如何将开关电源输出纹波噪声减小
降低电源纹波的方法
降低电源纹波的方法电源纹波是指电源输出电压在负载变化或开关转换时产生的波动。
一个干净的电源输出是一个平稳的、无波峰的 DC 电压。
如果输出电压出现波峰,就会对电路的电压稳定性产生负面影响,从而影响电路工作的可靠性。
降低电源纹波是一个重要的问题。
下面我们将介绍几种常见的降低电源纹波的方法。
第一种方法是使用线性稳压器。
线性稳压器可以根据输入电压的大小指定恒定的、稳定的输出电压。
线性稳压器通常具有很低的输出纹波和良好的稳定性,但是它具有低效能和较高的热量损失。
对于高功率应用来说,线性稳压器不是最佳选择。
第二种方法是使用开关稳压器。
开关稳压器(switching regulator)主要用于将高输入的 DC 电压转换为稳定的低输出电压。
开关稳压器具有高效率、小体积和轻量化的特点,但是其输出端仍然存在一定的纹波。
纹波可以通过使用低 ESR 电容,如刚性电容或铝电解电容,来降低。
第三种方法是使用滤波器。
滤波器常常在开关稳压器的输出端加装。
滤波器可以去除电源直流电偏置和高频电磁干扰,从而减小输出电压的纹波。
滤波器的设计和配置应根据具体的应用场景进行调整和优化。
第四种方法是选择合适的电源电容器。
电源电容器是供电电路中的一个重要元件,可以平滑输出电压。
正确选择电源电容器的类型和参数可以降低输出电压的纹波。
在选择电容器时应注意电容器的额定电压、温度系数、精度及故障率等参数。
第五种方法是使用稳压芯片。
稳压芯片是一种高效的电源 IC,可以把输入电压稳定转换为稳定的输出电压,从而降低输出电压的纹波。
常见的稳压芯片有线性稳压芯片和开关稳压芯片等。
稳压芯片具有输出电压稳定、效率高、体积小和容易使用等优点。
综上所述,降低电源纹波的方法包括使用线性稳压器、开关稳压器、滤波器、选择合适的电源电容器和使用稳压芯片等。
在实际应用中,应根据具体的设计要求和场景,选择合适的降噪方法进行应用。
开关电源工作时,如何抑制纹波和减小高频噪声?
开关电源工作时,如何抑制纹波和减小高频噪声?
开关电源通过高频化的能量变换获得较高的能量转换效率,工作频率一般是几十KHz到上百KHz。
相对于线性电源,开关电源工作时的高频噪声是比较多的,纹波系数也相对较高,需要设计合适的滤波电路来抑制纹波和消除高频噪声。
电容滤波
在电源电路中,电容滤波是必不可少的。
在开关电源电路中,滤波电容的选择显得特别重要,特别是输出端的滤波电容。
由于工作频率较高,需要考虑电容的阻抗和频率特性,滤波电容容量并不是越大越好。
因为电源的频率提高后,电容值会急剧下降,所以选择滤波电容的时候我们需要考虑电容的ESR(等效串联阻抗)。
需要尽量使用ESR值小的滤波电容。
电容需要在工作频率内有较低的等效阻抗才会有良好的滤波效果。
选择电容时需要考虑开关电源的工作频率,输出电压,输出电流,电容容值大小可以参考前辈们的计算公式:C>0.289/{f×(U/I)× ACv},ACv是纹波系数,单位是%。
LC滤波
电感有着通直流隔交流的特性,加入滤波电感对消除高频噪声有着非常好的效果。
电容和电感组合在一起使用效果更好。
如果有必要,我们还可以加入二级的LC滤波电路。
使用滤波电感时,需要根据开关电源的功率选择适当的功率电感。
LDO滤波
LDO(低压差线性稳压器)有一项噪声抑制比的指示,也有着很好的滤波效果,加入LDO后,纹波系数会大幅的降低,对抑制纹波和消除高频噪声非常有效。
减小纹波电压的方法
减小纹波电压的方法简介纹波电压是直流电源输出中的一种电压躁动,指的是输出电压中的交流成分。
纹波电压过大会对电子设备的正常工作产生影响,因此减小纹波电压是电源设计过程中需要解决的一个重要问题。
本文将介绍一些常用的方法来减小纹波电压。
1. 滤波电容滤波电容是一种常用的减小纹波电压的方法。
通过选取合适的电容值,可以滤除输出电压中的大部分交流成分,从而减小纹波电压。
一般来说,电容值越大,滤波效果越好。
但是需要注意的是,电容值过大会增加成本和体积,而电容值过小则可能无法实现较好的滤波效果。
2. 增加电感在直流电源输出电路中添加电感元件,可以有效减小纹波电压。
