2.1《空间点、直线、平面之间的位置关系》练习题
空间点、直线、平面之间的位置关系练习题(基础、经典、好用)
空间点、直线、平面之间的位置关系一、选择题1.以下四个命题中①不共面的四点中,其中任意三点不共线;②若点A、B、C、D共面,点A、B、C、E共面,则点A、B、C、D、E共面;③若直线a、b共面,直线a、c共面,则直线b、c共面;④依次首尾相接的四条线段必共面.正确命题的个数是()A.0 B.1 C.2 D.32.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定()A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行3.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,这四个点不共面的一个图是()图7-3-74.(2013·揭阳模拟)如图7-3-7,正三棱柱ABC—A1B1C1的各棱长(包括底面边长)都是2,E,F分别是AB,A1C1的中点,则EF与侧棱C1C所成的角的余弦值是()A.55B.255C.12D.25.设A,B,C,D是空间四个不同的点,在下列命题中,不正确的是()A.若AC与BD共面,则AD与BC共面B.若AC与BD是异面直线,则AD与BC是异面直线C.若AB=AC,DB=DC,则AD=BCD.若AB=AC,DB=DC,则AD⊥BC二、填空题图7-3-86.(2013·深圳质检)如图7-3-8是正四面体的平面展开图,G、H、M、N分别为DE、BE、EF、EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.7.(2013·韶关模拟)设a,b,c是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线.上述命题中正确的命题是________(只填序号).图7-3-98.如图7-3-9所示,在正三棱柱ABC—A1B1C1中,D是AC的中点,AA1∶AB=2∶1,则异面直线AB1与BD所成的角为________.三、解答题图7-3-109.如图7-3-10所示,在正方体ABCD—A1B1C1D1中,E,F分别为CC1,AA1的中点,画出平面BED1F与平面ABCD的交线.图7-3-1110.如图7-3-11所示,在正方体ABCD—A1B1C1D1中,E,F分别为A1A,C1C的中点,求证:四边形EBFD1是菱形.图7-3-1211.如图7-3-12,三棱锥P—ABC中,PA⊥平面ABC,∠BAC=60°,PA=AB=AC=2,E是PC的中点.(1)求异面直线AE和PB所成角的余弦值;(2)求三棱锥A—EBC的体积.解析及答案一、选择题1.【解析】①中显然是正确的;②中若A、B、C三点共线则A、B、C、D、E五点不一定共面.③构造长方体或正方体,如图显然b、c异面故不正确.④中空间四边形中四条线段不共面,故只有①正确.【答案】B2.【解析】若c与a,b都不相交,则c与a,b都平行,则a∥b与a,b异面相矛盾.【答案】C3.【解析】在A图中分别连接PS,QR,易证PS∥QR,∴P,Q,R,S共面;在C图中分别连接PQ,RS,易证PQ∥RS,∴P,Q,R,S共面.在B图中过P,Q,R,S可作一正六边形,故四点共面;D图中PS与QR为异面直线,∴四点不共面,故选D.【答案】D4.【解析】如图,取AC中点G,连FG、EG,则FG∥C1C,FG=C1C;EG∥BC,EG=12BC,故∠EFG即为EF与C1C所成的角,在Rt△EFG中,cos∠EFG=FGFE=25=255.【答案】B5.【解析】由公理1知,命题A正确.对于B,假设AD与BC共面,由A正确得AC与BD共面,这与题设矛盾,故假设不成立,从而结论B正确.对于C,如图,当AB=AC,DB=DC,使二面角A—BC—D的大小变化时,AD与BC不一定相等,故不正确.对于D,如图,取BC的中点E,连接AE,DE,则由题设得BC⊥AE,BC⊥DE.根据线面垂直的判定定理得BC⊥平面ADE,从而AD⊥BC.故D正确.【答案】C二、填空题6.【解析】还原成正四面体知GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角,DE⊥MN.【答案】②③④7.【解析】由公理4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行,或异面,故②错;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故③错;a⊂α,b⊂β,并不能说明a与b“不同在任何一个平面内”,故④错.【答案】①8.【解析】取A1C1的中点D1,连接B1D1,因为D是AC的中点,所以B1D1∥BD,所以∠AB1D1即为异面直线AB1与BD所成的角.连接AD1,设AB=a,则AA1=2a,所以AB1=3a,B1D1=32a,AD1=14a2+2a2=32a.所以cos∠AB1D1=3a2+34a2-94a22×3a×32a=12,所以∠AB1D1=60°.【答案】60°三、解答题9.【解】在平面AA1D1D内,延长D1F,∵D1F与DA不平行,∴D1F与DA必相交于一点,设为P,则P∈D1F,P∈DA.又∵D1F⊂平面BED1F,AD⊂平面ABCD,∴P∈平面BED1F,P∈平面ABCD.又B为平面ABCD与平面BED1F的公共点,连接PB,∴PB即为平面BED1F与平面ABCD 的交线.如图所示.10.【证明】如图所示,取B1B的中点G,连接GC1,EG,∵GB∥C1F,且GB=C1F,∴四边形C1FBG是平行四边形,∴FB∥C1G,且FB=C1G,∵D1C1∥EG,且D1C1=EG,∴四边形D1C1GE为平行四边形.∴GC1∥D1E,且GC1=D1E,∴FB∥D1E,且FB=D1E,∴四边形EBFD1为平行四边形.又∵FB=FD1,∴四边形EBFD1是菱形.11.【解】(1)取BC的中点F,连结EF,AF,则EF∥PB.所以∠AEF就是异面直线AE和PB所成的角或其补角.∵∠BAC=60°,PA=AB=AC=2,PA⊥平面ABC,∴AF=3,AE=2,EF=2,cos∠AEF=2+2-32×2×2=14.(2)因为E是PC中点,所以E到平面ABC的距离为12PA=1,V A—EBC=V E—ABC=13×34×4×1=33.。
《 空间点、直线、平面之间的位置关系》试题(新人教必修2).
第1题. 下列命题正确的是( ) A.经过三点确定一个平面B.经过一条直线和一个点确定一个平面 C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面答案:D.第2题. 如图,空间四边形ABCD 中,E ,F ,G ,H 分别 是AB ,BC ,CD ,DA 的中点. 求证:四边形EFGH 是平行四边形.答案:证明:连接BD .因为EH 是ABD △的中位线,所以EH BD ∥,且. 同理,FG BD ∥,且BD .因为EH FG ∥,且EH FG =. 所以四边形EFGH 为平行四边形.试题号:4658 知识点:空间平行线的传递性——公理4。
试题类型:解答题 试题难度:容易 考查目标:基础知识 录入时间:2006-1-6第3题. 如图,已知长方体ABCD A BC D ''''-中,AB =AD =2AA '=. (1)BC 和A C ''所成的角是多少度? (2)AA '和BC '所成的角是多少度?AE BHGCFD答案:(1)45þ;(2)60þ.第4题. 下列命题中正确的个数是()①若直线l上有无数个点不在平面α内,则lα∥.②若直线l与平面α平行,则l与平面α内的任意一条直线都平行.③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点.A.0B.1 C.2 D.3答案:B.⊄,则下列结论成立的是()第5题. 若直线a不平行于平面α,且aαA.α内的所有直线与a异面B.α内不存在与a平行的直线C.α内存在唯一的直线与a平行D.α内的直线与a都相交答案:B.∥,且a与c的夹角为θ,那么b与c夹角第6题. 已知a,b,c是三条直线,角a b为.答案:θ.第7题. 如图,AA'是长方体的一条棱,这个长方体中与AA'垂直的棱共条.答案:8条.第8题. 如果a,b是异面直线,直线c与a,b都相交,那么这三条直线中的两条所确定的平面共有个.答案:2个.∥则b与α的位置关系是.第9题. 已知两条相交直线a,b,aα平面∥,或b与a相交.答案:b a第10题. 如图,三条直线两两平行且不共面,每两条确定一个平面,一共可以确定几个平面?如果三条直线相交于一点,它们最多可以确定几个平面?答案:3个,3个.第11题. 如图是正方体的平面展开图,则在这个正方体中:①BM与ED平行.②CN与BE是异面直线.③CN 与BM 成60˚角. ④DM 与BN 垂直.以上四个命题中,正确命题的序号是( ) A.①,②,③B.②,④ C.③,④D.②,③,④答案:C.第12题. 下列命题中,正确的个数为( )①两条直线和第三条直线成等角,则这两条直线平行;②平行移动两条异面直线中的任何一条,它们所成的角不变;③过空间四边形ABCD 的顶点A 引CD 的平行线段AE ,则BAE ∠是异面直线AB 与CD 所成的角;④四边相等,且四个角也相等的四边形是正方形 A.0 B.1 C.2 D.3 答案:B.第13题. 在空间四边形ABCD 中,N ,M 分别是BC ,AD 的中点,则2MN 与AB CD +的大小关系是 . 答案:2MN AB CD <+.第14题. 已知a b ,是一对异面直线,且a b ,成70角,P 为空间一定点,则在过P 点的直线中与a b ,所成的角都为70的直线有 条.答案:4.第15题. 已知平面αβ//,P 是平面αβ,外的一点,过点P 的直线m 与平面αβ,分别交于A C ,两点,过点P 的直线n 与平面αβ,分别交于B D ,两点,若698PA AC PD ===,,, 则BD 的长为 .答案:24245或.第16题. 空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,若AC BD a ==,且AC 与BD 所成的角为90,则四边形EFGH 的面积是 . 答案:214a .第17题. 已知正方体1111ABCD A B C D -中,E ,F 分别为11D C ,11C B 的中点,AC BD P = ,11AC EF Q = .求证:(1)D ,B ,F ,E 四点共面;(2)若1AC 交平面DBFE 于R 点,则P ,Q ,R 三点共线. 答案:证明:如图.(1)EF 是111D B C △的中位线,11EF B D ∴∥. 在正方体1AC 中,11B D BD ∥,∴EF BD ∥.EF ∴确定一个平面,即D ,B ,F ,E 四点共面.(2)正方体1AC 中,设11A ACC 确定的平面为α,又设平面BDEF 为β.11Q AC ∈ ,Q α∴∈.又Q EF ∈,Q β∴∈.则Q 是α与β的公共点,PQ αβ∴= . 又1AC R β= ,1R AC ∴∈. R α∴∈,R β∈且,则R PQ ∈.故P ,Q ,R 三点共线.第18题. 已知下列四个命题: ① 很平的桌面是一个平面; ② 一个平面的面积可以是4m 2; ③ 平面是矩形或平行四边形;④ 两个平面叠在一起比一个平面厚. 其中正确的命题有( ) A.0个 B.1个 C.2个 D.3个 答案:A.第19题. 给出下列命题:和直线a 都相交的两条直线在同一个平面内; 三条两两相交的直线在同一平面内; 有三个不同公共点的两个平面重合; 两两平行的三条直线确定三个平面. 其中正确命题的个数是( ) A.0 B.1 C.2 D.3 答案:A.第20题. 直线12l l ∥,在1l 上取3点,2l 上取2点,由这5点能确定的平面有( )A.9个 B.6个 C.3个 D.1个 答案:D.第21题. 三条直线相交于一点,可能确定的平面有( ) A.1个 B.2个 C.3个 D.1个或3个 答案:D.第22题. 下列命题中,不正确的是( )①一条直线和两条平行直线都相交,那么这三条直线共面; ②每两条都相交但不共点的四条直线一定共面; ③两条相交直线上的三个点确定一个平面; ④两条互相垂直的直线共面. A.①与② B.③与④ C.①与③ D.②与④ 答案:B.第23题. 分别和两条异面直线都相交的两条直线一定是( ) A.异面直线 B.相交直线 C.不相交直线 D.不平行直线答案:D.第24题. 在长方体1111ABCD A B C D 中,点O ,1O 分别是四边形ABCD ,1111A B C D 的对角线的交点,点E ,F 分别是四边形11AA D D ,11BB C C 的对角线的交点,点G ,H 分别是四边形11A ABB ,11C CDD 的对角线的交点. 求证:1OEG O FH △≌△.答案:证明:如图,连结1AD ,AC ,1CD ,11C A ,1C B ,1BA由三角形中位线定理可知OE ∥ 112CD ,1O F ∥112BA . 又1BA ∥1CD ,OE ∴ ∥1O F .同理可证EG ∥FH . 由等角定理可得1OEG O FH ∠=∠.∴1OEG O FH △≌△.第25题. 若a ,b 是异面直线,b ,c 也是异面直线,则a 与c 的位置关系是( ) A.异面 B.相交或平行 C.平行或异面 D.相交或平行或异面 答案:D.第26题. a ,b 是异面直线,A ,B 是a 上两点,C ,D 是b 上的两点,M ,N 分别是线段AC 和BD 的中点,则MN 和a 的位置关系是( ) A.异面直线 B.平行直线 C.相交直线 D.平行、相交或异面 答案:A.第27题. 如下图是正方体的平面展开图,在这个正方体中 ①BM 与ED 平行;②CN 与BE 是异面直线; ③CN 与BM 成60þ角;④DM 与BN 垂直.以上四个命题中,正确命题的序号是( )A.①②③ B.②④ C.③④ D.②③④答案:C.第28题. 直线与平面平行的条件是这条直线与平面内的( ) A.一条直线不相交B.两条直线不相交C.任意一条直线不相交D.无数条直线不相交答案:C.第29题. 如果直线a平行于平面α,则()A.平面α内有且只有一直线与a平行B.平面α内有无数条直线与a平行C.平面α内不存在与a平行的直线D.平面α内的任意直线与直线a都平行答案:B.第30题. 已知直线的倾斜角为α,若3sin5α=,则此直线的斜率为()C.34±D.43±。
空间点,直线,平面的位置关系试题(含答案)2
