结晶器振动PPT课件
结晶器振动
第1章绪论第1章绪论1.1连续铸钢技术的发展钢水凝固成型有两种方法:传统的模铸法和连续铸钢法。
连续铸钢是把液态钢用连铸机浇注、冷凝、切割而直接得到铸坯的工艺。
是连接炼钢和轧钢的中间环节,是炼钢厂的重要组成部分[1]。
连铸的出现从根本上改变了一个世纪以来占统治地位的钢锭——初轧工艺,为炼钢生产向连续化、自动化方向的发展开辟了新的途径[2]。
1.1.1 连续铸钢技术的发展历程早在十九世纪中期美国人塞勒斯(1840年)、赖尼(1843年)和英国人贝塞麦(1846年)就曾提出过连续浇注液体金属的初步设想,并用于低熔点有色金属的浇铸;但类似现代连铸设备的建议是由美国人亚瑟(1886年)和德国人戴伦(1887年)提出来的。
他们的建议中包括有水冷的上下敞口的结晶器、二次冷却段、引锭杆、夹辊和铸坯切割装置等设备,当时用于铜和铝等有色金属的浇铸。
1933年德国人容汉斯建成第一台结晶器可以振动的连铸机,并用其浇铸黄铜获得成功,后又用于铝合金的工业生产。
结晶器振动的采用,不仅可以提高浇注速度,而且使钢液的连铸生产成为可能,容汉斯因此成为现代连铸技术的奠基人。
但连续铸钢步入工业生产阶段,应当归功于英国人哈里德提出的“负滑脱(Negative Strip)”概念。
在哈里德的负滑脱振动方式中,结晶器下振速度比拉坯速度快,铸坯与结晶器壁间产生了相对运动,真正有效的防止了铸坯与结晶器壁的粘结,使钢连续浇铸的关键性技术得以突破[3]。
1.1.2 连续铸钢的优越性连续铸钢与模铸的根本差别在于模铸是在间断的情况下,把一炉钢水浇注成多根钢锭,脱模之后经初轧机开坯得到钢坯;而连铸是把一炉钢水燕山大学工学硕士学位论文连续地注入结晶器,得到无限长的铸坯,经切割后直接生产铸坯。
基于这一根本差别,连铸和模铸比较,就具有许多明显的优越性[4-9]:(1)简化了钢坯生产的工艺流程,节省大量投资,省去了模铸工艺中脱模整模均热及初轧等工序,缩短了钢水到钢坯的周期时间。
s第04章晶格振动PPT课件
在3r支色散关系中,当q→0时(长波):
➢ 有三支ω →0,且各原子的振幅趋于相同, 这三支为声学波。长声学波描述了原胞质 心的振动。
➢ 其余(3r-3)支有有限的振动频率,为光学 波。长光学波描述原胞内原子之间的相对 运动。
波矢的取值和波矢空间
q的值由周期性边界条件确定:
u
Rl
N1a1
s
u
Rl s
u
Rl
N2a2
s
u
Rl s
代入 u
l s
A ei(q•Rl t ) sa
得到:
u
Rl
N3a3
s
u
Rl s
q • N1a1 2h1, q • N2a2 2h2 , q • N3a3 2h3
把波矢q表示为倒格子空间中的一 个矢量: q x1b1 x2b2 x3b3
光学波
在布里渊区边界 q
a
声学波: A
B
光学波: A 0
B
5、振动模式数(频率数)
波矢限定在第一布里渊区中 q
a
a
周期性边界条件下
q 2 l
Na
N l N
2
2
一维双原子链:
晶格振动的波矢数目等于晶体的原胞数
一个波矢对应2个不同的频率,共有2N个振动频 率,这2N个振动频率分为2支。
f
d
d
(un1 un )
→弹性力
一维原子链的振动模型:被一个个弹簧连接 起来的一串质量为m的球
第n个原子受到的作用力为:
f p (un p un )
p
p 1, 2, 3,
2、一维单原子链的运动方程
f p (xn p xn )
连铸结晶器振动工艺参数
异常情况的预警与处理
预警标准
设定异常参数的阈值,当实时监测数据超过阈值时, 发出预警信号。
预警方式
通过声、光、短信等方式提醒操作人员关注异常情况 。
处理措施
根据异常类型,采取相应的处理措施,如调整振动参 数、清洗结晶器等。
工艺参数的调整与优化建议
调整原则
根据实时监测数据和异常情况,及时调整结晶器的振动参数,确 保连铸过程的稳定性和产品质量。
初始阶段