电感元件具有阻抗对交流电流呈现较高的阻抗值的特性,从而在电路中起到滤波的作用。
通过增加电感元件的数目和电感值,可以进一步减小纹波电压。
需要注意的是,电感元件的选择应根据具体的应用场景和需求进行优化。
3. 使用稳压器稳压器是一种常用的电源管理元件,可以提供稳定的输出电压。
在稳压器的输入端输入纹波电压,在稳压器的输出端可以得到几乎无纹波的电压。
稳压器通常采用反馈控制的方式,通过不断调节其内部电路来保持输出电压的稳定。
选择适合的稳压器并合理设计反馈电路可以有效减小纹波电压。
4. 优化电源布局电源布局的合理优化可以减小纹波电压。
首先,要注意将高频和低频电路分离。
高频电路和低频电路之间的干扰可能导致纹波电压增大。
其次,要注意电源和负载之间的布线,减小布线长度并采取合理的隔离措施,可以减少电源和负载之间的串扰,进而减小纹波电压。
最后,要进行地线的合理布局,避免地线回路的干扰,减小纹波电压。
5. 选择合适的变压器变压器是直流电源中常用的元件,选择合适的变压器可以减小纹波电压。
一般来说,变压器设计时可以采用多级缺口技术,通过在铁心上制造缺口,增加铁芯磁阻,从而提高变压器的工作频率和饱和电流。
这样可以使变压器在工作时减小纹波电压。
6. 控制负载变化负载的突变和波动也会导致纹波电压的增大,因此在设计中需要充分考虑和控制负载的变化。
降低输出纹波的方法
降低输出纹波的方法由于电路中存在电感,MOS,二极管等开关器件,同时PCB上的走线存在寄生电感,寄生电容等参数,在开关器件工作的同时,会在地平面或者输出的正端平面上产生一定的波动,这个就是我们常说的输出纹波电压。
通常输出的纹波频率是和开关器件的频率保持一致,同时纹波电压是交流信号,输出纹波太大有很大的弊端,会导致器件寿命缩短或者导致器件损坏,所以在电源设计之初就要限定输出纹波电压在一定的范围内。
如下是我们OC5800L案例分析减小纹波电压的办法。
【办法和措施】方法1、优化PCB的布线,减小环路面积,减小PCB寄生参数任何板子都会存在寄生参数,包括走线的寄生阻抗,走线的寄生电感,线与线之间的寄生电容效应,过孔的寄生电容和寄生电感等。
所以在PCB走线开始之初要先进行元器件的布局,要根据开关电源的布线规则,尽可能减小功率环路的面积,OC5800L的功率环路走线包含两条通路。
MOS管导通环路为VDC+→VIN引脚→R1→L1→EC2→负载(黑色粗线),此环路为电感充能环路。
MOS管关闭环路为D6→L1→R1→负载(蓝色粗线),此环路为电感放电环路。
输入电容EC1尽可能靠近VIN脚,同时可在EC1上并联104瓷片电容,减小引入到芯片内部的纹波。
输出电容使用LOW ESR的电容,如用大容量的电解并联陶瓷电容(成本相对较低),或者使用钽电容并陶瓷电容(成本高),并且输出电容的容量越大,输出的纹波值也会越低。
开关节点网络的面积尽可能小,走线要粗,同时用地包络开关节点。
反馈VFB1,VFB2的四个采样电阻要和芯片在同一层,并且远离开关节点走线和开关器件。
肖特基二极管D6阳极要靠近输入电容的负极,同时D6的阴极要靠近芯片的7.8脚,并且尽可能不要走过孔。
方法2、电路中增加吸收RC吸收网络如上已经提到寄生参数对输出纹波电压的影响,而肖特基二极管也存在寄生参数,并且在高频开关电流回路中,所以在二极管反向恢复期间,寄生电感和电容会形成LC 振荡,产生高频振荡,继而产生尖峰毛刺电压,寄生参数越大,产生的尖峰电压会越高,并且在示波器上测试时可以测试到是和开关频率一致的,开关在导通和关断的瞬间会产生毛刺电压。
开关电源输出纹波很大是什么原因及解决方法
开关电源输出纹波很大是什么原因及解决方法
近年来,开关电源以其体积小,重量轻,效率高等优点,在工程领域、医疗机构、科学研究等方面有着越来越广泛的应用。
本文着重解决一款能输
出10 A电流12V电压的特殊恒流源的纹波抑制问题,专门用于大功率的半导体激光器驱动。
该激光器需求高稳定的光功率输出,激光器输出光功率的
稳定性是一个主要参数,半导体激光器的光功率稳定性主要表现在输入电流
的稳定性,输入电流的纹波越小光功率稳定性越好。
目前,解决开关电源纹