空间角和距离一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线m 与平面α间距离为d ,那么到m 与α距离都等于2d 的点的集合是( )A .一个平面B .一条直线C .两条直线D .空集 2.异面直线a 、b 所成的角为θ,a 、b 与平面α都平行,b ⊥平面β,则直线a与平面β所成的角( )A .与θ相等B .与θ互余C .与θ互补 D .与θ不能相等.3.在正方体ABCD —A 'B 'C 'D '中,BC '与截面BB 'D 'D 所成的角为( ) A .3πB .4π C .6πD .arctan24.在正方形SG 1G 2G 3中,E ,F 分别是G 1G 2及G 2G 3的中点,D是EF 的中点,现在沿SE ,SF 及EF 把这个正方形折成一个四面体,使G 1,G 2,G 3三点重合,重合后的点记为G ,那么,在四面体S -EFG中必有( )A .SG ⊥△EFG 所在平面B .SD ⊥△EFG 所在平面C .GF ⊥△SEF 所在平面D .GD ⊥△SEF 所在平面 5.有一山坡,它的倾斜角为30°,山坡上有一条小路与斜坡底线成45°角,某人沿这条小路向上走了200米,则他升高了( )A .1002米 B .502米 C .256米D .506米6.已知三棱锥D -ABC 的三个侧面与底面全等,且AB =AC =3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的大小为 ( )A .arccos33 B .arccos 31 C .2π D .32π7.正四面体A —BCD 中E 、F 分别是棱BC 和AD 之中点,则EF 和AB 所成的角 ( ) A .45︒ B .60︒ C.90︒D .30︒8.把∠A =60°,边长为a 的菱形ABCD 沿对角线BD 折成60°的二面角,则AC 与BD 的距离为( )A .43aB .43 a C .23 aD .46 a9.若正三棱锥的侧面均为直角三角形,侧面与底面所成的角为α,则下列各等式中成立的是( )A .0<α<6πB .6π<α<4πC .4π<α<3πD .3π<α<2π10.已知A (1,1,1),B (-1,0 ,4),C (2 ,-2,3),则〈AB ,CA〉的大小为( )A .6πB .65π C .3πD .32π二、填空题(本大题共4小题,每小题6分,共24分)11.从平面α外一点P 引斜线段PA 和PB ,它们与α分别成45︒和30︒角,则∠APB 的最大值是______最小值是_______12.∆ABC 中∠ACB=90︒,PA ⊥平面ABC ,PA=2,AC=2 3 ,则平面PBC 与平面PAC ,平面ABC 所成的二角的大小分别是______、_________.13.在三棱锥P-ABC中,90=∠ABC,30=∠BAC,BC=5,又PA=PB=PC=AC,则点P到平面ABC的距离是 .14.球的半径为8,经过球面上一点作一个平面,使它与经过这点的半径成45°角,则这个平面截球的截面面积为 . 三、解答题(共计76分)15.(本小题满分12分)已知SA ⊥平面ABC ,SA=AB ,AB ⊥BC ,SB=BC ,E 是SC 的中点,DE ⊥SC 交AC 于D . (1) 求证:SC ⊥面BDE ;(2)求二面角E —BD —C 的大小.16.(本小题满分12分)如图,点P 为斜三棱柱111C B A ABC -的侧棱1BB 上一点,1BB PM⊥交1AA 于点M,1BB PN ⊥交1CC 于点N.(1) 求证:MN CC ⊥1; (2) 在任意DEF ∆中有余弦定理:DFEEF DF EFDFDE∠⋅-+=cos 2222.拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.17.(本小题满分12分)如图,四棱锥S—ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SB=3.(1)求证BC SC;(2)求面ASD与面BSC所成二面角的大小;(3)设棱SA的中点为M,求异面直线DM与SB所成角的大小.18.(本小题满分12分)在直角梯形ABCD中,∠D=∠BAD=90︒,AD=DC=1AB=a,(如图一)将△ADC 沿AC折起,使2D到D'.记面AC D'为α,面ABC为β.面BC D'为γ.(1)若二面角α-AC-β为直二面角(如图二),求二面角β-BC-γ的大小;(2)若二面角α-AC-β为60︒(如图三),求三棱锥D'-ABC的体积.19.(本小题满分14分)如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.(1)求证AM//平面BDE;(2)求二面角A-DF-B的大小;(3)试在线段AC上确定一点P,使得PF与BC所成的角是60︒.20.(本题满分14分)如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直.点M在AC上移动,点N在BF上移动,若a=)BNCM=<a.20(<(1)求MN的长;(2)当a为何值时,MN的长最小;(3)当MN长最小时,求面MNA与面MNB所成的二面角α的大小.参考答案一.选择题(本大题共10小题,每小题5分,共50分)二.填空题(本大题共4小题,每小题6分,共24分) 11.750 ,150 12.900 ,300 13.35 14.π32三、解答题(本大题共6题,共76分)15.(12分) (1)证明:(1)∵SB=BC E 是SC 的中点 ∴BE ⊥SC ∵DE ⊥SC ∴SC ⊥面BDE(2)解:由(1)SC ⊥BD ∵SA ⊥面ABC ∴SA ⊥BD ∴BD ⊥面SAC ∴∠EDC 为二面角E-BD-C 的平面角设SA=AB=a,则SB=BC=a2.,2,a SC SBC Rt =∆∴中在,30,0=∠∆∴DCESAC Rt 中在60,=∠∆∴EDC DEC Rt 中在.16.(12分) (1) 证:MNCC PMN CC PN CC PM CC BB CC ⊥⇒⊥∴⊥⊥⇒111111,,//平面 ; (2)解:在斜三棱柱111C B A ABC -中,有αcos 21111111111222A ACCB BCCA ACCB BCCA ABBS S S S S ⋅-+=,其中α为 平面B B CC 11与平面A A CC 11所组成的二面角.∴⊥,1PMN CC 平面 上述的二面角为MNP ∠,在PMN ∆中,cos 2222⇒∠⋅-+=MNP MN PN MNPNPMMNPCC MN CC PN CCMN CC PN CCPM ∠⋅⋅⋅-+=cos )()(211111222222, 由于111111111,,BB PM S CCMN S CCPN S A ABBA ACCB BCC⋅=⋅=⋅=,∴有αcos 21111111111222A ACCB BCCA ACCB BCCA ABBS S S S S ⋅-+=.17.(12分) (1)证法一:如,∵底面ABCD 是正方形, ∴BC ⊥DC .∵SD ⊥底面ABCD ,∴DC 是SC 在平面ABCD 上的射影, 由三垂线定理得BC ⊥SC .证法二:如图1,∵底面ABCD 是正方形, ∴BC ⊥DC .∵SD ⊥底面ABCD ,∴SD ⊥BC ,又DC ∩SD=D ,∴BC ⊥平面SDC ,∴BC ⊥SC .(2)解:如图2,过点S 作直线,//AD l l ∴在面ASD 上,∵底面ABCD 为正方形,l BC AD l ∴∴,////在面BSC 上,l ∴为面ASD 与面BSC 的交线.l ∴,,,,SC l SD l SC BC AD SD ⊥⊥∴⊥⊥∴∠CSD 为面ASD 与面BSC 所成二面角的平面角.(以下同解法一) (3)解1:如图2,∵SD=AD=1,∠SDA=90°, ∴△SDA 是等腰直角三角形.又M 是斜边SA 的中点,∴DM ⊥SA .∵BA ⊥AD ,BA ⊥SD ,AD ∩SD=D ,∴BA ⊥面ASD ,SA 是SB 在面ASD 上的射影.由三垂线定理得DM ⊥SB .∴异面直线DM 与SB 所成的角为90°.图1图2解2:如图3,取AB 中点P ,连结MP ,DP .在△ABS 中,由中位线定理得 MP//SB ,DMP ∠∴是异面直线DM 与SB 所成的角.2321==SB MP,又,25)21(1,222=+==DP DM∴在△DMP 中,有DP 2=MP 2+DM 2,︒=∠∴90DMP∴异面直线DM 与SB 所成的角为90°.18.(12分) 解:(1)在直角梯形ABCD 中, 由已知∆DAC 为等腰直角三角形, ∴45,2=∠=CAB a AC , 过C 作CH ⊥AB ,由AB=2a ,可推得 AC=BC=.2a∴ AC ⊥BC .取 AC 的中点E ,连结ED ',则 ED '⊥AC 又 ∵ 二面角β--AC a 为直二面角,∴ED '⊥β 又 ∵ ⊂BC 平面β ∴ BC ⊥E D ' ∴ BC ⊥a ,而a C D ⊂',∴ BC ⊥C D ' ∴ CAD '∠为二面角γβ--BC 的平面角.由于45='∠CAD , ∴二面角γβ--BC 为 45.(2)取AC 的中点E ,连结E D ',再过D '作β⊥'O D ,垂足为O ,连结OE .∵ AC ⊥E D ', ∴ AC ⊥OE ∴ EOD '∠为二面角β--ACa 的平面角, ∴ EO D '∠60=. 在OE D Rt '∆中,aACE D 2221==',∴O D S V ABC ABC D '⋅=∆-'31O D BC AC '⋅⋅⨯=2131a a a 462261⨯⨯⨯=.1263a =19.(14分)解法一: (1)记AC 与BD 的交点为O,连接OE, ∵O 、M 分别是AC 、EF 的中点,图3ACEF 是矩形,∴四边形AOEM 是平行四边形, ∴AM ∥OE .∵⊂OE平面BDE ,⊄AM 平面BDE ,∴AM ∥平面BDE .(2)在平面AFD 中过A 作AS ⊥DF 于S ,连结BS ,∵AB ⊥AF , AB ⊥AD , ,A AF AD = ∴AB ⊥平面ADF ,∴AS 是BS 在平面ADF 上的射影,由三垂线定理得BS ⊥DF .∴∠BSA 是二面角A —DF —B 的平面角. 在RtΔASB 中,,2,36==AB AS∴,60,3tan ︒=∠=∠ASB ASB∴二面角A —DF —B 的大小为60º.(3)设CP=t (0≤t≤2),作PQ ⊥AB 于Q ,则PQ ∥AD , ∵PQ ⊥AB ,PQ ⊥AF ,A AFAB = ,∴PQ ⊥平面ABF ,⊂QE平面ABF ,∴PQ ⊥QF .在RtΔPQF 中,∠FPQ=60º,PF=2PQ . ∵ΔPAQ 为等腰直角三角形,∴).2(22t PQ -=又∵ΔPAF 为直角三角形,∴1)2(2+-=t PF,∴).2(2221)2(2t t -⋅=+-所以t=1或t=3(舍去),即点P是AC 的中点.解法二: (1)建立如图所示的空间直角坐标系. 设NBD AC = ,连接NE , 则点N 、E 的坐标分别是()0,22,22、(0,0,1),∴)1,22,22(--=NE, 又点A 、M 的坐标分别是)0,2,2(,()1,22,22∴AM =()1,22,22--∴AMNE =且NE与AM 不共线,∴NE ∥AM .又∵⊂NE 平面BDE , ⊄AM 平面BDE ,∴AM ∥平面BDF .(2)∵AF ⊥AB ,AB ⊥AD ,AF ,A AD = ∴AB ⊥平面ADF .∴AB)0,0,2(-=为平面DAF 的法向量.∵DBNE ⋅=()1,22,22--·)0,2,2(-=0, ∴NFNE⋅=()1,22,22--·)0,2,2(=0得DBNE ⊥,NFNE⋅,∴NE 为平面BDF 的法向量.∴cos<>⋅NE AB =21∴AB 与NE 的夹角是60º.即所求二面角A —DF —B的大小是60º. (3)设P(t,t,0)(0≤t≤2)得PF),1,2,2(t t --=∴BC =(2,0,0)又∵PF 和BC 所成的角是60º.∴21)2()2(2)2(60cos 22⋅+-+-⋅-=︒t t t解得22=t 或223=t (舍去),即点P 是AC 的中点.20.(14分) 解:(1)作MP ∥AB 交BC 于点P NQ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且MP =NQ,即MNQP 是平行四边形∴MN =PQ由已知a BN CM ==,1===BE AB CB∴2==BF AC 又21a CP =,21a BQ =,即2a BQ CP ==∴MN=PQ =22)1(BQCP +-=22)2()21(a a +-=21)22(2+-a )20(<<a(2)由(Ⅰ),MN=21)22(2+-a ,所以,当22=a 时,MN=22即M 、N 分别移动到AC 、BF 的中点时,MN 的长最小,最小值为22.(3)取MN 的中点G ,连结AG 、BG ,∵ANAM =,BNBM=,G 为MN的中点 ∴AG⊥MN,BG ⊥MN,∠A G B即为二面角α的平面角,又AG =BG 46=,所以,由余弦定理有314646214646cos 22-=⋅⋅-⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=α, 故所求二面角⎪⎭⎫⎝⎛-=31arccos α。
点直线平面之间的位置关系练习题
第二章 《点、直线、平面之间的位置关系》一、选择题1. 给出下列关于互不相同的直线m 、l 、n 和平面α、β的四个命题: ①若不共面与则点m l m A A l m ,,,∉=⋂⊂αα;②若m 、l 是异面直线,ααα⊥⊥⊥n m n l n m l 则且,,,//,//; ③若m l m l //,//,//,//则βαβα;④若.//,//,//,,,βαββαα则点m l A m l m l =⋂⊂⊂ 其中为假命题的是A .①B .②C .③D .④2.设γβα,,为两两不重合的平面,n m l ,,为两两不重合的直线,给出下列四个命题:①若γα⊥,γβ⊥,则βα||;②若α⊂m ,α⊂n ,β||m ,β||n ,则βα||; ③若βα||,α⊂l ,则β||l ;④若l =βαI ,m =γβI ,n =αγI ,γ||l ,则m ||其中真命题的个数是A .1B .2C .3D .43.已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若βαβα//,,则⊥⊥m m ;②若βααβγα//,,则⊥⊥; ③若βαβα//,//,,则n m n m ⊂⊂;④若m 、n 是异面直线,βααββα//,//,,//,则n n m m ⊂⊂。
其中真命题是A .①和②B .①和③C .③和④D .①和④4.已知直线n m l 、、及平面α,下列命题中的假命题是A .若//l m ,//m n ,则//l n .B .若l α⊥,//n α,则l n ⊥.C .若l m ⊥,//m n ,则l n ⊥.D .若//l α,//n α,则//l n .5.在正四面体P —ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立的是A .BC ∥平面PDFB .DF ⊥平面PAEC .平面PDF ⊥平面ABCD .平面PAE ⊥平面ABC 6.有如下三个命题:①分别在两个平面内的两条直线一定是异面直线; ②垂直于同一个平面的两条直线是平行直线;③过平面α的一条斜线有一个平面与平面α垂直. 其中正确命题的个数为A .0B .1C .2D .3 7.下列命题中,正确的是 A .经过不同的三点有且只有一个平面 B .分别在两个平面内的两条直线一定是异面直线 C .垂直于同一个平面的两条直线是平行直线 D .垂直于同一个平面的两个平面平行 8.已知直线m 、n 与平面βα,,给出下列三个命题:①若;//,//,//n m n m 则αα ②若;,,//m n n m ⊥⊥则αα ③若.,//,βαβα⊥⊥则m m其中真命题的个数是 A .0 B .1 C .2 D .3 9.已知a 、b 、c 是直线,β是平面,给出下列命题: ①若c a c b b a //,,则⊥⊥; ②若c a c b b a ⊥⊥则,,//; ③若b a b a //,,//则ββ⊂;④若a 与b 异面,且ββ与则b a ,//相交;⑤若a 与b 异面,则至多有一条直线与a ,b 都垂直. 其中真命题的个数是 A .1 B .2 C .3 D .4 10.过三棱柱任意两个顶点的直线共15条,其中异面直线有A .18对B .24对C .30对D .36对 11.正方体1111ABCD A B C D -中,P 、Q 、R 分别是AB 、AD 、11B C的中点.那么,正方体的过P 、Q 、R 的截面图形是A .三角形B .四边形C .五边形D .六边形 12.不共面的四个定点到平面α的距离都相等,这样的平面α共有A .3个B .4个C .6个D .7个 13.设γβα、、为平面,l n m 、、为直线,则β⊥m 的一个充分条件是A .l m l ⊥=⋂⊥,,βαβαB .γβγαγα⊥⊥=⋂,,mC . αγβγα⊥⊥⊥m ,,D .αβα⊥⊥⊥m n n ,,14.设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么 A .①是真命题,②是假命题 B . ①是假命题,②是真命题 C . ①②都是真命题 D .①②都是假命题 15.对于不重合的两个平面α与β,给定下列条件: ①存在平面γ,使得α、β都垂直于γ; ②存在平面γ,使得α、β都平行于γ; ③α内有不共线的三点到β的距离相等;④存在异面直线l 、m ,使得l //α,l //β,m //α,m //β, 其中,可以判定α与β平行的条件有 A .1个B .2个C .3个D .4个二、填空题1.已知平面βα,和直线m ,给出条件:①α//m ;②α⊥m ;③α⊂m ;④βα⊥;⑤βα//.(i )当满足条件 时,有β//m ;(ii )当满足条件 时,有β⊥m (填所选条件的序号)2.在正方形''''D C B A ABCD -中,过对角线'BD 的一个平面交'AA 于E ,交'CC 于F ,则① 四边形E BFD '一定是平行四边形 ② 四边形E BFD '有可能是正方形③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD '有可能垂直于平面D BB '以上结论正确的为 (写出所有正确结论的编号) 3.下面是关于三棱锥的四个命题:①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥. ②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥. ③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥.④侧棱与底面所成的角相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥. 其中,真命题的编号是____________.(写出所有真命题的编号)4.已知m 、n 是不同的直线,,αβ是不重合的平面,给出下列命题:①若//,,,m n αβαβ⊂⊂则//m n②若,,//,//,m n m n αββ⊂则//αβ③若,,//m n m n αβ⊥⊥,则//αβ④m 、n 是两条异面直线,若//,//,//,//,m m n n αβαβ则//αβ上面命题中,真命题的序号是____________(写出所有真命题的序号)5. 已知m 、n 是不同的直线,,αβ是不重合的平面,给出下列命题:① 若//m α,则m 平行于平面α内的任意一条直线② 若//,,,m n αβαβ⊂⊂则//m n ③若,,//m n m n αβ⊥⊥,则//αβ④若//,m αβα⊂,则//m β上面命题中,真命题的序号是____________(写出所有真命题的序号)6.连接抛物线上任意四点组成的四边形可能是 (填写所有正确选项的序号) ①菱形 ②有3条边相等的四边形 ③梯形 ④平行四边形 ⑤有一组对角相等的四边形三、计算题1. 如图1所示,在四面体P —ABC 中,已知PA=BC=6,PC=AB=10,AC=8,PB=342.F 是线段PB 上一点,341715=CF ,点E 在线段AB 上,且EF ⊥PB.(Ⅰ)证明:PB ⊥平面CEF ; (Ⅱ)求二面角B —CE —F 的大小.[解](I )证明: ∵2221006436PC AC PA ==+=+∴△PAC 是以∠PAC 为直角的直角三角形,同理可证△PAB 是以∠PAB 为直角的直角三角形,△PCB 是以∠PCB 为直角的直角三角形 故PA ⊥平面ABC又∵11||||1063022PBC S PC BC ∆==⨯⨯= 而PBC S CF PB ∆==⨯⨯=3017341534221||||21故CF ⊥PB,又已知EF ⊥PB ∴PB ⊥平面CEF(II )由(I )知PB ⊥CE, PA ⊥平面ABC ∴AB 是PB 在平面ABC 上的射影,故AB ⊥CE在平面PAB 内,过F 作FF 1垂直AB 交AB 于F 1,则FF 1⊥平面ABC , EF 1是EF 在平面ABC 上的射影,∴EF ⊥EC故∠FEB 是二面角B —CE —F 的平面角35610cot ===∠=∠AP AB PBA FEB 二面角B —CE —F 的大小为35arctan2.如图,在五棱锥S —ABCDE 中,SA ⊥底面ABCDE ,SA=AB=AE=2,3==DE BC ,=∠=∠=∠120CDE BCD BAE⑴ 求异面直线CD 与SB 所成的角(用反三角函数值表示); ⑵ 证明:BC ⊥平面SAB ;⑶ 用反三角函数值表示二面角B —SC —D 的大小(本小问不必写出解答过程)[解](Ⅰ)连结BE ,延长BC 、ED 交于点F ,则∠DCF=∠CDF=600,∴△CDF 为正三角形,∴CF=DF又BC=DE ,∴BF=EF 因此,△BFE 为正三角形, ∴∠FBE=∠FCD=600,∴BE//CD所以∠SBE (或其补角)就是异面直线CD 与SB 所成的角 ∵SA ⊥底面ABCDE ,SA=AB=AE=2,∴SB=22,同理SE=22,又∠BAE=1200,所以BE=32,从而,cos ∠SBE=46,∴∠46 所以异面直线CD 与SB 所成的角是46 (Ⅱ) 由题意,△ABE 为等腰三角形,∠BAE=1200,∴∠ABE=300,又∠FBE =600, ∴∠ABC=900,∴BC ⊥BA∵SA ⊥底面ABCDE ,BC ⊂底面ABCDE ,∴SA ⊥BC ,又SA I BA=A , ∴BC ⊥平面SAB(Ⅲ)二面角B-SC-D 的大小8282-π3. 已知三棱锥P —ABC 中,E 、F 分别是AC 、AB 的中点,△ABC ,△PEF 都是正三角形,PF ⊥AB.(Ⅰ)证明PC ⊥平面PAB ;(Ⅱ)求二面角P —AB —C 的平面角的余弦值; (Ⅲ)若点P 、A 、B 、C 在一个表面积为12π的 球面上,求△ABC 的边长.[解] 本小题主要考查空间中的线面关系,三棱锥、球的有关概念及解三角形等基础知识,考查空间想象能力及运用方程解未知量的基本方法。
限时集训(四十二) 空间点、直线、平面之间的位置关系
限时集训(四十二) 空间点、直线、平面之间的位置关系(限时:45分钟 满分:81分)一、选择题(本大题共6小题,每小题5分,共30分)1.给出下列四个命题:①没有公共点的两条直线平行;②互相垂直的两条直线是相交直线;③既不平行也不相交的直线是异面直线;④不同在任一平面内的两条直线是异面直线.其中正确命题的个数是( )A .1B .2C .3D .42.平行六面体ABCD -A 1B 1C 1D 1中,既与AB 共面又与CC 1共面的棱的条数为( )A .3B .4C .5D .63.若直线l 不平行于平面α,且l ⊄α,则( )A .α内的所有直线与l 异面B .α内不存在与l 平行的直线C .α内存在唯一的直线与l 平行D .α内的直线与l 都相交4.(2013·福州模拟)如图在底面为正方形,侧棱垂直于底面的四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为( )A.15B.25C.35D.455.(2013·聊城模拟)对于任意的直线l 与平面α,在平面α内必有直线m ,使m 与l ( )A .平行B .相交C .垂直D .互为异面直线6.(2012·重庆高考)设四面体的六条棱的长分别为1,1,1,1,2和a ,且长为a 的棱与长为2的棱异面,则a 的取值范围是( )A .(0, 2)B .(0, 3)C .(1, 2)D .(1, 3)二、填空题(本大题共3小题,每小题5分,共15分)7.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB ⊥EF ;②AB 与CM 所成的角为60°;③EF 与MN 是异面直线;④MN ∥CD .以上四个命题中,正确命题的序号是________.8.(2012·大纲全国卷)已知正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为BB 1、CC 1的中点,那么异面直线AE 与D 1F 所成角的余弦值为________.9.直三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于________.三、解答题(本大题共3小题,每小题12分,共36分)10.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为CC 1,AA 1的中点,画出平面BED 1F 与平面ABCD 的交线.11.如图所示,三棱锥P -ABC 中,P A ⊥平面ABC ,∠BAC =60°,P A =AB =AC =2,E 是PC 的中点.(1)求证AE 与PB 是异面直线;(2)求异面直线AE 和PB 所成角的余弦值.12.(2012·上海高考)如图,在四棱锥P -ABCD 中,底面ABCD是矩形,P A ⊥底面ABCD ,E 是PC 的中点.已知AB =2,AD =22,P A =2.求:(1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小.限时集训(四十二) 空间点、直线、平面之间的位置关系答 案1.B 2.C 3.B 4.D 5.C 6.A7.①③ 8.359.60° 10.解:如图所示.PB 即为平面BED 1F 与平面ABCD 的交线.11.解:(1)证明:假设AE 与PB 共面,设平面为α,∵A ∈α,B ∈α,E ∈α,∴平面α即为平面ABE ,∴P ∈平面ABE ,这与P ∉平面ABE 矛盾,所以AE 与PB 是异面直线.(2)取BC 的中点F ,连接EF 、AF ,则EF ∥PB ,所以∠AEF 或其补角就是异面直线AE 和PB 所成角,∵∠BAC =60°,P A =AB =AC =2,P A ⊥平面ABC ,∴AF =3,AE =2,EF =2;cos ∠AEF =2+2-32×2×2=14, 所以异面直线AE 和PB 所成角的余弦值为14. 12.解:(1)因为P A ⊥底面ABCD ,所以P A ⊥CD ,又AD ⊥CD ,所以CD ⊥平面P AD , 从而CD ⊥PD .因为PD =22+(22)2=23,CD =2,所以三角形PCD 的面积为12×2×23=2 3. (2)取PB 的中点F ,连接EF 、AF ,则EF ∥BC ,从而∠AEF (或其补角)是异面直线BC 与AE 所成的角.在△AEF 中,由EF =2、AF =2、AE =2知△AEF 是等腰直角三角形,所以∠AEF =π4. 因此,异面直线BC 与AE 所成的角的大小是π4.。
2016届瑞安五中高二导学案《空间点、直线、平面之间的位置关系》(练习)
§2.1《空间点、直线、平面之间的位置关系》(练习)一、储备(一)学习目标1. 理解和掌握平面的性质定理,能合理运用;2. 掌握直线与直线、直线与平面、平面与平面的位置关系;3. 会判断异面直线,掌握异面直线的求法;4. 会用图形语言、符号语言表示点、线、面的位置关系. (二)自学导航(阅读:教材P40~ P50,找出疑惑之处) 复习1:概念与性质⑴平面的特征和平面的性质(三个公理);⑵平行公理、等角定理;复习2:异面直线夹角的求法:平移线段作角,解三角形求角.复习3:图形语言、符号语言表示点、线、面的位置关系 ⑴直线与直线的位置关系; ⑵直线与平面的位置关系; ⑶平面与平面的位置关系.二、导学※ 典型例题例1 如图,ABC ∆在平面α外,AB P α=,BC Q α=,AC R α=,求证:P ,Q ,R 三点共线.例2 如图,空间四边形ABCD中,E,F分别是AB和CB上的点,G,H分别是CD和AD上的点,且EH FG与相交于点K.求证:EH,BD,FG三条直线相交于同一点.例3空间四边形ABCD中,AB=CD,AB与CD成30°角,E,F分别为BC,AD的中点,求EF和AB所成的角。
例4 如图,如果两条异面直线称作“一对”,那么在正方体的12条棱中,共有异面直线多少对?※随堂练习:练1. 如图是正方体的平面展开图,则在这个正方体中:①BM与ED平行②CN与BE是异面直线③CN与BM成60°角④DM与BN是异面直线其中正确命题的序号是()A.①②③B.②④C.③④D.②③④练2. 如图,在正方体中,E,F分别为AB、AA'的中点,求证:CE,DF',DA三线交于一点.练3. 由一条直线和这条直线外不共线的三点,能确定平面的个数为多少?三、追踪1. 直线1l ∥2l ,在1l 上取3个点,在2l 上取2个点,由这5个点确定的平面个数为( ). A.1个 B.3个 C.6个 D.9个2. 下列推理错误的是( ). A.A l ∈,A α∈,B l ∈,B α∈l α⇒⊂ B.A α∈,A β∈,B α∈,B β∈AB αβ⇒=C.l α⊄,A l A α∈⇒∉D.A ,B ,C α∈, A ,B ,C β∈,且A ,B ,C 不共线αβ⇒与重合 3. a ,b 是异面直线,b ,c 是异面直线,则a ,c 的位置关系是( ).A.相交、平行或异面B.相交或平行C.异面D.平行或异面 4. 若一条直线与两个平行平面中的一个平面平行,则它与另一平面____________. 5. 垂直于同一条直线的两条直线位置关系是__________________; 两条平行直线中的一条与某一条直线垂直,则另一条和这条直线______.6.若两个平面互相平行,则分别在这两个平面内的直线位置关系是7. 如图,在正方体中M ,N 分别是AB 和DD '的中点,求异面直线B M '与CN 所成的角.B C8.如图所示,在空间四边形ABCD中,E、F分别为AB、AD的中点,G、H分别在BC、CD 上,且BG:GC=DH:HC=1:2求证:(1)E,F,G,H四点共面(2)EG与HF的交点在直线AC上9. 如图,已知不共面的直线a,b,c相交于O点,M,P点是直线 上两点,N,Q分别是直线b,c上一点.求证:MN和PQ是异面直线.用反证法。
空间点、直线、平面之间的位置关系测试题(含答案)
空间点、直线、平面之间的位置关系测试题(含答案)空间点、直线、平面之间的位置关系测试题1.已知平面α内有无数条直线都与平面β平行,那么正确的选项是()A。
α∥βB。
α与β相交C。
α与β重合D。
α∥β或α与β相交2.两条直线a,b满足a∥b,b⊥平面α,则a与平面α的关系是()A。
a∥αB。
a与α相交C。
a与α不相交D。
a⊥α3.对于命题:①平行于同一直线的两个平面平行;②平行于同一平面的两个平面平行;③垂直于同一直线的两直线平行;④垂直于同一平面的两直线平行。
其中正确的个数有(。
)A。
1个B。
2个C。
3个D。
4个4.经过平面外两点与这个平面平行的平面()A。
只有一个B。
至少有一个C。
可能没有D。
有无数个5.过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有()A。
3条B。
4条C。
5条D。
6条6.a,b是两条异面直线,下列结论正确的是()A。
过不在a,b上的任一点P,可作一个平面与a,b平行B。
过不在a,b上的任一点P,可作一条直线与a,b相交C。
过不在a,b上的任一点P,可作一条直线与a,b都平行D。
过a可以并且只可以作一平面与b平行7.m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A。
若m‖α,n‖α,则m‖nB。
若α⊥γ,β⊥γ,则α‖βC。
若m‖α,m‖β,则α‖βD。
XXX⊥α,n⊥α,则m‖n8.如图1,正四面体ABCD的棱长均为a,且AD⊥平面α于A,点B,C,D均在平面α外,且在平面α同一侧,则点B到平面α的距离是()A。
a/2B。
a/3C。
a/23D。
2a/39.如图2,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的是A。
PB⊥ADB。
平面PAB⊥平面PBCC。
直线BC∥平面PAED。
直线PD与平面ABC所成的角为45°10.点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为()A。
高中数学立体几何空间点线面的位置关系讲义及练习
课 题: 2.1 空间点、直线、平面之间的位置关系一、内容讲解知识点1 平面的概念: 平面是没有厚薄的,可以无限延伸,这是平面最基本的属性 常见的桌面,黑板面都是平面的局部形象 指出: 平面的两个特征:①_薄厚一致___ ②_无限延伸_。
平面的表示:__1.在每个顶点处写大写字母____2.小写的希腊字母,,αβχ______________。
点的表示:大写字母 点A 点B线的表示:小写英文字母 线l,线a 线b平面的画法:在立体几何中,通常画成水平放置的平行四边形来表示平面;锐角画成45ο, 2倍长。
两个相交平面:画两个相交平面时,若一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画。
图形 符号语言 文字语言(读法)A a A ∈a 点A 在直线a 上A aA ∉a 点A 在直线a 外 Aα A ∈α 点A 在平面α上(内) A αA ∉α 点A 在平面α外 b a A a b A =I直线a,b 交于点A a αa α⊂线a 在面α内 aα a α⊄ 线a 在面α外a Aα a A α=I 直线a 交α于点Al αβ=I平面α交β于线l与平面、平面与平面的关系,虽然借用于集合符号,但在读法上仍用几何语言。
知识点2 公理1 :如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内指出:(1)符号语言:____________________________________.(2)应用:这条公理是判定直线是否在平面内的依据,也可用于验证一个面是否是平面。
