2014年孝感中考数学试题及答案
2014孝感中考数学试题及答案
2014孝感中考数学试题及答案(请注意,由于篇幅原因,以下是一个示例开头部分,具体内容请自行补充)2014孝感中考数学试题及答案一、选择题1.已知函数f(x)=-3x+5,那么f(2)的值是多少?A. 11B. -1C. -1/3D. 1/3解析:将x=2代入函数f(x)=-3x+5,得到f(2)=-3(2)+5=-6+5=-1。
答案选项为B。
2.下列哪个集合不是整数的真子集?A. {0, 1, 2}B. {0, -1, -2}C. {0, 1, -1}D. {0, 1}解析:整数的真子集是指不含整数本身的子集。
集合{0, 1, -1}包含整数0,因此不是整数的真子集。
答案选项为C。
二、填空题1.已知正整数a和b满足a^2+b^2=25,且a>b,则a的值为____,b 的值为____。
解析:根据勾股定理可知,a和b可以分别表示直角三角形的两条边长,且斜边长度为5。
由于a>b,所以a的取值范围为{3, 4},b的取值范围为{1, 2}。
答案为a=4,b=3。
2.设m=4^(n-1),若m=64,则n的值为____。
解析:将已知条件m=64代入原等式,得到64=4^(n-1)。
通过观察,可知64可以写成4的3次方,即64=4^3。
将等式两边的底数相等,解得n-1=3,即n=4。
答案为n=4。
三、解答题1.已知直角三角形ABC,∠B=90°,AB=5,BC=12,求AC的长度。
解析:根据勾股定理,可以求得AC的长度。
根据勾股定理可知AC^2 = AB^2 + BC^2。
代入已知的数值,得到AC^2 = 5^2 + 12^2 = 169。
求平方根得到AC = √169 = 13。
因此,AC的长度为13。
2.已知集合A={1, 2, 3, 4, 5},集合B={4, 5, 6, 7, 8},求A∪B和A∩B。
解析:集合的并集表示出现在A或者B中的所有元素,即A∪B={1, 2, 3, 4, 5, 6, 7, 8}。
2014年全国中考数学试题分类汇编05 二元一次方程(含解析)
二元一次方程(组)及其应用一、选择题1.(2014•新疆,第8题5分)“六•一”儿童节前夕,某超市用3360元购进A,B两种童装共120套,其中A型童装每套24元,B型童装每套36元.若设购买A型童装x套,B型童装y套,依题意列方程组正确的是()由题意得,.2.(2014•温州,第9题4分)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()B C D.3.(2014•毕节地区,第13题3分)若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是(),4.(2014•襄阳,第8题3分)若方程mx+ny=6的两个解是,,则m,n的值为()解:将分别代入中,得:5.(2014•襄阳,第9题3分)用一条长40cm的绳子围成一个面积为64cm2的长方形.设长方形的长为xcm,则可列方程为()6.(2014•孝感,第5题3分)已知是二元一次方程组的解,则m﹣n的值是()代入方程组得:7.(2014·台湾,第6题3分)若二元一次联立方程式⎩⎪⎨⎪⎧5x -y =5,y =15x 的解为x =a ,y =b ,则a +b 之值为何?( )A .54B .7513C .3125D .2925分析:首先解方程组求得x 、y 的值,即可得到a 、b 的值,进而求得a +b 的值.解:解方程组⎩⎪⎨⎪⎧5x -y =5,y =15x , 得:⎩⎨⎧x =2524,y =524.则a =2524,b =524,则a +b =3024=54.故选A .点评:此题主要考查了二元一次方程组解法,解方程组的基本思想是消元,正确解方程组是关键.8.(2014•滨州,第12题3分)王芳同学到文具店购买中性笔和笔记本,中性笔每支0.8元,笔记本每本1.2元,王芳同学花了10元钱,则可供她选择的购买方案的个数为(两样都买,余下的钱少于0.8元)( )9.(2014年山东泰安,第7题3分)方程5x+2y=﹣9与下列方程构成的方程组的解为的是()A.x+2y=1 B.3x+2y=﹣8 C.5x+4y=﹣3 D.3x﹣4y=﹣8 分析:将x与y的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣8.故选D 点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.二.填空题1. (2014•福建泉州,第11题4分)方程组的解是.,.故答案为:2.(2014•浙江湖州,第18题分)解方程组.分析:方程组利用加减消元法求出解即可.解:,①+②得:5x=10,即x=2,将x=2代入①得:y=1,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.3.(2014•滨州,第16题4分)某公园“6•1”期间举行特优读书游园活动,成人票和儿童票均有较大折扣.张凯、李利都随他们的家人参加了本次活动.王斌也想去,就去打听张凯、李利买门票花了多少钱.张凯说他家去了3个大人和4个小孩,共花了38元钱;李利说他家去了4个大人和2个小孩,共花了44元钱,王斌家计划去3个大人和2个小孩,请你帮他计算一下,需准备34 元钱买门票.,,三.解答题1. (2014•安徽省,第20题10分)2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元.(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.菁优网分析:(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据等量关系式:餐厨垃圾处理费25元/吨×餐厨垃圾吨数+建筑垃圾处理费16元/吨×建筑垃圾吨数=总费用,列方程.(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,先求出x的范围,由于a的值随x的增大而增大,所以当x=60时,a值最小,代入求解.解答:解:(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据题意,得,解得.答:该企业2013年处理的餐厨垃圾80吨,建筑垃圾200吨;(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,根据题意得,,解得x≥60.a=100x+30y=100x+30(240﹣x)=70x+7200,由于a的值随x的增大而增大,所以当x=60时,a值最小,最小值=70×60+7200=11400(元).答:2014年该企业最少需要支付这两种垃圾处理费共11400元.点评:本题主要考查了二元一次方程组及一元一次不等式的应用,找准等量关系正确的列出方程是解决本题的关键;2. (2014•广西贺州,第20题6分)已知关于x、y的方程组的解为,求m、n的值.考点:二元一次方程组的解.专题:计算题.分析:将x与y的值代入方程组计算即可求出m与n的值.解答:解:将x=2,y=3代入方程组得:,②﹣①得:n=,即n=1,将n=1代入②得:m=1,则m=1,n=1.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.3.(2014•温州,第23题12分)八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知ABCDE五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可))=,4.(2014•舟山,第21题8分)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?.5.(2014•邵阳,第23题8分)小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.(1)两种型号的地砖各采购了多少块?(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?.6.(2014·云南昆明,第21题8分)某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍.设购买A种奖品m件,购买费用为W元,写出W(元)与m (件)之间的函数关系式,求出自变量m的取值范围,并确定最少费用W的值.7. (2014•益阳,第19题,10分)某电器超市销售每台进价分别为200元、170元的A、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.依题意得:,解得:8. (2014•益阳,第20题,10分)如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.(第2题图),解得,=,即正方形的边长为9. (2014年江苏南京,第25题)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?(第3题图)考点:一次函数的解析式的运用,一元一次方程的运用分析:(1)由速度=路程÷时间就可以求出小明在平路上的速度,就可以求出返回的时间,进而得出途中休息的时间;(2)先由函数图象求出小明到达乙地的时间就可以求出B的坐标和C的坐标就可以由待定系数法求出解析式;(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,根据距离甲地的距离相等建立方程求出其解即可.解答:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15﹣5=10,小明骑车在上坡路的速度为:15+5=20.∴小明返回的时间为:(6.5﹣4.5)÷2+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1﹣0.5﹣0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意,得,解得:,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2+b2,由题意,得,解得:,∴y=﹣20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意,得10t+1.5=﹣20(t+0.15)+16.5,解得:t=0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.点评:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一元一次方程的运用,解答时求出一次函数的解析式是关键.10. (2014•泰州,第21题,10分)今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.由题意得,解得:11. (2014•扬州,第26题,10分)对x,y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b.(1)已知T(1,﹣1)=﹣2,T(4,2)=1.①求a,b的值;②若关于m的不等式组恰好有3个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?==1②根据题意得:;<≤,2≤<﹣;,得到,12.(2014•呼和浩特,第22题7分)为鼓励居民节约用电,我市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.我市一位同学家今年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民今年4、5月份的家庭用电量分别为160和410千瓦时,请你依据该同学家的缴费情况,计算这位居民4、5月份的电费分别为多少元?由题意得,,13.(2014•滨州,第19题3分)(2)解方程组:.).。
2014年湖北省武汉市中考数学试卷-答案
湖北省武汉市2014年初中毕业生学业考试数学答案解析第Ⅰ卷一、选择题1.【答案】A【解析】根据正数大于0,0大于负数,故2023-<<<,最小的实数是2-,故选A 。
【考点】实数比较大小2.【答案】C【解析】二次根式被开方数是非负数,30x ∴-≥,解得3x ≥,故选C 。
【考点】二次根式有意义的条件3.【答案】B【解析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数。
确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同。
当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,所以300 000用科学记数法表示为5310⨯,故选B 。
【考点】科学记数法4.【答案】D【解析】众数是一组数据中出现次数。
Q 1.65出现了4此,出现的次数最多,∴这些运动员跳高成绩的众数是1.65,故选D 。
【考点】众数5.【答案】C【解析】根据幂的乘法与积的乘方、同底数幂的乘法法则及完全平方公式计算,326()x x =,A 选项错误;22(2)4x x =,B 选项错误;325x x x =g ,C 选项正确;22(1)21x x x +=++,D 选项错误,故选C 。
【考点】幂的乘方与积的乘方,同底数幂的乘法,完全平方公式6.【答案】A【解析】Q 线段AB 的两个端点坐标分别为(6,6)A ,(8,2)B ,以原点为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,12OC OA ∴=,即点C 是OA 的中点,所以点C 的坐标为(3,3),故选A 。
【考点】位似图形的性质。
7.【答案】C【解析】俯视图为横排的三个正方形,故选C 。
【考点】三视图8.【答案】C【解析】由图可知,10天中在同一时段通过该路口的汽车数量超过200辆的有4天,频率为40.410=,所以估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为300.412⨯=(天),故选C 。
湖北省2014年中考数学试卷汇总(12份)
湖北省2014年中考数学试卷汇总(12份)湖北省鄂州市2014年中考数学试卷学校:________考生姓名:________准考证号:注意事项:1.本试卷共6页,满分120分,考试时间120分钟。
2.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
4.非选择题用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。
答在试题卷上无效。
5.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
6.考生不准使用计算器。
