时间响应分析9自动控制原理
《自动控制原理》实验2(线性系统时域响应分析)
实验二 线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。
二、基础知识及MATLAB 函数(一)基础知识时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。
为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。
本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。
用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。
由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。
1.用MATLAB 求控制系统的瞬态响应1)阶跃响应 求系统阶跃响应的指令有:step(num,den) 时间向量t 的范围由软件自动设定,阶跃响应曲线随即绘出step(num,den,t) 时间向量t 的范围可以由人工给定(例如t=0:0.1:10)[y ,x]=step(num,den) 返回变量y 为输出向量,x 为状态向量在MATLAB 程序中,先定义num,den 数组,并调用上述指令,即可生成单位阶跃输入信号下的阶跃响应曲线图。
考虑下列系统:25425)()(2++=s s s R s C 该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s的降幂排列。
则MATLAB 的调用语句:num=[0 0 25]; %定义分子多项式 den=[1 4 25]; %定义分母多项式step(num,den) %调用阶跃响应函数求取单位阶跃响应曲线grid %画网格标度线 xlabel(‘t/s’),ylabel(‘c(t)’) %给坐标轴加上说明 title(‘Unit -step Respinse of G(s)=25/(s^2+4s+25)’) %给图形加上标题名 则该单位阶跃响应曲线如图2-1所示:为了在图形屏幕上书写文本,可以用text 命令在图上的任何位置加标注。
自动控制原理
直流电动机速度自动控制的原理结构 图如图1-1所示。图中,电位器电压为输 入信号。测速发电机是电动机转速的测量 元件。图1-1中,代表电动机转速变化的 测速发电机电压送到输入端与电位器电压 进行比较,两者的差值(又称偏差信号) 控制功率放大器(控制器),控制器的输 出控制电动机的转速,这就形成了电动机 转速自动控制系统。
(三)、大系统控制理论阶段 20世纪70年代开始,出现了一些新的控制 方法和理论。如(1)现代频域方法,该方法 以传递函数矩阵为数学模型,研究线性定常多 变量系统;(2)自适应控制理论和方法,该 方法以系统辨识和参数估计为基础,处理被控 对象不确定和缓时变,在实时辨识基础上在线 确定最优控制规律;(3)鲁棒控制方法,该 方法在保证系统稳定性和其它性能基础上,设 计不变的鲁棒控制器,以处理数学模型的不确 定性;
• 3.复合控制系统 复合控制是闭环控制和开环控制相结合的一 种方式。它是在闭环控制等基础上增加一个干 扰信号的补偿控制,以提高控制系统的抗干扰 能力。
图1-5 复合控制系统框图
• 增加干扰信号的补偿控制作用,可以在干扰对被控量 产生不利影响所同时及时提供控制作用以抵消此不利 影响。纯闭环控制则要等待该不利影响反映到被控信 号之后才引起控制作用,对干扰的反应较慢。两者的 结合既能得到高精度控制,又能提高抗干扰能力。
• 2.闭环控制系统 系统输出信号与输入端之间存在反馈回路的系统, 叫闭环控制系统。闭环控制系统也叫反馈控制系统。 “闭环”这个术语的含义,就是应用反馈作用来减小 系统误差如图1-4所示。
手
图纸
微型 计算机
放大器
执行机构
工作机 床
位移
切削刀 具
反馈测量元件
图1-4 微型计算机控制机床(闭环系统)
自动控制原理 课程
自动控制原理课程自动控制原理是控制工程中的基础课程之一,涵盖控制系统的基本原理和方法。
本课程主要涉及控制系统中的数学模型、系统稳定性、控制器设计以及控制系统的性能分析等内容。
下面将结合自己的学习经验,从几个方面来阐述自动控制原理的重要性以及对于未来工作生活的帮助。
一、数学模型自动控制原理的核心内容之一是数学模型。
控制系统的转移函数、状态空间模型等数学模型是研究控制系统的重要工具。
通过建立数学模型,可以对控制系统的特性进行分析和设计,为控制系统的稳定性、抗干扰性等性能的优化提供基础。
在实际工程中,数学模型的有效建立是设计控制系统的关键。
充分掌握数学模型的建立方法和应用技巧,能够提高控制系统的设计效率和成功率。
二、系统稳定性自动控制原理关注的另一个重要问题是系统稳定性。
控制系统的稳定性是指系统输入输出满足一定条件时,系统始终保持稳态或者在有限时间内进入稳态的能力。
稳定的控制系统可以保持系统输出的准确性和稳定性,从而提高产品质量和生产效率。
在实际工程中,系统稳定性是设计控制系统时必须重视的问题。
三、控制器设计在自动控制系统中,控制器是控制系统中的关键组成部分,对于控制系统的性能和稳定性有着重要的影响。
自动控制原理涉及到控制器的设计和优化,学习此课程可以掌握各种控制器的设计方法和性能指标,包括比例控制器、积分控制器、比例积分控制器、比例微分控制器等。
通过控制器的设计和优化,可以提高控制系统的稳定性和响应速度,从而满足不同领域控制系统的要求。
四、控制系统的性能分析控制系统的性能是控制系统的关键指标之一,反映了控制系统的优劣程度。
自动控制原理中涉及到控制系统的性能分析,如阶跃响应、频率响应等性能指标的分析。