知识点3 公理2 :如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线指出:(1)符号语言:____________________________________(2)应用:确定两相交平面的交线位置;判定点在直线上 知识点4 公理3 :经过不在同一条直线上的三点,有且只有一个平面 指出:(1)符号语言:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合推论1 经过一条直线和直线外的一点有且只有一个平面.指出:推论1的符号语言:_____________________________-推论2 经过两条相交直线有且只有一个平面指出:推论2的符号语言:____________________________________推论3 经过两条平行直线有且只有一个平面指出:推论3的符号语言:________________________________三、典例解析例1 用符号语言表示下列图形中点、直线、平面之间的位置关系.例2 正方体ABCD-A 1B 1C 1D 1中,对角线A 1C∩平面BDC 1=O ,AC 、BC 交于点M ,求证:点C 1、O 、M 共线.五、备选习题1. 画图表示下列由集合符号给出的关系:(1) A ∈α,B ∉α,A ∈l ,B ∈l ; (2) a ⊂α,b ⊂β,a ∥c ,b ∩c =P ,α∩β=c .2. 根据下列条件,画出图形.(1)平面α∩平面β=l ,直线AB ⊂α,AB ∥l ,E ∈AB ,直线EF∩β=F ,F ∉l ;(2)平面α∩平面β=a ,△ABC 的三个顶点满足条件:A ∈a ,B ∈α,B ∉a ,C ∈β,C ∉a .3. 画一个正方体ABCD —A′B′C′D′,再画出平面ACD′与平面BDC′的交线,并且说明理由.4. 正方体ABCD —A 1B 1C 1D 1的棱长为8 cm ,M 、N 、P 分别是AB 、A 1D 1、BB 1的中点,(1) 画出过M 、N 、P 三点的平面与平面A 1B 1C 1D 1的交线,以及与平面BB 1C 1C 的交线.(2) 设过M 、N 、P 三点的平面与B 1C 1交于点Q ,求PQ 的长.5.已知△ABC 三边所在直线分别与平面α交于P 、Q 、R 三点,求证:P 、Q 、R 三点共线.6. 点A ∉平面BCD ,,,,E F G H 分别是,,,AB BC CD DA 上的点,若EH 与FG 交于P (这样的四边形ABCD 就叫做空间四边形)求证:P 在直线BD 上G H AC D E P空间点、线、面位置关系练习题1、下列命题:其中正确的个数为( )①若直线l 平行于平面α内的无数条直线,则l ∥α;②若直线a 在平面α外,则a ∥α; ③若a ∥b ,α⊂b ,那么直线a 平行于平面α内的无数条直线;A .1B .2C .3D .02、若两个平面互相平行,则分别在这两个平行平面内的直线( )A .平行B .异面C .相交D .平行或异面3、如图,在正方体ABCD —A 1B 1C 1D 1中判断下列位置关系:(1)AD 1所在直线与平面BCC 1的位置关系是 ;(2)平面A 1BC 1与平面ABCD 的位置关系是 ;4、如果直线l 在平面α外,那么直线l 与平面α( )A .没有公共点B .至多有一个公共点C .至少有一个公共点D .有且只有一个公共点5、以下四个命题:其中正确的是( ) A .①② B .②③ C .③④ D .①③ ①三个平面最多可以把空间分成八部分;②若直线⊂a 平面α,直线⊂b 平面β,则“a 与b 相交”等价于“α与β相交”;③若l =⋂βα,直线⊂a 平面α,直线⊂b 平面β,且P b a =⋂,则l P ∈;④若n 条直线中任意两条共面,则它们共面,6、若一条直线上有两点到一个平面的距离相等,那么这条直线和这个平面的位置关系是( )A .在平面内B .相交C .平行D .以上均有可能7、若直线m 不平行于平面α,且α⊄m ,则下列结论中正确的是( )A .α内的所有直线与m 异面B .α内不存在与m 平行的直线C .α内存在唯一一条直线与m 平行D .α内的直线与m 都相交8、在长方体ABCD —A 1B 1C 1D 1的六个表面与六个对角面(面AA 1C 1C ,面BB 1D 1D ,面ABC 1D 1,面ADC 1B 1,面A 1BCD 1及面A 1B 1CD )所在平面中,与棱AA 1平行的平面共有( )A .2个B .3个C .4个D .5个9、两条直线都与一个平面平行,则这两条直线的位置关系是( )A .平行B .相交C .异面D .以上均有可能10、下列命题:其中正确的个数是( )A .0 B .1 C .2 D .3①如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线平行;②如果一条直线与一个平面相交,那么这条直线与平面内的无数条直线异面;③过平面外一点有且只有一条直线与平面平行;④一条直线上有两点到一个平面的距离相等,则这条直线平行于这个平面,11、下列命题中正确的个数是( )A .1 B .2 C .3 D .4①四边相等的四边形是菱形;②若四边形有两个对角都是直角,则这个四边形是圆内接四边形; ③“直线不在平面内”的等价说法是“直线上至多有一个点在平面内”;④若两平面有一条公共直线,则这两个平面的所有公共点都在这条公共直线上;12、若P 是两条异面直线l 、m 外的任意一点,则( )A .过点P 有且仅有一条直线与l 、m 都平行B .过点P 有且仅有一条直线与l 、m 都垂直C .过点P 有且仅有一条直线与l 、m 都相交D .过点P 有且仅有一条直线与l 、m 都异面13、与两个相交平面的交线平行的直线和这两个平面的位置关系是14、经过平面外两点可作这个平面的平行平面的个数是15、设有不同的直线a ,b 和不同的平面γβα,,,给出下列三个命题:其中正确命题的序号是 ①若a ∥α,b ∥α,则a ∥b ;②若a ∥α,a ∥β,则α∥β;③若α∥β,β∥γ,则α∥γ。
高中数学必修2第二章点、线、面的位置关系知识点+习题+答案
D B A α 相交直线:同一平面内,有且只有一个公共点; ] ]; a 来表 a a 线线平行 A ·α C ·B · A · α P· αLβ 共面直线p线面平行 面面平行 作用:可以由平面与平面平行得出直线与直线平行叫做垂足。
叫做垂足。
的垂线,则这两个ba第 3 页 共 3 页aa b a b //,a a a ÞþýüË^^1、性质定理:垂直于同一个平面的两条直线平行。
符号表示:符号表示:b a b a //,Þ^^a a 2、性质定理:一条直线与一个平行垂直,那么过这条直线的平面也与此平面垂直 符号表示:b a b a ^ÞÌ^a a ,2.3.4平面与平面垂直的性质1、性质定理:、性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
符号表示:b b a a b a ^Þïþïýü=^Ì^a l l a a ,2、性质定理:垂直于同一平面的直线和平面平行。
符号表示:符号表示:符号表示:一、异面直线所成的角一、异面直线所成的角1.已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b ¢¢, 我们把a ¢与b ¢所成的锐角(或直角)叫异面直线,a b 所成的角。
所成的角。
2.角的取值范围:090q <£°;垂直时,异面直线当b a ,900=q二、直线与平面所成的角二、直线与平面所成的角1. 定义:平面的一条斜线和它在平面上的射影所成的锐角,叫这条斜线和这个平面所成的角2.角的取值范围:°°££900q 。
三、两个半平面所成的角即二面角:三、两个半平面所成的角即二面角: 1、从一条直线出发的两个半平面所组成的图形叫做二面角。
空间点、直线、平面之间的位置关系跟踪训练
8.4空间点、直线、平面之间的位置关系跟踪训练一、选择题1、下列命题是真命题的是( )A.空间任意三个点确定一个平面B.一条直线和直线外一点确定一个平面C.两两相交的三条直线确定一个平面D.两两平行的三条直线确定三个平面2、如图是一个正方体的展开图,如果将它还原为正方体,则下列说法不正确的是( )A.AB与CD是异面直线B.GH与CD相交C.EF∥CDD.EF与AB异面3、a,b,c是两两不同的三条直线,下面四个命题中,真命题是( )A.若直线a,b异面,b,c异面,则a,c异面B.若直线a,b相交,b,c相交,则a,c相交C.若a∥b,则a,b与c所成的角相等D.若a⊥b,b⊥c,则a∥c4、已知α,β,γ是平面,a,b,c是直线,α∩β=a,β∩γ=b,γ∩α=c,若a∩b =P,则( )A.P∈c B.P∉cC.c∩a=∅D.c∩β=∅5、在三棱锥A-BCD的边AB,BC,CD,DA上分别取E,F,G,H四点,若EF∩HG=P,则点P( )A.一定在直线BD上B.一定在直线AC上C.在直线AC或BD上D.不在直线AC上,也不在直线BD上6、已知空间中不过同一点的三条直线l,m,n.“l,m,n共面”是“l,m,n 两两相交”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7、如图,点E,F,G,H分别是正方体ABCD-A1B1C1D1中棱AA1,AB,BC,C1D1的中点,则( )A.GH=2EF,且直线EF,GH是相交直线B.GH=2EF,且直线EF,GH是异面直线C.GH≠2EF,且直线EF,GH是相交直线D.GH≠2EF,且直线EF,GH是异面直线8、如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的图是( )9、如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是( )A.直线AC B.直线ABC.直线CD D.直线BC10、如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为( )A.30°B.45°C.60°D.90°11、若平面α和直线a,b满足a∩α=A,b⊂α,则a与b的位置关系是( )A.相交B.平行C.异面D.相交或异面12、如图,在正方体ABCD-A1B1C1D1中,E,F分别为BC,BB1的中点,则下列直线中与直线EF相交的是( )A.直线AA1B.直线A1B1C.直线A1D1D.直线B1C113、如图,在正方体ABCD-A1B1C1D1中,M,N,P分别是C1D1,BC,A1D1的中点,下列结论正确的是( )A.AP与CM是异面直线B.AP,CM,DD1相交于一点C.MN∥BD1D.MN与平面BB1D1D相交14、在正方体ABCD-A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为( )A.π2B.π3C.π4D.π615、如图,在圆锥SO中,AB,CD为底面圆的两条直径,AB∩CD=O,且AB⊥CD,SO=OB=3,SE=14SB,则异面直线SC与OE所成角的正切值为( )A.222B.53C.1316D.11316、如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则直线GH,MN是异面直线的图形有( )A.①②B.①③C.②③D.②④17、已知平面α∩平面β=直线l,点A,C∈平面α,点B,D∈平面β,且A,B,C,D∉l,点M,N分别是线段AB,CD的中点,则下列说法正确的是( ) A.当CD=2AB时,M,N不可能重合B.M,N可能重合,但此时直线AC与l不可能相交C.当直线AB,CD相交,且AC∥l时,BD可与l相交D.当直线AB,CD异面时,MN可能与l平行二、填空题18、已知a,b是两条直线,α,β是两个平面,则下列说法中正确的序号为________.①若a平行于α内的无数条直线,则a∥α;②若α∥β,a⊂α,b⊂β,则a与b是异面直线;③若α∥β,a⊂α,则a∥β;④若α∩β=b,a⊂α,则a与β一定相交.19、已知在棱长为a的正方体ABCD-A′B′C′D′中,M,N分别为CD,AD的中点,则MN与A′C′的位置关系是________.20、如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,则异面直线AP与BD所成的角为________.21、如图是正方体的平面展开图,在这个正方体中:①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN是异面直线.以上结论中,正确结论是________.(填序号)三、解答题22、如图,在正方体ABCD-A1B1C1D1中,O为正方形ABCD的中心,H为直线B1D与平面ACD1的交点.求证:D1,H,O三点共线.23、如图,已知在空间四边形ABCD 中,AD =BC ,M ,N 分别为AB ,CD 的中点,且直线BC 与MN 所成的角为30°,求BC 与AD 所成的角.24、在四棱锥O -ABCD 中,底面ABCD 是边长为2的正方形,OA ⊥底面ABCD ,OA =2,M 为OA 的中点.(1)求四棱锥O -ABCD 的体积;(2)求异面直线OC 与MD 所成角的正切值.25、如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与四边形ABCD 都是直角梯形,∠BAD =∠FAB =90°,BC ∥AD 且BC =12AD ,BE ∥AF 且BE =12AF ,G ,H 分别为FA ,FD 的中点. (1)证明:四边形BCHG 是平行四边形; (2)C ,D ,F ,E 四点是否共面?为什么?。
空间点、直线、平面之间的位置关系和平行判定习题
1.点A 在直线上,记作 ;点A 在平面α内,记作 ;直线α在平面α内,记作 .2.平面基本性质即三条公理的“文字语言”、“符号语言”、“图形语言”列表如下:3.公理的作用:(1)公理1作用:判断直线是否在平面内;(2)公理2作用:确定一个平面的依据;(3)公理3作用:判定两个平面是否相交的依据. 4. 空间两条直线的位置关系:5. 等角定理:6. 已知两条异面直线,经过空间任一点作直线,把所成的锐角(或直角)叫异面直线所成的角(或夹角). 所成的角的大小与点的选择无关,为了简便,点通常取在异面直线的一条上;异面直线所成的角的范围为,如果两条异面直线所成的角是直角,则叫两条异面直线垂直,记作. 求两条异面直线所成角的步骤可以归纳为四步:选点→平移→定角→计算.7. 公理4:8. 公理4作用:判断空间两条直线 的依据.9.直线与平面有三种位置关系:(1) —— 有无数个公共点(2)——有且只有一个公共点(3)——没有公共点10. 两个平面之间有两种位置关系:(1)——没有公共点(2)——有且只有一条公共直线2.2 直线、平面平行的判定及其性质11.判定定理的符号表示为:.12. 证明线面平行的根本问题是要在平面内找一直线与已知直线平行,此时常用中位线定理、成比例线段、射影法、平行移动、补形等方法,具体用何种方法要视条件而定.13.面面平行判定定理:.用符号表示为:.14. 垂直于同一条直线的两个平面平行.15. 平面α上有不在同一直线上的三点到平面β的距离相等,则α与β的位置关系是.16.线面平行的性质定理:符号语言:18. 面面平行的性质:. 用符号语言表示为:.19. 其它性质:①;②;③夹在平行平面间的平行线段相等.1.四面体ABCD中,AB=CD=2,E、F分别是AC、BD的中点,且EF=3,则AB与CD所成的角为__________.3 / 72.在空间四边形ABCD 中,已知AD =1,BC =3,且AD ⊥BC ,对角线BD =213,AC =23,求AC 和BD 所成的角.3.已知E 、F 、G 、H 分别是空间四边形ABCD 各边AB 、AD 、CB 、CD 上的点,并且有GB CG EB AB =,HD CH FD AF =,试证EF 、GH 、BD 共点或两两平行.4 已知异面直线a 、b 所成的角为60°,在过空间一定点P 的直线中,与a ,b 所成的角均为60°的直线有多少条?过P 与a 、b 所成角均为50°,或均为70°的直线又各有多少呢?希望读者通过对上述三个具体问题的求解,总结解题方法,然后再探讨关于与异面直线成等角的直线的存在性问题的一般性情况:已知异面直线a ,b 所成的角为θ0且θ0<90°,过空间一点P 的直线中与a ,b 所成的角均为θ的直线有多少条?5.已知长方体1111D C B A ABCD -中,M 、N 分别是1BB 和BC 的中点,AB=4,AD=2,1521=BB ,求异面直线D B 1与MN 所成角的余弦值。
空间点、直线、平面之间的位置关系典题及答案
1.已知一四棱锥P -ABCD 的三视图如下,E 是侧棱PC 上的动点.(1)求四棱锥P -ABCD 的体积;(2)若点E 为PC的中点,AC ∩BD =O ,求证EO ∥平面PAD ;(3)是否不论点E 在何位置,都有BD ⊥AE ?证明你的结论.解:(1)由该四棱锥的三视图可知,该四棱锥P -ABCD 的底面是边长为1的正方形,侧棱PC ⊥底面ABCD ,且PC =2.∴V P -ABCD =13S ▱ABCD ·PC =23. (2)证明:∵EO ∥PA ,EO ⊄平面PAD ,PA ⊂平面PAD .∴EO ∥平面PAD .(3)不论点E 在何位置,都有BD ⊥AE ,证明如下:∵ABCD 是正方形,∴BD ⊥AC ,∵PC ⊥底面ABCD 且BD ⊂平面ABCD ,∴BD ⊥PC ,又∵AC ∩PC =C ,∴BD ⊥平面PAC ,∵不论点E 在何位置,都有AE ⊂平面PAC ,∴不论点E 在何位置,都有BD ⊥AE .2如图,在多面体ABCDEF 中,四边形ABCD 是正方形,AB=2EF=2,EF ∥AB ,EF ⊥F B ,∠BFC=90°,BF=FC ,H 为BC 的中点. (Ⅰ)求证:FH ∥平面EDB ;Ⅱ)求证:AC ⊥平面EDB ;Ⅲ)求四面体B-DEF 的体积.(Ⅰ)证明:设AC 与BD 交于点G ,则G 为AC 的中点,连结EC ,CH ,由于H 为BC 的中点,故,又,∴,∴四边形EFHC 为平行四边形, ∴EG ∥FH ,而EG 平面EDB ,∴FH ∥平面EDB 。