一、选择题(每小题3分,共30分)1.的绝对值的相反数是()A.B.C.D.2.下列运算正确的是()A.B.C.D.3.如图所示,几何体是由一些正方体组合而成的立体图形,则这个几何体的左视图是()第3题图ABCD4.如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°]5.点A为双曲线上一点,B为x轴上一点,且△AOB为等边三角形,△AOB的边长为2,则k的值为()A.B.±C.D.±6.圆锥体的底面半径为2,侧面积为8,则其侧面展开图的圆心角为()A.90°B.120°C.150°D.180°第4题图7.在矩形ABCD中,AD=3AB,点G、H分别在AD、BC上,连BG、DH,且BG∥DH,当()时,四边形BHDG为菱形.A.B.C.D.第7题图8.近几年,我国经济高速发展,但退休人员待遇持续偏低.为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2011年月退休金为1500元,2013年达到2160元.设李师傅的月退休金从2011年到2013年年平均增长率为x,可列方程为()A.B.C.D.9.如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形,再顺次连接四边形各边中点,得到四边形,如此进行下去,得到四边形.下列结论正确的是()①四边形是菱形②四边形是矩形③四边形周长为④四边形面积为A.①②③B.②③④C.①③④D.①②③④第9题图10.已知抛物线的顶点为的顶点为,点在该抛物线上,当恒成立时,的最小值为()A.1B.2C.4D.3二、填空题:(每小题3分,共18分)11.的算术平方根为.12.小林同学为了在体育中考获得好成绩,每天早晨坚持练习跳绳,临考前,体育老师记载了他5次练习成绩,分别为143、145、144、146、a,这五次成绩的平均数为144.小林自己又记载了两次练习成绩为141、147,则他七次练习成绩的平均数为.13.如图,直线过A(-1,2)、B(-2,0)两点,则的解集为第13题图第15题图第16题图14.在平面直角坐标中,已知点A(2,3)、B(4,7),直线与线段AB 有交点,则k的取值范围为.15.如图,正方形ABCD的边长为2,四条弧分别以相应顶点为圆心,正方形ABCD的边长为半径.求阴影部分的面积.16.如图,正方形ABCD边长为1,当M、N分别在BC,CD上,使得△CMN的周长为2,则△AMN的面积的最小值为.三.解答题(17-20每题8分,21-22每题9分,23题10分,24题12分,共72分)17.(本题满分8分)先化简,再求值:,其中18.(本题满分8分)在平面内正方形ABCD与正方形CEFH如图放置,连DE,BH,两线交于M.求证:(1)(4分)BH=DE.(2)(4分)BH⊥DE.第18题图19.(本题满分8分)学校举行“文明环保,从我做起”征文比赛.现有甲、乙两班各上交30篇作文,现将两班的各30篇作文的成绩(单位:分)统计如下:甲班:乙班:等级成绩(S)频数A90<S≤100xB80<S≤9015C70<S≤8010DS≤703合计30第19题图根据上面提供的信息回答下列问题⑴(3分)表中x=,甲班学生成绩的中位数落在等级中,扇形统计图中等级D部分的扇形圆心角n=.⑵(5分)现学校决定从两班所有A等级成绩的学生中随机抽取2名同学参加市级征文比赛.求抽取到两名学生恰好来自同一班级的概率(请列树状图或列表求解).20.(本题满分8分)一元二次方程⑴(4分)若方程有两实数根,求的范围.⑵(4分)设方程两实根为,且,求m.21.(本题满分9分)小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°. (1)(5分)求AD的长.(2)(4分)求树长AB.第21题图22.(本题满分9分)如图,以AB为直径的⊙O交∠BAD的角平分线于C,过C作CD⊥AD于D,交AB的延长线于E.(1)(5分)求证:CD为⊙O的切线.(2)(4分)若,求cos∠DAB.第22题图23.(本题满分10分)大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:x(天)123 (50)p(件)118116114 (20)销售单价q(元/件)与x满足:当.(1)(2分)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系.(2)(4分)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(3)(4分)这50天中,该超市第几天获得利润最大?最大利润为多少?24.(本题满分12分)如图,在平面直角坐标系xoy中,一次函数的图象与x轴交于A(-1,0),与y轴交于点C.以直线x=2为对称轴的抛物线经过A、C两点,并与x轴正半轴交于点B.(1)(3分)求m的值及抛物线的函数表达式.(2)(5分)设点,若F是抛物线对称轴上使得△ADF的周长取得最小值的点,过F任意作一条与y轴不平行的直线交抛物线于两点,试探究是否为定值?请说明理由.(3)(4分)将抛物线C1作适当平移,得到抛物线,若当时,恒成立,求m的最大值.鄂州市2014年中考数学参考答案一、选择题(30分)1——5BCDAD6——10DCBAD二、填空题(18分)11、12、14413、14、15、16、17、原式=…………………………………………………5′当时,原式=…………………………8′18、(1)证明△BCH△DCE,则BH=DE…………………5′(2)设CD与BH相交于G,则∠MBC+∠CGB=90°又∵∠CDE=∠MBC,∠DGH=∠BGC∵∠CDE+∠DGH=90°∴∠GMD=90°∴DE⊥BH……………8′19、(1)X=2Bn=36°……………………………………………3′(2)………………………………………8′20、(1)∴>0………………4′(2)x1+x2=2若x1>x2则x1-x2=1∴∴=8若x1<x2则x2-x1=1∴∴=8∴=8………………8′21、(1)过A作AH⊥CB于H,设AH=x,CH=x,DH=x,∵CH-DH=CD∴x-x=10∴x=……………………………3′∴AD=x=……………………………5′(2)过B作BM⊥AD于M∵∠1=75°,∠ADB=45°,∴∠DAB=30°设MB=m∴AM=mDM=m∵AD=AM+DM∴=m+m∴m=…………………7′∴AB=2m=……………………9′22、(1)连CO,证OC∥AD则OC⊥CD即可………………………………………5′(2)设AD交圆O于F,连BFBC在直角△ACD中,设CD=3k,AD=4k∴AC=5k△ACD~△ABC∴,∴AB=又BF⊥AD,∴OC⊥BF,∴BF=2CD=6k在直角△ABF中AF=,∴∠DAB=……………………………………9′23、(1)……………………………………………………………………3′(2)…………………7′(3)∴x=20时,y的最大值为3200元x=25时,y的最大值为3150元∴该超市第20天获得最大利润为3200元…………………………………10′24、(1),抛物线……………………………………3′(2)要使△ADF周长最小,只需AD+FD最小,∵A与B关于x=2对称∴只需BF+DF最小又∵BF+DF≥BD∴F为BD与x=2的交点BD直线为,当x=2时∴∵∴同理∴又∵∴∴∴………………………………8′(3)法一:设的两根分别为∵抛物线可以看成由左右平移得到,观察图象可知,随着图象向右移,的值不断增大∴当学习恒成立时,最大值在处取得∴当时,对应的即为的最大值将代入得∴10′将代入有∴∴的最大值为9…………………………………12′法二:恒成立化简得,,恒成立设,如图则有10′即∴∴的最大值为9…………………………。
2014孝感中考数学试题及答案
2014孝感中考数学试题及答案2014年孝感中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.5B. √2C. 0.33333…D. 2答案:B2. 绝对值等于它本身的数是:A. 负数B. 正数和0C. 正数D. 负数和0答案:B3. 以下哪个图形是轴对称图形?A. 平行四边形B. 圆C. 梯形D. 不规则多边形答案:B4. 一个数的相反数是-3,这个数是:A. 3B. -3C. 0D. 无法确定答案:A5. 以下哪个方程是一元一次方程?A. 2x + 3 = 5B. x^2 - 4x + 4 = 0C. 3x - 2y = 6D. x/2 + 3 = 5答案:A6. 一个角的补角是它的余角的两倍,这个角的度数是:A. 30°B. 45°C. 60°D. 90°答案:B7. 以下哪个选项是二次函数的图像?A. 一条直线B. 一个抛物线C. 一个圆D. 一个椭圆答案:B8. 一个等腰三角形的两边长分别是3和5,这个三角形的周长是:A. 11B. 13C. 16D. 无法确定答案:B9. 一个数的平方根是2,这个数是:A. 4B. -4C. 2D. -2答案:A10. 以下哪个选项是不等式?A. 3x + 2 = 7B. 2x - 3 > 5C. 4x = 8D. x^2 - 4 = 0答案:B二、填空题(每题3分,共30分)11. 一个数的立方根是2,这个数是__8__。
12. 一个数的算术平方根是3,这个数是__9__。
13. 一个角的正弦值是1/2,这个角的度数是__30°__或__150°__。
14. 一个角的余弦值是-√3/2,这个角的度数是__150°__或__210°__。
15. 一个直角三角形的两条直角边分别是3和4,斜边的长度是__5__。
16. 一个等差数列的首项是2,公差是3,第5项是__17__。
湖北省孝感市2014年中考适应性考试数学试卷(word版)
湖北省孝感市2014年中考适应性考试数学试卷一、精心选一选(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中只有一项符合要求,不涂、错涂或涂的代号超过一个,一律得0分) ﹣.( ) . . ... . . .5.实验表明,人体内某种细胞的形状可近似地看作球,它的直径约为0.00000156米,则这6.如图,C 、D 分别是一个湖的南、北两端A 和B 正东方向的两个村庄,CD=6km ,且D 位于C 的北偏东30°方向上,则AB 的长为( ).km . km . km( ) 8.如图,在△ABC 中,AB=AC=5,BC=8,⊙O 经过B 、C 两点,且AO=4,则⊙O 的半径长是( ).或或或9.某商场一月份的营业额为400万元,第一季度营业总额为1600万元,若平均每月增长率10.如图,在矩形ABCD中,AB=6,BC=8,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为()11.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论:①ac>0;②a﹣b+c<0;③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于﹣1的实数根.其中错误的结论有()12.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连结CE交AD于点F,连结BD交CE于G,连结BE.下列结论中:①CE=BD=2;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④CD•AE=EF•CG.一定正确的是()二、填空题(每小题3分,共18分)13.分解因式:a2﹣b2﹣2a+1= _________.14.在Rt△ABC中,∠C=90°,AC=3,BC=4,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是_________.15.如图所示的平面图形是由四个等边三角形组成的,则它可以折叠成_________面体,若图中小三角形的边长为,则对应的多面体的表面积为_________,体积为_________.16.反比例函数的图象经过点P(a,b),其中a、b是一元二次方程x2+kx+4=0的两根,那么点P的坐标是_________.17.如图,在△ABC中,D为AC边上的点,∠DBC=∠A,,AC=3,则CD的长为_________.18.设,,…,,则S n化简的结果用n(n为整数)的式子表示为_________.三、解答题(共66分)19.(1)计算:(2)先化简,再求值;,其中x=tan60°﹣1.20.已知△ABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;(3)求点A旋转到点A′所经过的路线长(结果保留π).21.在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、3、,现从中任意摸出一个小球,将其上面的数字作为点M的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M的纵坐标.(1)写出点M坐标的所有可能的结果;(2)求点M在直线y=x上的概率;(3)求点M的横坐标与纵坐标之和是偶数的概率.22.(10分)(2014•孝感模拟)已知x1、x2是一元二次方程2x2﹣2x+m+1=0的两个实数根.(1)求实数m的取值范围;(2)如果x1、x2满足不等式7+4x1x2>x12+x22,且m为负整数,求出m的值,并解出方程的根.(友情提示:若一元二次方程ax2+bx+c=0有两根x1、x2,则x1+x2=﹣,x1•x2=)23.如图,AB是⊙O的直径,C为⊙O上一点,∠BAC的平分线交⊙O于点D,过点D作EF∥BC,交AB、AC的延长线于点E、F.(1)求证:EF为⊙O的切线;(2)若sin∠ABC=,CF=1,求⊙O的半径及EF的长.24.某电器经营业主计划购进一批同种型号的挂式空调和电风扇.若购进8台空调和20台电风扇,需资金17400元.若购进10台空调和30台电风扇需资金22500元.(1)求挂式空调和电风扇每台的采购价格各是多少元?(2)该经营业主计划购进这两种电器共70台.而可用于购买这两种电器的资金不超过30000元.据市场行情,销售一台这样的空调可获利200元,销售一台这样的电风扇可获利30元.试问该经营业主在保证最低利润3500元的基础上有哪几种进货方案?哪种方案获利最大?最大利润是多少?25.(10分)(2014•孝感模拟)如图,二次函数图象过点M(2,0),直线AB与该二次函数的图象交于A(0,2)、B(6,8)两点.(1)求该二次函数的解析式和直线AB的解析式;(2)P为线段AB上一动点(A、B两端点除外),过P作x轴的垂线与二次函数的图象交于点Q,设线段PQ的长为l,点P的横坐标为x,求出l与x之间的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,线段AB上是否存在一点P,使四边形PQMA为梯形?若存在,求出点P的坐标,并求出此时梯形PQMA的面积;若不存在,请说明理由.参考答案1-12、BADCC BCABD AC13、(a+b﹣1)(a﹣b﹣1)14、20π15、四,12,2.16、P的坐标是(﹣2,﹣2).17、218、解:∵1++== =,∴S n=.故答案为:S n=.19、解:(1)原式=3﹣1+4﹣=+2;(2)原式=•=,当x=﹣1时,原式==2(+1)=2+2.20、解:(1)A(0,4)、C(3,1);(2分)(2)如图(6分);(3)(7分)(9分)=.(10分)1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3).(2)P(点M在直线y=x上)=P(点M的横、纵坐标相等)==.22、解:(1)根据题意得△=(﹣2)2﹣4×2×(m﹣1)≥0,解得m≤﹣;(2)根据题意得x1+x2=1,x1•x2=,∵7+4x1x2>x12+x22,∴7+6x1•x2>(x1+x2)2,∴7+6×>1,解得m>﹣3,∴﹣3<m≤﹣,∵m为负整数,∴m=﹣2或m=﹣1,当m=﹣2时,方程变形为2x2﹣2x﹣1=0,解得x1=,x2=;当m=﹣1时,方程变形为x2﹣x=0,解得x1=1,x2=0.23、(1)证明:连接OD;∵AB是直径,∴∠ACB=90°;∵EF∥BC,∴∠AFE=∠ACB=90°,∵OA=OD,∴∠OAD=∠ODA;又∵AD平分∠BAC,∴∠OAD=∠DAC,∴∠ODA=∠DAC,∴OD∥AF,∴∠ODE=∠AFD=90°,即OD⊥EF;又∵EF过点D,∴EF是⊙O的切线.(2)解:连接BD,CD;∵AB是直径,∴∠ADB=90°,∴∠ADB=∠AFD;∵AD平分∠BAC,∴∠OAD=∠DAC,∴BD=CD;设BD=CD=a;又∵EF是⊙O的切线,∴∠CDF=∠DAC,∴∠CDF=∠OAD=∠DAC,∴△CDF∽△ABD∽△ADF,∴=,=;∵sin∠ABC==,∴设AC=3x,AB=4x,∴=,则a2=4x,∴在Rt△CDF中,由勾股定理得DF2=CD2﹣CF2=4x﹣1;又∵=,∴4x﹣1=1×(1+3x),∴x=2,∴AB=4x=8,AC=3x=6;∵EF∥BC,∴△ABC∽△AEF,∴=,=,AE=,∴在Rt△AEF中,EF===.综上所述,⊙O的半径及EF的长分别是4和.24、解:(1)设挂式空调每台的价格是x元,电风扇每台的价格是y元,根据题意得:,解方程组得:;答:挂式空调每台的价格是1800元,电风扇每台的价格是150元.(2)设购买挂式空调z台,则电风扇70﹣z台,根据题意得:①200z+30(70﹣z)≥3500,②1800z+150(70﹣z)≤30000;由①②解得:8.2≤z≤11.82,因为z为整数,所以一共有3种进货方案:①当购买挂式空调9台,电风扇61台时,利润是:200×9+30×61=3630元,②当购买挂式空调10台,电风扇60台时,利润是:200×10+30×60=3800元,③当购买挂式空调11台,电风扇59台时,利润是:200×11+30×59=3970元,所以,当购买挂式空调11台,电风扇59台时,利润最大,最大利润是3970元.25、解:(1)设二次函数的解析式为y=ax2+cx+d,则,解得:,∴二次函数的解析式为:y=(x﹣2)2=x2﹣2x+2,设直线AB的解析式的解析式为:y=kx+b,则,解得:,∴直线AB的解析式的解析式为:y=2x+6;(2)设P点坐标为:P(x,y),则Q点坐标为(x,x2﹣2x+2)依题意得,PQ=l=(x+2)﹣(x﹣2)2=﹣x2+3x,由,求得点B的坐标为(6,8),∴0<x<6;(3)由(2)知P的横坐标为0<x<6时,必有对应的点Q在抛物线上;反之,Q的横坐标为0<x<6时,在线段AB上必有一点P与之对应.假设存在符合条件的点P,由题意得AM与PQ不会平行,因此梯形的两底只能是AP与MQ,∵过点M(2,0)且平行AB的直线方程为y=x﹣2,由由,消去y得:x2﹣6x+8=0,即(x﹣2)(x﹣4)=0,解得x=2或x=4,∵当x=2时,P点、Q点、M点三点共线,与A点只能构成三角形,而不能构成梯形;∴x=2这个解舍去.∴过M点的直线与抛物线的另一交点为(4,2),∵此交点横坐标4,落在0<x<6范围内,∴Q的坐标为(4,2)时,P(4,6)符合条件,即存在符合条件的点P,其坐标为(4,6),设直线AB与x轴交于N,由条件可知,△ANM是等腰直角三角形,即AM=AN=2,AP=PN﹣AN=6﹣2=4,MQ=2,AM为梯形PQMA的高,故S梯形PQMA=(2+4)×2=12.。