早期的连铸机采用人工敲击的方式使结晶器振动,这种方 式效率低下且不稳定。
机械式振动阶段
随着机械技术的发展,人们开始采用机械传动装置来实现 结晶器的振动,出现了多种形式的机械式振动装置。
液压式振动阶段
液压技术的引入使得结晶器的振动更加平稳可控,液压式 振动装置逐渐成为主流。
智能化振动阶段
随着计算机技术和传感器技术的发展,结晶器的振动控制 逐渐实现智能化,能够根据实际生产情况自动调整振动参 数,提高铸坯质量和产量。
04
连铸结晶器振动工艺参数的优 化
基于实验的参数优化
实验设计
通过实验方法,对连铸结晶器振 动工艺参数进行优化,需要设计 合理的实验方案,包括选择合适 的实验参数、确定实验范围和实
验步骤等。
数据采集与分析
在实验过程中,需要采集各种数 据,如振动频率、振幅、波形等 ,并对数据进行处理和分析,以 确定各参数对结晶器振动效果的
总结词
随着连铸技术的不断发展,新型振动装置的开发与应 用成为研究重点。新型振动装置应具备更高的稳定性 和可靠性,能够实现更加灵活的振动模式和精确的工 艺参数控制。
详细描述
目前,新型振动装置的开发主要集中在智能化、模块 化和集成化等方面。例如,采用智能传感器和控制系 统,实现对结晶器振动状态的实时监测和自动调整; 采用模块化设计,方便对结晶器进行快速更换和维修 ;采用紧凑型设计,减小设备体积和重量,提高设备 的可靠性和稳定性。这些新型振动装置的开发将为连 铸结晶器振动工艺参数的研究提供更加先进和可靠的 实验平台。
(技师考试材料连铸课件)18结晶器振动
结晶器下振最大速度
对于正弦振动
Vm 2fA
负滑脱率
• 计算
Vm Vc 100%
Vc Vm 2 fA
振痕间距
• V/f
– 正弦 – 非正弦
方式
正弦
•图 • 机构
– 偏心轮连杆
• 优点
– 高频率小振幅
• 适用
– 普通质量 – 低速连铸 – 负滑脱率20~40% – 不能解决防止 拉漏和减轻振痕 深度的矛盾
(技师考试材料连铸课件)18结晶器振动
结晶器振动
• 目的 • 要求 • 参数 • 方式 • 机构 • 快速更换台架
目的
–防止漏钢 –保证润滑 –减少横裂纹 –液面波动大卷渣
目的
要求
– 负滑脱 • 结晶器下降速度>拉坯速度 • 脱模
– 上下振动 – 弧线振动
负滑脱
• 结晶器下降速度>拉坯速度
润滑
润滑
振动参数
结晶器下降最大速度
Vm
fA K11
负滑)V c ] 2 fA
或者
tN
1 f
cos
1[ (1 )V c ] 2 fA
正滑脱时间
tp
1 f
{1 1
cos
1[ (1 )V c ]} 2 fA
振痕间距
p Vc f
结晶器上升最大速度
负滑脱
• 结晶器下降速度>拉坯速度
参数
– 振幅 – 频率 – 波形偏斜率 – 负滑脱率 – 结晶器下振最大速度 – 负滑脱时间 – 正滑脱时间 – 结晶器上振最大速度 – 振痕间距
振幅
• 最高——最低点间距
– 行程一半
•小
– 铸坯表面平滑
结晶器振动参数优化
连铸技术
正弦振动同步控制模型
(1)正弦振动同步控制模型的概念 拉速同频率、振幅的对应关系称为同步控制 模型。由于振幅在生产时不便于调整,而振动 频率的调整却可以通过调整电机转数实现。 拉速—频率同步控制模型的建立是在不同工况下 对频率的动态选择。因此,它的建立仍然是以 工艺参数 tN、Ns 为基础。
12
连铸技术
13
连铸技术
通过Tn -f曲线可以看出,当振动频率 f 较低时, 振幅和拉速的变化对负滑脱的影响很大,振动 频率的波动对负滑脱时间也有很大影响;但当 振动频率提高到一定值后,振幅、拉速、振动 频率的变化对负滑脱时间几乎没有影响,负滑 脱时间也趋于相同。
14
连铸技术
负滑脱时间率 NSR
6
连铸技术
