如图,在四棱锥中,平面,,,,点是与的交点,点在线段上,且.(1)证明:平面;(2)求直线与平面所成角的正弦值.9.在多面体中,底面是梯形,四边形是正方形,,,,,(1)求证:平面平面;(2)设为线段上一点,,求二面角的平面角的余弦值. 10.如图,在多面体中,四边形为等腰梯形,,已知,,,四边形为直角梯形,,.(1)证明:平面,平面平面;(2)求三棱锥的体积.参考答案1.(1)见解析(2)【解析】分析:(1)根据等腰三角形性质得PO垂直AC,再通过计算,根据勾股定理得PO垂直OB,最后根据线面垂直判定定理得结论,(2)根据条件建立空间直角坐标系,设立各点坐标,根据方程组解出平面PAM一个法向量,利用向量数量积求出两个法向量夹角,根据二面角与法向量夹角相等或互补关系列方程,解得M坐标,再利用向量数量积求得向量PC与平面PAM法向量夹角,最后根据线面角与向量夹角互余得结果.详解:(1)因为,为的中点,所以,且.连结.因为,所以为等腰直角三角形,且,.由知.由知平面.(2)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系.由已知得取平面的法向量.设,则.设平面的法向量为.由得,可取,所以.由已知得.所以.解得(舍去),.所以.又,所以.所以与平面所成角的正弦值为.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.2.解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC==2,CM==,∠ACB=45°.所以OM=,CH==.所以点C到平面POM的距离为.【解析】分析:(1)连接,欲证平面,只需证明即可;(2)过点作,垂足为,只需论证的长即为所求,再利用平面几何知识求解即可.详解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC==2,CM==,∠ACB=45°.所以OM=,CH==.所以点C到平面POM的距离为.点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.3.(Ⅰ)见解析;(Ⅱ).【解析】分析:方法一:(Ⅰ)通过计算,根据勾股定理得,再根据线面垂直的判定定理得结论,(Ⅱ)找出直线AC1与平面ABB1所成的角,再在直角三角形中求解.方法二:(Ⅰ)根据条件建立空间直角坐标系,写出各点的坐标,根据向量之积为0得出,再根据线面垂直的判定定理得结论,(Ⅱ)根据方程组解出平面的一个法向量,然后利用与平面法向量的夹角的余弦公式及线面角与向量夹角的互余关系求解.详解:方法一:(Ⅰ)由得,所以.故.由,得,由得,由,得,所以,故.因此平面.(Ⅱ)如图,过点作,交直线于点,连结.由平面得平面平面,由得平面,所以是与平面所成的角.学科.网由得,所以,故.因此,直线与平面所成的角的正弦值是.方法二:(Ⅰ)如图,以AC的中点O为原点,分别以射线OB,OC为x,y轴的正半轴,建立空间直角坐标系O-xyz.由题意知各点坐标如下:因此由得.由得.所以平面.(Ⅱ)设直线与平面所成的角为.由(Ⅰ)可知设平面的法向量.由即可取.所以.因此,直线与平面所成的角的正弦值是.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.4.(Ⅰ)(Ⅱ)见解析(Ⅲ)【解析】分析:(Ⅰ)由题意得∥AB,故∠G是异面直线与AB所成的角,解三角形可得所求余弦值.(Ⅱ)在三棱柱中,由⊥平面ABC可得⊥A1G,于是⊥A1G,又A1G⊥,根据线面垂直的判定定理可得结论成立.(Ⅲ)取的中点H,连接AH,HG;取HG的中点O,连接OP,.由PO//A1G可得平面,故得∠PC1O是PC1与平面所成的角,然后解三角形可得所求.详解:(I)∵∥AB,∴∠G是异面直线与AB所成的角.∵==2,G为BC的中点,∴A1G⊥B1C1,在中,,∴,即异面直线AG与AB所成角的余炫值为.(II)在三棱柱中,∵⊥平面ABC,平面ABC,∴⊥A1G,∴⊥A1G,又A1G⊥,,∴平面.(III)解:取的中点H,连接AH,HG;取HG的中点O,连接OP,.∵PO//A1G,∴平面,∴∠PC1O是PC1与平面所成的角.由已知得,,∴∴直线与平面所成角的正弦值为.点睛:用几何法求求空间角的步骤:①作:利用定义作出所求的角,将其转化为平面角;②证:证明作出的角为所求角;③求:把这个平面角置于一个三角形中,通过解三角形求空间角;④作出结论,将问题转化为几何问题.5.(1)见解析;(2).【解析】试题分析:(1)由题意,可取中点,连接,则易知平面∥平面,由条件易证平面,则平面,又平面,根据线面垂直的定义,从而问题可得证;(2)由题意,采用坐标法进行求解,可取中点为坐标原点,过点作平行于的直线为轴,为轴,为轴,建立空间直角坐标系,分别算出平面和平面的法向量,结合图形,二面角为锐角,从而问题可得解.试题解析:(1)取中点,连结,,∵是正方形,∴,又∵,,∴,∴面,∴,又∵,,都是中点,∴,,∴面,∴;(2)建立如图空间直角坐标系,由题意得,,,,则,,,设平面的法向量为,则,即,令,则,,得,同理得平面的法向量为,∴,所以他的余弦值是.