通过对控制系统的性能分析,可以了解和评估控制系统的性能,为控制系统的优化和性能提高提供依据。
总之,自动控制原理这门课程对工程师、科研人员以及有志于从事控制领域的人员来说都具有重要的意义。
通过学习这门课程,我们可以了解控制系统中的基本原理、数学模型、稳定性分析、控制器设计、性能分析等方面的知识。
自动控制原理时间响应知识点总结
自动控制原理时间响应知识点总结一、定义自动控制原理中的时间响应,指的是系统在输入发生变化时,输出随时间的变化规律。
它反映了系统对输入信号的响应速度和稳定性。
二、常见的时间响应指标1. 峰值时间(Tp):系统响应达到峰值的时间。
2. 上升时间(Tr):系统响应从初始值到上升到峰值的时间。
3. 调整时间(Ts):系统从初始值到稳定值的时间。
4. 延迟时间(Td):输入信号变化后,系统响应出现延迟的时间。
5. 响应超调量(Mp):系统响应超过稳定值的最大幅度。
6. 响应时间(Tt):系统响应达到稳定值的时间。
7. 衰减时间(Td):系统响应过程中,衰减到稳定值的时间。
三、常见的时间响应类型1. 零阶系统:输出信号与输入信号没有时间延迟,即响应时间为0。
峰值时间、上升时间和调整时间均为0。
常见的零阶系统包括恒温控制系统和恒压控制系统。
2. 一阶系统:系统的输出信号具有惯性,存在一定的时间延迟。
常见的一阶系统包括RC电路和RL电路。
3. 二阶系统:系统的输出信号具有振荡过程,常见的二阶系统包括机械振动系统和RLC电路。
四、时间响应的稳定性分析1. 稳定性判据:稳定性是评价系统时间响应的重要指标,常用的稳定性判据包括极点位置、系统阻尼比和频率响应。
2. 极点位置:极点的位置与系统的稳定性密切相关。
当系统的极点都位于左半平面时,系统是稳定的;当系统的极点有一部分位于右半平面时,系统是不稳定的。
3. 系统阻尼比:阻尼比是描述系统阻尼程度的量化指标,可用于判断系统的稳定性。
当阻尼比小于1时,系统为欠阻尼系统,可能出现振荡;当阻尼比等于1时,系统为临界阻尼系统,系统快速收敛到稳态值;当阻尼比大于1时,系统为过阻尼系统,不会出现振荡。
4. 频率响应:频率响应描述了系统对不同频率输入信号的响应情况。
通过分析频率响应曲线,可以判断系统是否具有稳定性。
常见的频率响应包括低通、高通、带通和带阻等。
五、影响时间响应的因素1. 控制器类型:不同类型的控制器对系统的时间响应产生不同的影响。
自动控制原理知识点总结
自动控制原理知识点总结自动控制原理是一门研究自动控制系统的分析与设计的学科,它对于理解和实现各种工程系统的自动化控制具有重要意义。
以下是对自动控制原理中一些关键知识点的总结。
一、控制系统的基本概念控制系统由控制对象、控制器和反馈通路组成。
控制的目的是使系统的输出按照期望的方式变化。
开环控制系统没有反馈环节,输出不受控制,精度较低;闭环控制系统通过反馈将输出与期望的输入进行比较,从而实现更精确的控制。
二、控制系统的数学模型数学模型是描述系统动态特性的工具,常见的有微分方程、传递函数和状态空间表达式。
微分方程是最直接的描述方式,但求解较为复杂。
传递函数适用于线性定常系统,将输入与输出的关系以代数形式表示,便于分析系统的稳定性和性能。
状态空间表达式则能更全面地反映系统内部状态的变化。
三、时域分析在时域中,系统的性能可以通过单位阶跃响应来评估。
重要的性能指标包括上升时间、峰值时间、调节时间和超调量。
一阶系统的响应具有简单的形式,其时间常数决定了系统的响应速度。
二阶系统的性能与阻尼比和无阻尼自然频率有关,不同的阻尼比会导致不同的响应曲线。
四、根轨迹法根轨迹是指系统开环增益变化时,闭环极点在复平面上的轨迹。
通过绘制根轨迹,可以直观地分析系统的稳定性和动态性能。
根轨迹的绘制遵循一定的规则,如根轨迹的起点和终点、实轴上的根轨迹段等。
根据根轨迹,可以确定使系统稳定的开环增益范围。
五、频域分析频域分析使用频率特性来描述系统的性能。
波特图是常用的工具,包括幅频特性和相频特性。
通过波特图,可以评估系统的稳定性、带宽和相位裕度等。
奈奎斯特稳定判据是频域中判断系统稳定性的重要方法。
六、控制系统的校正为了改善系统的性能,需要进行校正。
校正装置可以是串联校正、反馈校正或前馈校正。
常见的校正方法有超前校正、滞后校正和滞后超前校正。
校正装置的设计需要根据系统的性能要求和原系统的特性来确定。
七、采样控制系统在数字控制系统中,涉及到采样和保持、Z 变换等概念。
自控原理实验报告
一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 掌握典型环节的数学模型及其在控制系统中的应用。
3. 熟悉控制系统的时间响应和频率响应分析方法。
4. 培养实验操作技能和数据处理能力。
二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。
本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。
2. 控制系统:开环控制系统和闭环控制系统。
3. 时间响应:阶跃响应、斜坡响应、正弦响应等。
4. 频率响应:幅频特性、相频特性等。
三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用示波器观察并记录各个环节的阶跃响应曲线。
- 分析并比较各个环节的阶跃响应曲线,得出结论。
2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。
- 分析并比较各个环节的频率响应特性,得出结论。
3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。
- 使用示波器观察并记录二阶系统的阶跃响应曲线。
- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。
4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。
- 使用示波器观察并记录系统的稳态响应曲线。
- 计算并分析系统的稳态误差。
五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。
- 积分环节:K=1,阶跃响应曲线如图2所示。
自动控制原理知识点汇总
自动控制原理知识点汇总自动控制原理是研究和设计自动控制系统的基础学科。
它研究的是用来实现自动化控制的基本概念、理论、方法和技术,以及这些概念、理论、方法和技术在工程实践中的应用。
下面是自动控制原理的一些重要知识点的汇总。
一、控制系统的基本概念1.控制系统的定义:控制系统是用来使被控对象按照一定要求或期望输出的规律进行运动或改变的系统。
2.控制系统的要素:输入、输出、被控对象、控制器、传感器、执行器等。
3.控制系统的分类:开环控制和闭环控制。
4.控制系统的性能评价指标:稳定性、快速性、准确性、抗干扰性、鲁棒性等。
二、数学建模1.控制对象的数学建模方法:微分方程模型、离散时间模型、差分方程模型等。
2.控制信号的形式化表示:开环信号和闭环信号。
三、传递函数和频率响应1.传递函数:描述了控制系统输入和输出之间的关系。
2.传递函数的性质:稳定性、正定性、因果性等。
3.频率响应:描述了控制系统对不同频率输入信号的响应。
四、稳定性分析和设计1.稳定性的定义:当外部扰动或干扰没有足够大时,系统的输出仍能在一定误差范围内稳定在期望值附近。
2.稳定性分析的方法:根轨迹法、频域方法等。
3.稳定性设计的方法:规定根轨迹范围、引入正反馈等。
五、PID控制器1.PID控制器的定义:是一种用于连续控制的比例-积分-微分控制器,通过调节比例、积分和微分系数来实现对系统的控制。
2.PID控制器的工作原理和特点:比例控制、积分控制、微分控制、参数调节等。
六、根轨迹设计方法1.根轨迹的定义:描述了系统极点随控制输入变化时轨迹的变化规律。
2.根轨迹的特点:实轴特征点、虚轴特征点、极点数量等。
3.根轨迹的设计方法:增益裕量法、相位裕量法等。
七、频域分析与设计1.频率响应的定义:描述了系统对不同频率输入信号的响应。
2.频率响应的评价指标:增益裕量、相位裕量、带宽等。
3.频域设计方法:根据频率响应曲线来调整系统参数。
八、状态空间分析与设计1.状态空间模型:描述了系统状态和输入之间的关系。
自动控制原理(时间响应分析)课件
高阶系统的数学模型
总结词
高阶系统的数学模型通常采用状态空间表示 法,包括状态方程和输出方程。
详细描述
高阶系统的数学模型是描述系统动态行为的 重要工具。通常采用状态空间表示法,包括 状态方程和输出方程。状态方程描述了系统 内部状态变量随时间的变化规律,而输出方 程则描述了系统输出与内部状态变量之间的 关系。通过建立高阶系统的数学模型,可以
03
数学模型
04
高阶系统的数学模型通常表示为 (G(s) = frac{a_n s^n + a_{n-1} s^{n-1} + ldots + a_1 s + a_0}{s^n + b_{n-1} s^{n-1} + ldots + b_1 s + b_0})。
实例
高阶系统的实例包括多级控制系 统、复杂机械系统等。
详细描述
性能指标用于评估二阶系统的动态行为和响应特性。常见的性能指标包括超调量、调节时间和稳态误差等。这些 指标可以通过系统的传递函数或状态空间方程进行计算和分析。
二阶系统的稳定性分析
总结词
二阶系统的稳定性可以通过析系统的 极点和零点来判断。
VS
详细描述
稳定性是评估系统能否正常工作的关键因 素。通过分析二阶系统的极点和零点,可 以判断系统的稳定性。如果所有的极点都 位于复平面的左半部分,则系统是稳定的 。否则,系统是不稳定的。
对系统进行各种分析和设计。
高阶系统的性能指标
总结词
高阶系统的性能指标主要包括稳定性、快速性和准确性 。
详细描述
高阶系统的性能指标是评估系统性能的重要依据。稳定 性是指系统在受到扰动后能够回到原始平衡状态的能力 。快速性是指系统对输入信号的响应速度,即系统达到 稳态值所需的时间。准确性则是指系统输出与理想输出 之间的误差,即系统的跟踪精度。这些性能指标在高阶 系统的分析和设计中具有重要意义。
自动控制原理第9章 习题及解析
第9章 习题参考答案9-1 设一阶非线性系统的微分方程为3x x x =-+试确定系统有几个平衡状态,分析各平衡状态的稳定性,并作出系统的相轨迹。
解 3x x x =-+由30x x -+=解得1230, 1, 1e e e x x x ===-。
作出系统的相轨迹图如下:平衡状态(0, 0)稳定,平衡状态(1, 0), (1, 0)-不稳定。
9-2 已知非线性系统的微分方程为(1) 320x x x ++= (2) 0x xx x ++= (3) 0x x x ++= (4) 2(1)0x x x x --+= 试确定系统的奇点及其类型,并概略绘制系统的相轨迹图。
解 (1) 奇点(0, 0)。
特征方程为2320λλ++=两个特征根为1,21, 2λ=--平衡点(0, 0)为稳定节点。
在奇点附近的概略相轨迹图:x(2) 奇点(0, 0)。
在平衡点(0, 0)的邻域内线性化,得到的线性化模型为0x x +=其特征方程为210λ+=两个特征根为1,2j λ=±平衡点(0, 0)为中心点。
在奇点附近的概略相轨迹图:x(3) 奇点(0, 0)。
原方程可改写为0000x x x x x x x x ++=≥⎧⎨+-=<⎩其特征方程、特征根和类型为21,221,2100.50.866 10 1.618, 0.618 j λλλλλλ⎧++==-±⎪⎨+-==-⎪⎩稳定焦点鞍点 在奇点附近的概略相轨迹图:(4) 奇点(0, 0)。