③正弦振动 结晶器振动时的运动速度随时间的变化呈一条正 弦曲线。其特点是:结晶器在整个振动过程中 速度一直是变化的,即铸坯与结晶器时刻都存 在相对运动。在结晶器下降过程中有一段负滑 动,能防止和消除粘结,具有脱模作用;由于 结晶器的运动速度是按正弦规律变化的,加速 度必然按余弦规律变化,所以过度比较平稳, 冲击力也较小。
35
连铸技术
(2)非正弦振动工艺参数 )
结晶器非正弦振动具备最佳振动模型的全部特 征,反映该特征的全部参数即为非正弦振动的 工艺参数。 其工艺参数有负滑动时间 tN、负滑动率Ns、负 滑动时间率 NSR、负滑动超前量 NSA 和正 滑动速度差△v。
36
连铸技术
①负滑动时间 tN
在其它参数为常数时,α 越大,负滑脱时间越短,振痕 越浅。目前,正弦振动 tN的取值已从过去的 0.5s 减少 到 0.25~0.10s,甚至更短。但如 tN过短将不利于脱模 及拉裂坯壳的“愈合”。一般对于低碳钢 tN应不小于 0.1s,而中碳钢 tN应不小于 0.07~0.10s 。
固体物理--第三章 晶格振动ppt课件
5
2a
2
q2 q1 a
5
三、周期性边界条件(Born-Karman边界条件)
N+1
12
n
N N+2 N+n
N n
n
Aeit N naq Aeitnaq
eiNaq 1 ei2h 1
q 2 h
Na
h =整数
6
在q轴上,每一个q的取值所占的空间为 2
Na
q的分布密度:
q Na L
子数不守恒。
11
§3.2 一维双原子链的振动
考虑由P、Q两种原子等距相间排列的一维双原子链
一、运动方程及其解
a Mm
{
n-1 n n n+1
只考虑近邻原子间的弹性相互作用
{ 运动方程:
M n n n1 2n
m n n n1 2 n
试 解:
it naq
Ae n
{ Bei
q 0
光波: =c0q, c0为光速
对于实际晶体, +(0)在1013 ~ 1014Hz,对应于远 红外光范围。离子晶体中光学波的共振可引起对远红外 光在 +(0)附近的强烈吸收。
18
2. 声学波(acoustic branch)
n n
M
m
2m
cos
1 2
aqei
12aq
M 2 m2 2Mm cosaq
2 2
L=Na ——晶体链的长度
简约区中波数q的取值总数 q 2 Na 2
a 2 a
=N=晶体链的原胞数
晶格振动格波的总数=N·1 =晶体链的自由度数
7
四、格波的简谐性、声子概念
晶体链的动能:
连铸结晶器振动工艺参数
06
研究展望与未来发展趋势
结晶器振动工艺参数研究的现状与不足
要点一
现状
要点二
不足
连铸结晶器振动工艺参数是提高铸坯质量、减少裂纹 等缺陷的关键因素。目前,国内外研究者已经开展了 大量研究,取得了一定的成果。
优化建议
根据实际生产需要选择合适的波形,如方波适用于高碳钢等硬度较 大的材质,正弦波适用于低碳钢等韧性较好的材质。
振动方向的控制与优化
01
纵向振动
能够提高铸坯的纵向均匀性,但脱模效果较差。
02
横向振动
能够提高铸坯的横向均匀性,但可能增加振痕深度。
03
优化建议
根据铸坯的形状和用途选择合适的振动方向,如矩形坯多采用纵向振动
连铸结晶器振动工艺参数
2023-11-09
目录
• 结晶器振动概述 • 结晶器振动工艺参数 • 结晶器振动工艺参数的选择与优化 • 结晶器振动工艺参数的监控与调整 • 结晶器振动工艺参数对铸坯质量的影响及控制措
施 • 研究展望与未来发展趋势
01
结晶器振动概述
结晶器振动的重要性
提高产品质量
通过振动,可减少铸坯表面缺 陷,提高产品质量。
振动幅度
总结词
振动幅度是结晶器振动工艺中的另一个重要参数,它决 定了坯壳与结晶器之间的相对位移。
详细描述
振动幅度是指结晶器振动时坯壳与结晶器之间的最大相 对位移,通常以毫米(mm)为单位表示。在连铸过程 中,适当地增大振动幅度可以增加坯壳与结晶器之间的 相对运动,有利于减小坯壳与结晶器之间的摩擦力,降 低坯壳表面的传热速率。然而,过大的振动幅度可能导 致坯壳过热或破裂,影响连铸坯的质量和结晶器的使用 寿命。