波的方法有若干种,各有其优缺点,由于输出电流是10 A的大电流,一般的方法不能适用。
纹波是工频引起的,减小纹波,作用很大的方法:
1.,输出用π型电路,就是一个电容,一个电感,再一个电容的方式。
2。
输出电容一定要用高频低阻,甚至用固态电容,
这两点是最有效果的方法。
还有加大电容容量都行,但这个效果就没那幺明显。
降低开关电源纹波的三个要素
降低开关电源纹波的三个要素
开关电源要降低纹波主要要在以下三个方面下功夫:
1、储能电感。
储能电感在工作频率下的Q值越大越好,许多人只留意到电感量,其实Q值的影响要大得多,电感量只要满意要求允许在很大范围内波动。
2、滤波电容。
滤波电容的ESR和ESL是特别重要的参数,越低越好,仅追求容量是远远不够的,当然在满意足够低的ESR和ESL的前提下,容量大些较好。
开关电源的滤波电容优选X7R或X5R电容与钽电解的组合,纹波稍放宽可用Y5V电容和瘦高外观的铝电解(低ESL 型)协作。
3、PCB设计。
开关电源的PCB设计特别重要,在前两个条件都满意时假如纹波参数还是达不到手册中载明的数值,问题就可以确定是出在PCB上,开关电源芯片的取样及滤波回路的设计特别讲究,PCB 分布参数会导致调整误差或滤波效率变差,严峻时甚至可能导致自激(一般在特定的负载强度下发生),故不得不查。
原则是取样回路和滤波回路要尽量贴近开关电源IC,PCB走线不行太长、太细,类似的储能电感也有同样原则,只是影响稍小,布局、走线不利相当于降低了电感的Q值。
最终要说的是,因开关电源IC的内电路设计不同纹波指标也是不同的,多数状况下,开关频率高的简单获得较低的纹波,但价格及对外围元件的要求相对更高,所以要依据需要合理选择,够用即可,
否则要付出不必要的成本,器件手册的认真阅读及理解是第一步。
降低电源纹波噪声的方法
降低电源纹波噪声的方法
降低电源纹波噪声的方法有多种,以下是一些常见的方法:
1. 采用高品质的电源滤波器:电源滤波器可以有效地降低电源中的高频纹波和噪声,从而提高电源的稳定性和可靠性。
高品质的电源滤波器通常具有更高的滤波效果和更低的损耗。
2. 使用低通滤波器:低通滤波器可以有效地滤除高频纹波和噪声,从而提高电源的稳定性和可靠性。
低通滤波器可以使用电容或电感等元器件组成,但要注意滤波器的通带和阻带特性。
3. 优化电源电路设计:合理的电源电路设计可以降低电源中的高频纹波和噪声。
要注意电源电路中的元件选择、电路布局和信号隔离等方面。
4. 采用直流滤波器:直流滤波器可以有效地降低电源中的低频纹波和噪声,从而提高电源的稳定性和可靠性。
直流滤波器可以使用电解电容或电感等元器件组成。
5. 调整电源供电电压和频率:适当的调整电源供电电压和频率可以降低电源中的高频纹波和噪声。
但要注意调整电压和频率的变化不能过大,否则会对电源的稳定性产生不利影响。
以上是一些常见的降低电源纹波噪声的方法,实际应用中需要根据具体情况选择合适的方法。
同时,为了减少电源纹波噪声,还需要注重电源电路的设计和制造质量,从根本上提高电源的稳定性和可靠性。
开关电源噪声的产生与抑制措施(5篇模版)
开关电源噪声的产生与抑制措施(5篇模版)第一篇:开关电源噪声的产生与抑制措施噪声的种类开关电源无论在体积、重量和效率方面都有显著的优点,已得到广泛的应用。
但开关电源最大缺点是容易产生噪声。
噪声的产生一般可分为两大类:一是开关电源内部元件形成的干扰;二是由于外界因素影响而使开关电源产生的干扰,这涉及到人为因素和自然界的因素。
1.1 输出脉动噪声主要是在输出端出现的脉冲干扰,产生的原因有:由AC输入频率引起的低频脉动电压;开关电源频率引起的高次谐波脉动电压;开关接通、断开时的尖峰噪声;对上述噪声的振幅最大值可用同轴电缆接到示波器上来观察测定。
1.2 辐射电场强度开关电源产生的噪声会辐射到空间。
辐射噪声的测定方法是:接好天线,开启仪器(场强仪等),用天线接收直射波与反射波。
被测电源放在非金属的实验台上以360°来回转动,天线以上下1~4m距离移动以检测最大值。
测试以垂直与水平两个方向来测定。
1.3 外来突变电压外来突变电压干扰可用噪声模拟器检测。