在平衡点(0, 0)的邻域内线性化,得到的线性化模型为x x x-+=其特征方程为210λλ-+=两个特征根为1,20.50.866jλ=±平衡点(0, 0)为不稳定焦点。
在奇点附近的概略相轨迹图:xx9-3 非线性系统的结构图如图9-48所示。
系统开始是静止的,输入信号r(t)=4·1(t),试写出开关线方程,确定奇点的位置和类型,在e-e平面上画出该系统的相平面图,并分析系统的运动特点。
自动控制原理实验典型环节的时域响应
实验名称:典型环节的时域响应一、目的要求1、熟悉并掌握TD-ACC+(或TD-ACS)设备的使用方法及各典型环节模拟电路的构成方法。
2、熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。
对比差异分析原因。
3了解参数变化对典型环节动态特性的影响。
二、原理简述1、比例环节传递函数:Uo(s)/Ui(s)=K.2、积分环节传递函数:Uo(s)/Ui(s)=1/TS3、比例微分环节传递函数:Uo(s)/Ui(s)=K+1/TS4、惯性环节传递函数: Uo(s)/Ui(s)=K/(TS+1)5、比例微分环节传递函数:Uo(s)/Ui(s)=K[(1+TS)/(1+τS)]6、比例积分微分环节传递函数:Uo(s)/Ui(s)=Kp+1/TiS+TdS三、仪器设备PC机一台,TD-ACC(或TD-ACS)实验系统一套四、线路视图1、比例环节2、积分环节3、比例积分环节4、惯性环节5、比例微分环节6、比例积分微分环节五、内容步骤1、按所列举的比例环节的模拟电路图将线连接好,检查无误后开启设备电源。
2、将信号源单元的“ST”端插针与“S”端插针用短路块短接,。
将开关设在方波档,分别调节调幅和调频电位器,使得“out”端输出的方波幅值为1V,周期为10S左右。
3、将2中的方波信号加至环节的输入端Ui,用示波器的“CH1”和“CH2”表笔分别检测模拟电路的输入Ui端和输出端Uo端,观测输出端的实际响应曲线Uo(t),记录实验波形及结果。
4、改变几组参数,重新观测结果。
5、用同样的方法分别搭接积分环节、比例积分环节、比例微分环节、惯性环节、比例积分微分环节的模拟电路图。
观测这些环节对阶跃信号的实际响应曲线,分别记录实验波形及结果。
六、数据处理1、比例环节①R0=200K,R1=100K;②R0=200K,R1=200K;2、积分环节①R0=200K,C=1uF;②R0=200K,C=2uF;3、比例积分环节①R0=R1=200K,C=1uF;②R0=R1=200K,C=2uF;4、惯性环节①R0=R1=200K,C=1uF;②R0=R1=200K,C=2uF;5、比例微分环节①R0=R2=100K,R3=10K,C=1uF,R1=100K;②R0=R2=100K,R3=10K,C=1uF,R1=200K;6、比例积分微分环节①R2=R3=10K,R0=100K,C1=C2=1uF,R1=100K;②R2=R3=10K,R0=100K,C1=C2=1uF,R1=200K;七、分析讨论在误差允许的情况下,输出的结果与理论值相符。
自动控制原理-第9章控制系统的非线性问题
⾃动控制原理-第9章控制系统的⾮线性问题9 控制系统的⾮线性问题9.1概述在物理世界中,理想的线性系统并不存在。
严格来讲,所有的控制系统都是⾮线性系统。
例如,由电⼦线路组成的放⼤元件,会在输出信号超过⼀定值后出现饱和现象。
当由电动机作为执⾏元件时,由于摩擦⼒矩和负载⼒矩的存在,只有在电枢电压达到⼀定值的时候,电动机才会转动,存在死区。
实际上,所有的物理元件都具有⾮线性特性。
如果⼀个控制系统包含⼀个或⼀个以上具有⾮线性特性的元件,则称这种系统为⾮线性系统,⾮线性系统的特性不能由微分⽅程来描述。
图9-1所⽰的伺服电机控制特性就是⼀种⾮线性特性,图中横坐标u 为电机的控制电压,纵坐标ω为电机的输出转速,如果伺服电动机⼯作在A 1OA 2区段,则伺服电机的控制电压与输出转速的关系近似为线性,因此可以把伺服电动机作为线性元件来处理。
但如果电动机的⼯作区间在B 1OB 2区段.那么就不能把伺服电动机再作为线性元件来处理,因为其静特性具有明显的⾮线性。
图9-1 伺服电动机特性9.1.1控制系统中的典型⾮线性特性的类型常见典型⾮线性特性有饱和⾮线性、间隙⾮线性、死区⾮线性、继电⾮线性等。
9.1.1.1饱和⾮线性控制系统中的放⼤环节及执⾏机构受到电源电压和功率的限制,都具有饱和特性。
如图9-2所⽰,其中a x a <<-的区域是线性范围,线性范围以外的区域是饱和区。
许多元件的运动范围由于受到能源、功率等条件的限制,也都有饱和⾮线性特性。
有时,⼯程上还⼈为引⼊饱和⾮线性特性以限制过载。
图9-2 饱和⾮线性9.1.1.2不灵敏区(死区)⾮线性控制系统中的测量元件、执⾏元件等⼀般都具有死区特性。
例如⼀些测量元件对微弱的输⼊量不敏感,电动机只有在输⼊信号增⼤到⼀定程度的时候才会转动等等。
如图9-3所⽰,其特性是输⼊信号在?<⼀定值后才有输出的特性称为不灵敏区⾮线性,其中区域?<a图9-3 不灵敏区⾮线性特性图9-4 具有不灵敏区的饱和特性死区特性给系统带来稳态误差和低速运动不稳定影响。
自动控制原理实验典型系统地时域响应和稳定性分析报告
系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:典型系统的时域响应和稳定性分析实验时间:学生成绩:教师签名:批改时间:一、目的要求1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。