(Ⅱ)证明:由四边形ABCD 为正方形,有AB ⊥BC ,又EF ∥AB ,∴EF ⊥BC ,而EF ⊥FB ,∴EF ⊥平面BFC ,∴EF ⊥FH ,∴AB ⊥FH , 又BF=FC ,H 为BC 的中点,∴FH ⊥BC ,∴FH ⊥平面ABCD ,∴FH ⊥AC ,又FH ∥EG ,∴AC ⊥EG ,又AC ⊥BD ,EG ∩BD=G ,∴AC ⊥平面EDB 。
数学:2.1《空间点、直线与平面的位置关系》测试(1)(新人教A版必修2)
2.1空间点、直线、平面之间的位置关系一、选择题1、给出的下列命题中,正确命题的个数是( )①梯形的四个顶点在同一平面内②三条平行直线必共面③有三个公共点的两个平面必重合④每两条都相交且交点各不相同的四条直线一定共面A.1B.2C.3D.4主要考察知识点:空间直线和平面2、如图2-1-17,空间四边形SABC中,各边及对角线长都相等,若E、F分别为SC、AB的中点,那么异面直线EF与SA所成的角等于( )A.90°B.60°C.45°D.30°图2-1-173、如果直线a∥平面α,那么直线a与平面α内的( )A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交4、若点M在直线α上,α在平面α内,则M、a、α间的上述关系可记为( )A.M∈a,a∈αB.M∈a,aαC.M a,aαD.M a,aα5、在空间四边形ABCD的边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF与HG交于点M,则( )A.M一定在直线AC上B.M一定在直线BD上C.M可能在AC上,也可能在BD上D.M不在AC上,也不在BD上6、下列说法正确的是()A.三点确定一个平面B.四边形一定是平面图形C.梯形一定是平面图形D.平面α和平面β有不同在一条直线上的三个交点7、若点M在直线a上,a在平面α内,则M,a,α间的上述关系可记为()A.M∈a,a∈αB.M∈a,C.,D.,8、异面直线是指()A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线9、若a∥α,b∥α,则直线a、b的位置关系是()A.平行B.相交C.异面D.A、B、C均有可能10、下列命题:①若直线l平行于平面α内的无数条直线,则l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,直线,则a∥α;④若直线a∥b,bα,那么直线a就平行于平面α内的无数条直线.其中真命题的个数为( )A.1B.2C.3D.4参考答案与解析:解析:对于①,∵直线l虽与平面α内无数条直线平行,但l有可能在平面α内,∴l不一定平行于α.∴①是假命题.对于②,∵直线a在平面α外包括两种情况:a∥α和a与α相交,∴a和α不一定平行.∴②是假命题.对于③,∵直线a∥b, ,则只能说明a和b无公共点,但a可能在平面α内,∴a不一定平行于α.∴③是假命题.对于④,∵a∥b, ,那么aα或a∥α,∴a可以与平面α内的无数条直线平行.∴④是真命题.综上所述,真命题的个数为1.二、填空题1、空间三条直线两两相交,点P不在这三条直线上,那么由点P和这三条直线最多可以确定的平面的个数为__________.参考答案与解析:解析:(1)当题中三条直线共点但不共面相交时,可确定3个平面;而P点与每条直线又可确定3个平面,故共确定6个.2、和两条平行直线中的一条是异面直线的直线与另一条直线的位置关系是_______.参考答案与解析:思路解析:由公理4可知不可能平行,只有相交或异面.答案:相交或异面主要考察知识点:空间直线和平面3、看图填空.(1)AC∩BD=_______;(2)平面AB1∩平面A1C1=________;(3)平面A1C1CA∩平面AC=________;(4)平面A1C1CA∩平面D1B1BD=_________;(5)平面A1C1∩平面AB1∩平面B1C=_________;(6)A1B1∩B1B∩B1C1=_________.参考答案与解析:解析:两个面的两个公共点连线即为交线.答案:(1)O(2)A1B1(3)AC(4)OO1(5)B1(6)B14、已知平面α、β相交,在α、β内各取两点,这四点都不在交线上,这四点能确定平面_______个.参考答案与解析:解析:分类,如果这四点在同一平面内,那么确定一个平面,如果这四点不共面,则任意三点可确定一个平面,可确定四个.答案:1或4三、解答题1、如图,已知△ABC在平面α外,它的三边所在直线分别交平面α于点P、Q、R,求证:P、Q、R三点共线.参考答案与解析:解析:本题是一个证明三点共线的问题,利用公理3,两平面相交时,有且只有一条公共直线.因此只需证明P、Q、R三点是某两个平面的公共点,即可得这三个点都在两平面的交线上,因此是共线的.证明:设△ABC确定平面ABC,直线AB交平面α于点Q,直线CB交平面α于点P,直线AC交平面α于点R,则P、Q、R三点都在平面α内,又因为P、Q、R三点都在平面ABC内,所以P、Q、R三点都在平面α和平面ABC的交线上,而两平面的交线只有一条,所以P、Q、R三点共线.2、如图,已知正方体ABCD—A′B′C′D′.①哪些棱所在直线与直线BA′是异面直线?②直线BA′和CC′的夹角是多少?③哪些棱所在的直线与直线AA′垂直?参考答案与解析:解析:①由异面直线的定义可知,棱AD,DC,CC′,DD′,D′C′,B′D′所在直线分别与直线BA′是异面直线.②由BB′∥CC′可知,∠B′BA′为异面直线BA′与CC′的夹角,∠B′BA′=45°,所以BA′与CC′的夹角为45°.③直线AB,BC,CD,DA,A′B′,B′C′,C′D′,D′A′分别与直线AA′垂直.3、已知直线b∥c,且直线a与b、c都相交,求证:直线a,b,c共面. 参考答案与解析:证明:∵b∥c,∴不妨设b,c共面于平面α.设a∩b=A,a∩c=B,∴A∈a,B∈a,A∈α,B∈α,即.∴三线共面.主要考察知识点:空间直线和平面。
2.1.1_空间点、直线、平面之间的位置关系
(1)符号表示: 点A、线a、面α
(2)集合关系:
图形
符号语言
A a Aa
A a Aa
A
A
A
A
文字语言(读法)
点A在直线a上 点A不在直线a上
点A在平面α内 点A不在平面α内
Ab a
a b A 直线a、b交于点A
图形
a
a
a A
符号语言
文字语言(读法)
a 直线a在平面 内
a
直线a与平面
无公共点
C D
B A
C1 D1
B1 A1
在正方体 明理由:
ABCD中 A,1B1判C1D断1 下列命题是否正确,并说
②设正方形ABCD与 A1的B1C中1D心1 分别为O, O1
则平面 A与A1平Cຫໍສະໝຸດ C面的交BB线1D为1D ;
OO1
C
D
O
B A
正确
C1
B1
D1
O1
A1
在正方体 ABCD 中A1,B1C判1D1断下列命题是否正确,并 说明理由:
与桌面所在平面是否只相交于一点B?为什么?
B
观察长方体,你能发现长方体的两个相交平 面有公共直线吗?
D
这条公共直线B’C’叫做这两个
C 平面A’B’C’D’和平面BB’C’C的交
A
B
线.
另一方面,相邻两个平面有一
个公共点,如平面A’B’C’D’和平
D
C 面BB’C’C有一个公共点B’,经过
A
B
点B有且只有一条过该点的公共直
我们常常把水平的平面画成一个平行四边形, 用平行四边形表示平面.
平行四边形的锐角通常画成45°,且横边长等 于其邻边长的2倍.
2.1空间点,直线,平面之间的位置关系
D′
C′
(2)如果两条平行直线中的 ) D 一条与某一条直线垂直,那么, 一条与某一条直线垂直,那么, B 另一条直线是否也与这条直线 A 垂直? 垂直? 垂直 (3)垂直于同一条直线的两条直线是否平行? )垂直于同一条直线的两条直线是否平行?
A′
B′
C
(3) A1 _______ β , D1 _______ β
(4)α _______ β = A1 B1
β _______ γ = BB1
(5) A1B1 ________α , BB1 ________ β
A1 B1 ________ γ
2.根据下列符号表示的语句,说出有关点、线、 面的关系,并画出图形.
两面共一点则两面共一线且点在线上
作用:用于证明 作用:用于证明点在线上或多点共线.
课堂练习
1.正方体的各顶点如图所示,正方体的三个面所在平 面 A1C1 , A1 B1 , B1C1,分别记作α、β、γ ,试用适当的符号填 空. (1) A1 _______α , B1 _______α
(2) B1 _______ γ , C1 _______ γ
至少3根 答:至少 根 至少
应用2:过空间中一点可以做几个平面? 应用 过空间中一点可以做几个平面? 过空间中一点可以做几个平面 过空间中两点呢?三点呢? 过空间中两点呢?三点呢?
结论:过空间中一点或两点可以做无数个 结论:过空间中一点或两点可以做无数个 平面,过空间中不共线的三点只能做一个, 平面,过空间中不共线的三点只能做一个, 否则有无数个。
C' A' D A 答:平行 B B' C
平行直线
2022高三总复习数学 空间点、直线、平面之间的位置关系(含解析)
空间点、直线、平面之间的位置关系A级——基础达标1.若∠AOB=∠A1O1B1,且OA∥O1A1,OA与O1A1的方向相同,则下列结论正确的是()A.OB∥O1B1且方向相同B.OB∥O1B1C.OB与O1B1不平行D.OB与O1B1不一定平行解析:选D如图①,∠AOB=∠A1O1B1,且OA∥O1A1,OA与O1A1的方向相同,但OB与O1B1不平行,故排除A、B;如图②,∠AOB=∠A1O1B1,且OA∥O1A1,OA与O1A1的方向相同,此时OB∥O1B1,故排除C,故选D.2.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线α和直线b可能平行或异面或相交,故选A.3.在正三棱柱ABC-A1B1C1中,AB=2BB1,则AB1与BC1所成角的大小为() A.30°B.60°C.75°D.90°解析:选D将正三棱柱ABC-A1B1C1补为四棱柱ABCD-A1B1C1D1,连接C1D,BD(图略),则C1D∥B1A,∠BC1D为所求角或其补角.设BB1=2,则BC=CD=2,∠BCD=120°,BD=23,又因为BC1=C1D=6,所以∠BC1D=90°.4.如图所示,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是()A.A,M,O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面解析:选A连接A1C1,AC(图略),则A1C1∥AC,∴A1,C1,A,C四点共面,∴A1C⊂平面ACC1A1,∵M∈A1C,∴M∈平面ACC1A1,又M∈平面AB1D1,∴M在平面ACC1A1与平面AB1D1的交线上,同理A,O在平面ACC1A1与平面AB1D1的交线上.∴A,M,O三点共线.5.(多选)如图,点E,F,G,H分别是正方体ABCD-A1B1C1D1中棱AA1,AB,BC,C1D1的中点,则()A.GH=2EFB.GH≠2EFC.直线EF,GH是异面直线D.直线EF,GH是相交直线解析:选BD如图,取棱CC1的中点N,A1D1的中点M,连接EM,MH,HN,NG,FG,AC,A1C1,在正方体ABCD-A1B1C1D1中,∵MH∥A1C1∥AC∥FG,∴M,H,F,G四点共面,同理可得E,M,G,N四点共面,E,F,H,N四点共面,∴E,M,H,N,G,F六点共面,均在平面EFGNHM内,∵EF∥HN,HN∩HG=H,HN,HG,EF⊂平面EFGNHM,∴EF与GH是相交直线.由正方体的结构特征及中位线定理可得EF=HN=NG=FG =EM=MH,∴3EF=GH,即GH≠2EF.故选B、D.6.(多选)(2021·潍坊模拟)已知平面α∩平面β=直线l,点A,C∈平面α,点B,D∈平面β,且A,B,C,D∉l,点M,N分别是线段AB,CD的中点,则下列说法错误的是()A.当CD=2AB时,M,N不可能重合B.M,N可能重合,但此时直线AC与l不可能相交C.当直线AB,CD相交,且AC∥l时,BD可与l相交D.当直线AB,CD异面时,MN可能与l平行解析:选ACD A选项,当CD=2AB时,若A,B,C,D四点共面且AC∥BD时,则M,N两点能重合,可知A错误;B选项,若M,N重合,则AC∥BD,则AC∥平面β,故AC∥l,此时直线AC与直线l不可能相交,可知B正确;C选项,当AB与CD相交,且AC∥l时,直线BD与l平行,可知C错误;D选项,当AB与CD是异面直线时,MN 不可能与l平行,可知D错误.故选A、C、D.7.如图,在平行六面体ABCD-A1B1C1D1中,既与AB共面又与CC1共面的棱有条.解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行有棱AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的有5条.答案:58.在四棱锥P-ABCD中,底面ABCD为平行四边形,E,F分别为侧棱PC,PB的中点,则EF与平面PAD的位置关系为,平面AEF与平面ABCD的交线是.解析:由题易知EF∥BC,BC∥AD,所以EF∥AD,故EF∥平面PAD,因为EF∥AD,所以E,F,A,D四点共面,所以AD为平面AEF与平面ABCD的交线.答案:平行AD9.如图,在三棱锥A-BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC,BD满足条件时,四边形EFGH为菱形;(2)当AC,BD满足条件时,四边形EFGH为正方形.解析:(1)∵四边形EFGH为菱形,∴EF=EH,∴AC=BD.(2)∵四边形EFGH为正方形,∴EF=EH且EF⊥EH,∵EF∥AC,EH∥BD,且EF=12AC,EH=12BD,∴AC=BD且AC⊥BD.答案:(1)AC=BD(2)AC=BD且AC⊥BD10.如图,已知正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,过点A,P,C1的平面截正方体所得的截面为M,则截面M的面积为.解析:如图,取A1D1,AD的中点分别为F,G.连接AF,AP,PC1,C1F,PG,D1G,AC1,PF.∵F为A1D1的中点,P为BC的中点,G为AD的中点,∴AF=FC1=AP=PC1=52,PG綊CD,AF綊D1G.由题意易知CD綊C1D1,∴PG綊C1D1,∴四边形C1D1GP为平行四边形,∴PC1綊D1G,∴PC1綊AF,∴A,P,C1,F四点共面,∴四边形APC1F为菱形.∵AC1=3,PF=2,过点A,P,C1的平面截正方体所得的截面M为菱形APC1F,∴截面M的面积S=12AC1·PF=12×3×2=62.答案:6 211.如图,AB∩α=P,CD∩α=P,A,D与B,C分别在平面α的两侧,AC∩α=Q,BD∩α=R,求证:P,Q,R三点共线.证明:∵AB∩α=P,CD∩α=P,∴AB∩CD=P.∴AB,CD可确定一个平面,设为β.∵A∈AB,C∈CD,B∈AB,D∈CD,∴A∈β,C∈β,B∈β,D∈β.∴AC⊂β,BD⊂β,平面α,β相交.∵AB∩α=P,AC∩α=Q,BD∩α=R,∴P,Q,R三点都是平面α与平面β的公共点.∴点P,Q,R都在平面α与平面β的交线上,故P,Q,R三点共线.12.如图,在正方体ABCD-A1B1C1D1中,E,F,E1,F1分别是棱AB,AD,B1C1,C1D1的中点,求证:(1)EF綊E1F1;(2)∠EA1F=∠F1CE1.证明:(1)如图,连接BD,B1D1,在△ABD中,因为E,F分别为AB,AD的中点,所以EF綊12BD.同理可证E1F1綊12B1D1.在正方体ABCD-A1B1C1D1中,BB1綊DD1,所以四边形BB1D1D为平行四边形,则BD綊B1D1.所以EF綊E1F1.(2)取A1B1的中点M,连接F1M,BM,则MF1綊B1C1,又B1C1綊BC,所以MF1綊BC.所以四边形BMF1C为平行四边形,所以BM∥CF1.