人教版九年数学中考规律专题练习及参考答案
人教版九年数学中考规律专题练习学习数学很重要的一个目的,就是要善于捕捉事物的规律,用数学形式和数学方法表示出来.规律与猜想类试题选材一般来源于学生熟悉的生活,有一定的趣味性,呈现形式多样,便于学生观察,侧重考查学生观察和归纳能力,让学生从不同角度,利用不同方法探索并发现数学规律,同时利用发现的规律,让学生学会自我验证,真正考查了学生的数学思考能力.类型之一数式的变化规律例1 (2014·安徽)观察下列关于自然数的等式:32-4×12=552-4×22=972-4×32=13……根据上述规律解决下列问题:(1)完成第四个等式:92-4×( )2=( );(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【思路点拨】(1)从等式的结构看,等于号的左边第一项的底数依次增大2,第二项的底数依次增大1,等于号的右边依次增大4.依次规律就可写出第四个等式;(2)先根据分析的规律用含n的等式表示出第n个等式,然后将等号的一边经过整理与另一边相同.【解答】(1)4,17.(2)(2n+1)2-4×n2=4n+1.验证:∵左边=4n2+4n+1-4n2=4n+1=右边,∴等式成立.方法归纳:探究等式变化规律的题目,关键把握两点:一是找出等式中“变”与“不变”的部分;二是分析出“变”的规律即等式的个数之间存在的规律.1.(2014·东营)将自然数按以下规律排列:表中数2在第二行,第一列,与有序数对(2,1)对应;数5与(1,3)对应;数14与(3,4)对应;根据这一规律,数2 014对应的有序数对为.2.(2014·菏泽)下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n行(n是整数,且n≥3)从左至右数第n-2个数是(用含n的代数式表示).3.(2014·滨州)计算下列各式的值:2919+;299199+;2999 1 999+;29 99919 999+.观察所得结果,总结存在的规律,运用得到的规律可得22 01492 01499991999⋯+⋯个个= .4.(2014·巴中)如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n (n 为非负整数)的展开式中a 按次数从大到小排列的项的系数.例如,(a+b)2=a 2+2ab+b 2展开式中的系数1、2、1恰好对应图中第三行的数字;再如,(a+b)3=a 3+3a 2b+3ab 2+b 3展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出(a-b)4的展开式为 .5.(2014·黄石)观察下列等式:第一个等式:a 1=23122⨯⨯=112⨯-2122⨯第二个等式:a 2=34232⨯⨯=2122⨯-3132⨯ 第三个等式:a 3=45342⨯⨯=3132⨯-4142⨯ 第四个等式:a 4=56452⨯⨯=14142⨯-5152⨯按上述规律,回答以下问题:用含n 的代数式表示第n 个等式:a n = = ;式子a 1+a 2+a 3+…+a 20= .6.(2014·烟台)将一组数3,6,3,23,15,…,310,按下面的方法进行排列:若23的位置记为(1,4),26的位置记为(2,3),则这组数中最大的有理数的位置记为( ) A.(5,2) B.(5,3) C.(6,2) D.(6,5)类型之二 图形的变化规律例2 (2014·金华)一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接. (1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人? (2)若有餐的人数有90人,则这样的餐桌需要多少张?【思路点拨】由拼图可知,每多拼一张餐桌,可坐的人数就增多4人,依次规律可探究出餐桌的个数与可坐人数之间的关系.从而就可解决问题.【解答】(1)根据图中的规律我们可以发现,每多拼接一张餐桌,可坐的人数就增多4人.即:拼接x张餐桌可以就餐的人数为:6+4(x-1)=4x+2(人).所以,拼4张可以坐4×4+2=18(人),拼8张可以坐4×8+2=34(人).(2)由题意可知4x+2=90.解得x=22.答:这样的餐桌需要拼接22张.方法归纳:当图形在变换时,图形的个数与对应的另一个变换的量的关系很难直接观察出规律时,可以通过建立这两个变量之间的函数关系,利用已知的几对对应值求出函数关系式,然后去论证.1.(2014·重庆A卷)如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,……,按此规律,则第(6)个图形中面积为1的正方形的个数为( )A.20B.27C.35D.402.(2014·武汉)观察下列一组图形中点的个数,其中第1个图片共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是( )A.31B.46C.51D.663.(2014·重庆B卷)下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,……,依此规律,第五个图形中三角形的个数是( )A.22B.24C.26D.284.(2014·宜宾)如图,将n个边长都为2的正方形按照如图所示摆放,点A1,A2,…,A n分别是正方形的中心,则这n 个正方形重叠部分的面积之和是( )A.nB.n-1C.(14)n-1 D.14n5.(2014·鄂州)如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形A n B n C n D n.下列结论正确的是( )①四边形A 4B 4C 4D 4是菱形;②四边形A 3B 3C 3D 3是矩形;③四边形A 7B 7C 7D 7周长为8a b+;④四边形A n B n C n D n 面积为·2na b . A.①②③ B.②③④ C.①③④ D.①②③④6.(2014·内江)如图,已知A 1、A 2、……、A n 、A n +1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=……=A n A n +1=1,分别过点A 1、A 2、……、A n 、A n +1作x 轴的垂线交直线y =2x 于点B 1、B 2、……、B n 、B n +1,连接A 1B 2、B 1A 2、A 2B 3、B 2A 3、……、A n B n +1、B n A n +1,依次相交于点P 1、P 2、P 3、……、P n ,△A 1B 1P 1、△A 2B 2P 2、……、△A n B n P n 的面积依次为S 1、S 2、……、S n ,则S n 为( )A.121n n ++ B.231n n - C.221n n - D.22+1n n7.(2014·内江)如图所示,将若干个正三角形、正方形和圆按一定规律从左向右排列,那么第 2 014个图形是 .△△□□□△○○□□□△○○□□□△○○□……8.(2014·娄底)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n (n 为正整数)个图案由 个▲组成.9.(2014·盐城)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y =x 的图象上,从左向右第3个正方形中的一个顶点A 的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S 1,S 2,S 3,…,S n ,则S n 的值为 .(用含n 的代数式表示,n 为正整数)类型之三 点的坐标的变化规律例3 (2014·泰安)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(53,0),B(0,4),则点B2 014的横坐标为.【思路点拨】先根据勾股定理求出AB的长度,再根据第4个图形与第1个图形的位置相同,可知每三个三角形为一个循环依次循环,然后求出每个循环组中B点坐标的变化规律即可.【解答】由题意可得:∵AO=53,BO=4,∴AB=133,∴OA+AB1+B1C2=53+133+4=6+4=10,∴B2的横坐标为10,B4的横坐标为2×10=20,∴点B2 014的横坐标为:20142×10=10 070.故答案为:10 070.方法归纳:由于图形在坐标系中的运动而导致的点的坐标的变化情况,先应该分析图形的运动规律,然后结合点在图形中的位置找出点的坐标的变化规律.1.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,……,都是斜边在x轴上、斜边长分别为2,4,6,……的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2 014的坐标为.2.(2013·湛江)如图,所有正三角形的一边平行于x轴,一顶点在y轴上,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4、…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则顶点A3的坐标是,A22的坐标是.3.(2014·孝感)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是.4.(2014·德州)如图,抛物线y =x 2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A 1,A 2,A 3,…A n ,….将抛物线y =x 2沿直线l :y =x 向上平移,得一系列抛物线,且满足下列条件: ①抛物线的顶点M 1,M 2,M 3,…M n ,…都在直线l :y =x 上; ②抛物线依次经过点A 1,A 2,A 3,…A n ,…. 则顶点M 2 014的坐标为 .参考答案类型之一 数式的变化规律1.(45,12) 22n - 3.102 0142919+1299199+229 99 1 999+3,29 99919 999+4,2201492014999...9199...9+个个=102 014.故答案为102 014.4.a 4-4a 3b+6a 2b 2-4ab 3+b 45.()1212n n n n +++;1·2n n -()1112n n ++;12-211212⨯ 6.C类型之二 图形的变化规律1.B2.B3.C提示:每一次操作三角形个数增加6个. 4.B提示:每两个之间重叠部分的面积都等于正方形面积的14,正方形的面积为4,所以重叠部分的面积为1,n 个正方形有(n-1)个重叠部分,故重叠部分的面积之和为(n-1). 5.A 6.D提示:A n B n当底,利用函数y=2x即可求得,利用黑白三角形相似如△A1B1P1∽△B2A2P1等求得P n到A n B n的距离,从而得△A n B n P n的面积.7.正方形8.3n+19.24n-5提示:根据A点的坐标为(8,4)即可得出正方形的边长依次为20、21、22、23、…,第n个正方形的边长为2n-1计算,第n个阴影部分是在第2n-1和2n个正方形中,与求S2的方法一样,第n个阴影部分的面积是第2n-1个正方形面积的一半,∴S n=12×(22n-1-1)2=24n-5.类型之三点的坐标的变化规律1.(1,-1 007)2.(0,3-1) (-8,-8)提示:由于22÷3=7……1,而A1的坐标为(-1,-1);A4的坐标为(-2,-2);A7的坐标为(-3,-3);……;A22的坐标为(-8,-8).3.(63,32)提示:A1(0,1),B1(1,1);A2(1,2)B2(3,2),A3(3,4),B3(7,4);依次类推A n(2n-1,2n-1),所以B6(63,32).4.(4 027,4 027)提示:M1(a1,a1)是抛物线y1=(x-a1)2+a1的顶点,抛物线y=x2与抛物线y1=(x-a1)2+a1相交于A1,得x2=(x-a1)2+a1,即2a1x=a21+a1,x=12(a1+1).∵x为整数点,∴a1=1,M1(1,1);同理M2(3,3),M3(5,5),……,∴M2 014(2 014×2-1,2014×2-1),即M2014(4 027,4 027).。
2014年孝感市中考数学试卷及答案解析
湖北省孝感市2014年中考数学试卷一、精心选一选,相信自己的判断!(本大题共12小题,每小题3分,共36分•在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分)1. (3分)(2014?孝感)下列各数中,最大的数是()A . 3 B. 1 C. 0 D. - 5考点:有理数大小比较分析:根据正数都大于零,负数都小于零,正数大于负数,两个负数比较大小,绝对值大的数反而小,再进行比较,即可得出答案.解答:解:•.•- 5v 0v 1v 3,故最大的数为3, 故答案选A .点评:本题考查了实数的大小比较,掌握正数都大于零,负数都小于零,正数大于负数,两个负数比较大小,绝对值大的数反而小是本题的关键.2. (3分)(2014?孝感)如图是某个几何体的三视图,则该几何体的形状是(考点:由三视图判断几何体分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选D .点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.3. (3分)(2014?孝感)下列二次根式中,不能与•合并的是()A . 卩B .」C . . 1 ■:D .届V2考点:同类二次根式分析:根据二次根式的乘除法,可化简二次根式,根据最简二次根式的被开方数相同,可得B、挖故B能与话:'■合并;A .长方体B.圆锥C.圆柱D.三棱柱解答: ,故A能与「合并;C ^二N/l ,故C 不能与血合并;D ^二朋,故D 能与逅合并; 故选:C .点评:本题考查了同类二次根式,被开方数相同的最简二次根式是同类二次根式. 4. ( 3分)(2014?孝感)如图,直线I, I 2, I 3丄14,/仁44 °那么/ 2的度数(考点:平行线的性质;垂线.分析:根据两直线平行,内错角相等可得/3= /1,再根据直角三角形两锐角互余列式计算即可得解.解答:解:Tl i // I 2,•••/ 3= / 仁44 ° ••T3 丄 14,•••/ 2=90°-/ 3=90 °- 44 °=46 ° 故选A .C. 3考点:二元一次方程组的解. 专题:计算题.分析:将x 与y 的值代入方程组求出 m 与n 的值,即可确定出 m - n 的值. 解答: 「3+E 解:将x= - 1, y=2代入方程组得:* 厂-,解得:m=1 , n= - 3, 贝V m - n=1 -( - 3) =1+3=4 . 故选D点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.44 °C . 36°D . 22°X= - 15. ( 3分)(2014?孝感)已知*是二元I 尸2次方程组『我尸;的解,贝y m - n 的值是L nx-y=lB . 点评:本题考查了平行线的性质,垂线的定义,熟记性质并准确识图是解题的关键.6. ( 3分)(2014?孝感)分式方程’ 的解为( )s - 1 3x - 3A . x=-'B .C .x=;D .5考点:解分式方程 专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解答:丿£解 :去分母得:3x=2, 解得:x==,3 经检验x=是分式方程的解.3故选B点评:J此题考查了解分式方程,解分式方程的基本思想是 转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7. ( 3分)(2014?孝感)为了解某社区居民的用电情况,随机对该社区 10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是( )A .中位数是55B .众数是60C .方差是29D .平均数是54考点:方差;加权平均数;中位数;众数.分析:根据中位数、众数、平均数和方差的概念分别求得这组数据的中位数、众数、平均数 和方差,即可判断四个选项的正确与否.