在输入交流线上同时注入同相杂音(注入电压据开关电源种类而定)。
两者相位以90°、270°为最合适。
确认在这外来突变电压的作用下,输出直流电压有无变动,并观察保护装置等是否产生误动作。
1.4 雷电冲击耐压实验使用雷电冲击发生器,以保险丝以外的元件不损坏为原则,看一看输出电压的变动是否超过附加电压的规定。
噪声产生源 2.1 开关管开关功率管及其散热器与外壳和电源内部的引线间存在分布电容。
当开关管流过大的脉冲电流时,大体上形成了矩形波,该波形含有许多高频成份。
由于开关电源使用的元件参数如开关功率管的存储时间,输出级的大电流,开关整流二极管的反向恢复时间,会造成回路瞬间短路,产生很大短路电流。
凡有短路电流的导线及这种脉冲电流流经的变压器和电感产生的电磁场形成噪声源。
2.2 二极管的恢复特性PN型硅二极管用作高频整流时,正向电流蓄积的电荷在加上反向电压时不能立即消除(因载流子的存在,还有电流流过)。
减小电源纹波的方法
减小电源纹波的方法减小电源纹波是电子设计中一个重要的问题,特别是在对电源质量要求较高的场合,如精密仪器、通信设备等。
电源纹波是指电源输出的直流电中所带有的交流成分,通常以纹波电压或纹波电流来表示。
电源纹波的存在会对电路的正常运行产生干扰,因此需要采取一些方法来减小电源纹波。
一、滤波电容滤波电容是最常见的减小电源纹波的方法之一。
它通过在电源输出端并联一个电容器,使得电源输出的直流电上带有的交流成分能够通过电容器,从而减小纹波电压。
滤波电容的大小取决于所需的纹波电压大小和频率响应。
通常情况下,滤波电容的容值越大,纹波电压越小。
二、电感滤波电感滤波是另一种常见的减小电源纹波的方法。
它通过在电源输出端串联一个电感器,使得电源输出的直流电上带有的交流成分能够通过电感器,从而减小纹波电流。
电感滤波的效果与电感器的大小有关,通常情况下,电感器的电感值越大,纹波电流越小。
三、稳压器稳压器是一种专门用来稳定电源输出电压的电路。
它可以通过对输入电压进行调节,使得输出电压保持在一个固定的值,从而减小电源纹波。
常见的稳压器有线性稳压器和开关稳压器两种。
线性稳压器通过调节电阻来实现稳压,具有简单、可靠的特点;开关稳压器则通过开关管的开关操作来实现稳压,具有高效、小尺寸的特点。
四、增加滤波电容和电感器的数量为了进一步减小电源纹波,可以增加滤波电容和电感器的数量。
在实际设计中,可以采用多级滤波的方式,即在电源输出端串联多个滤波电容和电感器,以增加滤波效果。
此外,还可以采用多级稳压的方式,即在电源输出端串联多个稳压器,以进一步减小纹波。
五、优化地线布局地线布局是电子设计中一个重要的环节,它直接影响着电路的抗干扰能力。
在减小电源纹波的过程中,需要注意地线的布局,避免地线回流路径过长或与其他信号线交叉引起的互感干扰。
合理的地线布局可以有效地减小电源纹波。
减小电源纹波是电子设计中一个重要的问题。
通过采取滤波电容、电感滤波、稳压器、增加滤波电容和电感器的数量以及优化地线布局等方法,可以有效地减小电源纹波,提高电路的稳定性和可靠性。
开关电源的纹波和噪声
本文简单地介绍开关电源产生纹波和噪声的原因和测量方法、测量装置、测量标准及减小纹波和噪声的措施。
一.纹波和噪声产生的原因开关电源输出的不是纯正的直流电压,里面有些交流成分,这就是纹波和噪声造成的。
纹波是输出直流电压的波动,与开关电源的开关动作有关。
每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。
纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。
噪声的产生原因有两种,一种是开关电源自身产生的;另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。
开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,也称为开关噪声。
噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。
噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。
利用示波器可以看到纹波和噪声的波形,如图1所示。
纹波的频率与开关管频率相同,而噪声的频率是开关管的两倍。
纹波电压的峰峰值和噪声电压的峰峰值之和就是纹波和噪声电压,其单位是mVp-p。
图1 纹波和噪声的波形二.纹波和噪声的测量方法纹波和噪声电压是开关电源的主要性能参数之一,因此如何精准测量是一个十分重要问题。
目前测量纹波和噪声电压是利用宽频带示波器来测量的方法,它能精准地测出纹波和噪声电压值。
由于开关电源的品种繁多(有不同的拓扑、工作频率、输出功率、不同的技术要求等),但是各生产厂家都采用示波器测量法,仅测量装置上不完全相同,因此各厂对不同开关电源的测量都有自己的标准,即企业标准。
用示波器测量纹波和噪声的装置的框图如图2所示。
它由被测开关电源、负载、示波器及测量连线组成。
有的测量装置中还焊上电感或电容、电阻等元件。
图2 示波器测量框图从图2来看,似乎与其他测波形电路没有什么区别,但实际上要求不同。
降低电源纹波噪声的一些常用方法
降低电源纹波噪声的一些常用方法在应用电源模块常见的问题中,降低负载端的纹波噪声是大多数用户都关心的。
下文结合纹波噪声的波形、测试方式,从电源设计及外围电路的角度出发,阐述几种有效降低输出纹波噪声的方法。
1、电源的纹波与噪声图示纹波和噪声即:直流电源输出上叠加的与电源开关频率同频的波动为纹波,高频杂音为噪声。
具体如图1所示,频率较低且有规律的波动为纹波,尖峰部分为噪声。
图12、纹波噪声的测试方法对于中小微功率模块电源的纹波噪声测试,业内主要采用平行线测试法和靠接法两种。
其中,平行线测试法用于引脚间距相对较大的产品,靠测法用于模块引脚间距小的产品。
但不管用平行线测试法还是靠测法,都需要限制示波器的带宽为20MHz,同时需要去掉地线夹。
具体如图2和图3所示。
图2 平行线测试法注1:C1为高频电容,容量为1μF;C2为钽电容,容量为10μF。
注2:两平行铜箔带之间的距离为2.5mm,两平行铜箔带的电压降之和应小于输出电压的2%。
图3靠测法3、去除地线夹测试的区别测试纹波噪声需要把地线夹去掉,主要是由于示波器的地线夹会吸收各种高频噪声,不能真实反映电源的输出纹波噪声,影响测量结果。
下面的图4和图5分别展示了对同一个产品,使用地线夹及取下地线夹测试的巨大差异。
图4 使用地线夹测试-示波器垂直分辨率200mv/div图5 去除地线夹测试-示波器垂直分辨率50mv/div4、设计上PCB布局的影响好与坏的PCB布局,是设计上影响纹波噪声的关键因素。
差的PCB布局如图6所示,变压器输出的地,直接通过过孔连到背部的地平面,地平面连接电源的输出引脚。
此布局在输出5V/2A的负载下,实测电源尖峰达1.5V VP-P。
图6 差的PCB布局如图7 所示是比较好的PCB布局,调整了变压器的位置,将变压器输出地通过两个电容后,再回到地平面和输出引脚相连。
实测在相同5V/2A输出的负载下,噪声已降到60mV VP-P,差别显著。
降低开关电源噪声的五大法宝
降低开关电源噪声的五大法宝中心议题:•降低开关电源噪声的方法开关电源的特征就是产生强电磁噪声,若不加严格控制,将产生极大的干扰。
下面介绍的技术有助于降低开关电源噪声,能用于高灵敏度的模拟电路。
1 电路和器件的选择一个关键点是保持dv/dt和di/dt在较低水平,有许多电路通过减小dv/dt和/或di/dt来减小辐射,这也减轻了对开关管的压力,这些电路包括ZVS(零电压开关)、ZCS(零电流开关)、共振模式.(ZCS的一种)、SEPIC(单端初级电感转换器)、CK(一套磁结构,以其发明者命名)等。
减小开关时间并非一定就能引起效率的提高,因为磁性元件的RF 振荡需要强损耗的缓冲,最终可以观察到不断减弱的回程。
使用软开关技术,虽然会稍微降低效率,但在节省成本和滤波/屏蔽所占用空间方面有更大的好处。
2 阻尼为了保护开关管免受由于寄生参数等因素引起的振荡尖峰电压的冲击常需要阻尼。
阻尼器连到有问题的线圈上,这也可以减小发射。
阻尼器有多种类型:从EMC角度看,RC阻尼器通常在EMC上是最好的,但比其他的发热多一些。