点睛:此题主要考查立体几何中异面直线垂直的证明,二面角的三角函数值的求解,以及坐标法在解决立体几何问题中的应用等有关方面的知识和技能,属于中档题型,也是常考题型.坐标法在解决立体几何中的一般步骤,一是根据图形特点,建立空间直角坐标系;二是将几何中的量转化为向量,通过向量的运算;三是将运算得到的结果翻译为几何结论.6.(1)见解析(2)见解析(3)【解析】分析:(1)先证明,再证明平面.(2)先证明面,再证明平面平面.(3)利用异面直线所成的角的定义求直线与直线所成角的正弦值为.详解:(1)证明:连接,∵、分别是、的中点,∴,,∵三棱柱中,∴,,又为棱的中点,∴,,∴四边形是平行四边形,∴,又∵平面,平面,∴平面.(2)证明:∵是的中点,∴,又∵平面,平面,∴,又∵,∴面,又面,∴平面平面;(3)解:∵,,∴为直线与直线所成的角.设三棱柱的棱长为,则,∴,∴.即直线与直线所成角的正弦值为.点睛:(1)本题主要考查空间位置关系的证明和异面直线所成角的计算,意在考查学生对这些基础知识的掌握能力和空间想象转化能力.(2)求空间的角,方法一是利用几何法,找作证指求.方法二是利用向量法.7.(1)见解析(2)【解析】分析:(1)根据面面垂直的判定定理即可证明平面ADE⊥平面BDEF;(2)建立空间直角坐标系,利用空间向量法即可求CF与平面ABCD所成角的正弦值;也可以应用常规法,作出线面角,放在三角形当中来求解.详解:(Ⅰ)在△ABD中,∠ABD=30°,由AO2=AB2+BD2-2AB·BD cos30°,解得BD=,所以AB2+BD2=AB2,根据勾股定理得∠ADB=90°∴AD⊥BD.又因为DE⊥平面ABCD,AD平面ABCD,∴AD⊥DE.又因为BD DE=D,所以AD⊥平面BDEF,又AD平面ABCD,∴平面ADE⊥平面BDEF,(Ⅱ)方法一:如图,由已知可得,,则,则三角形BCD为锐角为30°的等腰三角形.则.过点C做,交DB、AB于点G,H,则点G为点F在面ABCD上的投影.连接FG,则,DE⊥平面ABCD,则平面.过G做于点I,则BF平面,即角为二面角C BF D的平面角,则60°.则,,则.在直角梯形BDEF中,G为BD中点,,,,设,则,,则.,则,即CF与平面ABCD所成角的正弦值为.(Ⅱ)方法二:可知DA、DB、DE两两垂直,以D为原点,建立如图所示的空间直角坐标系D-xyz.设DE=h,则D(0,0,0),B(0,,0),C(-,-,h).,.设平面BCF的法向量为m=(x,y,z),则所以取x=,所以m=(,-1,-),取平面BDEF的法向量为n=(1,0,0),由,解得,则,又,则,设CF与平面ABCD所成角为,则sin=.故直线CF与平面ABCD所成角的正弦值为点睛:该题考查的是立体几何的有关问题,涉及到的知识点有面面垂直的判定,线面角的正弦值,在求解的过程中,需要把握面面垂直的判定定理的内容,要明白垂直关系直角的转化,在求线面角的有关量的时候,有两种方法,可以应用常规法,也可以应用向量法. 8.(1)见解析;(2)【解析】分析:(1)由题意得是等边三角形,故得,于是,从而得,所以,然后根据线面平行的判定定理可得结论成立.(2)由平面可得,于是平面.又,所以直线与平面所成角即直线与平面所成角,从而得到即为所求角,然后根据解三角形可得所求.详解:(1)因为,所以垂直平分线段.又,所以.在中,由余弦定理得,所以.又,所以是等边三角形,所以,所以,又因为,所以,所以.又平面平面,所以平面.(2)因为平面,平面,所以,又,所以平面.由(1)知,所以直线与平面所成角即直线与平面所成角,故即为所求的角.在中,,所以,所以直线与平面所成角的正弦值为.点睛:(1)证明空间中的位置关系时要注意解题的规范性和严密性,运用定理证明时要体现出定理中的关键性词语.(2)用几何法求空间角时可分为三步,即“一找、二证、三计算”,即首先根据所求角的定义作出所求的角,并给出证明,最后利用解三角形的方法得到所求的角(或其三角函数值).9.(1)见解析;(2).【解析】分析:(1)由勾股定理的逆定理可得,;又由条件可得到,于是平面,可得,从而得到平面,根据面面垂直的判定定理得平面平面.(2)由题意得可得,,两两垂直,故可建立空间直角坐标系,结合题意可得点,于是可求得平面的法向量为,又是平面的一个法向量,求得后结合图形可得所求余弦值为.详解:(1)由,,,得,∴为直角三角形,且同理为直角三角形,且.又四边形是正方形,∴.又∴.在梯形中,过点作作于,故四边形是正方形,∴.在中,,∴,,∴,∴,∴.∵,,,∴平面,又平面,∴,又,∴平面,又平面,∴平面平面.(2)由(1)可得,,两两垂直,以为原点,,,所在直线为轴建立如图所示的空间直角坐标系,则.令,则,∵,∴∴点.∵平面,∴是平面的一个法向量.设平面的法向量为.则,即,可得.令,得.∴.由图形知二面角为锐角,∴二面角的平面角的余弦值为.点睛:利用空间向量求二面角的注意点(1)建立空间直角坐标系时,要注意证明得到两两垂直的三条直线.然后确定出相应点的坐标,在此基础上求得平面的法向量.(2)求得两法向量的夹角的余弦值后,还要结合图形确定二面角是锐角还是钝角,然后才能得到所求二面角的余弦值.这一点在解题时容易忽视,解题时要注意.10.(1)见解析(2)【解析】分析:(1)通过取AD中点M,连接CM,利用得到直角;再利用可得平面;再根据线面垂直判定定理即可证明。

相关文档
最新文档