解答:解:A 、月用电量的中位数是 55度,正确;B 、 用电量的众数是 60度,正确;C 、 用电量的方差是 24.9度,错误;D 、 用电量的平均数是 54度,正确. 故选C .点评:考查了中位数、众数、平均数和方差的概念.中位数是将一组数据从小到大(或从大至切、)重新排列后,最中间的那个数(最中间两个数的平均数) ,叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组 数据最中间的那个数当作中位数.& (3分)(2014?孝感)如图,在?ABCD中,对角线AC、BD相交成的锐角为a,若AC=a ,BD=b,则?ABCD的面积是()A .一•B. absin a C. abcos a D. 一」-absin a abcos a22考点:平行四边形的性质;解直角三角形.分析:过点C作CE丄DO于点E,进而得出EC的长,再利用三角形面积公式求出即可. 解答:解:过点C作CE丄DO于点E,•••在?ABCD中,对角线AC、BD相交成的锐角为a, AC=a, BD=b ,••• si n a但,CO• EC=COsi n a asin a,2--5△ BCD=—CE >BD=—x asin a 1b=-^absin a,2 2 24• ?ABCD 的面积是:2absin aX^absin a.4 2故选;A.点评:此题主要考查了平行四边形的性质以及解直角三角形,得出EC的长是解题关键.9. (3分)(2014?孝感)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D (5, 3)在边AB上,以C为中心,把△ CDB旋转90°则旋转后点D的对应点D '的坐标A . (2, 10)B . (-2 , 0)C . (2 , 10)或(-2 , 0)D . (10 , 2)或(-2 ,0)考点:坐标与图形变化-旋转.分析:分顺时针旋转和逆时针旋转两种情况讨论解答即可. 解答:解:•••点D (5, 3)在边AB 上,••• BC=5 , BD=5 - 3=2 ,① 若顺时针旋转,则点 D 在x 轴上,0D '=2 , 所以,D ' (- 2, 0),② 若逆时针旋转,则点 D 到x 轴的距离为10,到y 轴的距离为2, 所以,D ' (2, 10), 综上所述,点 D '的坐标为(2, 10)或(-2, 0). 故选C .点评:本题考查了坐标与图形变化-旋转,正方形的性质,难点在于分情况讨论.10. (3分)(2014?孝感)如图,在半径为 6cm 的O 0中,点A 是劣弧'的中点,点D 是 优弧"上一点,且/ D=30。
孝感中考数学试题及答案
孝感中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2x + 3 = 5x - 1B. 2x + 3 = 5x + 1C. 2x + 3 = 5x - 2D. 2x + 3 = 5x + 2答案:C2. 如果一个圆的半径是3厘米,那么它的周长是多少?A. 6π厘米B. 9π厘米C. 12π厘米D. 18π厘米答案:C3. 以下哪个是不等式3x - 7 > 2x + 1的解?A. x > -8B. x < -8C. x > 8D. x < 8答案:A4. 计算下列哪个表达式的值等于15?A. 3 × 5B. 5 × 3C. 3 + 5D. 5 + 3答案:B5. 一个三角形的两边长分别为4厘米和6厘米,第三边长x满足什么条件?A. 2 < x < 10B. 4 < x < 10C. 2 < x < 14D. 4 < x < 14答案:D6. 以下哪个分数是最简分数?A. 6/8B. 9/12C. 8/12D. 5/7答案:D7. 一个数的平方等于36,这个数是什么?A. 6B. -6C. 6或-6D. 以上都不是答案:C8. 以下哪个选项表示一个正比例关系?A. 速度× 时间 = 距离(一定)B. 速度 + 时间 = 距离(一定)C. 速度÷ 时间 = 距离(一定)D. 速度 = 时间× 距离(一定)答案:A9. 一个长方体的长、宽、高分别是2厘米、3厘米和4厘米,它的体积是多少?A. 24立方厘米B. 12立方厘米C. 8立方厘米D. 6立方厘米答案:B10. 以下哪个选项是正确的?A. √16 = ±4B. √16 = 4C. √16 = -4D. √16 = 2答案:B二、填空题(每题2分,共20分)11. 一个数的相反数是-5,这个数是________。
2014年中考二轮专题复习试卷:几何初步与三角形(含答案)
2014年中考数学二轮专题复习试卷:几何初步与三角形(时间:120分钟 满分:120分)一、选择题(本大题共15个小题,每小题3分,共45分)1.(2013湖北宜昌)下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )A .1,2,6B .2,2,4C .1,2,3D .2,3,4 2.(2012浙江宁波)如图,在Rt △ABC 中,∠C=90°, AB=6,cos B=23,则BC 的长为( ) A.4C. D.13133.(2013黑龙江绥化)已知:如图在△ABC ,△ADE 中, ∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点 在同一条直线上,连接BD ,BE .以下四个结论:①BD=CE ;②BD ⊥CE ;③∠ACE+∠DBC=45°;④BE 2=2(AD 2+AB 2),其中结论正确的个数是( ) A.1 B.2 C.3 D.44.(2013江苏徐州)若等腰三角形的顶角为80°,则它的底角度数为( )A .80°B .50°C .40°D .20°5.若三角形的两边长分别是2和6,则第三边的长可能是( ) A.3 B.4 C.5 D.86.(2013山东淄博)如图,△ABC 的周长为26, 点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE , 垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P , 若BC=10,则PQ 的长为( )35A. B. C.3 D.4227.若△ABC ∽△DEF ,△ABC 与△DEF 的相似比为2∶3,则S △ABC ∶S △DEF 为( ) A.2∶3 B.4∶∶28.(2012四川自贡)如图,矩形ABCD 中,E 为 CD 的中点,连接AE 并延长交BC 的延长线于点F , 连接BD 、DF ,则图中全等的直角三角形共有( )A .3对B .4对C .5对D .6对 9.(2012山东烟台)如图是跷跷板示意图,横板 AB 绕中点O 上下转动,立柱OC 与地面垂直,设B 点的最大高度为h 1.若将横板AB 换成横板A ′B ′, 且A ′B ′=2AB,O 仍为A ′B ′的中点,设B ′点的最 大高度为h 2,则下列结论正确的是( ) A.h 2=2h 1 B.h 2=1.5h 1 C.h 2=h 1 D.h 2=11h 210.(2013湖北宜昌)如图,点A ,B ,C ,D 的坐标 分别是(1,7),(1,1),(4,1),(6,1),以C , D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标 不可能是( )A.(6,0)B.(6,3)C.(6,5) D .(4,2)11.(2012浙江湖州)如图,在Rt △ABC 中,∠ACB=90°,AB=10,CD 是AB 边上的中线,则CD 的长是( )A.20B.10C.5D.5212.(2013湖北孝感)在平面直角坐标系中,已知点E (-4,2),F (-2,-2),以原点O 为位似中心,相似比为12把△EFO 缩小,则点E 的对应点E ′的坐标是( ) A.(-2,1) B.(-8,4)C.(-8,4)或(8,-4)D.(-2,1)或(2,-1) 13.(2012山东泰安)如图,AB ∥CD,E,F 分别为AC,BD 的中点,若AB=5,CD=3,则EF 的长是( ) A.4 B.3 C.2 D.114.(2013山东威海)如图,在△ABC 中,∠A=36°,AB=AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于 点D ,连接BD ,下列结论错误的是( ) A.∠C=2∠A B.BD 平分∠ABCC.S △B C D =S △B O DD.点D 为线段AC 的黄金分割点 15.(2013四川泸州)如图,在等腰直角△ACB 中,∠ACB=90°,O 是斜边AB 的中点,点D 、E 分别在直 角边AC 、BC 上,且∠DOE=90°,DE 交OC 于点P . 则下列结论:(1)图形中全等的三角形只有两对;(2)△ABC 的面积等于四边形CDOE 的面积的2倍;(3)OA ;(4)AD 2+BE 2=2OP ·OC . 其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题(本大题共6个小题,每小题3分,共18分)16.(2013广东)在Rt△ABC中,∠ABC=90°,AB=3,BC=4,则sin A= .17.(2013山西)如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为.18.(2013山东淄博)在△ABC中,P是AB上的动点(P异于A,B),过点P的一条直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线.如图,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有条.19.(2012江苏扬州)如图,线段AB的长为2,C为AB上一个动点,分别以AC,BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是 .20.(2013广西柳州)如图,△ABC≌△DEF,请根据图中提供的信息,写出x= .21.(2012江苏无锡)如图,△ABC中,∠ACB=90°,AB=8 cm,D是AB的中点.现将△BCD沿BA方向平移1 cm,得到△EFG,FG交AC于H,则GH的长等于 cm.三、解答题(本大题共5个小题,共57分)22.(本小题满分9分)(2013山东滨州)某高中学校为高一新生设计的学生板凳的正面视图如图所示.其中BA=CD,BC=20 cm,BC、EF平行于地面AD且到地面AD的距离分别为40 cm、8 cm,为使板凳两腿底端A、D之间的距离为50 cm,那么横梁EF应为多长?(材质及其厚度等暂忽略不计)23.(本小题满分12分)如图,△ABC中,AB=AC,延长BC至D,使CD=BC,点E在边AC上,以CE,CD为邻边作 CDFE,过点C作CG ∥AB 交EF 于点G,连接BG ,DE.(1)∠ACB 与∠GCD 有怎样的数量关系?请说明理由. (2)求证:△BCG ≌△DCE.24.(本小题满分12分)(2012山东潍坊)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载. 某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C ,再在笔直的车道l 上确定点D ,使CD 与l 垂直,测得CD 的长等于21 m ,在l 上点D 的同侧取点A 、B ,使∠CAD=30°,∠CBD=60°.(1)求AB 的长(精确到0.1 m 1.731.41==);(2)已知本路段对校车限速为40 km/h ,若测得某辆校车从A 到B 用时2 s ,这辆校车是否超速?说明理由.25.(本小题满分12分)(2013福建龙岩)如图①,在矩形纸片ABCD 中,AB 1AD =+=,(1)如图②,将矩形纸片向上方翻折,使点D 恰好落在AB 边上的D ′处,压平折痕交CD于点E ,则折痕AE 的长为 ;(2)如图③,再将四边形BCED ′沿D ′E 向左翻折,压平后得四边形B ′C ′ED ′,B ′C ′交AE 于点F ,则四边形B ′FED ′的面积为 ;(3)如图④,将图②中的△AED ′绕点E 顺时针旋转α角,得△A ′ED ″,使得EA ′恰好经过顶点B ,求弧D ′D ″的长.(结果保留π)26.(本小题满分12分)(2013浙江湖州)一节数学课后,老师布置了一道课后练习题:如图,已知在Rt △ABC 中,AB=BC ,∠ABC=90°,BO ⊥AC 于点O.点P 、D 分别在AO 和BC 上,PB=PD ,DE ⊥AC 于点E. 求证:△BPO ≌△PDE.本题证明的思路可以用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论若BP平分∠ABO,其余条件不变.求证:AP=CD.(3)知识迁移,探索新知若点P是一个动点,当点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)参考答案1.D2.A3.C4.B5.C6.C7.B8.B9.C 10.B 11.C 12.D 13.D 14.C 15.C 16.45 17.10318.3 19.1 20.20 21.3 22.解:过点C 作CM ∥AB ,交EF 、AD 于N 、M , 作CP ⊥AD ,交EF 、AD 于Q 、P.由题意得四边形ABCM 是平行四边形, ∴EN=AM=BC=20(cm).∴MD=AD-AM=50-20=30(cm). 由题意知:CP=40 cm ,PQ=8 cm , ∴CQ=32 cm. ∵EF ∥AD ,∴△CNF ∽△CMD.NF CQMD CPNF 32.3040∴==,即解得:NF=24(cm).∴EF=EN+NF=20+24=44(cm). 答:横梁EF 应为44 cm. 23.解:(1)∠ACB=∠GCD. 理由如下:∵AB=AC,∴∠ABC=∠ACB. ∵CG ∥AB,∴∠ABC=∠GCD. ∴∠ACB=∠GCD.(2)证明:∵四边形CDFE 是平行四边形, ∴EF ∥CD,∴∠ACB=∠GEC,∠EGC=∠GCD.∵∠ACB=∠GCD,∴∠GEC=∠EGC,∴EC=GC. ∵∠GCD=∠ACB,∴∠GCD+∠GCE=∠ACB+∠GCA. ∴∠GCB=∠ECD.∵BC=DC,∴△BCG ≌△DCE.24.解:(1)由题意得,在Rt △ACD 中,()() CDAD36.33m,tan 303CDRt BDC,BD12.11m,tan 60====︒====︒在中所以AB=AD-BD=36.33-12.11=24.22≈24.2(m).(2)汽车从A到B用时2秒,所以速度为24.2÷2=12.1(m/min),因为12.1 m/min=43.56 km/h,所以该校车速度为43.56 km/h,大于40 km/h,所以此校车在AB路段超速.25.解:12-26.(1)证明:∵PB=PD,∴∠PBD=∠2,∵AB=BC,∠ABC=90°,∴∠C=45°,∵BO⊥AC于点O,∴∠1=45°,∴∠1=∠C=45°,∵∠3=∠PBD-∠1,∠4=∠2-∠C,∴∠3=∠4,又∵BO⊥AC,DE⊥AC,∴∠BOP=∠PED=90°,∵PB=PD,∴△BPO≌△PDE.(2)解:由(1)可得∠3=∠4,∵BP平分∠ABO,∴∠ABP=∠3,∴∠ABP=∠4,又∵∠A=∠C,PB=PD,∴△ABP≌△CPD,∴AP=CD.(3)解:CD′与AP′的数量关系是:CD AP.3'='。
湖北省孝感市2014年中考适应性考试数学试卷(无答案)
2004年宜昌市中考试卷以下数据和公式供参考:扇形面积S n r ==π23603032,°cos 频率分布直方图中小长方形的面积=频率=频数数据总数第I 卷(选择题、填空题,共45分)一. 选择题:(下列各小题都给出了四个选项,其中只有一项是符合题目要求的,请将符合要求的选项前面的字母代号填写在第II 卷上指定的位置,本大题共10小题,每小题3分,度30分)1. -2的倒数是( ) A. 2B. -12C.12D. -22. 若a ≠0,下列等式成立的是( )A. a a a +=23B. ()aa 339= C. a a a 623÷= D. a a a 2222⋅=3. 实数x 在数轴上的位置如图所示,则( ) A. ||x <-1 B. ||x <0 C. ||x >1D. ||x =04. 下列二次根式中,是最简二次根式的为( ) A. 12B. a b 2C. abD. x 45. 如图所示,AB//CD ,那么∠+∠+∠=A C AEC ( ) A. 360°B. 270°C. 200°D. 180°6. 以下列长度的三条线段为边,能组成三角形的是( ) A. 3、3、3 B. 3、3、6 C. 3、2、5 D. 3、2、67. 衡量样本和总体的波动大小的特征数是( )A. 平均数B. 方差C. 众数D. 中位数8. 如图所示,AB 为圆O 的直径,CD 为弦,CD AB E ⊥于, 则下列结论中错误的是( )A. ∠=∠COE DOEB. CE DE =C. AE BE =D. BC BD ⋂=⋂9. 如图所示,在平行四边形ABCD 中,F 是AD 延长线上一点, 连结BF 交DC 于点E ,则图中的相似三角形共有( )A. 0对B. 1对C. 2对D. 3对10. 直线y x =与双曲线y kx=的一个分支 (k x ≠>00,)相交,则该分支的图象大致是下面的图( )二. 填空题(请将答案填写在第II 卷上指定的位置,本大题共5小题,每小题3分,计15分)11. 当a________时,括号中两个数的和等于0。