权衡各方面的利弊,在缓冲器中应谨慎使用感性电阻。
3 磁性元件有关问题及解决方案特别需注意的是电感和变压器的磁路要闭合。
例如,用环形或无缝磁芯,环形铁粉芯适合于存储磁能的场合,若在磁环上开缝,则需一个完全短路环来减小寄生泄漏磁场。
初级开关噪声会通过隔离变压器的线圈匝间电容注入到次级,在次级产生共模噪声,这些噪声电流难以滤除,而且由于流过路径较长,便会产生发射现象。
一种很有效的技术是将次级地用小电容连接到初级电源线上,从而为这些共模电流提供一条返回路径,但要注意安全,千万别超出安全标准标明的总的泄漏地电流,这个电容也有助于次级滤波器更好的工作。
线圈匝间屏蔽(隔离变压器内)可以更有效地抑制次级上感应的初级开关噪声。
虽然也曾有过五层以上的屏蔽,但三层屏蔽更常见。
靠近初级线圈的屏蔽通常连到一次电源线上,靠近次级线圈的屏蔽经常连到公共输出地(若有的话),中间屏蔽体一般连到机壳。
降低电源输出纹波噪声设计技巧
降低电源输出纹波噪声设计方法纹波噪声是衡量电源的一个重要指标,一个好的电源必须要把输出纹波噪声控制在一个合理的范围内。
但一般有哪些行之有效的降低纹波噪声的对策呢?下面我们抛砖引玉,简单讨论常用的八个方法。
1、电源PCB走线和布局反馈线路应避开磁性元件、开关管及功率二极管。
输出滤波电容放置及走线对纹波噪声至关重要,如图1所示,传统设计中由于到达每个电容的阻抗不一样,所以高频电流在三个电容中分配不均匀,改进设计中可以看出每个回路长度相当即高频电流会均匀分配到每个电容中。
图1如果PCB是多层板,可以选择和主电流回路层最近一层覆地,覆地可以有效的解决噪声问题,注意,尽量保证覆地的完整性。
2、场效应管D级与输入正之间加RCD一般选择场效应管的反向恢复时间要比二极管D1慢2~3倍,以避免形成直通电流,此电流会产生很强的磁场,可增大输出噪声干扰,所以可人为的通过栅极电阻R4来减慢开关管的开关速度。
为了不影响关断速度可以在栅极电阻并联一个二极管D2如图2所示。
图23、场效应管DS端并联RC可以在场效应管DS两端并联一个RC电路也可以有效的降低噪声干扰如图2所示,电容C2一般在100P左右,电容值过大会导致场效应管的开关损耗加大,电阻R2一般选取小于10Ω电阻。
4、输出二极管两端并联RC二极管在高速导通和关断时,反向恢复期间,二极管的寄生电感和电容会产生高频振荡,为了抑制高频振荡可在二极管两端加RC缓冲电路如图2所示,电阻R3一般在1Ω~100Ω,电容C3一般在100pF~1nF,如果电源工作频率较低,效率满足要求的话,二极管D3可以选择反向恢复时间较慢的二极管。
5、输出加二级LC滤波LC对噪声和纹波抑制效果比较明显,根据纹波频率选择合适电感电容值,但由于柱形电感价格低体积小的优点,所以一般LC中电感大都会选择柱形电感,然而柱形电感是开放式磁结构,对周围会产生较严重磁干扰,我们可以采用两个电感并排放置,且电流流入方向相反,即有助于引导磁通从一个磁柱到另一个磁柱,从而可以降低电磁干扰,如图3所示。
DCDC降低纹波噪声的3种方法
DCDC降低纹波噪声的3种方法
1、纹波的定义
纹波是指在直流电压或电流上,有规律的叠加在直流稳定量上的交流分量。
现实中的电压和电流并不是完全稳定的一条直线,而是叠加有很多的波动,并且这些波动的频率是固定的,把这些波动叫做纹波。
2、噪声的定义
噪声是指叠加在纹波之上,非连续存在并无规律的电压或者电流尖峰。
也就是说噪声指的是叠加在纹波上的杂波。
下面的图1很好的描述了什么是纹波噪声。
3、纹波噪声的危害
当电源的纹波噪声过大时,它们可能会影响运放的精度,干扰AD或者DA模块的工作,使得整机的精度大幅度下降。
4、如何降低纹波噪声
降低开关器件动作带来的纹波噪声:设计人员在实际的开发过程中,需要根据实际的电路
参数及性能要求进行适当的调整,进行综合考虑。
●降低输入前端的低频纹波:增加滤波措施,各种类型的电容及电感滤波电路:LC、π型等,
或者在一些条件允许的系统中,也可以在前端及后端增加稳压器件,来降低纹波噪声,在这种情况下该部分的纹波噪声则完全由稳压器件的性能决定。
●降低线路寄生及耦合导致的纹波噪声:从设计上改善寄生参数(如优化工艺设计及PCB走
