基于Matlab的客车转向侧翻稳定性分析(精)

基于Matlab的客车转向侧翻稳定性分析(精)
基于Matlab的客车转向侧翻稳定性分析(精)

基于Matlab 的客车转向侧翻稳定性分析

摘要:本文主要对客车转向行驶时的侧翻情况进行了研究,建立了客车在行驶过程中转向时的数学模型,推导出了稳态转向时客车侧翻临界车速的计算公式,并结合某客车结构参数和路面附着条件进行了仿真,得出了通过提高客车的抗侧翻性能来提高客车的行驶稳定性的方法。

关键词:客车;转向侧翻;稳定性分析;Matlab

0 引言

侧翻是指汽车在行驶过程中绕其纵轴转动900 或更大的角度,以至车身与地面相接触的一种极其危险的侧向运动。汽车侧翻可分为两类:一是曲线运动引起的侧翻,二是绊倒侧翻。

曲线运动引起的侧翻是指汽车在道路(包括侧向坡道)上行驶时,由于汽车的侧向加速度超过一定限值,使得汽车内侧车轮的垂直反力为零而引起的侧翻[1]。

客车车身和质量比轿车等小型车大得多,而且其地板一般都比较高,在转向侧翻事故中,车体将向某一侧倾倒,与地面接触的侧围会产生变形,结构的变形可能侵入车厢内部,对乘客造成伤害[2]。而侧翻试验是较难实施的且成本较大,本文通过建立客车侧翻的数学模型,在Matlab 中进行仿真来分析影响客车转向行驶稳定性的因素,从而为提高客车的操纵稳定性,在设计阶段保证客车结构参数的合理性,避免车辆行驶发生翻车事故奠定理论基础。

1 车辆转向侧翻模型

客车的前后桥一般采用非独立悬架,在行驶过程中遇到弯道或避开障碍物时需要紧急转向。转向时车辆的质心绕转向瞬心C 作圆周运动。Rr 为转向瞬心C 到后内侧车轮的转向半径;Rf 为转向瞬心C 到前内侧车轮的转向半径;θ 为汽车转向轮转过的角度;L 为汽车的轴距;汽车质心到前桥距离为a;汽车质心到到后桥距离为b。

2 车辆转向时的受力分析

车辆在转向时,会使车身向外侧倾斜,Gs 为客车车身的悬挂质量受的重力;Gu1 为客车前桥的非悬挂质量受的重力;Gu2为客车后桥的非悬挂质量受的重力;Fyi1,Fyi2 分别为地面给转向内侧车轮的侧向附着力;Fyo1,Fyo2 分别为地面给转向外侧车轮的侧向附着力;Fzi1,Fzi2 分别为地面给转向内侧车轮的支撑反力;Fzo1,Fzo2 分别为地面给转向外侧车轮的支撑反力;Fsy 为客车车身的悬挂质量转向时产生的侧向力;Fuy1,Fuy2 为前后车桥非悬挂质量产生的侧向力。

根据车辆转向时受力分析,为路面附着系数。设Ms 为客车车身的悬挂质量;Mu1、Mu2 为客车前后桥的非悬挂质量;asy 为客车车身悬挂质量的侧向加速度;auy1、auy2 为客车前后桥非悬挂质量的侧向加速度。

3 车辆转向临界侧翻状态分析

转向时由于悬架的弹性变形,车身悬挂质量会向转向外侧倾斜,使其质心发生了偏移,同时使车身发生了侧倾。设侧倾角为φ,侧倾角的大小与悬架的侧倾角刚度有关。由于车轮的弹性变形,内侧车轮与外侧车轮的载荷发生了转移,外侧车轮载荷变大,内侧车轮载荷变小,这样内侧车轮弹性变形减小,外侧车轮弹性变相增大,车桥也发生了微小侧倾,如图3所示。当转向内侧车轮所受地面支撑反力为零时,可认为汽车已达到转向侧翻的临界状态[3]。Fzo 为转向时外侧车轮所受的力;Fzi 为转向时内侧车轮所受的力;φ 为转向离心力引起的车身侧倾角;Fyi,Fyo 分别为地面对内、外侧车轮的侧向反力;B 是轮距;hg 是车身悬挂质量的质心高度;hr 是非悬挂质量的质心高度。