2014年湖北中考数学真题卷含答案解析
2014年武汉市初中毕业生学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的.1.在实数-2、0、2、3中,最小的实数是( )A.-2B.0C.2D.32.若代数式√x-3在实数范围内有意义,则x的取值范围是( )A.x≥-3B.x>3C.x≥3D.x≤33.光速约为300000千米/秒,将数字300000用科学记数法表示为( )A.3×104B.3×105C.3×106D.30×1044.在一次中学生田径运动会上,参加跳高的15名运动员的成绩如下表所示:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数124332那么这些运动员跳高成绩的众数是( )A.4B.1.75C.1.70D.1.655.下列代数运算正确的是( )A.(x3)2=x5B.(2x)2=2x2C.x3·x2=x5D.(x+1)2=x2+16.如图,线段AB两个端点的坐标分别为A(6,6)、B(8,2),以原点O为位似中心,在第一象限后得到线段CD,则端点C的坐标为( )内将线段AB缩小为原来的12A.(3,3)B.(4,3)C.(3,1)D.(4,1)7.下图是由4个大小相同的正方体组合而成的几何体.其俯视图是( )8.为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为( )A.9B.10C.12D.159.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…….按此规律第5个图中共有点的个数是( )A.31B.46C.51D.6610.如图,PA、PB切☉O于A、B两点,CD切☉O于点E,交PA、PB于C、D,若☉O的半径为r,△PCD 的周长等于3r,则tan∠APB的值是( )A.512√13 B.125C.35√13 D.23√13第Ⅱ卷(非选择题,共90分)二、填空题(共6小题,每小题3分,共18分)11.计算:-2+(-3)= .12.分解因式:a3-a= .13.如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为.14.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图所示,则这次越野跑的全程为米.15.如图,若双曲线y=kx与边长为5的等边△AOB的边OA、AB分别相交于C、D两点,且OC=3BD,则实数k的值为.16.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.三、解答题(共9小题,共72分)下列各题解答应写出文字说明、证明过程或演算步骤.17.(本小题满分6分)解方程:2x-2=3 x .18.(本小题满分6分)已知直线y=2x-b经过点(1,-1),求关于x的不等式2x-b≥0的解集.19.(本小题满分6分)如图,AC和BD相交于点O,OA=OC,OB=OD,求证:AB∥CD.20.(本小题满分7分)如图,在直角坐标系中,A(0,4),C(3,0).(1)①画出线段AC关于y轴对称的线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.21.(本小题满分7分)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回..,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回...,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.22.(本小题满分8分)⏜上两点,AB=13,AC=5.如图,AB是☉O的直径,C,P是AB⏜的中点,求PA的长;(1)如图①,若点P是AB⏜的中点,求PA的长.(2)如图②,若点P是BC图①图②23.(本小题满分10分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200-2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.24.(本小题满分10分)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm 的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连结PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连结AQ、CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.25.(本小题满分12分)x2交于A、B两点.如图,已知直线AB:y=kx+2k+4与抛物线y=12(1)直线AB总经过一个定点C,请直接写出点C的坐标;时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;(2)当k=-12(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.备用图答案全解全析:一、选择题1.A∵-2<0<2<3,∴最小的实数是-2,故选A.评析本题考查了实数的大小比较,属容易题.2.C要使√x-3在实数范围内有意义,则需x-3≥0,解得x≥3.故选C.评析本题考查二次根式有意义的条件,即被开方数大于等于零,属容易题.3.B300000用科学记数法可表示为3×105.故选B.评析本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,属容易题.4.D∵1.65出现了4次,出现的次数最多,∴这些运动员跳高成绩的众数是1.65,故选D.评析本题考查了众数的定义,众数是一组数据中出现次数最多的数,属容易题.5.C(x3)2=x6,故A选项错误;(2x)2=4x2,故B选项错误;x3·x2=x5,故C选项正确;(x+1)2=x2+2x+1,故D选项错误.故选C.6.A∵线段AB两个端点的坐标分别为A(6,6)、B(8,2),以原点O为位似中心,在第一象限后得到线段CD,∴端点C的坐标为(3,3).故选A.内将线段AB缩小为原来的12评析本题主要考查位似图形的性质,属容易题.7.C从上面看可得到一行正方形,其个数为3,故选C.评析本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,属容易题.8.C由题图可知,10天中在同一时段通过该路口的汽车数量超过200辆的有4天,频率为4=0.4,所以估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为1030×0.4=12,故选C.评析 本题考查了折线统计图及用样本估计总体的思想,属容易题.9.B 第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…,第n 个图中有1+1×3+2×3+3×3+…+3n 个点. 所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46.故选B. 评析 本题是规律探索题,属容易题.10.B 连结OA 、OB 、OP,延长BO 交PA 的延长线于点F.∵PA、PB 切☉O 于A 、B 两点,CD 切☉O 于点E, ∴∠OAP=∠OBP=90°,CA=CE,DB=DE,PA=PB.∵△PCD 的周长=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=3r,∴PA=PB=32r. 在Rt △OAF 和Rt △BFP 中,{∠FAO =∠FBP,∠OFA =∠PFB,∴Rt △AFO ∽Rt △BFP. ∴AF FB =AO BP =r 32r =23,∴AF=23FB. 在Rt △FBP 中,PF 2-PB 2=FB 2, ∴(PA+AF)2-PB 2=FB 2,∴(32r +23BF)2-(32r)2=BF 2,解得BF=185r,∴tan ∠APB=BFPB =185r 32r=125,故选B.评析 本题主要考查切线的性质,相似三角形的判定及三角函数的定义,属难题.二、填空题 11.答案 -5解析 -2+(-3)=-(2+3)=-5.评析 本题考查有理数加法的运算,属容易题. 12.答案 a(a+1)(a-1)解析 a 3-a=a(a 2-1)=a(a+1)(a-1).评析 本题考查利用提公因式法和公式法分解因式,属容易题. 13.答案 37解析 ∵一个转盘被分成7个相同的扇形,红色的有3个,∴指针指向红色的概率为37. 14.答案 2 200解析 设小明的速度为a 米/秒,小刚的速度为b 米/秒,由题意,得{1 600+100a =1 400+100b,1 600+300a =1 400+200b,解得{a =2,b =4,∴这次越野跑的全程为1 600+300×2=2 200(米).评析 本题考查了行程问题的数量关系及二元一次方程组的解法,属容易题.15.答案9√34解析 过点C 作CE ⊥x 轴于点E,过点D 作DF ⊥x 轴于点F, 设BF=x,则DF=√3x,BD=2x.因为OC=3BD,所以OE=3x,CE=3√3x, 所以C(3x,3√3x),D(5-x,√3x). 因为点C 、D 都在双曲线上,所以3x ·3√3x=√3x ·(5-x), 解得x 1=12,x 2=0(舍去),所以C (32,3√32), 故k=3√32×32=9√34.评析 本题考查了反比例函数图象上点的坐标特征,解答本题的关键是利用k 的值相同建立方程,属中等偏难题. 16.答案 √41解析 作AD'⊥AD,且使AD'=AD,连结CD',DD',如图.由已知条件可得∠BAC+∠CAD=∠DAD'+∠CAD,即∠BAD=∠CAD'. 在△BAD 与△CAD'中,{BA =CA,∠BAD =∠CAD',AD =AD',∴△BAD ≌△CAD'(SAS), ∴BD=CD'.又∠DAD'=90°,由勾股定理得DD'=√AD 2+(AD')2 =√32=4√2,易知∠D'DA+∠ADC=90°,由勾股定理得CD'=√DC 2+(DD')2=√9+32=√41, ∴BD=CD'=√41.评析 本题考查了等腰直角三角形的性质、勾股定理、全等三角形的判定与性质,属难题. 三、解答题17.解析 方程两边同乘以x(x-2),得2x=3(x-2). 解得x=6.检验:当x=6时,x(x-2)≠0. ∴x=6是原分式方程的解.评析 本题考查了解分式方程,解分式方程一定要注意验根,属容易题. 18.解析 ∵直线y=2x-b 经过点(1,-1), ∴-1=2×1-b. ∴b=3.∴不等式2x-b ≥0即为2x-3≥0,解得x ≥32.19.证明 在△AOB 和△COD 中,{OA =OC,∠AOB =∠COD,OB =OD,∴△AOB ≌△COD. ∴∠A=∠C,∴AB ∥CD. 20.解析 (1)如图所示:(2)43.评析 本题考查利用旋转、轴对称变换作图,属容易题.21.解析 (1)分别用R 1,R 2表示2个红球,G 1,G 2表示2个绿球,列表如下:第二次第一次 R 1 R 2 G 1 G 2R 1 R 1R 1 R 1R 2 R 1G 1 R 1G 2 R 2 R 2R 1 R 2R 2 R 2G 1 R 2G 2 G 1 G 1R 1 G 1R 2 G 1G 1 G 1G 2 G 2 G 2R 1 G 2R 2 G 2G 1 G 2G 2由上表可知,有放回地摸2个球共有16个等可能结果. ①其中第一次摸到绿球,第二次摸到红球的结果有4个. ∴第一次摸到绿球,第二次摸到红球的概率P=416=14;②其中两次摸到的球中有1个绿球和1个红球的结果有8个. ∴两次摸到的球中有1个绿球和1个红球的概率P=816=12. 画树形图法按步骤给分(略). (2)23.22.解析 (1)如图,连结PB,BC.∵AB 是☉O 的直径,P 是AB⏜的中点, ∴PA=PB,∠APB=90°. ∵AB=13,∴PA=√22AB=13√22.(2)如图,连结PB,BC.连结OP 交BC 于D 点.∵P 是BC⏜的中点,∴OP ⊥BC 于D,BD=CD. ∵OA=OB,∴OD=12AC=52.∵OP=12AB=132,∴PD=OP -OD=132-52=4.∵AB 是☉O 的直径,∴∠ACB=90°.∵AB=13,AC=5,∴BC=12,∴BD=12BC=6.∴PB=√PD 2+BD 2=2√13.∵AB 是☉O 的直径,∴∠APB=90°,∴PA=√AB 2-PB 2=3√13.23.解析 (1)y={-2x 2+180x +2 000(1≤x <50),-120x +12 000(50≤x ≤90).(2)当1≤x<50时,y=-2x 2+180x+2 000=-2(x-45)2+6 050.∵-2<0,∴当x=45时,y 有最大值,最大值为6 050元.当50≤x ≤90时,y=-120x+12 000,∵-120<0,∴y 随x 的增大而减小.当x=50时,y 有最大值,最大值为6 000元.∴当x=45时,当天的销售利润最大,最大利润为6 050元.(3)41天.评析 本题考查利用函数的性质解决实际问题,属中等难度题.24.解析 (1)由题意知,BP=5t cm,CQ=4t cm,∴BQ=(8-4t)cm.当△PBQ ∽△ABC 时,有BP AB =BQ BC .即5t 10=8-4t 8,解得t=1. 当△QBP ∽△ABC 时,有BQ AB =BP BC .即8-4t 10=5t 8,解得t=3241.∴△PBQ 与△ABC 相似时,t=1或3241.(2)如图,过点P 作PD ⊥BC 于D.依题意,得BP=5t cm,CQ=4t cm.则PD=PB ·sin B=3t cm,∴BD=4t cm,CD=(8-4t)cm.∵AQ ⊥CP,∠ACB=90°,∴tan ∠CAQ=tan ∠DCP.∴CQ AC =PD CD .∴4t 6=3t 8-4t ,∴t=78.(3)证明:如图,过点P 作PD ⊥AC 于D,连结DQ 、BD,BD 交PQ 于M,则PD=AP ·cos ∠APD=AP ·cos ∠ABC=(10-5t)×810=(8-4t)cm.而BQ=(8-4t)cm,∴PD=BQ,又PD ∥BQ,∴四边形PDQB 是平行四边形.∴点M 是PQ 和BD 的中点. 过点M 作EF ∥AC 交BC,BA 于E,F 两点.则BE EC =BM MD =1,即E 为BC 的中点.同理,F 为BA 的中点.∴PQ 的中点M 在△ABC 的中位线EF 上.25.解析 (1)(-2,4).(2)如图,直线y=-12x+3与y 轴交于点N(0,3).在y 轴上取点Q(0,1),易得S △ABQ =5. 过点Q 作PQ ∥AB 交抛物线于点P.则PQ 的解析式为y=-12x+1,由{y =-12x +1,y =12x 2,解得{x =-2,y =2,或{x =1,y =12, ∴P 点坐标为(-2,2)或(1,12).(3)如图,设A (x 1,12x 12),B (x 2,12x 22),D (m,12m 2). 联立{y =kx +2k +4,y =12x 2,消去y 得x 2-2kx-4k-8=0. ∴x 1+x 2=2k,x 1·x 2=-4k-8.过点D 作EF ∥x 轴,过点A 作y 轴的平行线交EF 于点E,过点B 作y 轴的平行线交EF 于点F. 由△ADE ∽△DBF,得AE DF =DE BF . ∴12x 12-12m 2x 2-m =m -x 112x 22-12m 2,整理,得x 1x 2+m(x 1+x 2)+m 2=-4.∴2k(m -2)+m 2-4=0. 当m-2=0,即m=2时,点D 的坐标与k 无关,∴点D 的坐标为(2,2).又∵C(-2,4),所以CD=2√5,过点D 作DM ⊥AB,垂足为M.则DM ≤CD.当CD ⊥AB 时,点D 到直线AB 的距离最大,最大距离为2√5.评析本题考查解方程组、一元二次方程、一元二次方程根与系数的关系、勾股定理、相似三角形的判定与性质等知识,考查了通过解方程组求两函数图象交点坐标等,综合性比较强,属难题.。
2014-2015学年孝感市孝南区九年级上期中数学试卷及答案解析
价后,现售价为 3528 元/台,则平均每次降价的百分率为
.