二、实验设备PC机一台,TD—ACC教学实验系统一套三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图 1.2-1 所示。
图1.2-2(2) 对应的模拟电路图:如图 1.2-2 所示。
图1.2-2系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:(3) 理论分析系统开环传递函数为:;开环增益:(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。
在此实验中(图 1.2-2),系统闭环传递函数为:其中自然振荡角频率:2.典型的三阶系统稳定性分析(1) 结构框图:如图 1.2-3 所示。
系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:图 1.2-3(2)模拟电路图:如图 1.2-4 所示。
图 1.2-4(3)理论分析:系统的特征方程为:(4)实验内容:实验前由 Routh 判断得 Routh 行列式为:系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:为了保证系统稳定,第一列各值应为正数,所以有五、实验步骤1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。
由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。
自动控制原理(全套课件)
自动控制原理(全套课件)一、引言自动控制原理是自动化领域的一门重要学科,它主要研究如何利用各种控制方法,使系统在受到扰动时,能够自动地、准确地、快速地恢复到平衡状态。
本课件将详细介绍自动控制的基本概念、控制系统的类型、数学模型、稳定性分析、控制器设计等内容,帮助学员全面掌握自动控制原理的基本理论和方法。
二、控制系统的基本概念1. 自动控制自动控制是指在没有人直接参与的情况下,利用控制器使被控对象按照预定规律运行的过程。
自动控制的核心在于控制器的设计,它能够根据被控对象的运行状态,自动地调整控制量,使系统达到预期的性能指标。
2. 控制系统控制系统是由被控对象、控制器、传感器和执行器等组成的闭环系统。
被控对象是指需要控制的物理过程或设备,控制器负责产生控制信号,传感器用于测量被控对象的运行状态,执行器则根据控制信号对被控对象进行操作。
三、控制系统的类型1. 按控制方式分类(1)开环控制系统:控制器不依赖于被控对象的运行状态,直接产生控制信号。
开环控制系统简单,但抗干扰能力较差。
(2)闭环控制系统:控制器依赖于被控对象的运行状态,通过反馈环节产生控制信号。
闭环控制系统抗干扰能力强,但设计复杂。
2. 按控制信号分类(1)连续控制系统:控制信号是连续变化的,如模拟控制系统。
(2)离散控制系统:控制信号是离散变化的,如数字控制系统。
四、控制系统的数学模型1. 微分方程模型微分方程模型是描述控制系统动态性能的一种数学模型,它反映了系统输入、输出之间的微分关系。
通过求解微分方程,可以得到系统在不同时刻的输出值。
2. 传递函数模型传递函数模型是描述控制系统稳态性能的一种数学模型,它反映了系统输入、输出之间的频率响应关系。
传递函数可以通过拉普拉斯变换得到,它是控制系统分析、设计的重要工具。
五、控制系统的稳定性分析1. 李雅普诺夫稳定性分析:通过构造李雅普诺夫函数,分析系统的稳定性。
2. 根轨迹分析:通过分析系统特征根的轨迹,判断系统的稳定性。
自动控制原理实验报告分析
自动控制原理实验报告分析1. 引言自动控制原理是现代工程中非常重要的一门学科。
它研究如何设计和分析能够实现自动化控制的系统,以满足特定的性能要求。
通过实验,我们可以验证控制系统的性能,并深入理解自动控制原理的基本概念和工作原理。
本文将对自动控制原理实验进行详细分析和总结。
2. 实验目的本次实验的目的是研究PID(比例-积分-微分)控制器在温度控制系统中的应用。
通过调节PID控制器的参数,我们可以观察到不同控制参数对系统稳定性、响应速度和超调量等性能指标的影响。
3. 实验步骤本次实验使用了一个温度控制系统。
我们需要调节PID控制器的三个参数(比例增益、积分时间和微分时间)来实现温度的稳定控制。
具体的实验步骤如下:3.1 准备工作在进行实验之前,我们需要确保实验所需的设备和软件已经准备就绪。
这包括温度传感器、温度控制器、计算机等。
3.2 连接系统将温度传感器连接到温度控制器,并将温度控制器连接到计算机。
确保连接正确并稳定。
3.3 设置初始参数在实验开始前,我们需要设置PID控制器的初始参数。
一般情况下,我们可以先将比例增益和积分时间设置为较小的值,微分时间设置为0。
3.4 开始实验启动温度控制系统,并记录温度的变化。
观察温度的稳定性、响应速度和超调量等指标,并记录下来。
3.5 调节参数根据实验结果,我们可以调节PID控制器的参数来改善系统的性能。
通过增大比例增益可以提高系统的响应速度,但可能会导致较大的超调量。
增大积分时间可以减小超调量,但可能会降低系统的稳定性。
调节微分时间可以改善系统的稳定性和响应速度。
3.6 重复实验根据实验结果,我们可以不断调节PID控制器的参数,并进行多次实验,以得到更好的控制效果。
4. 实验结果分析根据实验的记录数据,我们可以对实验结果进行分析。
通过观察温度的变化曲线以及性能指标的大小,我们可以得出如下结论:•较大的比例增益可以提高系统的响应速度,但会导致较大的超调量。
•较大的积分时间可以减小超调量,但会降低系统的稳定性。
自动控制原理的主要原理
自动控制原理的主要原理自动控制原理是研究和应用控制系统的一门学科,主要研究如何使系统能够根据预先设定的要求和给定的输入信号,通过采集、处理、反馈及调节等操作,实现对系统输出的实时控制和调节。