因为A1M=12A1B1,BE=12AB,且A1B1綊AB,所以A1M綊BE,所以四边形BMA1E为平行四边形,所以BM∥A1E,所以A1E∥CF1.同理可证A1F∥CE1.因为∠EA1F的两边与∠F1CE1的两边分别对应平行,且方向都相反,所以∠EA1F=∠F1CE1.B级——综合应用13.(多选)(2021·海南模拟)关于正方体ABCD-A1B1C1D1有如下四个说法,其中正确的是()A .若点P 在直线BC 1上运动,则三棱锥A -D 1PC 的体积不变B .若点P 是平面A 1B 1C 1D 1上到点D 和C 1距离相等的点,则P 点的轨迹是直线A 1D 1 C .若点P 在线段BC 1(含端点)上运动,则直线AP 与DC 所成角的范围为⎣⎡⎦⎤0,π3 D .若点P 在线段BC 1(含端点)上运动,则直线AP 与D 1C 所成的角一定是锐角解析:选AB 对于A ,由BC 1∥AD 1,可得BC 1∥平面AD 1C , 则点P 到平面AD 1C 的距离不变, 由△AD 1C 的面积为定值,可知点P 在直线BC 1上运动时,三棱锥A -D 1PC 的体积不变,故A 正确; 对于B ,若点P 是平面A 1B 1C 1D 1上到点D 和C 1距离相等的点, 则P 点的轨迹是平面A 1BCD 1与平面A 1B 1C 1D 1的交线A 1D 1,故B 正确;对于C ,直线AP 与DC 所成角即为∠PAB ,当P 与C 1重合时,∠PAB 最大,且tan ∠PAB =2,所以∠PAB <π3,故C 错误;对于D ,当P 与C 1重合时,AP 与D 1C 所成的角为π2,故D 错误.所以其中说法正确的是A 、B.14.如图,若P 是△ABC 所在平面外一点,PA ≠PB ,PN ⊥AB ,N 为垂足,M 为AB 的中点,则PN 与MC 之间的位置关系是 .解析:法一:∵PA ≠PB ,PN ⊥AB ,N 为垂足,M 是AB 的中点,∴点N 与点M 不重合.∵N ∈平面ABC ,P ∉平面ABC ,CM ⊂平面ABC ,N ∉CM ,∴由异面直线的判定方法可知,直线PN 与MC 为异面直线.法二(反证法):假设PN 与MC 不是异面直线,则存在一个平面α,使得PN ⊂α,MC ⊂α,于是P ∈α,C ∈α,N ∈α,M ∈α.∵PA ≠PB ,PN ⊥AB ,N 为垂足,M 是AB 的中点, ∴点M 与点N 不重合.∵M ∈α,N ∈α,∴直线MN ⊂α,∵A ∈MN ,B ∈MN ,∴A ∈α,B ∈α,即A ,B ,C ,P 四点均在平面α内,这与点P在平面ABC外相矛盾.∴假设不成立.故PN与MC为异面直线.答案:异面直线15.如图,E,F,G,H分别是空间四边形ABCD各边上的点,且AE∶EB=AH∶HD=m.CF∶FB=CG∶GD=n.(1)证明:E,F,G,H四点共面;(2)m,n满足什么条件时,四边形EFGH是平行四边形?(3)在(2)的条件下,若AC⊥BD.试证明:EG=FH.解:(1)证明:因为AE∶EB=AH∶HD,所以EH∥BD.又CF∶FB=CG∶GD,所以FG∥BD.所以EH∥FG.所以E,F,G,H四点共面.(2)当EH∥FG,且EH=FG时,四边形EFGH为平行四边形.因为EHBD =AEAE+EB=mm+1,所以EH=mm+1BD.同理可得FG=nn+1BD.由EH=FG,得m=n.故当m=n时,四边形EFGH为平行四边形.(3)证明:当m=n时,AE∶EB=CF∶FB.所以EF∥AC.又EH∥BD,所以∠FEH是AC与BD所成的角(或其补角),因为AC⊥BD,所以∠FEH=90°.从而平行四边形EFGH为矩形,所以EG=FH.C级——迁移创新16.如图,AB,CD是圆锥面的正截面(垂直于轴的截面)上互相垂直的两条直径,过CD和母线VB的中点E作一截面.已知圆锥侧面展开图扇形的中心角为2π,求截面与圆锥的轴线所夹的角的大小,并说明截线是什么曲线.解:如图,设⊙O 的半径为R ,母线VB =l ,则圆锥侧面展开图的中心角为2πR l =2π,∴R l =22,∴sin ∠BVO =22, ∴圆锥的母线与轴的夹角α=∠BVO =π4.连接OE ,∵O ,E 分别是AB ,VB 的中点, ∴OE ∥VA .∴∠VOE =∠AVO =∠BVO =π4,∴∠VEO =π2,即VE ⊥OE .又∵AB ⊥CD ,VO ⊥CD ,AB ∩VO =O , ∴CD ⊥平面VAB . ∵VE ⊂平面VAB , ∴VE ⊥CD .又∵OE ∩CD =O ,OE ,CD ⊂平面CDE , ∴VE ⊥平面CDE .∴∠VOE 是截面与轴线的夹角, ∴截面的轴线夹角大小为π4.由圆锥的半顶角与截面与轴线的夹角相等,知截面CDE 与圆锥面的截线为一抛物线.。
空间点直线平面之间的位置关系测试题及答案
2.1空间点、直线、平面之间的位置关系一、选择题1.下列命题正确的是………………………………………………( ) A .三点确定一个平面 B .经过一条直线和一个点确定一个平面 C .四边形确定一个平面 D .两条相交直线确定一个平面2.若直线a 不平行于平面α,且α⊄a ,则下列结论成立的是( ) A .α内的所有直线与a 异面 B .α内不存在与a 平行的直线 C .α内存在唯一的直线与a 平行 D .α内的直线与a 都相交3.平行于同一平面的两条直线的位置关系………………………( ) A .平行 B .相交 C .异面 D .平行、相交或异面4.正方体''''D C B A ABCD -中,AB 的中点为M ,'DD 的中点为N ,异面直线M B '与CN 所成的角是…………………………………………………( ) A .0 B .45 C .60 D .905.平面α与平面β平行的条件可以是…………………………( ) A .α内有无穷多条直线都与β平行B .直线βα//,//a a 且直线a 不在α内,也不在β内C .直线α⊂a ,直线β⊂b 且β//a ,α//bD .α内的任何直线都与β平行6.下列命题中,错误的是…………………………………………( ) A . 平行于同一条直线的两个平面平行 B . 平行于同一个平面的两个平面平行 C . 一个平面与两个平行平面相交,交线平行D . 一条直线与两个平行平面中的一个相交,则必与另一个相交 7.已知两个平面垂直,下列命题①一个平面内已知直线必垂直于另一个平面内的任意一条直线 ②一个平面内的已知直线必垂直于另一个平面的无数条直线 ③一个平面内的任一条直线必垂直于另一个平面④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面 其中正确的个数是…………………………………………( ) A .3 B .2 C .1 D .08.下列命题中错误的是……………………………………( ) A . 如果平面βα⊥,那么平面α内所有直线都垂直于平面β B . 如果平面βα⊥,那么平面α一定存在直线平行于平面βC .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .如果平面γα⊥,γβ⊥,l =⋂βα,那么γ⊥l9.直线//a 平面α,α∈P ,那么过点P 且平行于α的直线…………( ) A . 只有一条,不在平面α内B .有无数条,不一定在α内C .只有一条,且在平面α内D .有无数条,一定在α内10.如图是正方体的平面展开图,则在这个正方体中 ①BM 与ED 平行 ②CN 与BE 异面 ③CN 与BM 成60 ④DM 与BN 垂直以上四个命题中,正确命题的序号是( )A .①②③B .②④C .③④D .②③④二、填空题1. 若一条直线与两个平行平面中的一个平面平行,则这条直线与另一平面的位置关系是__________________2. 正方体''''D C B A ABCD -中,AC 与'BD 所成角_______________3. 平面内一点与平面外一点连线和这个平面内直线的关系是_______________4. 已知直线b a ,和平面α,且α⊥⊥a b a ,,则b 与α的位置关系是______________ 三、解答题1. 已知长方体''''D C B A ABCD -中,32=AB ,32=AD ,2'=AA , 求:(1)BC 与''C A 所成的角是多少? (2)'AA 与'BC 所成的角是多少?2. 正方体''''D C B A ABCD -中,求证:平面''D AB //平面BD C '。
数学必修二空间点_直线_平面的位置关系练习题含答案
数学必修二空间点、直线、平面的位置关系学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 如图,平面不能用( )表示.A.平面αB.平面ABC.平面ACD.平面ABCD2. 已知m,n,l为三条不同的直线,α,β,γ为三个不同的平面,则下列命题中正确的是()A.若m⊥l,n⊥l,则m // nB.若m // α,n // α,则m // nC.若m⊥α,n⊥α,则m // nD.若α⊥γ,β⊥γ,则α // β3. 对于不同点A、B,不同直线a、b、l,不同平面α,β,下面推理错误的是()A.若A∈a,A∈β,B∈a,B∈β,则a⊂βB.若A∈α,A∈β,B∈α,B∈β,则α∩β=直线ABC.若l⊄α,A∈l,则A∉αD.a∩b=Φ,a不平行于b,则a、b为异面直线4. 若点B在直线b上,b在平面β内,则B、b、β之间的关系可记作()A.B∈b∈βB.B∈b⊂βC.B⊂b⊂βD.B⊂b∈β5. 直线a、b为两异面直线,下列结论正确的是()A.过不在a、b上的任何一点,可作一个平面与a、b都平行B.过不在a、b上的任一点,可作一直线与a、b都相交C.过不在a、b上任一点,可作一直线与a、b都平行D.过a可以并且只可以作一个平面与b平行6. 如图所示,平面α∩平面β=l,点A,B∈α,点C∈β,直线AB∩l=R.设过A,B,C三点的平面为γ,则β∩γ=()A.直线ACB.直线BCC.直线CRD.以上均不正确7. 一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角的关系是()A.相等B.互补C.相等或互补D.不确定8. 若点P为两条异面直线a,b外的任意一点,则下列说法一定正确的是( )A.过点P有且仅有一条直线与a,b都平行B.过点P有且仅有一条直线与a,b都垂直C.过点P有且仅有一条直线与a,b都相交D.过点P有且仅有一条直线与a,b都异面9. 在正方体ABCD−A1B1C1D1中,E为棱CC1上一点且CE=2EC1,则异面直线AE与A1B所成角的余弦值为()A.√1144B.√1122C.3√1144D.√111110. 空间中,如果一个角的两边和另一个角的两边分别对应平行,那么这两个角的大小关系为()A.相等B.互补C.相等或互补D.互余11. 在棱长为2的正方体ABCD−A1B1C1D1中,异面直线AB和CC1的距离为________.12. 如图所示是一个正方体的表面展开图,A,B,C均为棱的中点,D是顶点,则在正方体中,异面直线AB和CD的夹角的余弦值为________.13. 如果一条直线不在平面内,那么这条直线与这个平面的位置关系是________.14. 已知a // β,a⊂α,α∩β=b,则a和b的位置关系是________.15. 设a、b为两条直线,α、β为两个平面,有下列四个命题:①若a⊂α,b⊂β,且a // b,则α // β;②若a⊂α,b⊂β,且a⊥b,则α⊥β;③若a // α,b⊂α,则a // b;④若a⊥α,b⊥α,则a // b;其中正确命题的序号为________.16. 设α,β是空间两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:________(用代号表示).17. 在空间直角坐标系O−xyz中,经过A(1, 0, 2),B(1, 1, −1),C(2, −1, 1)三个点的平面方程为________.18. 如图,在三棱柱ABC−A1B1C1中,D、E、F分别是A1B1、BC、B1C1的中点,则平面DEF与平面ACC1A1的位置关系是________.19. 如图,正方体的底面与正四面体的底面在同一平面α上,且AB // CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.20. 给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直;③垂直干同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中真命题是________(写出所有真命题的序号)21. 已知直线a,b,c,且a∩b=A,a∩c=B,b和c异面,试画出图形表示它们之间的关系.22. 举几对既不相交也不平行的直线的例子.23. 如图,已知E,F,G,H分别是空间四边形(四条线段首尾相接,且连接点不在同一个平面内,所组成的空间图形叫空间四边形)各边AB,AD,CB,CD上的点,且直线EF和HG交于点P,求证:点B,D,P在同一条直线上.24. 如图,过直线l外一点P,作直线a,b,c分别交直线l于点A,B,C,求证:直线a、b、c共面.25. 如图,已知E、F分别是正方体ABCD−A1B1C1D1的棱AA1和棱CC1上的中点,求证:四边形EBFD1是菱形.26. 在正方体ABCD−A1B1C1D1中,底面ABCD是正方形,若AC1=3,BC1=√5,则异面直线BC1与AD所成的角的正切值为________.27. 在长方体ABCD−A1B1C1D1中,E为DD1的中点.(1)判断BD1与平面AEC的位置关系,并证明你的结论.(2)若AB=BC=√3,CC1=2,求异面直线AE、BD1所成的角的余弦值.28. 如图,长方体ABCD−A1B1C1D1中,AB=AD=2,AA1=3,求异面直线A1B与B1C夹角的余弦值.29. 如图,已知长方体的长宽都是4cm,高为2cm.(1)求BC与A′C′,A′D与BC′所成角的余弦值;(2)求AA′与BC,AA′与CC′所成角的大小.30. 已知m,n是两条不同直线,α,β,γ是三个不同平面(1)若α⊥γ,β⊥γ,则α // β;(2)若m // α,m // β,则α // β;(3)若m // α,n // α,则m // n;(4)若m⊥α,n⊥α,则m // n.上述命题中正确的为________.31. 如图,已知ABCD是空间四边形,AB=AD,CB=CD,求证:BD⊥AC.32. 已知三条直线a、b、c,若这三条直线两两相交,且交点分别为A、B、C,试判断这三条直线是否共面.33. 如图,△ABC中,∠ABC=90∘,SA⊥平面ABC,E、F分别为点A在SC、SB上的射影.(1)求证:BC⊥SB;(2)求证:EF⊥SC.34. 三棱柱ABC−A1B1C1中,侧棱与底面垂直,∠ABC=90∘,AB=BC=BB1=2,M,N分别是AB,A1C的中点.(Ⅰ)求证:MN // 平面BCC1B1;(Ⅱ)求证:MN⊥平面A1B1C.35. 如图所示的一块木料中,棱BC平行于面A′C′.(1)要经过面A′C′内的一点P和棱BC将木料锯开,应怎样画线?(写出画法步骤,并在图中画出)(2)说明所画的线与平面AC的位置关系.36. 直线a // b,a与平面α相交,判定b与平面α的位置关系,并证明你的结论.37. 如图,在四棱锥P−ABCD中,有同学说平面PAD∩平面PBC=P,这句话对吗?请说明理由.38.(1)如图,对于任一给定的四面体A1A2A3A4,找出依次排列的四个相互平行的α1,α2,α3,α4,使得A i∈αi(i=1, 2, 3, 4),且其中每相邻两个平面间的距离都相等;(2)给定依次排列的四个相互平行的平面α1,α2,α3,α4,其中每相邻两个平面间的距离都为1,若一个正四面体A1A2A3A4的四个顶点满足:A i∈αi(i=1, 2, 3, 4),求该正四面体A1A2A3A4的体积.39. 如图,a,b是异面直线,A,C与B,D分别是a,b上的两点,直线a // 平面a,直线b // 平面a,AB∩a=M,CD∩a=N,若AM=BM,求证:CN=DN.40. 如图,已知平面α、β,且α∩β=l.设梯形ABCD中,AD // BC,且AB⊂α,CD⊂β.求证:AB,CD,l共点(相交于一点).参考答案与试题解析数学必修二空间点、直线、平面的位置关系一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】平面的概念、画法及表示【解析】利用平面的表示方法,对每个选项逐一判断即可.【解答】解:A.平面可用希腊字母α,β,γ表示,故A正确;B.平面不可用平行四边形的某条边表示,故B错误;C.平面可用平行四边形的对角的两个字母表示,故C正确;D.平面可用平行四边形的顶点表示,故D正确.故选B.2.