17.(3 分)(2014 秋•杭州期末)如图,正方形 OABC 的两边 OA、OC 分别在 x 轴、y 轴上,
点 D(5,3)在边 AB 上,以 C 为中心,把△ CDB 旋转 90°,则旋3 分)(2014 秋•孝南区期中)如图,在同一直角坐标系中,抛物线 y1 =ax2 +bx+c 与两
A.3
B. 5
C.﹣3 和 5
D.3 和﹣5
5.(3 分)(2012•苏州)如图,将△ AOB 绕点 O 按逆时针方向旋转 45°后得到△ A′OB′,若 ∠AOB=15°,则∠AOB′的度数是(
)
A.25°
B. 30°
C.35°
D.40°
6.(3 分)(2014 秋•孝南区期中)将一元二次方程 x 2﹣2x﹣3=0 配方后所得的方程是( )
坐标轴分别交于 A(﹣1,0)、点 B(3,0)和点 C(0,﹣3),直线2y =mx+n 与抛物线交
于 B、C 两点.由图象可知:
(1)当 x 满足
时,ax2 +bx+c<0;
(2)当 x 满足 (3)当 x 满足
时,y1>y2 ; 时,y1•y2>0.
三、解答题(本大题共 7 小题,共 66 分) 19.(8 分)(2014 秋•孝南区期中)解下列方程: (1)x(x﹣3)+x﹣3=0 (2)x2 ﹣4x+1=0.
A.(x﹣2)2=4
B.(x﹣1)2=4
C.(x﹣1)2 =3
D.(x﹣2)2 =3
7.(3 分)(2014 秋•孝南区期中)抛物线 y=3x2 先向上平移 2 个单位,再向右平移 3 个单位, 所得的抛物线为( ) A.y=3(x+3)2 ﹣2 B. y=3(x+32) +2 C.y=3(x﹣3)2 ﹣2 D.y=3(x﹣3)2 +2
2014-2015学年湖北省孝感市孝南区九年级(上)期中数学试卷解析(pdf版)介绍
A. 25°
B. 30°
C. 35°
D.40°
考点: 旋转的性质. 分析: 根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即
菁优网 版 所 权 有
可. 解答: 解:∵将△ AOB 绕点 O 按逆时针方向旋转 45°后得到△ A′OB′, ∴∠A′OA=45°,∠AOB=∠ A′OB′=15°, ∴∠AOB′=∠A′OA﹣∠ A′OB′=45°﹣15°=30°, 故选:B. 点评: 此题主要考查了旋转的性质, 根据旋转的性质得出∠A′OA=45°, ∠AOB=∠ A′OB′=15° 是解题关键. 6. (3 分) (2014 秋•孝南区期中) 将一元二次方程 x2 ﹣2x﹣3=0 配方后所得的方程是 ( )
2014-2015 学年湖北省孝感市孝南区九年级(上)期中数学试卷
一、选择题(本题共 12 小题,每小题 3 分,共 36 分) 1. (3 分) (2013•烟台)以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图 形的是( ) A. B. C. D.
2. (3 分) (2012•宿迁) 在平面直角坐标系中, 点 (3, ﹣2 ) 关于原点对称点的坐标是 ( A. (3,2) B. (﹣3,﹣2) C. (﹣3,2) D.(﹣3,﹣2) 3. (3 分) (2014 秋•孝南区期中) 把方程 3x (x﹣1) =5 (x+2) 化为一般形式正确的是 ( 2 2 2 2 A. 3x ﹣3x﹣10=0 B. 3x ﹣8x﹣10=0 C. 3x ﹣8x+10=0 D.x ﹣3x﹣10=0 4. (3 分) (2005•南充)二次函数 y=x2 +2x﹣7 的函数值是 8,那么对应的 x 的值是( A. 3 B. 5 C. ﹣3 和 5 D.3 和﹣5
2014年孝感市中考调研考试数学参考答案
数学答案第1页(共4页)数学答案第2页(共4页)数学答案第3页(共4页)数学答案第4页(共4页)数学答案第5页(共4页)数学答案第6页(共4页)数学答案第7页(共4页)参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DCBDACAABCCB二、填空题13.)1)(1(-+a a ab ; 14.31; 15.240; 16.120°;17.22)1(-+n n 或2n 2-2n +1;18.22.三、解答题19.解:原式=⎪⎪⎭⎫⎝⎛--÷--29232x x x x ………………………………………………2分 =)3)(3(223+--⨯--x x x x x =31+x………………………………………………4分 当32-=x 时,原式=223321=+-.………………………………………………6分20.(1)如图所示 …………3分 (2)如图所示 …………6分点P 是△ABC 的内心 ……8分21.解:(1)这个班共有学生数为:5010500=÷(名)………………2分(2)“了解较多”部分所对应的圆心角的度数为:︒=︒⨯1443605020……………4分 (第20题)数学答案第8页(共4页)(第23题)(3)该班A 组5名学生中有3男2女,从中随机抽取2名学生列表如下:(男生用A 表示,女生用B 表示)B 2 A 1B 2 A 2B 2 A 3B 2 B 1B 2 B 1 A 1B 1 A 2B 1 A 3B 1 B 2B 1 A 3 A 1A 3 A 2A 3 B 1A 3 B 2A 3 A 2 A 1A 2 A 3A 2 B 1A 2 B 2A 2 A 1 A 2A 1 A 3A 1 B 1A 1 B 2A 1 A 1A 2A 3B 1B 2…………………………………………………………………8分∴恰好是1男1女的概率是532012==P . …………………………………10分22.解:(1)∵ 每件涨价1元(售价不可以高于45元),那么每星期少卖出10件, ∴ )40)(10150(x x y +-=6000250102+--=x x y . ………………………………4分(2)设利润是W =(40-30+x )(150-10x ) =1500-100x +150x -10x 2W =-10x 2+50x +1500…………………………………6分当每星期的利润为1560元时,∴-10x 2+50x +1500=1560∴21=x ,32=x ,4240=+x 或4340=+x …………………………………8分∴当售价为42元或43元时,此时每星期的销售件数为:130件或120件……9分销量是546042130=⨯(元)或 516043120=⨯(元)故当售价为42元或43元时,才能使每星期的利润为1560元.此时每星期的销量是5460元或5160元.…………………………………10分23.解:(1)直线CD 与⊙O 相切.…………1分理由如下:数学答案第9页(共4页)∵∠A =30°,∴∠COB =2∠A =60°. 又∵OC =OB ,∴△OBC 是等边三角形, ∴∠OCB =60°.………………………3分∵∠BCD =30°,∴∠OCD =∠OCB +∠BCD =90°,即OC ⊥CD . 又∵OC 是半径,∴CD 是⊙O 的切线,即直线CD 与⊙O 相切.………………………5分(2)∵OC ⊥AB ,∴AC =BC =5.由(1)知,△OBC 是等边三角形, ∴OC =BC =5.………………………8分又由(1)知,∠OCD =90°,∠COD =60°,∴CD =OC •tan60°=35⨯=35,即线段CD 的长度是35.………………………10分 24.解:(1)若方程x 2 – ( k + 2 ) x +41k 2+1 = 0有两个不相等的实数根,则△>0. ∴0)141(4)2(22>+-+k k , ∴044422>--++k k k ,∴0>k ;当0>k 时,原方程有两个不相等的实数根.………………………4分(2)∵221+=+k x x ,0141221>+=⋅k x x 又0>k ,∴210x x <<,………………………6分∵4||21=+x x ,∴421=+x x ,∴42=+k , ∴2=k ,………………………8分当2=k 时,原方程可化为0242=+-x x ,解得:221-=x ,222+=x .………………………10分25.解:(1)∵二次函数c bx x y ++=221的图象经过点A (4,0)和点C (0,2).∴⎪⎩⎪⎨⎧=++⨯=c c b 2442102,解得⎪⎩⎪⎨⎧=-=225c b ,数学答案第10页(共4页)∴二次函数的解析式为:225212+-=x x y . ………………………2分∵89)25(212252122--=+-=x x x y 令0=y ,则0225212=+-x x ,解得11=x ,42=x ∴其对称轴为直线25=x ,顶点坐标为⎪⎭⎫⎝⎛-89 25,,1=OB . ……………………5分(2)①∵四边形OEAF 是以OA 为对角线的平行四边形,∴AEO OEAF S S ∆=2平行四边形 ……………………7分∴E E y OA y OA S ⋅=⋅⨯=212 ∴810222521422-+-=+-⨯=x x x x S ……………………9分∴S 与x 之间的函数解析式为:)41( 81022<<-+-=x x x S . ………10分②当点E 的坐标为)1 2(-,时,四边形OEAF 为菱形. …………………12分注意:1.按照评分标准分步评分,不得随意变更给分点;2.第19题至第25题的其它解法,只要思路清晰,解法正确,都应按步骤给予相应分数.。
2014年全国中考数学试题分类汇编29 解直角三角形(含解析)
解直角三角形一、选择题1.(2014•孝感,第8题3分)如图,在▱ABCD中,对角线AC、BD相交成的锐角为α,若AC=a,BD=b,则▱ABCD的面积是()absinαabcosα==CE×absinα的面积是:absinα2. (2014•泰州,第6题,3分)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是(),,(、底边上的高是=3. (2014•扬州,第8题,3分)如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()(第2题图)B﹣2∠AC,==2﹣)﹣=﹣===4.(2014•滨州,第11题3分)在Rt△ACB中,∠C=90°,AB=10,sinA=,cosA=,tanA=,则BC的长为()=,得到.×=10×=6=,.5.(2014•德州,第7题3分)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为()4米米中,∵=,==6二.填空题1.(2014•新疆,第13题5分)如图,在Rt△ABC中,∠C=90°,∠B=37°,BC=32,则AC=.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)=,2.(2014•舟山,第12题4分)如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为米(用含α的代数式表示).=3.(2014•浙江宁波,第17题4分)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出17 个这样的停车位.(≈1.4)=2.2×≈1.54=5×≈3.5=2.2÷≈3.144. (2014•株洲,第13题,3分)孔明同学在距某电视塔塔底水平距离500米处,看塔顶的仰角为20°(不考虑身高因素),则此塔高约为182米(结果保留整数,参考数据:sin20°≈0.3420,sin70°≈0.9397,tan20°≈0.3640,tan70°≈2.7475).(第1题图)=5. (2014•泰州,第16题,3分)如图,正方向ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于1或2cm.(第2题图),即cm=cm AE=6.(2014•济宁,第12题3分)如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB 的长为3+.,,=..三.解答题1. (2014•安徽省,第18题8分)如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号).考点:解直角三角形的应用.菁优网分析:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,根据三角函数求得BE,在Rt△BCF中,根据三角函数求得BF,在Rt△DFG中,根据三角函数求得FG,再根据EG=BE+BF+FG即可求解.解答:解:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,BE=AB•sin30°=20×=10km,在Rt△BCF中,BF=BC÷cos30°=10÷=km,CF=BF•sin30°=×=km,DF=CD﹣CF=(30﹣)km,在Rt△DFG中,FG=DF•sin30°=(30﹣)×=(15﹣)km,∴EG=BE+BF+FG=(25+5)km.故两高速公路间的距离为(25+5)km.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.2. (2014•广东,第20题7分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)考点:解直角三角形的应用-仰角俯角问题.分析:首先利用三角形的外角的性质求得∠ABC的度数,得到BC的长度,然后在直角△BDC 中,利用三角函数即可求解.解答:解:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BC•sin∠CBD=10×=5≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.3. (2014•珠海,第17题7分)如图,一艘渔船位于小岛M的北偏东45°方向、距离小岛180海里的A处,渔船从A处沿正南方向航行一段距离后,到达位于小岛南偏东60°方向的B处.(1)求渔船从A到B的航行过程中与小岛M之间的最小距离(结果用根号表示);(2)若渔船以20海里/小时的速度从B沿BM方向行驶,求渔船从B到达小岛M的航行时间(结果精确到0.1小时).(参考数据:≈1.41,≈1.73,≈2.45)=9090=90=60,÷20=34. (2014•广西贺州,第24题8分)如图,一艘海轮在A点时测得灯塔C在它的北偏东42°方向上,它沿正东方向航行80海里后到达B处,此时灯塔C在它的北偏西55°方向上.(1)求海轮在航行过程中与灯塔C的最短距离(结果精确到0.1);(2)求海轮在B处时与灯塔C的距离(结果保留整数).(参考数据:sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)考点:解直角三角形的应用-方向角问题.分析:(1)过C作AB的垂线,设垂足为D,则CD的长为海轮在航行过程中与灯塔C的最短距离;(2)在Rt△BCD中,根据55°角的余弦值即可求出海轮在B处时与灯塔C的距离.解答:解:(1)C作AB的垂线,设垂足为D,根据题意可得:∠1=∠2=42°,∠3=∠4=55°,设CD的长为x海里,在Rt△ACD中,tan42°=,则AD=x•tan42°,在Rt△BCD中,tan55°=,则BD=x•tan55°,∵AB=80,∴AD+BD=80,∴x•tan42°+x•tan55°=80,解得:x≈34.4,答:海轮在航行过程中与灯塔C的最短距离是34.4海里;(2)在Rt△BCD中,cos55°=,∴BC=≈60海里,答:海轮在B处时与灯塔C的距离是60海里.