线等等),还可以施加共模滤波方案。
开关电源适配器输出纹波和噪声电压的抑制措施
开关电源适配器输出纹波和噪声电压的抑制措施一、在开关电源适配器输出端采用片式三端电容器与普通电解电容器组合改善滤波的高频特性。
开关电源适配器的输出端含有较大的噪声电压的峰-峰值,这是由于电解电容器在高频下的特性不完善所造成的。
因为电解电容在高频下可以用电容、电阻和电感三者的串联来等效,所以在高频下电容对噪声的旁路作用不在明显。
由于电阻和电感的存在,反而使噪声电压体现在开关电源适配器的输出端。
为了抑制开关电源适配器的输出噪声,通常有两个建议可供设计人员采用:1)将输出端的电解电容一拆为几,即将一个大容量的电解电容采用几个小容量电解电容并联来替代。
这一建议虽不能根本抑制噪声电压的产生,但用新办法所产生的信噪声电压的峰-峰值要比原来为小。
2)在电解电容旁边并联一个小容量的高频陶瓷电容器,利用高频电容在高频下所体现的低容抗,使输出噪声电压得到较大衰减(当然在印制电路板上的陶瓷电容也应该保持比较短的布线长度,保持尽可能小的线路阻抗)。
二、采用高性能的表面贴装滤波器。
采用表面贴装的高性能滤波器来改善输出电压噪声。
贴装滤波器内部电路等效为一个π型滤波线路,在开关电源适配器的输出端串上一个贴装高性能滤波器。
对比原来的输出噪声电压峰-峰值,会大幅减小,在示波器上,几乎显示为一条直线,说明输出电压的噪声已明显得到抑制,从而很好说明了表面贴装高性能滤波器在这个线路中的作用。
三、避免多个模块电源之间相互干扰。
当在同一块印制电路板上有多个模块电源一起工作,若两个模块靠得很近,模块电源本身是不屏蔽的,并且靠得很近,输出端也没有采用低阻抗的电容,而且两个模块离开实际的输出端子的距离又比较远时,则可能因为相互之间的干扰使输出噪声电压增加。
为避免这种相互干扰,可采用屏蔽措施,或将它们的安装位置适当远离,以减小相互之间的影响。
四、在开关电源适配器的输出端增加一级低压差线性稳压电路。
在开关电源或者模块电源输出后再加一个电压差线性稳压电路,能大幅度地降低输出噪声,以满足对噪声有特别要求的电路需要,输出噪声可达微伏级。
开关电源的电磁干扰及噪声抑制方法
开关电源的电磁干扰及噪声抑制方法开关电源是现代电子应用中常见的一种电源形式,其工作原理是通过开关管开关控制输入电压的大小和频率以实现电压转换。
但是,开关电源在工作过程中会产生电磁干扰和噪声,对其他电子设备的正常工作产生影响。
因此,为了抑制开关电源的电磁干扰和噪声,在设计和使用开关电源时需要采取一些措施。
首先,开关电源产生的电磁干扰主要包括导向式干扰和辐射式干扰。
导向式干扰是指开关电源通过引线或线路对周围设备产生的电磁干扰,辐射式干扰是指开关电源通过电磁波辐射对周围设备产生的干扰。
对于导向式干扰,可以采取以下措施进行抑制:1.滤波器:在开关电源的输入和输出端加装滤波器,用于滤除高频噪声和电磁干扰。
常用的滤波器有LC滤波器、RC滤波器和Pi型滤波器等。
2.输入电源线路的处理:尽量缩短输入电源线路的长度,采用屏蔽线材,减小电磁干扰的传播路径。
同时,在输入电源线上添加额外的滤波电容和电感,抑制高频噪声。
3.地线处理:通过合理布置地线,减小接地电阻,提高地线的抗干扰能力。
将开关电源的地线与其他设备的接地点连接,共用同一个地线。
对于辐射式干扰,可以采取以下措施进行抑制:1.屏蔽:在开关电源的外壳上添加金属屏蔽罩,减少电磁辐射。
金属屏蔽罩应与开关电源的地线连接,以形成完整的屏蔽。
2.PCB设计:在开关电源的PCB板设计中,合理布局信号和电源线路,减小线路的长度。
同时,采用地平面和电源平面屏蔽,减少信号线和电源线的交叉和干扰。
3.使用低频率开关管:低频率工作的开关管辐射干扰较小,可以有效降低开关电源的电磁辐射干扰。
此外1.选择合适的元器件:选用带有防干扰措施的元器件,如具有抗干扰特性的电解电容和电感器件,减小干扰的产生和传播。
2.电源输出滤波:在开关电源的输出端添加滤波电容和电感,减小输出电压的纹波和噪声。
3.接地处理:通过合理的接地设计和连接方式,减小接地电阻,提高接地抗干扰能力。