结晶器振动
连铸技术
③正弦振动 结晶器振动时的运动速度随时间的变化呈一条正
弦曲线。其特点是:结晶器在整个振动过程中 速度一直是变化的,即铸坯与结晶器时刻都存 在相对运动。在结晶器下降过程中有一段负滑 动,能防止和消除粘结,具有脱模作用;另外, 由于结晶器的运动速度是按正弦规律变化的, 加速度必然按余弦规律变化,所以过度比较平 稳,冲击力也较小。
26
连铸技术
27
连铸技术
① 全部 tN 曲线与 Ns=-0.024 的射线交于顶点,在一 定的拉速范围内,对于任何一拉速和 tN 曲线都有两 个交点,它们分别对应一个高频率和一个低频率。这 两个频率对应相同的负滑动时间。
② 全部 tN、Ns 曲线相交于坐标系原点 0 点,曲线的 下部相互靠近,并重合于 Ns=-0.3634(负滑动率极 限值)曲线。s 值越大它们越靠近,tN值越小它们重 合的线段越长,tN=0 时与 Ns=-0.3634 曲线全部 重合。
34
(2)非正弦振动工艺参数
连铸技术
结晶器非正弦振动具备最佳振动模型的全部特
19
2.2振动参数对铸坯质量的影响
连铸技术
(1)结晶器振动参数对铸坯振痕的影响
由结晶器振动在铸坯表面形成的横向痕迹称为振 痕。振痕深度是衡量铸坯表面质量的重要标准 之一,过深的振痕会造成铸坯表面裂纹和成分 的偏析。大量的实验表明,振痕深度与负滑脱 时间有关,负滑脱时间越短,振痕深度就越浅。 缩短负滑脱时间、降低振幅和提高振动频率均 可以减少铸坯的振痕,改善铸坯质量
④当 NS<2.4%时,负滑动时间曲线随频率 f 的增加 而下降,特别是当 z 值较小时,如 z<5 时,曲线下 降得非常缓慢。
25
正弦振动同步控制模型
第四章 晶格振动优秀PPT
将方程解代回3n个运动方程
—— 3n个线性齐次方程 m k2Akk'Ck q,k'Ak'
m in00
m a x /2 a 2 k /M
光学波
m in /2 a 2 k/m
m a x 0 2 k m M /m M
声学波
A B
2kcosqa
2km2
0
相邻异类原子一般朝同一方向振动
在长波极限:相邻原子同向振动,而且振幅 相同,它们的振动(波动)行为好象是同一类原 子。反映的是晶格的整体振动 。
光学波
A B
2kcosqa
2km2
0
相邻异类原子一般朝相反方向振动
q0
在长波极限:A/B
M/m,
mA+MB=0,
晶胞质心不动。晶体并非整体呈刚体,其中
的轻原子与重原子分别构成刚性结构,而且
两类原子永远反向振动。
与一维单原子链主要结论的比较
共同特点:色散关系中,角频率都为波矢的周 期函数,都有极值。波矢都只能取分离的值, 取值数目都为晶体原胞的个数。 不同之处:
—— 一个格波表示的是所有原子同时做频率为 的振动
➢ 差别:格波的空间坐标是离散的。
➢联系:在长波极限下,常用连续介质弹性波代替
较复杂的格波。(证明)
例1
证明在长波极限下,可用连续介质弹性波代 替较复杂的格波。
2
k m
sin
qa 2
q0
a
k m
q
vq
v ka ,而Y ka, m a
m/a
u Aei[(n1)aqt] n1
格波
u Aei[(n1)aqt] n1
连铸结晶器振动与铸坯表面质量
正脱模时间较长,可增加保 护渣消耗,有利于结晶器润 滑,减小结晶器施加在坯壳 上的摩擦力,防止拉裂。
负滑脱作用强,脱模和坯壳 拉裂愈合好,有利于提高拉 速。
图2 正弦及非正弦速度曲线
TP
(4)描述结晶器振动的基本参数
振动频率f 0—400/min
1-矩形速度规律2-梯形速度规律
② 梯形速度规律
如图1中2所示其特点:
有负滑脱运动,坯壳中 产生压应力,有利于断 裂处焊合和脱模。
结晶器上升和下降转折 点速度变化较缓和,提 高振动机构较平稳。
图1 矩形及梯形速度规律曲线
1-矩形速度规律2-梯形速度规律
③正弦速度规律
如图2所示,正弦速度规律特点:
由表可知在相同板坯断面和拉速条件下,结晶器采用高频率(120次 /min)、小振幅(±3mm),比采用低频率(71次/min)大振幅 (±5mm),浇微合金钢其振动深度由0.58mm,降到0.425mm, 减少了27%,有利于减少板坯边部横裂纹。
(3)合适二冷强度
对于C-Mn-Al钢:如图 12,温度<900℃, 钢高温塑性RA突然下 降,这是因为: ①δ→α相变,在奥氏体 周围铁素体析出。 ②在晶界有AlN质点析 出。 使钢高温塑性 (RA值)降低,裂纹 敏感性增强。
增加了晶界脆
性(图10);
③ 沿振痕波谷处,S、P呈正偏析,降低了钢的高温强度; ④ 铸坯在运行过程中受到弯曲(内弧受压,外弧受张力)
和矫直(内弧受张力,外弧受压力)以及鼓肚作用, 铸坯刚好处于低温脆性区(<900℃),又加上相当 于应力集中 “缺口效应”的振痕,受到拉伸应力作用 的应变量如果超过1.3%,在振痕波谷处就产生横裂 纹。裂纹沿奥氏体晶界扩展直到具有良好塑性的温度 为止。 ⑤由于拉坯阻力过大或者由于结晶器锥度过大而致使铸坯 拉裂,也是形成横裂纹的原因之一。
结晶器振动技术
内蒙古科技大学实习论文题目:结晶器振动技术姓名学号:班级日期:目录内蒙古科技大学煤炭学院 (1)目录 (2)一、摘要 (3)二、前言 (3)三、结晶器振动技术 (5)3.1正弦振动 (5)3.2非正弦振动 (6)3.4结晶器振动参数设置 (9)3.5振动伺服阀 (10)3.6结论 (10)一、摘要连铸连轧结晶器振动技术的发展历史和现状,简单分析了结晶器正弦振动和非正弦振动形式,并讨论了结晶器振动和润滑的关系。
关键词:结晶器;振动;润滑;振动参数;振动伺服阀;二、前言结晶器振动是连铸技术的一个基本特征。
连铸过程中,结晶器和坯壳间的相互作用影响着坯壳的生长和脱膜,其控制因素是结晶器的振动和润滑。
连铸在采用固定结晶器浇注时,连铸直接从结晶器向下拉出,由于缺乏润滑,易与结晶器发生粘结,从而导致出现拉不动或者拉漏事故,很难进行浇注。
结晶器振动对于改善铸坯和结晶器界面间的润滑是非常有效的,振动结晶器的发明引进,工业上大规模应用连铸技术才得以实现。
可以说,结晶器振动是浇注成功的先决条件,十年来发展的重要里程碑。
近年来,冶金工业的迅速发展,要求连铸提高拉速和增加连铸机的生产能力,人们对结晶器振动的认识也在不断深入和发展。
连铸机结晶器振动的目的是防止拉坯时坯壳与结晶器黏结,同时获得良好的铸坯表面。
结晶器向上运动时,减少新生坯壳与铜壁产生黏着,以防止坯壳受到较大的应力,使铸坯表面出现裂纹;而当结晶器向下运动时,借助摩擦,在坯壳上施加一定的压力,愈合结晶器上升时拉出的裂痕,要求向下运动的速度大于拉坯速度,形成负滑脱。
结晶器壁与运动坯壳之间存在摩擦力,此摩擦力被认为是撕裂坯壳进而限制浇注速度的基本因素。
在初生坯壳与结晶器壁之间存在液体渣膜,此处的摩擦为黏滞摩擦,即摩擦力大小正比于相对运动速度,渣膜黏度,反比于渣膜厚度。
在结晶器振动正滑脱期间摩擦力及其引起的对坯壳的拉应力就较大,可能将初生坯壳拉裂,为此开发了采用负滑脱的非正弦振动技术来减小这一摩擦力。
课件连铸工艺与设备-结晶器-PPT课件
多级结晶器
(multi-stage mold)
多级结晶器 即在结晶器 下口安装足 辊、铜板或 冷却格栅。
多级结晶器结构示意图 a-足辊;b-冷却板;c冷却格栅
18
结晶器形式和结构
整体式结晶器:它是用整块铜锭刨削制成的,在其内 腔四周钻有许多小孔用以通冷却水。这种结晶器刚性好, 易维护,寿命较长,但制造成本高,耗铜多,近几年已 不采用; 调宽结晶器(adjustable mold):宽度可调的结晶器,一 般只用于板坯连铸。在不停顿拉坯的条件下,改变铸坯 的宽度叫结晶器在线调宽,它的优点是: (1)能连续浇注出不同宽度尺寸的铸坯,缩短了停机时间, 提高铸机生产能力; (2)可减少铸坯切头切尾的损耗,提高收得率; (3)可浇注相近成份的钢水而不需停机。