点评:本题考查了解直角三角形的应用:方向角问题,具体就是在某点作出东南西北,即可转化角度,也得到垂直的直线.5.(2014年四川资阳,第19题8分)如图,湖中的小岛上有一标志性建筑物,其底部为A,某人在岸边的B处测得A在B的北偏东30°的方向上,然后沿岸边直行4公里到达C处,再次测得A在C的北偏西45°的方向上(其中A、B、C在同一平面上).求这个标志性建筑物底部A到岸边BC的最短距离.考点:解直角三角形的应用-方向角问题.菁优网分析:过A作AD⊥BC于D,先由△ACD是等腰直角三角形,设AD=x,得出CD=AD=x,再解Rt△ABD,得出BD==x,再由BD+CD=4,得出方程x+x=4,解方程求出x的值,即为A到岸边BC的最短距离.解答:解:过A作AD⊥BC于D,则AD的长度就是A到岸边BC的最短距离.在Rt△ACD中,∠ACD=45°,设AD=x,则CD=AD=x,在Rt△ABD中,∠ABD=60°,由tan∠ABD=,即tan60°=,所以BD==x,又BC=4,即BD+CD=4,所以x+x=4,解得x=6﹣2.答:这个标志性建筑物底部A到岸边BC的最短距离为(6﹣2)公里.点评:本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.6.(2014年天津市,第22题10分)解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.(Ⅰ)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至A′C′的位置时,A′C′的长为m;(Ⅱ)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=54°,沿河岸MQ前行,在观景平台N处测得∠PNQ=73°,已知PQ⊥MQ,MN=40m,求解放桥的全长PQ(tan54°≈1.4,tan73°≈3.3,结果保留整数).考点:解直角三角形的应用.菁优网专题:应用题.分析:(1)根据中点的性质即可得出A′C′的长;(2)设PQ=x,在Rt△PMQ中表示出MQ,在Rt△PNQ中表示出NQ,再由MN=40m,可得关于x的方程,解出即可.解答:解:(I)∵点C是AB的中点,∴A'C'=AB=23.5m.(II)设PQ=x,在Rt△PMQ中,tan∠PMQ==1.4,∴MQ=,在Rt△PNQ中,tan∠PNQ==3.3,∴NQ=,∵MN=MQ﹣NQ=40,即﹣=40,解得:x≈97.答:解放桥的全长约为97m.点评:本题考查了解直角三角形的应用,解答本题的关键是熟练锐角三角函数的定义,难度一般.7.(2014年云南省,第21题6分)如图,小明在M处用高1米(DM=1米)的测角仪测得旗杆AB的顶端B的仰角为30°,再向旗杆方向前进10米到F处,又测得旗杆顶端B的仰角为60°,请求出旗杆AB的高度(取≈1.73,结果保留整数)考点:解直角三角形的应用-仰角俯角问题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造三角关系,进而可求出答案.解答:解:∵∠BDE=30°,∠BCE=60°,∴∠CBD=60°﹣∠BDE=30°=∠BDE,∴BC=CD=10米,在Rt△BCE中,sin60°=,即=,∴BE=5,AB=BE+AE=5+1≈10米.答:旗杆AB的高度大约是10米.点评:主要考查解直角三角形的应用,本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.8.(2014•四川自贡,第18题8分)如图,某学校新建了一座吴玉章雕塑,小林站在距离雕塑2.7米的A处自B点看雕塑头顶D的仰角为45°,看雕塑底部C的仰角为30°,求塑像CD的高度.(最后结果精确到0.1米,参考数据:)=0.9≈1.29.(2014·云南昆明,第20题6分)如图,在数学实践课中,小明为了测量学校旗杆CD的高度,在地面A处放置高度为1.5米的测角仪AB,测得旗杆顶端D的仰角为32°,AC为22米,求旗杆CD的高度.(结果精确到0.1米.参考数据:sin32°= 0.53,cos32°= 0.85,tan32°= 0.62)64.1310.(2014•浙江宁波,第21题8分)如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;第20题图(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)11. (2014•益阳,第18题,8分)“中国﹣益阳”网上消息,益阳市为了改善市区交通状况,计划在康富路的北端修建通往资江北岸的新大桥.如图,新大桥的两端位于A、B两点,小张为了测量A、B之间的河宽,在垂直于新大桥AB的直线型道路l上测得如下数据:∠BAD=76.1°,∠BCA=68.2°,CD=82米.求AB的长(精确到0.1米).参考数据:sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.(第1题图),.=4×≈546.712. (2014•益阳,第21题,12分)如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.(第2题图),根据≠且≠•(﹣,最后根据x﹣+)=4×=2.,在=,,≠且≠,此时△),=PB=﹣x=x=x,x﹣)x+•(x)x)时,取得最小值x13. (2014•株洲,第17题,4分)计算:+(π﹣3)0﹣tan45°.14. (2014•株洲,第22题,8分)如图,在Rt△ABC中,∠C=90°,∠A的平分线交BC于点E,EF⊥AB于点F,点F恰好是AB的一个三等分点(AF>BF).(1)求证:△ACE≌△AFE;(2)求tan∠CAE的值.=,在===m=,===15. (2014•株洲,第23题,8分)如图,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆运动(含P、Q两点),以线段AB为边向上作等边三角形AB C.(1)当线段AB所在的直线与圆O相切时,求△ABC的面积(图1);(2)设∠AOB=α,当线段AB、与圆O只有一个公共点(即A点)时,求α的范围(图2,直接写出答案);(3)当线段AB与圆O有两个公共点A、M时,如果AO⊥PM于点N,求CM的长度(图3).(第5题图)==,×==×=的面积为===.===,,==的长度为16.(2014年江苏南京,第23题)如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)考点:解直角三角形的应用分析:设梯子的长为xm.在Rt△ABO中,根据三角函数得到OB,在Rt△CDO中,根据三角函数得到OD,再根据BD=OD﹣OB,得到关于x的方程,解方程即可求解.解答:设梯子的长为xm.在Rt△ABO中,cos∠ABO=,∴OB=AB•cos∠ABO=x•cos60°=x.在Rt△CDO中,cos∠CDO=,∴OD=CD•cos∠CDO=x•cos51°18′≈0.625x.∵BD=OD﹣OB,∴0.625x﹣x=1,解得x=8.故梯子的长是8米.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.17. (2014•泰州,第22题,10分)图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度h(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)18.(2014•呼和浩特,第18题6分)如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(结果用非特殊角的三角函数及根式表示即可)=.cos cos。
(试题)孝感市2014年中考数学试卷及答案(Word解析版)
湖北省孝感市2014年中考数学试卷一、精心选一选,相信自己的判断!(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分)题考查了实数的大小比较,掌握正数都大于零,负数都小于零,正数大于负数,两2.(3分)(2014•孝感)如图是某个几何体的三视图,则该几何体的形状是()C.B,故合并;,故能与,故不能与、能与4.(3分)(2014•孝感)如图,直线l1∥l2,l3⊥l4,∠1=44°,那么∠2的度数()A.A.5.(3分)(2014•孝感)已知是二元一次方程组的解,则m﹣n的值是代入方程组得:)6.(3分)(2014•孝感)分式方程的解为()A﹣x=x=x=x=7.(3分)(2014•孝感)为了解某社区居民的用电情况,随机对该社区10户居民进行了调3 2 4据中位数、众数、平均数和方差的概念分别求得这组数据的中位数、众数、平均数、用电量的众数是查了中位数、众数、平均数和方差的概念.中位数是将一组数据从小到大(或从大8.(3分)(2014•孝感)如图,在▱ABCD中,对角线AC、BD相交成的锐角为α,若AC=a,BD=b,则▱ABCD的面积是().absinαbsinαabcosα于点AC=a BD=b==CE×asin b=absinαabsin absin9.(3分)(2014•孝感)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D (5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是())在边若顺时针旋转,则点10)题考查了坐标与图形变化﹣旋转,正方形的性质,难点在于分情况讨论.10.(3分)(2014•孝感)如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是()是劣弧的中点,是劣弧×=3cmcm∠=是劣弧的中点,11.(3分)(2014•孝感)如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解为()Ax+mx+m12.(3分)(2014•孝感)抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为()b+c=2=1)和(﹣﹣,即﹣二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)13.(3分)(2014•孝感)函数的自变量x的取值范围为x≠1.14.(3分)(2014•孝感)下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是①③.(填序号)点评:本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事15.(3分)(2014•孝感)若a﹣b=1,则代数式a2﹣b2﹣2b的值为1.16.(3分)(2014•孝感)如图,已知矩形ABCD,把矩形沿直线AC折叠,点B落在点E处,连接DE、BE,若△ABE是等边三角形,则=.=a MN=a=aMN=aEM==的面积是×EN=﹣a)的面积是AB EM=×a∴=故答案为:.17.(3分)(2014•孝感)如图,Rt△AOB的一条直角边OB在x轴上,双曲线y=经过斜边OA的中点C,与另一直角边交于点D.若S△OCD=9,则S△OBD的值为6.S=∴=,kk=18BOD=|k|18.(3分)(2014•孝感)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是(63,32).解答:解y=x+13∴A三、用心做一做,显显自己的能力!(本大题共7小题,满分66分.解答写在答题卡上)19.(6分)(2014•孝感)计算:(﹣)﹣2+﹣|1﹣|2|20.(8分)(2014•孝感)如图,在Rt△ABC中,∠ACB=90°.(1)先作∠ABC的平分线交AC边于点O,再以点O为圆心,OC为半径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);(2)请你判断(1)中AB与⊙O的位置关系,并证明你的结论.相切.21.(10分)(2014•孝感)为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是40;(2)图1中∠α的度数是54°,并把图2条形统计图补充完整;(3)该县九年级有学生3500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为700.(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.°)本次抽样测试的学生人数是:×=54,)根据题意得:×=700=22.(10分)(2014•孝感)已知关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)试说明x1<0,x2<0;(3)若抛物线y=x2﹣(2k﹣3)x+k2+1与x轴交于A、B两点,点A、点B到原点的距离分别为OA、OB,且OA+OB=2OA•OB﹣3,求k的值.BOA+OB=2OA+112k+5>∴)∵,OA+OB=|x∵23.(10分)(2014•孝感)我市荸荠喜获丰收,某生产基地收获荸荠40吨.经市场调查,15吨.(1)求y与x之间的函数关系式;(2)若零售量不超过批发量的4倍,求该生产基地按计划全部售完荸荠后获得的最大利润.)依题意可知零售量为()依题意有:∴最大利润为24.(10分)(2014•孝感)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;(3)若tan∠ABC=,BE=7,求线段PC的长.线的性质;等腰三角形的判定平分∠DAB∠PCF∠ABC=,,即可求得答案.解答:解∴=∴∴ABC=∴∴Rt△题考查了切线的性质、相似三角形的判定与性质、垂径定理、圆周角定理、勾股定25.(12分)(2014•孝感)如图1,矩形ABCD的边AD在y轴上,抛物线y=x2﹣4x+3经过点A、点B,与x轴交于点E、点F,且其顶点M在CD上.(1)请直接写出下列各点的坐标:A(0,3),B(4,3),C(4,﹣1),D(0,﹣1);(2)若点P是抛物线上一动点(点P不与点A、点B重合),过点P作y轴的平行线l与直线AB交于点G,与直线BD交于点H,如图2.①当线段PH=2GH时,求点P的坐标;②当点P在直线BD下方时,点K在直线BD上,且满足△KPH∽△AEF,求△KPH面积的最大值.根据相似三角形的性质可得,再根据二次函(∴,,点.此时点(EFAEF∴∴.性,分类思想,综合性较强,有一定的难度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