4.EMI滤波器:在开关电源的输入端和输出端加装EMI滤波器,进一步滤除高频噪声和电磁干扰。
开关电源中干扰噪声引起的纹波问题的解决
开关电源中干扰噪声引起的纹波问题的解决最近遇到一个电源干扰噪声引起的输出纹波问题,输出波形表现为变压器次级输出的电压波形,开关噪声出现的频率为fs,2fs,0.5fs,显然是开关噪声被传到了次级。
噪声的幅度有1Vpp,经过pi滤波之后仍然有300mVpp。
一开始我直接使用每个人都会想到的改善滤波参数的方法,增加pi滤波的滤波电容以及滤波电感,但是收效甚微。
由于知道是干扰噪声,我再次尝试在变压器次级并上一个小的瓷片电容680pf滤出干扰,然后再pi滤波,这样情况有所改善,干扰被瓷片吸收了很大一部分,反馈主路输出噪声pp值为80mVpp左右,似乎问题解决了,但是瓷片由于吸收了过多的噪声,产生了很尖锐的音频噪声。
测量开关的最小占空比在0.2左右,应该不会引起过大的振荡或不稳定。
看来光靠吸收是很难达到要求的了。
于是决定从源头出发,首先是要观察pwm控制的驱动信号,但是由于使用top244整合mos管,无法测量mos栅极波形,但是测量DS波形,观察开关波形,发现开关打开和关断并没有太大的延时,而且边沿没有高频振荡尖峰。
接下来只有怀疑loop不稳定了,我采用的是齐纳二极管稳压方式。
首先我假设loop存在不稳定,于是我用调压器改变输入电压,观察输出波形,电压还是比较稳的。
当我把控制芯片端光耦的集电极的电阻100换成磁珠B62后,发现这次音频干扰变得很小,在最小输入42vac时也基本上没有听到了,这给了我信心!既然知道是loop的问题,我就怀疑是loop的频带太窄了,按照pi的设计,我改变芯片control端并的“47uF串6.8欧姆”电路参数,这给loop提供补偿一个零点和极点,加大6.8欧姆的阻值,可以把零点带到更低的频率,从而提高频带范围。
于是我把6.8欧姆改到20欧姆,再次试验发现输出pp值在30mVpp 左右!音频干扰也很小!总结:到现在为止我意识到的减小干扰,提高纹波性能的方法:1.pi滤波,需要合适的参数;2.变压器输出并瓷片电容吸收高频干扰,但是吸收的量不能太大,不然瓷片会产生压电效应,影响音频干扰;3.在变压器输出,整流二极管前串一个非晶磁珠,非晶对干扰吸收非常有效,但是在小电流时效果没有大电流明显;4.在环路loop的输入或输出串小型磁珠,吸收高频噪声,减小高频噪声被loop 放大的量,从而避免噪声振荡放大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何将开关电源输出纹波噪声减小
纹波,理论上和实际上都是一定存在的。
通常抑制或减少它的做法有5种:
1、加大电感和输出电容滤波
根据开关电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。
所以加大电感值和输出电容值可以减小纹波。
同样,输出纹波与输出电容的关系:vripple=Imax/(Co&TImes;f)。
可以看出,加大输出电容值可以减小纹波。
通常的做法,对于输出电容,使用铝电解电容以达到大容量的目的。
但是电解电容在抑制高频噪声方面效果不是很好,而且ESR也比较大,所以会在它旁边并联一个陶瓷电容,来弥补铝电解电容的不足。
同时,开关电源工作时,输入端的电压Vin不变,但是电流是随开关变化的。
这时输入电源不会很好地提供电流,通常在靠近电流输入端(以BucK 型为例,是SWITcH附近),并联电容来提供电流。
上面这种做法对减小纹波的作用是有限的。
因为体积限制,电感不会做的很大;输出电容增加到一定程度,对减小纹波就没有明显的效果了;增加开关频率,又会增加开关损失。
所以在要求比较严格时,这种方法并不是很好。
关于开关电源的原理等,可以参考各类开关电源设计手册。
2、二级滤波,就是再加一级LC滤波器
LC滤波器对噪纹波的抑制作用比较明显,根据要除去的纹波频率选择合适的电感电容构成滤波电路,一般能够很好的减小纹波。
采样点选在LC滤波器之前(Pa),输出电压会降低。
因为任何电感都有一个直流电阻,当有电流输出时,在电感上会有压降产生,导致电源的输出电。