通俗的讲连铸结晶器就是一个钢水制冷成型设备。 基本由框架、水箱和铜板、调整系统(调整装置、减 速机等);润滑系统(油管油路),冷却系统和喷淋等设 备组成。连铸结晶器需要和连铸结晶器保护材料(渣) 一同使用。 2
4.1 结晶器
结晶器是连铸机的关键部件。它的作用是: 在尽可能高的拉速下,保证出结晶器坯壳厚度,防 止拉漏; 通过结晶器的振动,使坯壳脱离结晶器壁而不被拉 断和漏钢; 保证坯壳均匀稳定的生成,铸坯周边厚度均匀; 使钢液逐渐凝固成所需要规格、形状的坯壳; 通过调整结晶器的参数,使铸坯不产生脱方、鼓肚 和裂纹等缺陷。
26
4.4 结晶器锥度
结晶器内腔纵断面的尺寸做成上大下小,形成一个 锥度,由于是上大下小,故称倒锥度。 在结晶器中钢水由于受到冷却而形成一定形状的 坯壳,随着铸坯不断下移,温度也不断下降而收缩, 若结晶器没有倒锥度,就会在坯壳与结晶器之间形 成间隙,称气隙。由于气隙的存在降低了冷却效果, 同时由于坯壳过早地脱离结晶器内壁,在钢水静压 力作用下坯壳会产生鼓肚变形。因此,将结晶器做 成倒锥度,上述情况就可以避免,但其锥度大小应 与铸坯冷却收缩程度相适应。 过小的倒锥度还会形成气隙,过大的倒锥度会增 大拉坯阻力,根据经验,倒锥度一般取0.5%~0.8%。 例如我国某厂板坯连铸机,倒锥度取0.63%~0.65%。 27
结晶器液压振动原理
结晶器液压振动原理40吨气动冲床作为一种中大型的金属成型设备,广泛应用于众多工业生产领域。
其强大的40吨冲压力使其能够高效地对各种金属板材、管材进行精密且力度足够的冷冲压加工处理,如汽车零部件制造过程中需要进行的冲孔、落料、弯曲、浅拉伸等工艺,可以用于生产车身钣金件、内饰件、座椅支架等各种配件;在电子电器行业中,可用于制作精密复杂的控制面板、散热片以及各类电子元器件外壳;同时,在机械制造业中,可完成轴承座、法兰盘、底座板等多种结构部件的冲压成形工作。
此外,它还能服务于五金制品行业,用于生产日常生活中常见的门锁、铰链、把手等五金产品;并延伸至航空航天领域,针对部分轻量化金属材料进行高精度冲压作业。
而在包装和印刷业中,40吨气动冲床能实现纸盒、纸箱模具的快速精准冲压;家用电器行业的冰箱、空调、洗衣机等产品的金属壳体也能借助该设备进行高效生产。
总之,40吨气动冲床以其强大的冲压力和灵活多样的应用方式,极大地提升了各行各业金属制品的加工效率与产品质量,为现代工业化大生产提供了有力支持。
40吨气动冲床的具体参数可能因不同厂家、型号而有所差异,但一般会包括以下关键参数:1.吨位(压力):40吨,即冲压力为400KN。
2.工作台尺寸:如630mm×400mm或根据具体型号定制。
3.滑块行程:通常在150mm至300mm之间,视具体应用需求而定。
4.最大冲裁厚度:取决于材料的硬度和强度,通常对于普通钢材可能在6-12mm范围内。
5.工作频率:即每分钟可完成的冲压次数,例如25-45次/分钟。
6.气源压力:一般要求气源压力在0.6-0.8MPa(6-8bar)左右。
7.电机功率:用于驱动空气压缩机的电动机功率,依设备规格不同。
8.外形尺寸:包含设备整体的长、宽、高尺寸。
9.重量:通常大型的40吨气动冲床重量可能在几千公斤至上万公斤。
结晶器正弦振动装置的形式及其特点
现代连铸技术讨论课结晶器正弦振动装置的形式及其特点班级:姓名:课程名称:现代连铸技术指导教师:2013年11月7日目录1、结晶器振动技术的发展历史 (1)2、结晶器的正弦振动 (1)2.1正弦振动的定义 (1)2.2正弦振动的特点 (1)2.3正弦振动机构满足的条件 (1)2.4结晶器实现弧形的轨迹方式 (2)3、结晶器导向机构 (2)3.1 长臂振动机构 (2)3.2 导轨式振动机构 (3)3.3 差动齿轮振动机构 (3)3.4 四连杆振动机构 (4)3.5 四偏心振动机构 (6)4、机械驱动结晶器正弦振动振幅调整 (7)5、同步控制模型 (8)5.1 f=av模型 (8)5.2 f=av+b模型控制 (8)5.3 f=b模型 (8)5.4 f=-av+b (8)现代连铸技术讨论课1、结晶器振动技术的发展历史结晶器振动是连铸技术的一个基本特征。