自动控制原理基于一系列的基本原理,包括反馈原理、传递函数、稳定性分析、控制器设计等,下面将分别介绍这些主要原理。
1. 反馈原理反馈原理是自动控制原理的核心概念之一,通过采集系统的输出信号与期望的输入信号之间的差值,再反馈给系统进行控制,以实现对系统输出的调节和稳定。
反馈原理分为正反馈和负反馈两种方式。
正反馈会增加系统的不稳定性,而负反馈则能够提供稳定性和误差校正的能力。
2. 传递函数传递函数是描述线性时不变系统输入输出关系的数学模型,用来描述系统的传递特性。
它是输入和输出的比值,可以用分子多项式和分母多项式的比值来表示,其中分子表示系统的输出,分母表示系统的输入。
通过对传递函数进行分析和处理,可以得到系统的时域响应、频域响应等重要的特性。
3. 稳定性分析稳定性分析是评估控制系统稳定性的重要方法。
通过分析系统的传递函数和特征方程,可以得到系统的极点(特征根),从而判断系统的稳定性。
稳定性分析可分为时间域分析和频域分析两种方法。
时间域分析主要考虑系统的响应时间、过冲量等指标,频域分析则关注系统的频率特性、幅频响应等指标。
4. 控制器设计控制器设计是自动控制原理的核心任务之一,旨在设计出适当的控制器来实现对系统输出的控制。
常见的控制器包括比例控制器(P控制器)、积分控制器(I 控制器)和微分控制器(D控制器)等。
这些控制器可以通过数学模型推导、经验法则、优化算法等方法来设计,以使系统输出能够满足所要求的性能指标。
5. 系统稳定性系统稳定性是自动控制原理关注的重要问题之一,指的是当系统受到外部干扰或内部扰动时,系统的输出能够快速、准确地调节到设定值,并且不出现不可控的震荡或不断递增的情况。
稳定性可以通过分析系统的极点位置、特征根等指标来判断和评估。
自动控制原理第五章控制系统时间响应分析
tt
1 e T 0.1
t2
1 e T 0.9
t1 t2
e T 9
tr t2 t1 15 ln 9 33s
5.3 二阶系统的时间响应 Time Response Analysis of Second-order Systems
二阶系统:凡以二阶系统微分方程作为运动方程的控制系统。
一.二阶系统的数学模型
5.2.1 一阶系统单位阶跃响应
Unit-Step Response of First-order System
因为单位阶跃函数的拉氏变换为 R(s) 1
S
,则系统的输出由下式可知为
(s) C(s) 1
C(s) (s)R(s) 1 1 1 T
R(s) TS 1
TS 1 S S TS 1
对上式求拉氏反变换,得:
1t
1t
c(t) t T (1 e T ) t T Te T
因为
1 t
e(t) r(t) c(t) T (1 e T )
r(t) c(t)
所以一阶系统跟踪单位斜坡信号的稳态误差为
ess
lim e(t) T t
上式表明:①一阶系统能跟踪斜坡输入信
r(t) c(t)
% 评价系统的阻尼程度。
5.2 一阶系统时间响应
用一阶微分方程描述的控制系统 称为一阶系统。所示的RC电路, 其微分方程为
R
+
+
r(t)
i(t) C
c(t)
c(t)
1 C
i(t)dt
i(t)
C
dc(t) dt
RC dc(t) c(t) r(t) dt
•
T c(t) c(t) r(t)
自动控制系统的工作原理
自动控制的定义:是指在没有人直接参与的情况下,利用控 制装置(控制器),使机器、设备或生产过程(被控对象) 的某一工作状态或参数(被控量)自动按照预定的规律运行。
◆ 被控对象:控制系统要进行控制的受控客体 ◆ 被控量:控制对象要实现的物理量 如冰箱温度、电机的转速、飞机姿态 角、船的航 迹 、电网的电压 、生产过程中的压力、流量 、温度 、 湿度等。
闭环控制系统框图
干扰量
输入量 输出量 被控量
控制器
控制对象
反馈回路
测量元件
21
给定装置
- +
Hale Waihona Puke 给定电压放大器 电机M
减速器
e
- +
热电偶 电阻丝
热电偶 输出电压
调压器 220~
给定电压
e
-
放 大 器
电 动 机
减 速 器
调 压 器
恒 温 炉
期望炉温
热电偶
22
工作原理:
当炉内实际温度与给定电位计表征的希望高度 一致时,热电偶输出电压与给定电压相等,电 动机不转动,系统相对平衡。当炉温因扰动出 现偏差时(如炉温低于希望值),偏差电压经 放大后驱动电动机转动,将调压器电刷向上移 动,使电阻丝两端电压增大,从而使炉温升高, 趋于希望值。
9
1.2 自动控制系统的工作原理
系统:为了达到某一目的,由一些对象相互作用,相互制
约,组成一个具有一 定运动规律的整体。 控制系统:指能够对被控对象的工作状态进行自动控制的系 统,由被控对象和控制器构成的整体。 自动控制系统的性能,在很大程度上取决于系统中的控制器 为了产生控制作用而必须接收的信息,这个信息有两个可能 的来源: 1)来自系统外部,即由系统输入端输入的参考输入信号。 2)来自被控对象的输出端,即反映被控对象的行为或状态 的信息。
时间响应分析(9)自动控制原理
2 2 ωn (Td s +1) ωn (Td s +1) G(s) φ(s) = = 2 = 2 2 2 2 1+ G(s) s + 2ξωns +ωnTd s +ωn s + 2ξdωns +ωn
PD校正改变了原系统的阻尼比,也改变了调 节时间等参数。等效阻尼比增大为: 1 ξd = ξ + Td ωn 2
Y ( s) K ( s + z ) ( s + z2 )⋯(s + zm ) 1 = R( s) (s + p ) ( s + p2 )⋯( s + pn ) 1
n a0 a i y ( s) = +∑ s i= s + p 1 i
若Zj和Pi靠得很近, 则ai很小, 彼此可以对消。