【答案】C【考点】空间中直线与平面之间的位置关系空间中平面与平面之间的位置关系【解析】根据空间线面位置关系的情况举出反例判断或根据性质说明.【解答】对于A,当l⊥α,m⊂α,n⊂α时,显然有m⊥l,n⊥l,单m与n可能平行,也可能相交,故A错误.对于B,若α // β,m⊂β,n⊂β,则m // α,n // α,但m,n可能平行也可能相交,故B错误.对于C,由线面平行的性质“垂直于同一个平面的两条直线平行“可知C正确.对于D,当三个平面α,β,γ两两垂直时,显然结论错误.3.【答案】C【考点】平面的基本性质及推论【解析】在A中,由直线a上有两个点A,B都在β内,知a⊂β;在B中,由不同点A、B分别是两个不同平面α,β的公共点,知α∩β=直线AB;在C中,由l⊄α,A∈l,知A有可能是l与α的交点;在D中,因a∩b=Φ,a不平行于b,知a、b为异面直线.【解答】解:在A中,∵直线a上有两个点A,B都在β内,∴a⊂β,故A正确;在B中,∵不同点A、B分别是两个不同平面α,β的公共点,∴α∩β=直线AB,故B正确;在C中,∵l⊄α,A∈l,∴A有可能是l与α的交点,故C错误;在D中,∵a∩b=Φ,a不平行于b,∴a、b为异面直线,故D正确.故选C.4.【答案】B【考点】平面的概念、画法及表示【解析】由题意,点B在直线b上,b在平面β内,点与面之间的关系是属于关系,线与面之间的关系是包含关系,由此三者之间的关系易得【解答】解:由题意,点B在直线b上,b在平面β内,则B、b、β之间的关系可记作B∈b⊂β故选B5.【答案】D【考点】异面直线的判定【解析】若此点与直线a确定一平面β恰好与直线b平行,可得a⊂β,可判断A的真假;结合空间中直线关系的定义及几何特征,可判断B的真假;依据平行公理,即可判断C的真假;由公理2及其推论,我们可以判断D的真假.【解答】解:A中:若此点与直线a确定一平面β恰好与直线b平行,此时直线a在已知平面上,并非与已知平面平行,故A错误;B中:由①可得,当此点在β平面上时,结论B不成立;C中:若存在这样的直线l,则l // a,l // b,有平行公理知,必有a // b,与已知矛盾,故C错误;D中:在直线a上取A、B点,过A、B分别作直线c、d与直线b平行,c、d可确定平面α,即b平行于α,此时a在α平面上,故D正确;故答案为D6.【答案】C【考点】平面的基本性质及推论【解析】此题暂无解析【解答】解:由题意知,∵AB∩l=R,平面α∩平面β=l,∴ R ∈l ,l ⊂β,R ∈AB ,∴ R ∈β.又∵ A ,B ,C 三点确定的平面为γ,∴ C ∈γ,AB ⊂γ,∴ R ∈γ.又∵ C ∈β,∴ C ,R 是平面β和γ的公共点,∴ β∩γ=CR .故选C .7.【答案】D【考点】平行公理【解析】根据题意,可在正方体中,举例说明,得到答案【解答】如图所示,在正方体ABCD −A 1B 1C 1D 1中,二面角D −AA 1−F 与二面角D 1−DC −A 的两个半平面分别对应垂直,但是这两个二面角既不相等,也不互补,所以这两个二面角不一定相等或互补..AB例如:开门的过程中,门所在平面及门轴所在墙面分别垂直于地面与另一墙面,但门所在平面与门轴所在墙面所成二面角的大小不定,而另一二面角却是90∘,所以这两个二面角不一定相等或互补.8.【答案】B【考点】异面直线的判定【解析】A 通过反证法可以判定;B 由异面直线公垂线的唯一性可以判定;C 、D 利用常见的图形举出反例即可.【解答】解:设过点P 的直线为n ,且{n//a,n//b,, ∴ a // b ,这与a ,b 异面矛盾,选项A 错误;∵ 异面直线a ,b 有唯一的公垂线,∴ 过点P 与公垂线平行的直线有且只有一条,选项B 正确;如图所示的正方体中,设AD 为直线a ,A′B′为直线b ,若点P 在P 1点处,则无法作出直线与两直线都相交, ∴ 选项C 错误;如图所示的正方体中,若P 在P 2点,则由图中可知直线CC′及D′P 2均与a ,b 异面, ∴ 选项D 错误.故选B .9.【答案】B【考点】异面直线及其所成的角【解析】本题考查建立适当的空间直角坐标系,利用向量方法求解即可.【解答】解:建立如图所示空间直角坐标系,如图,设正方体棱长为1,则A(0,0,0),E (1,1,23),A 1(0,0,1),B(1,0,0),∴ AE →=(1,1,23),A 1B →=(1,0,−1),∴ cos <AE →,A 1B →>=AE →⋅A 1B →|AE||A 1B|=1−2 3√12+12+(23)2⋅√12+(−1)2=√1122.故选B.10.【答案】C【考点】平行公理【解析】根据等角定理:如果一个角的两边和另一个角的两边分别对应平行并且方向相同,那么这两个角的相等,从而易知本题答案.【解答】解:根据等角定理:如果一个角的两边和另一个角的两边分别对应平行并且方向相同,那么这两个角的相等.本题的条件是:一个角的两边和另一个角的两边分别对应平行,由于没有指出角的对应两边的方向情况,故两个角可能相等或互补.故选C.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】2【考点】空间中直线与直线之间的位置关系【解析】由题意,异面直线AB和CC1的距离为BC,即可得出结论.【解答】解:由题意,异面直线AB和CC1的距离为BC=2.故答案为:2.12.【答案】√105【考点】异面直线及其所成的角【解析】建立空间坐标系,分别求出两条异面直线的方向向量,利用向量的夹角公式即可得出.【解答】解:如图所示,建立空间坐标坐标系.取正方体的棱长为2.则B(1, 2, 0),A(2, 2, 1),D(2, 0, 2),C(2, 1, 0).∴ BA →=(1, 0, 1),CD →=(0, −1, 2).∴ cos <BA →,CD →>=|BA →|⋅|CD →|˙=2√2⋅√5=√105. ∴ 异面直线AB 和CD 的夹角的余弦值为√105. 故答案为:√105. 13. 【答案】平行或相交【考点】空间中直线与平面之间的位置关系【解析】利用直线与平面的位置关系求解.【解答】解:∵ 直线与平面的位置关系有三种:平行、相交或直线在平面内,∴ 如果一条直线不在平面内,那么这条直线与这个平面的位置关系是平行或相交.故答案为:平行或相交.14.【答案】平行【考点】空间中直线与直线之间的位置关系【解析】根据线面平行的性质定理判断出a // b .【解答】解:∵ a // β,a ⊂α,α∩β=b ,∴ 由线面平行的性质定理得,a // b ,故答案为:平行.15.【答案】④【考点】空间中平面与平面之间的位置关系空间中直线与直线之间的位置关系【解析】根据空间中面面平行的判定方法,面面垂直的判定方法,线面平行的性质及线面垂直的性质,我们对已知中四个结论逐一进行判断即可得到结论.【解答】解:若a⊂α,b⊂β,且a // b,则α与β可能平行与可能相交,故①错误;若a⊂α,b⊂β,且a⊥b,则α与β可能平行与可能相交,故②错误;若a // α,b⊂α,则a与b可能平行与可能异面,故③错误;若a⊥α,b⊥α,则a // b,故④正确;故答案为:④16.【答案】①③④⇒②(或②③④⇒①)【考点】空间中平面与平面之间的位置关系空间中直线与平面之间的位置关系【解析】分析本题中的条件,四个条件取三个,有四种组合,由于本题是一开放式题答案不唯一,故选取其一即可.【解答】解:观察发现,①③④⇒②与②③④⇒①是正确的命题,证明如下:证①③④⇒②,即证若m⊥n,n⊥β,m⊥α,则α⊥β,因为m⊥n,n⊥β,则m⊂β或m // β,又m⊥α故可得α⊥β,命题正确;证②③④⇒①,即证若n⊥β,m⊥α,α⊥β,则m⊥n,因为m⊥α,α⊥β则m⊂β或m // β,又m⊥α故可得m⊥n,命题正确.故答案为:①③④⇒②(或②③④⇒①).17.【答案】4x+3y+z=6【考点】平面的概念、画法及表示【解析】设过A、B、C三点的平面方程为Ax+By+Cz=D,把点的坐标代入方程求得A、B、C的值,从而求得平面方程.【解答】设过A(1, 0, 2),B(1, 1, −1),C(2, −1, 1)三点的平面方程为Ax+By+Cz=D,则A+2C=D①,A+B−C=D②,2A−B+C=D③,由①②③组成方程组,解得A=2D3,B=D2,C=D6;∴2D3x+D2y+D6z=D,化简得4x+3y+z=(6)18.【答案】平行【考点】空间中平面与平面之间的位置关系【解析】根据面面平行的判定定理,判断两个平面平行即可.【解答】解:因为D、E、F分别是A1B1、BC、B1C1的中点,所以BD // A1C1,BE // C1C,所以BD // 面A1B1C1,BE // 面A1B1C1,因为DB∩BE=E,所以平面DEF // ACC1A1.故答案为:平行.19.【答案】4【考点】平面的基本性质及推论【解析】判断EF与正方体表面的关系,即可推出正方体的六个面所在的平面与直线EF相交的平面个数即可.【解答】由题意可知直线EF与正方体的左右两个侧面平行,与正方体的上下底面相交,前后侧面相交,所以直线EF与正方体的六个面所在的平面相交的平面个数为4.20.【答案】②④【考点】平面的基本性质及推论【解析】利用两个平面平行的判断判断出①错;利用两个平面垂直的判断判断出②对;利用垂直于同一条直线的直线的位置关系判断出③错;利用两个平面垂直的性质判断出④对.【解答】解:对于①,若一个平面内的两条相交直线与另一个平面都平行,那么这两个平面相互平行,故①错对于②,若一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直是两个平面垂直的判断定理,故②对对于③,垂直干同一直线的两条直线相互平行、相交或异面,故③错.对于④,若两个平面垂直,那么一个平面内与它们的交线垂直的直线与另一个平面也垂直.故④对故答案为:②④.三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 )21.【答案】∵ a ∩b =A ,a ∩c =B ,b 和c 异面,∴ 画图表示如下:.【考点】异面直线的判定【解析】根据直线a ,b ,c 的关系,画出图形即可.【解答】∵ a ∩b =A ,a ∩c =B ,b 和c 异面,∴ 画图表示如下:.22.【答案】既不相交也不平行的直线是异面直线,如图,在正方体A 1B 1C 1D 1−ABCD 中,AB 和A 1D 1,B 1C 1都构成异面直线,BC 和A 1B 1,C 1D 1→都构成异面直线.【考点】异面直线的判定【解析】可知,既不相交也不平行的直线是异面直线,可画出一个正方体,找出几对上面的异面直线即可.【解答】既不相交也不平行的直线是异面直线,如图,在正方体A 1B 1C 1D 1−ABCD 中,AB 和A 1D 1,B 1C 1都构成异面直线,BC 和A 1B 1,C 1D 1→都构成异面直线.23.【答案】证明:∵ E ,F ,G ,H 分别是空间四边形ABCD 各边AB ,AD ,CB ,CD 上的点, ∴ 由公理一,得EF ⊂平面ABD ,GH ⊂平面CBD ,∵ 面ABD ∩面CBD =BD ,直线EF 和HG 交于点P ,∴ 由公理三得P ∈BD ,∴ 点B ,D ,P 在同一条直线上..【考点】平面的基本性质及推论【解析】由公理一,得EF⊂平面ABD,GH⊂平面CBD,由公理三得P∈BD,由此能证明点B,D,P在同一条直线上..【解答】证明:∵E,F,G,H分别是空间四边形ABCD各边AB,AD,CB,CD上的点,∴由公理一,得EF⊂平面ABD,GH⊂平面CBD,∵面ABD∩面CBD=BD,直线EF和HG交于点P,∴由公理三得P∈BD,∴点B,D,P在同一条直线上..24.【答案】证明:设直线l与l外一点P确定的平面为α,则P∈平面α,又A∈直线l,∴A∈平面α;又P∈直线a,A∈直线a,∴直线a⊂平面α;同理直线b⊂平面α,直线c⊂平面α,∴直线a、b、c共面.【考点】平面的基本性质及推论【解析】先设直线l与l外一点P确定一个平面α,再证明直线a⊂平面α,同理得出直线b、c⊂平面α即可.【解答】证明:设直线l与l外一点P确定的平面为α,则P∈平面α,又A∈直线l,∴A∈平面α;又P∈直线a,A∈直线a,∴直线a⊂平面α;同理直线b⊂平面α,直线c⊂平面α,∴直线a、b、c共面.25.【答案】证明:取棱BB1中点为G,连C1G、EG,由正方体性质,侧面ABB1A1为正方形,又E、G分别为边AA1、BB1中点,所以EG=A1B1=C1D1,EG // A1B1 // C1D1,从而四边形EGC1D1为平行四边形,∴D1E // C1G,D1E=C1G,又F、G分别为棱CC1、BB1中点,由侧面CBB1C1为正方形,知四边形BGC1F为平行四边形,所以BF // C1G,BF=C1G,又∴D1E // C1G,D1E=C1G,由平行公理可知D1E=BF,D1E // BF,从而四边形EBFD1为平行四边形.由ABCD−A1B1C1D1为正方体,不妨设其棱长为a,易a知BE=BF=√52而由四边形EBFD1为平行四边形,从而即为菱形.【考点】平行公理【解析】根据菱形的定义直接证明即可.【解答】证明:取棱BB1中点为G,连C1G、EG,由正方体性质,侧面ABB1A1为正方形,又E、G分别为边AA1、BB1中点,所以EG=A1B1=C1D1,EG // A1B1 // C1D1,从而四边形EGC1D1为平行四边形,∴D1E // C1G,D1E=C1G,又F、G分别为棱CC1、BB1中点,由侧面CBB1C1为正方形,知四边形BGC1F为平行四边形,所以BF // C1G,BF=C1G,又∴D1E // C1G,D1E=C1G,由平行公理可知D1E=BF,D1E // BF,从而四边形EBFD1为平行四边形.由ABCD−A1B1C1D1为正方体,不妨设其棱长为a,易a知BE=BF=√52而由四边形EBFD1为平行四边形,从而即为菱形.26.【答案】12【考点】异面直线及其所成的角【解析】此题暂无解析【解答】解:设AB=a,因为ABCD是正方形,所以AC=√2a.所以CC1⊥AC,CC1⊥BC,所以CC12=AC12−AC2=BC12−BC2,即9−2a2=5−a2,解得a=2.所以CC1=1,因为AD//BC,所以∠CBC1即异面直线BC1与AD所成的角,tan∠CBC1=CC1BC =12.故答案为:12.27.【答案】解:(1)BD1 // 平面AEC,如图,连结BD交AC于O,则O为BD中点,连结OE;∵E为DD1的中点,∴OE // BD1;∵OE⊂平面AEC,BD1⊄平面AEC;∴BD1 // 平面AEC;(2)∵OE // BD1;∴异面直线AE,BD1所成的角为∠AEO;∵AB=BC=√3,CC1=2;∴EA=EC=2,EO=12BD1=√102;∴EO⊥AC;∴Rt△AEO中,cos∠AEO=EOEA =√104;因此,异面直线AE,BD1所成的角的余弦值为√104.【考点】异面直线及其所成的角空间中直线与平面之间的位置关系【解析】(1)连接BD,设交AC于O,连接EO,便可说明BD1 // OE,由线面平行的判定定理即(2)由上面BD1 // OE即可得到异面直线AE、BD1所成的角为∠AEO,而通过条件可说明OE⊥AC,并且可求出AE,OE,从而根据直角三角形的边角关系cos∠AEO=EOAE,这样即可求出异面直线AE,BD1所成角的余弦值.【解答】解:(1)BD1 // 平面AEC,如图,连结BD交AC于O,则O为BD中点,连结OE;∵E为DD1的中点,∴OE // BD1;∵OE⊂平面AEC,BD1⊄平面AEC;∴BD1 // 平面AEC;(2)∵OE // BD1;∴异面直线AE,BD1所成的角为∠AEO;∵AB=BC=√3,CC1=2;∴EA=EC=2,EO=12BD1=√102;∴EO⊥AC;∴Rt△AEO中,cos∠AEO=EOEA =√104;因此,异面直线AE,BD1所成的角的余弦值为√104.28.【答案】【考点】异面直线及其所成的角【解析】此题暂无解析【解答】此题暂无解答29.【答案】解:(1)∵ 长方体ABCD −A ′B ′C ′D ′中,BC // A′C′∴ ∠A ′C ′B ′就是异面直线BC 与A′C′所成角 Rt △A ′B ′C ′中,A′C′=√42+42=4√2 ∴ cos ∠A ′C ′B ′=B ′C‘A′C′=√22; 连结B ′C ,可得四边形A ′DCB ′是平行四边形,∴ A ′D // CB ′,直线B ′C 与BC ′所成的角就是A′D 与BC′所成的角 矩形BB ′C ′C 中,BC ′=B ′C =√42+22=2√5 设A′D 与BC′所成的角为θ,则由余弦定理得cos θ=2×√5×√5=35综上所述,可得BC 与A′C′,A′D 与BC′所成角的余弦值分别为√22和35; (2)∵ 长方体ABCD −A ′B ′C ′D ′中,AA ′ // BB ′∴ ∠B ′BC (或其补角)就是AA′与BC 所成的角 矩形BB ′C ′C 中,可得∠B ′BC =90∘;又∵ AA′ // CC′,∴ AA′与CC′所成角为0∘综上所述AA′与BC ,AA′与CC′所成角的大小分别为90∘和0∘.