连铸过程中,结晶器和坯壳间的相互作用影响着坯壳的生长和脱膜,其控制因素是结晶器的振动和润滑。
连铸在采用固定结晶器浇注时,铸坯直接从结晶器向下拉出,由于缺乏润滑,易与结晶器发生粘结,从而导致出现拉不动或者拉漏事故,很难进行浇注。
结晶器振动对于改善铸坯和结晶器界面间的润滑是非常有效的,振动结晶器的发明引进,工业上大规模应用连铸技术才得以实现。
可以说,结晶器振动是浇注成功的先决条件,是连铸发展的一个重要里程碑。
近年来,冶金工业的迅速发展,要求连铸提高拉速和增加连铸机的生产能力,人们对结晶器振动的认识也在不断深入和发展。
结晶器振动经历了早期的非正弦振动方式到正弦振动方式,目前又发展到非正弦振动方式的过程。
当然,现在所采用的非正弦振动与早期的非正弦振动虽然振动波形同为非正弦,但其目的和实现方式上二者有本质的区别。
2、结晶器的正弦振动2.1正弦振动的定义当结晶器的运动速度与时间的关系为一条正弦曲线时称这种振动为正弦振动。
2.2正弦振动的特点正弦振动的主要特点是:结晶器在整个振动过程中速度一直是变化的,即铸坯与结晶器间时刻都在相对运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连铸技术
负滑动振动 负滑动振动是指当结晶器往下振动时,其速度大于拉坯速度,形成
负滑动。即: V2=V(1-NS)
而往上振动时,取 V1=2.8 ~ 3.2V2
式中NS为负滑动率,说明结晶器平均下降速度大于拉速,产生负滑 动。负滑动振动的特点是:结晶器先以比拉速稍高的速度下降 一段时间出现负滑动或负滑脱。此时坯壳处于受压状态,既有 利于强制脱模又有利于断裂坯壳的压合。然后再以较高的速度 上升,克服了同步振动时产生较大加速度的缺点。结晶器在下 降或上升过程中都有一段稳定运动时间,有利于坯壳的生成和 裂纹的愈合。
②减小拉坯阻力及改善铸坯表面质量。在结晶器振动 过程中,通过保护渣在结晶器铜壁的渗透可以改善其 润滑条件,防止高温凝壳与结晶器铜壁的粘结,同时 减少了拉坯时的摩擦阻力及改善了铸坯的表面质量。
3
1.2结晶器振动方式的发展过程
连铸技术
大致分为四个时期:
①同步振动
同步振动的特点是结晶器向下振动时,其速度与其拉坯速度相等, 即同步。若设V为拉坯速度,Vm为结晶器振动速度,V1为上 升速度,V2为下降速度,则同步振动应满足以下条件:
15
连铸技术
16
连铸技术
由于负滑脱时间率是负滑脱时间与振动半周期的比率, 它反映了负滑脱时间、正滑脱时间的比值大小,所以, 以负滑脱时间率NSR来判定结晶器的脱模能力是合理的, 据此,结晶器的振动参数应保证较低的负滑脱时间和较 高的负滑脱时间率,这种工艺要求只有在高频振动、小 振幅的情况下条件下才能得到满足。
7
连铸技术
④非正弦振动 对于传统的正弦振动来说,其特性完全取决于振幅和振
动频率两个独立的振动参数。当波形调节能力小时难 以满足上述要求。而非正弦振动的最大特点是上升时 间比下降时间长,因而加大了保护渣的消耗量,使结 晶器弯月面附近的液体摩擦力减少,可以得到表面质 量优异的铸坯,能满足连铸生产的要求。 非正弦振动曲线大致可分为三角形振动波形、三角多项 式波形、普通的非正弦波形和改进的非正弦波形等。
结晶器振动参数优化
东北大学
пятница, 4
1概述 2结晶器振动参数的分析 3 非正弦振动运动分析
连铸技术
2
1概述
连铸技术
1.1结晶器振动的作用
结晶器振动的作用有如下两点:
①防止铸坯在凝固过程中与结晶器铜壁发生粘结而出 现坯壳拉裂或漏钢事故。在结晶器上下振动时,按振 动曲线周期性地改变钢液面与结晶器铜壁的相对位置, 对坯壳有一个强制脱模的作用,并使得拉漏的坯壳在 结晶器内部得以焊合。