基本结论 1、 闭环主导极点:如果在所有的闭环极点 中,距离虚轴最近的极点周围没有闭环零 点,而其它极点又远离虚轴,那么距虚轴 最近的极点所对应的响应分量,无论从指 数还是系数来看,它们都在时间响应中起 主导作用。 2、 偶极子:若闭环零、极点彼此接近,则 它们对系统响应速度的影响互相抵消。
ξd > ξ 增大了系统的阻尼比,可以使系统动态过程的超 ,
调量下降,调节时间缩短,但由于速度误差系数 k 保持不变 (下一节详细讲授) ,它的引入并不影响系统的稳态精度, 同时也不改变系统的无阻尼振荡频率 ωn 。 此外,比例微分校正为系统增加了一个闭环零点 s=-1/Td, 动态性能指标的公式不再适用(参见教材图5.13)。 由于稳态误差与速度误差系数成反比,因此,适当选择速 度误差系数和微分器的时间常数 Td , 既可减小稳态误差,又 可获得良好的动态性能。
自动控制原理_线性系统时域响应分析
自动控制原理_线性系统时域响应分析1.线性系统时域响应概念线性系统是指其输入与输出之间存在线性关系的系统。
时域响应是指系统在时域上对不同输入信号的响应情况。
时域响应可以用系统的微分方程表示,也可以通过系统的冲激响应来表示。
2.常见的线性系统时域响应方法2.1零状态响应零状态响应是指系统在无初始条件下对输入信号的响应。
常用的分析方法有拉氏变换和复频域分析法。
拉氏变换法可以将微分方程转化为代数方程,从而得到系统的传递函数。
复频域分析法通过将时间域信号变换到复频域,进而进行频域分析。
2.2零输入响应零输入响应是指系统在只有初始条件而没有输入信号的情况下的响应。
常用分析方法有状态方程法和拉氏变换法。
状态方程法将系统表示为一组一阶微分方程的形式,通过求解状态方程可以得到系统的零输入响应。
拉氏变换法可以将初始条件转化为代数方程进行求解。
2.3总响应总响应是指系统在有输入信号和初始条件的情况下的响应。
常用分析方法有零输入响应法和零状态响应法。
零输入响应法通过去除输入信号的影响,只考虑系统的初始条件来求解系统的响应。
零状态响应法则相反,通过去除初始条件的影响,只考虑输入信号来求解系统的响应。
最后,将两者相加得到系统的总响应。
3.线性系统时域响应的应用线性系统时域响应的分析方法可以应用于各种实际工程问题中。
例如,可以通过时域响应分析来评估系统的稳定性、性能和抗干扰能力。
此外,时域响应分析也可以用于设计控制器和参数优化。
通过对系统的时域响应进行分析和改进,可以使得系统更加可靠、稳定和高效。
4.总结线性系统时域响应分析是自动控制原理中的重要内容,可以应用于各种实际工程问题中。
本文介绍了线性系统时域响应的概念、方法和应用。
时域响应的分析方法包括零状态响应、零输入响应和总响应分析,分别适用于不同的问题和要求。
了解和掌握线性系统时域响应分析方法对于设计和优化控制系统具有重要意义。
自动控制原理知识点总结
自动控制原理知识点总结一、数学模型与传递函数1.系统的数学模型:数学模型是通过建立系统的数学方程来描述系统的物理特性和行为规律。
2.传递函数:传递函数是描述系统的输入和输出之间关系的函数,它是系统的拉普拉斯变换的比值。
二、系统的稳定性1.稳定性的概念:系统的稳定性是指系统在给定条件下的输出是否能够始终收敛到一个有限的范围内。
2.稳定性判据:稳定性可以通过判断系统的极点位置来确定,例如极点都位于左半平面时系统是稳定的。
3. 稳定性分析方法:常用的稳定性分析方法有根轨迹法、Nyquist稳定判据和Bode稳定判据。
三、系统的时间响应1.系统的单位冲击响应:单位冲击响应是系统对冲激信号的输出响应,它可以通过拉普拉斯变换和反变换求得。
2.系统的单位阶跃响应:单位阶跃响应是系统对阶跃信号的输出响应,它可以通过拉普拉斯变换和反变换求得。
3.响应特性参数:常用的响应特性参数有时间常数、峰值时间、峰值幅值、上升时间、超调量和稳态误差等。
四、控制系统的单一闭环反馈1.开环系统与闭环系统:开环系统是指没有反馈路径的系统,闭环系统是指存在反馈路径的系统。
2.单位负反馈控制系统:单位负反馈控制系统是指闭环系统中反馈信号与输入信号的比例为-1的系统。
3.闭环系统的稳态误差:稳态误差是指系统在达到稳定状态后,输出与期望输出之间的偏差。
4.稳态误差的计算和减小方法:可以通过增大控制增益、引入积分环节或者采用预估控制来减小稳态误差。
五、PID控制器1.PID控制器的结构和原理:PID控制器是由比例环节、积分环节和微分环节组成的控制器。
比例环节根据当前误差来调节输出,积分环节根据累积误差来调节输出,微分环节根据误差变化率来调节输出。
2.PID调节器参数整定方法:常用的整定方法有经验整定法、频域法和模拟优化等。
六、根轨迹法1.根轨迹的概念和性质:根轨迹是描述系统极点运动规律的图形,它是由系统的传递函数特征方程的根随一个参数的改变轨迹而形成的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数为:
G(s)
s(s
n2 2n
n2kt )
k
G(s)
s(
2n
s
ktn2
1)
式中,kt 为速度反馈系数。
k
n
(2
为系统校正后的速度误差系数,与原
ktn )
有系统相比较,误差系数有所减小。这增大了稳态误差,因
而降低了系统的精度。校正后的闭环传递函数为:
(s) G(s)
n2
1 G(s)
s2
第九讲:二阶系统的性能改进与高阶系 统的时间响应
(4-3、 4-4单元,2学时)
4-3 二阶系统的时间响应 4-4 高阶系统的时间响应
四、二阶系统的性能改善(举例说明) 例4.4(比例调节):已知单位负反馈系统
的开环传递函数为
G(s)
5K A
s(s 34.5)
设系统的输入为单位阶跃函数,试计算 放大器增益KA=200时,系统输出响应的动 态性能指标。当 KA 增大到 1500 ,或减小 到 13.5时,系统的动态性能指标如何?