孝感市2014年高中阶段学校招生考试数 学温馨提示:1.答题前,考生务必将自己所在县(市、区)、学校、姓名、考号填写在试卷上指定的位置.2.选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题的答案必须写在答题卡的指定位置,在本卷上答题无效. 3.本试卷满分120分,考试时间120分钟.一、精心选一选,相信自己的判断!(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分)1.下列各数中,最大的数是A .3B .1C .0D .5- 2.如图是某个几何体的三视图,则该几何体的形状是A .长方体B .圆锥C .圆柱D .三棱柱 3ABCD4.如图,直线l 1//l 2,l 3⊥l 4,∠1=44°,那么∠2的度数为A .46°B .44°C .36°D .22°5.已知12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m n -的值是A .1B .2C .3D .46.分式方程2133x x x =--的解为 A .16x =- B .23x = C .13x = D .56x =7.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误..的是 A .中位数是55 B .众数是60 C .方差是29 D .平均数是541 2l 1 l 2l 4l 3 (第4题图)(第2题图)8.如图,在 ABCD 中,对角线AC 、BD 相交成的锐角为α,若a AC =,b BD =,则ABCD 的面积是A .αsin 21abB .αsin abC .cos ab αD .1cos 2ab α 9.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上, 点D (5,3)在边AB 上,以C 为中心,把△CDB 旋转90°, 则旋转后点D 的对应点D '的坐标是 A .(2,10) B .(-2,0) C .(2,10)或(-2,0) D .(10,2)或(-2,0)10.如图,在半径为6cm 的⊙O 中,点A 是劣弧BC 的中点,点D 是优弧BC 上一点,且30D ∠=︒,下列四个结论:①BC OA ⊥;②BC =;③23sin =∠AOB ;④四边形ABOC 是菱形.其中正确结论的序号是 A .①③ B .①②③④ C .②③④ D .①③④11.如图,直线y x m =-+与4y nx n =+(0n ≠)的交点的横坐标为2-,则关于x 的不等式40x m nx n -+>+>的整数解为A .1-B .5-C .4-D .3-12.抛物线2y ax bx c =++的顶点为(1,2)D -,与x 轴的一个交点A 在点(3,0)-和(2,0)-之间,其部分图象如图所示,则以下结论:① 240b ac -<;②0a b c ++<; ③2c a -=;④方程220ax bx c ++-=有两个相等的实数根,其中正确结论的个数为 A .1个B .2个C .3个D .4个CBD α O(第8题图)二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上) 13.函数11x y x +=-的自变量x 的取值范围是 ☆ . 14.下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是 ☆ .(填序号) 15.若1a b -=,则代数式222a b b --的值为 ☆ .16.如图,已知矩形ABCD ,把矩形沿直线AC 折叠,点B 落在点E 处,连接DE 、BE ,若△ABE 是等边三角形,则ABECED S S △△= ☆ .17.如图,Rt △AOB 的一条直角边OB 在x 轴上,双曲线(0)ky x x=>经过斜边OA 的中点C ,与另一直角边交于点D ,若OCD S △=9,则OBD S △的值为 ☆ . 18.正方形111A B C O ,2221A B C C ,3332A B C C ,…按如图所示的方式放置.点1A ,2A ,3A ,…和点1C ,2C ,3C ,…分别在直线1y x =+和x 轴上,则点6B 的坐标是 ☆ .三、用心做一做,显显自己的能力!(本大题共7小题,满分66分.解答写在答题卡上)19.(本题满分6分)计算:21()12--+-20.(本题满分8分)如图,在Rt△ABC中,∠ACB=90°.(1)先作∠ABC的平分线交AC边于点O,再以点O为圆心,OC为半径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);(4分)(2)请你判断(1)中AB与⊙O的位置关系,并证明你的结论.(4分)21.(本题满分10分)为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C 级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是☆;(2分)(2)图1中∠α的度数是☆,并把图2条形统计图补充完整;(2分)(3)该县九年级有学生3500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为☆;(3分)(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.(3分)BCA(第20题图)(体育测试各等级学生人数扇形图)αD 级B 级A 级(第21题图1)30 %35 %C 级22.(本题满分10分)已知关于x 的方程22(23)10x k x k --++=有两个不相等的实数根1x 、2x . (1)求k 的取值范围;(3分) (2)试说明10x <,20x <;(3分)(3)若抛物线22(23)1y x k x k =--++与x 轴交于A 、B 两点,点A 、点B 到原点的距离分别为OA 、OB ,且23OA OB OA OB +=⋅-,求k 的值.(4分)23.(本题满分10分)我市荸荠喜获丰收,某生产基地收获荸荠40吨.经市场调查,可采用批发、零售、加15吨. (1)求y 与x 之间的函数关系式;(4分) (2)若零售量不超过批发量的4倍,求该生产基地按计划全部售完荸荠后获得的最大利润.(6分)24.(本题满分10分)如图,AB 是⊙O 的直径,点C 是⊙O 上一点,AD 与过点C 的切线垂直,垂足为点D ,直线DC 与AB 的延长线相交于点P ,弦CE 平分∠ACB ,交AB 于点F ,连接BE .(1)求证:AC 平分∠DAB ;(3分) (2)求证:△PCF 是等腰三角形;(3分)(3)若4tan 3ABC ∠=,BE 27=,求线段PC 的长.(4分)(第24题图)CPO F ADB25.(本题满分12分)如图1,矩形ABCD 的边AD 在y 轴上,抛物线243y x x =-+经过点A 、点B ,与x 轴交于点E 、点F ,且其顶点M 在CD 上. (1)请直接写出下列各点的坐标:A ☆ ,B ☆ ,C ☆ ,D ☆ ;(4分)(2)若点P 是抛物线上一动点(点P 不与点A 、点B 重合),过点P 作y 轴的平行线l与直线AB 交于点G ,与直线BD 交于点H ,如图2. ①当线段PH =2GH 时,求点P 的坐标;(4分)②当点P 在直线BD 下方时,点K 在直线BD 上,且满足△KPH ∽△AEF ,求△KPH 面积的最大值.(4分)孝感市2014年高中阶段学校招生考试数学参考答案及评分说明二、填空题13.x ≠1; 14.①③; 15.1; 16.13; 17.6; 18.(63,32) .三、解答题19.解:原式=211()2-+2-2- ···································································· 2分 =4+2-2 ··················································································· 4分 =4 ···················································································· 6分20.解:(1)如图:················································· 4分(2)AB 与⊙O 相切. ········································································· 6分证明:作OD ⊥AB 于D ,如图.∵BO 平分∠ABC ,∠ACB =90°,OD ⊥AB , ∴OD =OC ,∴AB 与⊙O 相切. ······························································· 8分21.(1)40; …………………………………2分 (2)54°,如图:…………………………………4分 (3)700; …………………………………7分 (4)画树形图如下:················ 8分∴P (选中小明)=61122= . ···················································· 10分GG FHGHFEE F EH G F E (第20题答案图)(第21题答案图)22.解:(1)由题意可知:[]224(1)0(23)k k -+>--=, ······································ 1分 即0512>+-k ································· 2分∴512k <. ···································· 3分 (2)∵1221223010x x k x x k +=-<⎧⎪⎨=+>⎪⎩, ····································· 5分 ∴120,0x x <<. ···································· 6分(3)依题意,不妨设A (x 1,0),B (x 2,0).∴1212()(23)OA OB x x x x k +=+=-+=--,2121212()()1OA OB x x x x x x k =--=--==+,······························ 8分 ∵23OA OB OA OB +=-, ∴2(23)2(1)3k k --=+-,解得k 1=1,k 2=-2. ······································· 9分 ∵512k <,∴k =-2. ·································· 10分 23.解:(1)依题意可知零售量为(25-x )吨,则y =12 x +22(25-x ) +30×15 ····································································· 2分 ∴y =-10 x +1000 ··········································································· 4分(2)依题意有:250254x x x x ≥⎧⎪-≥⎨⎪-≤⎩, 解得:5≤x ≤25. ··································· 6分 ∵-10<0,∴y 随x 的增大而减小. ····································· 7分∴当x =5时,y 有最大值,且y 最大=950(百元).∴最大利润为950百元. ···································· 10分24. 解:(1)∵PD 切⊙O 于点C ,∴OC ⊥PD . ···························································· 1分 又AD ⊥PD ,∴OC ∥AD .∴∠ACO =∠DAC .又OC =OA ,∴∠ACO =∠CAO ,∴∠DAC =∠CAO ,即AC 平分∠DAB . ···················································· 3分(2)∵AD ⊥PD ,∴∠DAC +∠ACD =90°. 又AB 为⊙O 的直径,∴∠ACB =90°. ∴∠PCB +∠ACD =90°,∴∠DAC =∠PCB . 又∠DAC =∠CAO ,∴∠CAO =∠PCB .…… 4分∵CE 平分∠ACB ,∴∠ACF =∠BCF , ∴∠CAO +∠ACF =∠PCB +∠BCF , ∴∠PFC =∠PCF , …………… 5分∴PC =PF ,∴△PCF 是等腰三角形.…………… 6分(3)连接AE .∵CE 平分∠ACB ,∴AE BE =,∴AE BE ==∵AB 为⊙O 的直径,∴∠AEB =90°. 在Rt △ABE 中,14AB =. ··································· 7分∵∠P AC =∠PCB ,∠P =∠P ,∴△P AC ∽△PCB , ··································· 8分 ∴PC AC PB BC =.又tan ∠ABC =43,∴43AC BC =,∴43PC PB =.设4PC k =,3PB k =,则在Rt △POC 中,37PO k =+,7OC =, ∵222PC OC OP +=,∴222(4)7(37)k k +=+, ∴k =6 (k =0不合题意,舍去).∴44624PC k ==⨯=. ···················································· 10分25.(1)A (0,3),B (4,3),C (4,-1),D (0,-1). ········································· 4分(2)①设直线BD 的解析式为(0)y kx b k =+≠,由于直线BD 经过D (0,-1),B (4,3),∴134b k b -=⎧⎨=+⎩,解得11k b =⎧⎨=-⎩,∴直线BD 的解析式为1y x =-. ············ 5分设点P 的坐标为2(,43)x x x -+,则点H (,1)x x -,点G (,3)x . 1°当1x ≥且x ≠4时,点G 在PH 的延长线上,如图①.∵PH =2GH ,∴[]2(1)(43)23(1)x x x x ---+=--, ∴27120x x -+=,解得13x =,24x =. 当24x =时,点P ,H ,G 重合于点B ,舍去.∴3x =.∴此时点P 的坐标为(3,0). ...................................... 6分 2°当01x <<时,点G 在PH 的反向延长线上,如图②,PH =2GH 不成立. (7)4题答案图)CPO F ADB分3°当0x <时,点G 在线段PH 上,如图③.∵PH =2GH ,∴[]2(43)(1)23(1)x x x x -+--=--, ∴2340x x --=,解得11x =-,24x =(舍去), ∴1x =-.此时点P 的坐标为(1,8)-.综上所述可知,点P 的坐标为(3,0)或(1,8)-. ··································· 8分②如图④,令2430x x -+=,得11x =,23x =,∴E (1,0),F (3,0),∴E F =2.∴132AEF EF OA s ∆==. ……………………9分 ∵KPH ∆∽AEF ∆,∴2KPH AEF PH EF s s ∆∆⎛⎫= ⎪⎝⎭,∴22233(54)44KPH PH x x s ∆==-+- . …………11分 ∵41<<x ,∴当52x =时,KPH s ∆的最大值为24364. …………12分注意:1.按照评分标准分步评分,不得随意变更给分点;2.上述各题的其它解法,只要思路清晰,解法正确,均应参照上述标准给予相应分数.新课标第一网系列资料 新课标第一网系列资料新课标第一网系列资料。