14
负滑脱时间率 NSR
连铸技术
负滑脱时间率 NSR可以定义为在一个振动周期 内负滑脱时间 Tn与半个振动周期时间的百分 比值。即 NSR = (2Tn /T)×100%。由公 式可以绘制不同振幅、不同拉速下的 NSR - f 曲线。
由NSR - f 曲线可知,振动频率越高,振幅和拉 速对负滑脱时间率 NSR的影响越小,但 NSR 越大。
8
2结晶器振动参数的分析
连铸技术
2.1 结晶器的振动参数
与结晶器振动有关的振动参数主要有:如振幅和频率, 这是决定结晶器运动的振动参数称为结晶器振动基本 参数,另外与“负滑脱”相关的振动参数如负滑动率 NS、负滑脱时间 tN和负滑脱时间率 NSR,由于这 些负滑脱参数直接关系到铸坯的脱模和铸坯的质量, 所以负滑脱参数被称为工艺参数。
V1=3V;
V2=V
同步振动的优点是:结晶器能实现与拉坯速度同步运动,对铸坯有 利。其缺点是振动机构必须与拉坯速度实行严格的同步联锁, 当结晶器由往下振动转为往上运动的转折处加速度过大,机构 中会产生相当大的冲击,因此,现已不再采用。
4
连铸技术
1—同步式振动 2—负滑脱振动 3—正弦振动 图 1 结晶器振动方式
17
负滑脱率 NS
连铸技术
由上式可知:通过控制 NS可控制 tN,当 Vc=Va时, 结晶器中的坯壳处于受拉和受压的临界状态,此时的负 滑动率 NS=-36.4%。当 NS<-36.4%时,将不会出 现负滑脱时间 tN。
18
连铸技术
在设计振动参数中,往往用负滑脱率 NS 作为计算的依 据,这个模型广泛应用于国内外的连铸设计中。NS 一般是给定值,如曼内斯曼(Munnesmann)的取 值为 20%~40%,而康卡斯特(Concast)取 20 %~(-20)%,故上式称作负滑动率结晶器振动数 学模型。 传统的观念认为,负滑脱率 NS 是一个重要的工艺参 数,其最佳值在30—35%左右,负滑脱时间率 NSR 在 55%—80%之间。基于这种认识,目前许多连铸 机仍采用 NS 为常值的振动模型,这时的振动频率 f 与拉坯速度Vc成正比。
6
连铸技术
③正弦振动 结晶器振动时的运动速度随时间的变化呈一条正
弦曲线。其特点是:结晶器在整个振动过程中 速度一直是变化的,即铸坯与结晶器时刻都存 在相对运动。在结晶器下降过程中有一段负滑 动,能防止和消除粘结,具有脱模作用;另外, 由于结晶器的运动速度是按正弦规律变化的, 加速度必然按余弦规律变化,所以过度比较平 稳,冲击力也较小。
12
连铸技术
13
连铸技术
通过Tn -f曲线可以看出,当振动频率 f 较低时,振幅和 拉速的变化对负滑脱的影响很大,而且振动频率的波 动对负滑脱时间也有很大影响;但当振动频率提高到 一定值后,振幅、拉速、振动频率的变化对负滑脱时 间几乎没有影响,负滑脱时间也趋于相同。
随着振动频率提高后,负滑脱时间变短且趋于稳定,但 当振动频率提高到一定值后,振幅、拉速、振动频率 的变化对负滑脱时间的影响几乎没有,负滑脱时间也 趋于相同。因此说,振动频率提高后,负滑脱时间变 短且趋向稳定。
结晶器振幅A,因为正弦振动是由偏心轮-杆机构实现的。 因此,振幅可直接由偏心轮的偏心距,通过杆系的换 算得到。也可按速度-时间正弦曲线的半波面积计算 获得:
9
结晶器运动速度曲线
连铸技术
10
tN 6f0arcco2Vs技术
结晶器振动时,只有当结晶器振动速度Vm大于 拉坯速度V 时才出现负滑动。负滑脱是指在 一个振动周期内,结晶器向下的运动速度比铸 坯向下的运动速度(拉速)要快的时间,在负 滑脱期内,凝固坯壳将受压而使被拉裂的坯壳 加以“焊合”,起到防止拉漏的作用,所以在 结晶器振动时应有一定的负滑脱时间,但过长 的负滑脱时间反而会使铸坯的表面质量变坏。 在拉速一定时,负滑脱时间的长短是由结晶器 振动的频率和幅度决定的。