而调节时间 ts 无多大变化。
而当 KA 13.5 时,
n 8.22, 2.1
系统工作在过阻尼状态, 峰值时间,超调量和振荡次数不存
在,而调节时间可将二阶系统近似为大时间常数T的一阶系统来估
计, 即:
ts
3T1
1 1.46,
T1
wn (
2 1)
此时,调节时间比前两种情况大得多, 虽然响应无超调,但过渡过程缓慢。
当只附加1个零、极点时,系统性能的定量 分析结果有表格可以查阅。请参阅教材图5.13。
三、降阶近似
在控制工程中,几乎所有的控制系统 都是高阶系统,应该用高阶微分方程来 进行描述。
对于不能用二阶系统近似的高阶系 统来说,其动态性能指标的确定是比较 困难的,需要借助软件(如MATLAB) 来解决这个问题。工程上常常采用闭环 主导极点的概念对高阶系统进行近似分 析。
解:系统的闭环传递函数为:
(s)
G(s) 1 G(s)
s2
5KA 34.5s
5KA
KA
200, (s)
s2
1000 34.5s 1000
n2 1000, 2 n 34.5
n
31.6,
34.5
2n
0.545
根据欠阻尼二阶系统动态性能指标的计 算公式,可以求得:
tp n
0.12
12
ts
3
2(
1 2
n kt
)n s
n2
等效阻尼比增大为:
t
1 2
ktn
所以,速度反馈同样可以增大系统的阻尼比,从而可
以改善系统的动态性能,但不改变无阻尼振荡频率 n。
在应用速度反馈校正时,应适当增大原系统的速度误 差系数,以补偿速度反馈引起的速度误差系数的减小。同 时,适当选择速度反馈系数,使等效阻尼比 t 增至适当 数值,以减小系统的超调量,提高系统的响应速度, 使系 统满足各项性能指标的要求。
PD校正改变了原系统的阻尼比,也改变了调 节时间等参数。等效阻尼比增大为:
d
1 2
Tdn
d ,增大了系统的阻尼比,可以使系统动态过程的超
调量下降,调节时间缩短,但由于速度误差系数 k 保持不变 (下一节详细讲授) ,它的引入并不影响系统的稳态精度,
同时也不改变系统的无阻尼振荡频率 n 。
此外,比例微分校正为系统增加了一个闭环零点 s=-1/Td, 动态性能指标的公式不再适用(参见教材图5.13)。
由于稳态误差与速度误差系数成反比,因此,适当选择速
度误差系数和微分器的时间常数 Td , 既可减小稳态误差,又 可获得良好的动态性能。
例 4.6 下图表示采用了速度反馈控制的二阶系 统,试分析速度反馈校正对系统性能的影响。
R(s) (s) --
n2 s(s 2 n )
kts
c(s)
解:校正后,系统的开环(内环的闭环)传递函
1、闭环零点的作用是减少阻尼,使系统响应速度加 快,并且闭环零点越接近虚轴,效果越明显。
2、闭环非主导极点的作用是增加阻尼,使系统响应 速度变缓,并且闭环极点越接近虚轴,效果越明 显。
3、最接近虚轴的闭环极点,对系统响应速度影响最 大,若没有对消出现,该极点称为闭环主导极 点。
附加闭环零、极点之后,性能指标的计算公 式不再完全适用。
自动控制原理
主讲:谢红卫
国防科技大学机电工程与自动化学院 2008年4月~2008年7月
第四章 时间响应分析
(教材第4、5章)
4-1 控制系统的时域指标 4-2 一阶系统的时间响应 4-3 二阶系统的时间响应 4-4 高阶系统的时间响应 4-5 控制系统的稳态误差(教材第4章) 4-6 反馈的特性(教材第4章)
为了改善系统的动态性
能,可采用比例-微分控制 或速度反馈控制,即对系统 加入校正环节。
例4.5 下图表示引入了一个比例微分控制的二
阶系统,系统输出量同时受偏差信号 (t) 和
偏差信号微分 (t ) 的双重控制。试分析比
例微分串联校正对系统性能的影响。
r(t) (t)
-
1
Tds
wn2
+ s(s 2 wn )
(t )
c(t)
校正之后,系统的开环传递函数为:
G(s) n2 (Td s 1) k(Td s 1) , k n
s(s 2 n ) s( s 1) 2
闭环传递函数为:
2 n
(s) G(s)
n2 (Td s 1)
n2 (Td s 1)
1 G(s) s2 2ns n2Td s n2 s2 2dns n2
n
0.174
% e / 1 2 100% 13%
N
Байду номын сангаасts
2
d
tsn 1 2 2
0.72
when KA 1500,
n 86.2; 0.2
tp 0.037, ts 0.174
% 52.7%, N 2.34
由此可见, KA 越大, 越小, n 越大, tp 越小, %越大,
系统的响应曲线如下
y(t)
1.4
0.2(K A 1500)
1.2
1.0
0.8
0.6
2.1(K A 13.5)
0.4
0.545(KA 200)
0.2
0 2 4 6 8 10 12 14 16 18 t
KA 增大,tp 减小,tr
减小,可以提高响应的快速 性但超调量也随之增加,仅 靠调节放大器的增益,难以 兼顾系统的快速性和平稳性。
4-4 高阶系统的时间响应
一、附加闭环零点对欠阻尼二阶系统的影响
问题1: j
增加闭环零点是削弱还
0
是增加了阻尼?
问题2:
零点越靠近原点,效应 越强还是越弱?
二、附加闭环极点对二阶系统的影响
j
0
j 0
j
问题1:
增加闭环极点是削弱还 是增加了阻尼?
0
问题2:
极点越靠近原点,效应 越强还是越弱?
j
0
基本结论(定性)