【考点】异面直线及其所成的角 【解析】(1)根据长方体的性质,可得∠A ′C ′B ′就是异面直线BC 与A′C′所成角,在Rt △A ′B ′C ′中,利用三角函数的定义可得cos ∠A ′C ′B ′=√22,即为BC 与A′C′所成角的余弦值.同理可得直线B ′C 与BC ′所成的角就是A′D 与BC′所成的角,结合余弦定理加以计算即可得到A′D 与BC′所成角的余弦值;(2)根据长方体的性质可得AA ′ // BB ′,因此矩形BB ′C ′C 中,∠B ′BC =90∘就是AA′与BC 所成的角;再由AA′ // CC′,得到AA′与CC′所成角为0∘. 【解答】解:(1)∵ 长方体ABCD −A ′B ′C ′D ′中,BC // A′C′∴ ∠A ′C ′B ′就是异面直线BC 与A′C′所成角 Rt △A ′B ′C ′中,A′C′=√42+42=4√2 ∴ cos ∠A ′C ′B ′=B ′C‘A′C′=√22; 连结B ′C ,可得四边形A ′DCB ′是平行四边形,∴ A ′D // CB ′,直线B ′C 与BC ′所成的角就是A′D 与BC′所成的角 矩形BB ′C ′C 中,BC ′=B ′C =√42+22=2√5设A′D 与BC′所成的角为θ,则由余弦定理得cos θ=5+5−162×√5×√5=35综上所述,可得BC 与A′C′,A′D 与BC′所成角的余弦值分别为√22和35;(2)∵ 长方体ABCD −A ′B ′C ′D ′中,AA ′ // BB ′ ∴ ∠B ′BC (或其补角)就是AA′与BC 所成的角 矩形BB ′C ′C 中,可得∠B ′BC =90∘;又∵ AA′ // CC′,∴ AA′与CC′所成角为0∘综上所述AA′与BC ,AA′与CC′所成角的大小分别为90∘和0∘. 30.【答案】 (4). 【考点】空间中平面与平面之间的位置关系 空间中直线与直线之间的位置关系【解析】根据题意,分析4个命题:(1)由α⊥γ,β⊥γ,得α // β,或α∩β; (2)由m // α,m // β,得α // β,或α∩β;(3)由m // α,n // α,得m // n ,或m ∩n ,或m ,n 异面;(4)由m ⊥α,n ⊥α,根据线面垂直的性质,得m // n .进而可得答案. 【解答】 解:(1)命题不一定成立,因为α⊥γ,β⊥γ时,α,β可能平行,也可能相交; (2)命题不一定成立,因为m // α,m // β时,α,β可能平行,也可能相交; (3)命题不一定成立,因为m // α,n // α时,直线m ,n 可能平行,也可能相交,也可能异面;(4)命题是正确的,因为m ⊥α,n ⊥α时,由垂直于同一平面的两条直线平行,得m // n .所以,上述正确的命题只有(4). 31.【答案】证明:取BD 的中点O ,连接AO ,CO . ∵ AB =AD ,∴ AO ⊥BD , ∵ CB =CD ,∴ CO ⊥BD , 又AO ∩CO =O , ∴ BD ⊥平面ACO , AC ⊂平面ACO ,∴BD⊥AC.【考点】空间中直线与直线之间的位置关系【解析】取BD的中点O,连接AO,CO.由等腰三角形的三线合一,得到AO⊥BD,CO⊥BD,再由线面垂直的判定定理得到BD⊥平面ACO,运用线面垂直的性质即可得证.【解答】证明:取BD的中点O,连接AO,CO.∵AB=AD,∴AO⊥BD,∵CB=CD,∴CO⊥BD,又AO∩CO=O,∴BD⊥平面ACO,AC⊂平面ACO,∴BD⊥AC.32.【答案】解:如图,三条直线a、b、c两两相交,且交点分别为A、B、C,设a,b确定一个平面α,∵B∈a,C∈a,A∈b,C∈b,∴A∈α,B∈α,又∵A∈c,B∈c,∴c⊂α,∴三条直线a,b,c共面于α.∴这三条直线共面.【考点】空间中直线与直线之间的位置关系【解析】利用设a,b确定一个平面α,由已知条件利用公理二能推导出c⊂α,从而这三条直线a,b,c共面于α.【解答】解:如图,三条直线a、b、c两两相交,且交点分别为A、B、C,设a,b确定一个平面α,∵B∈a,C∈a,A∈b,C∈b,∴A∈α,B∈α,又∵A∈c,B∈c,∴c⊂α,∴三条直线a,b,c共面于α.∴这三条直线共面.33.【答案】证明:(1)∵ SA ⊥面ABC ,BC ⊂平面ABC , ∴ SA ⊥BC ,又∵ AB ⊥BC ,SA ∩AB =A , ∴ BC ⊥平面SAB , ∵ SB ⊂平面SAB , ∴ BC ⊥SB ;(2)∵ AF ⊂平面SAB ,BC ⊥平面SAB , ∴ BC ⊥AF ,∵ AF ⊥SB ,且BC ∩SB =B , ∴ AF ⊥平面SBC , ∵ SC ⊂平面SBC ,∴ SC ⊥AF ,又AE ⊥SC ,且AF ∩AE =A , ∴ SC ⊥平面AEF , ∴ EF ⊥SC .【考点】空间中直线与直线之间的位置关系 【解析】(1)证明BC ⊥平面SAB ,然后,从而得到BC ⊥SB ;(2)对于EF ⊥SC 的证明,可以先证明SC ⊥平面EF ,然后,很容易得到EF ⊥SC . 【解答】 证明:(1)∵ SA ⊥面ABC ,BC ⊂平面ABC , ∴ SA ⊥BC ,又∵ AB ⊥BC ,SA ∩AB =A , ∴ BC ⊥平面SAB , ∵ SB ⊂平面SAB , ∴ BC ⊥SB ;(2)∵ AF ⊂平面SAB ,BC ⊥平面SAB , ∴ BC ⊥AF ,∵ AF ⊥SB ,且BC ∩SB =B , ∴ AF ⊥平面SBC , ∵ SC ⊂平面SBC ,∴ SC ⊥AF ,又AE ⊥SC ,且AF ∩AE =A , ∴ SC ⊥平面AEF , ∴ EF ⊥SC . 34.【答案】证明:(Ⅰ)证明:连接BC 1,AC 1.在△ABC 1中,∵ M ,N 是AB ,A 1C 的中点,∴ MN||BC 1. 又∵ MN ⊄平面BCC 1B 1,∴ MN||平面BCC 1B 1.(2)如图,以B 1为原点建立空间直角坐标系B 1−xyz .则B 1(0, 0, 0),C(0, 2, 2),A 1(−2, 0, 0),M(−1, 0, 2),N(−1, 1, 1) ∴ B 1C →=(0, 2, 2),A 1B 1→=(2,0,0),NM →=(0,−1,1). 设平面A 1B 1C 的法向量为n =(x, y, z).{n ⋅B 1C →=0n ⋅A 1B 1→=0⇒{x =0y =−z令z =1,则x =0,y =−1,∴ n =(0, −1, 1). ∴ n =NM →.∴ MN ⊥平面A 1B 1C .【考点】空间中直线与平面之间的位置关系 【解析】(Ⅰ)欲证MN||平面BCC 1B 1,根据直线与平面平行的判定定理可知只需证MN 与平面BCC 1B 1内一直线平行即可,而连接BC 1,AC 1.根据中位线定理可知MN||BC 1,又MN ⊄平面BCC 1B 1满足定理所需条件;(Ⅱ)以B 1为原点,A 1B 1为x 轴,B 1B 为y 轴,B 1C 1为z 轴建立空间直角坐标系B 1−xyz ,求出平面A 1B 1C 的法向量为n =(x, y, z),而n =NM →,根据法向量的意义可知MN ⊥平面A 1B 1C . 【解答】证明:(Ⅰ)证明:连接BC 1,AC 1.在△ABC 1中,∵ M ,N 是AB ,A 1C 的中点,∴ MN||BC 1. 又∵ MN ⊄平面BCC 1B 1,∴ MN||平面BCC 1B 1.(2)如图,以B 1为原点建立空间直角坐标系B 1−xyz .则B 1(0, 0, 0),C(0, 2, 2),A 1(−2, 0, 0),M(−1, 0, 2),N(−1, 1, 1) ∴ B 1C →=(0, 2, 2),A 1B 1→=(2,0,0),NM →=(0,−1,1). 设平面A 1B 1C 的法向量为n =(x, y, z).{n ⋅B 1C →=0n ⋅A 1B 1→=0 ⇒{x =0y =−z令z =1,则x =0,y =−1,∴ n =(0, −1, 1). ∴ n =NM →.∴ MN ⊥平面A 1B 1C .35.【答案】解:(1)过点P作B′C′的平行线,交A′B′、C′D′于点E,F,连结BE,CF;作图如右图,(2)易知BE,CF与平面AC的相交,∵BC // 平面A′C′,又∵平面B′C′CB∩平面A′C′=B′C′,∴BC // B′C′,∴EF // BC,又∵EF⊄平面AC,BC⊂平面AC,∴EF // 平面AC.【考点】空间中直线与平面之间的位置关系【解析】(1)注意到棱BC平行于面A′C′,故过点P作B′C′的平行线,交A′B′、C′D′于点E,F,连结BE,CF;(2)易知BE,CF与平面AC的相交,可证EF // 平面AC.【解答】解:(1)过点P作B′C′的平行线,交A′B′、C′D′于点E,F,连结BE,CF;作图如右图,(2)易知BE,CF与平面AC的相交,∵BC // 平面A′C′,又∵平面B′C′CB∩平面A′C′=B′C′,∴BC // B′C′,∴EF // BC,又∵EF⊄平面AC,BC⊂平面AC,∴EF // 平面AC.36.【答案】解:判定b与平面α的位置关系是b∩α=Q,下面给出证明:如图所示,∵a // b,∴可以经过直线a,b确定一个平面β.∵a∩α=P,∴α∩β=l.则b与直线l必然相交,否则b // l,则a // l,与a∩l=P相矛盾.因此b∩l=Q,∴b∩α=Q.【考点】空间中直线与平面之间的位置关系【解析】判定b与平面α的位置关系是b∩α=Q,可用反证法给出证明:如图所示,由于a // b,可以经过直线a,b确定一个平面β.由于a∩α=P,可得α∩β=l.可得b与直线l必然相交,否则b // l,得出矛盾.【解答】解:判定b与平面α的位置关系是b∩α=Q,下面给出证明:如图所示,∵a // b,∴可以经过直线a,b确定一个平面β.∵a∩α=P,∴α∩β=l.则b与直线l必然相交,否则b // l,则a // l,与a∩l=P相矛盾.因此b∩l=Q,∴b∩α=Q.37.【答案】解:由平面与平面的基本性质可知,如果两个平面相交,有且仅有结果该点的公共直线,所以如图,在四棱锥P −ABCD 中,有同学说平面PAD ∩平面PBC =P ,这句话不正确.【考点】平面的基本性质及推论空间中直线与平面之间的位置关系【解析】利用平面的基本性质判断即可.【解答】解:由平面与平面的基本性质可知,如果两个平面相交,有且仅有结果该点的公共直线,所以如图,在四棱锥P −ABCD 中,有同学说平面PAD ∩平面PBC =P ,这句话不正确. 38.【答案】解:(1)如图所示,取A 1A 4的三等分点p 2,p 3,A 1A 3的中点M ,A 2A 4,的中点N , 过三点A 2,P 2,M ,作平面α2,过三点A 3,P 3,N 作平面α3,因为A 2P 2 // NP 3,A 3P 3 // MP 2,所以平面α2 // α3,再过点A 1,A 4,分别作平面α1,α4,与平面α3平行,那么四个平面α1,α2,α3,α4依次互相平行,由线段A 1A 4被平行平面α1,α2,α3,α4截得的线段相等知,其中每相邻两个平面间的距离相等,故α1,α2,α3,α4为所求平面.(2):当(1)中的四面体为正四面体,若所得的四个平行平面每相邻两平面之间的距离为1,则正四面体A 1A 2A 3A 4就是满足题意的正四面体.设正四面体的棱长为a ,以△A 2A 3A 4的中心O 为坐标原点,以直线A 4O 为y 轴,直线OA 1为Z 轴建立如图所示的右手直角坐标系,则A 1(0, 0, √63a),A 2(−a 2, √36a, 0),A 3(a 2, √36a, 0),A 4(0, −√33a, 0). 令P 2,P 3为.A 1A 4的三等分点,N 为A 2A 4的中点,有P 3(0, −2√39a, √69a),N(−a 4, −√312a, 0),所以P 3N →=(−a 4, 5√336a, −√69a),NA 3→=(34a, √34a, 0),A 4N →=(−a 4, √34a, 0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1空间点、直线、平面之间的位置关系练习题
一、 选择题:
1.下面推理过程,错误的是( )
(A ) αα∉⇒∈A l A l ,//
(B ) ααα⊂⇒∈∈∈l B A l A ,,
(C ) AB B B A A =⋂⇒∈∈∈∈βαβαβα,,,
(D ) βαβα=⇒∈∈不共线并且C B A C B A C B A ,,,,,,,,
2.一条直线和这条直线之外不共线的三点所能确定的平面的个数是( )
(A ) 1个或3个 (B ) 1个或4个
(C ) 3个或4个 (D ) 1个、3个或4个
3.以下命题正确的有( )
(1)若a ∥b ,b ∥c ,则直线a ,b ,c 共面;
(2)若a ∥α,则a 平行于平面α内的所有直线;
(3)若平面α内的无数条直线都与β平行,则α∥β;
(4)分别和两条异面直线都相交的两条直线必定异面。
(A ) 1个 (B ) 2个 (C ) 3个 (D )4个
4.正方体的一条体对角线与正方体的棱可以组成异面直线的对数是( )
(A ) 2 (B ) 3 (C ) 6 (D ) 12
5.以下命题中为真命题的个数是( )
(1)若直线l 平行于平面α内的无数条直线,则直线l ∥α;
(2)若直线a 在平面α外,则a ∥α;
(3)若直线a ∥b ,α⊂b ,则a ∥α;
(4)若直线a ∥b ,α⊂b ,则a 平行于平面α内的无数条直线。
(A ) 1个 (B ) 2个 (C ) 3个 (D )4个
6.若三个平面两两相交,则它们的交线条数是( )
(A ) 1条 (B ) 2条 (C ) 3条 (D )1条或3条
7. 下列命题正确的是( )
A.经过三点确定一个平面 B.经过一条直线和一个点确定一个平面
C.四边形确定一个平面 D.两两相交且不共点的三条直线确定一个平面
8. 下列命题中正确的个数是( )
①若直线l 上有无数个点不在平面α内,则l α∥.
②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行.
③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.
④若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点.
9. 若直线a 不平行于平面α,且a α⊄,则下列结论成立的是( )
A.α内的所有直线与a 异面 B.α内不存在与a 平行的直线 C.α内存在唯一的直线与a 平行 D.α内的直线与a 都相交
10. 三条直线相交于一点,可能确定的平面有( )
A.1个 B.2个 C.3个 D.1个或3个
11.分别和两条异面直线都相交的两条直线一定是( )
A.异面直线 B.相交直线 C.不相交直线 D.不平行直线
二、 填空题:
12.若直线l 与平面α相交于点O ,l B A ∈,,α∈D C ,,且BD AC //,则O,C,D 三点的位置关系是 。
13.在空间中,
① 若四点不共面,则这四点中任何三点都不共线。
② 若两条直线没有公共点,则这两条直线是异面直线。
以上两个命题中为真命题的是 (把符合要求的命题序号填上)
14.已知,a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是
① 两条平行直线
② 两条互相垂直的直线
③ 同一条直线
④ 一条直线及其外一点
在上面结论中,正确结论的编号为 (写出所有正确结论的编号)。
15. 已知a ,b ,c 是三条直线,角a b ∥,且a 与c 的夹角为θ,那么b 与c 夹角为 .
16. 已知两条相交直线a ,b ,a α平面∥则b 与α的位置关系是 .
17.在空间四边形ABCD 中,N ,M 分别是BC ,AD 的中点,则2MN 与AB CD +的大小关系是 .
18. 如图,三条直线两两平行且不共面,每两条确定一个平面,一共可以确定几个平面?如果三条直线相交于一点,它们最多可以确定几个平面?
三、 解答题:
19.已知长方体1111D C B A ABCD -中,M 、N 分别是1BB
和BC 的中点,AB=4,AD=2,1521=BB ,求异面直线D
B 1与MN 所成角的余弦值。
20.如图,空间四边形ABCD 中,E ,F ,G ,H 分别
是AB ,BC ,CD ,DA 的中点.
求证:四边形EFGH 是平行四边形.
( 知识点:空间平行线的传递性 ;)
21. 如图,已知长方体ABCD A B C D ''''-中,23AB =,23AD =,2AA '=. (1)BC 和A C ''所成的角是多少度?
AA BC
A D B
C
D ' C '
B '
A '。