4 影响车辆侧翻稳定性的因素分析

影响车辆侧翻稳定性的因素可分为两大类:一是与汽车设计参数有关的部分,如车辆整备质量、质心高度、车辆轮距和悬架特性参数等;二是与车辆行驶状态有关的部分,如车辆行驶速度、转弯半径、路面附着系数、驾驶员操作等[5]。利用Matlab 软件,分析了质心高度、轮距、侧倾角、转向半径、路面附着系数对车辆转向侧翻的影响。

4.1 质心高度、轮距汽车质心高度与汽车侧翻系数成非线性关系,影响汽车质心高度的因素很多并对汽车侧翻阈值影响很大。而质心高度与车辆的载重、悬架特性、车速等相关。轮距受汽车最大车宽限制,其值是一个定值。由式(15)可知,轮距对汽车侧翻的影响很大,轮距的增加可提高汽车的侧翻稳定性。质心高度越高,车辆临界稳定车速越低。质心高度的降低,有利于提高汽车转向行驶的临界稳定车速,因此有效地降低客车的重心,有利于提高其转向稳定性。

当质心高度一定时,增加轮距可以提高车辆的临界稳定车速。因此,在满足设计要求的同时,尽可能的增加轮距对于提高客车转向稳定性有一定的意义。

4.2 侧倾角在研究车辆侧翻稳定性时,引入“侧倾中心”的概念,即将车身相对地面转动时的瞬时轴线称为车身侧倾轴线,该轴线通过汽车前、后轴处横断面上的瞬时转动中心为侧倾中心,它的位置取决于悬架系统的结构和特性参数等。车身的侧倾角与临界车速的关系如图5 所示。侧倾角与临界车速基本成线性关系,车身的侧倾角越小,车辆转向临界稳定车速越大。车辆转向时车身侧倾角与悬架的侧倾角刚度有关,悬架的侧倾角刚度越大,车身发生侧倾的角度越小,故增大悬架的侧倾角刚度,可以改善车辆侧翻稳定性。

4.3 转向半径由式(8)可知,转向半径对侧向加速度影响很大,转向半

径越大,侧向加速度越小,对于车辆的转向行驶稳定性越有利。转向半径与临界车速的关系可以看出随着转向半径的增大,车辆临界稳定车速也增大。可见,汽车行驶时转向过急,导致转向半径过小,车辆可能发生侧翻的速度越低,即在低速时就可能发生侧翻的危险。

4.4 路面附着系数路面条件对于车辆转向稳定性也起着至关重要的作用,车辆在何种路面上行驶对于转向的安全也起着决定性的作用。路面附着系数与临界车速的关系从图7 中可以看出随着路面附着性能的改善,客车转向行驶的临界稳定车速随之增加,转向轮转过的角度越小,临界车速越大,行驶越安全。故改善客车行驶的路面环境有利于提高其行驶的稳定性。

5 结论

本文建立了客车在行驶过程中转向时的转向模型,推导出了车辆侧翻临界车速的计算公式,结合相关的车辆结构参数和路面附着条件在Matlab 中进行了仿真。通过对仿真结果得出了结论:增大车辆的轮距、降低车辆的质心高度、增大车辆悬架的侧倾角刚度、增加转向时的半径、改善路面附着条件,可以提高车辆转向时的侧翻稳定性。这为车辆在结构设计阶段改善其行驶稳定性奠定了理论基础。

本工程硕士论文源自

汽车侧翻分析

汽车侧翻分析在汽车行驶中中,侧翻是其中一种最为严重并且威胁成员安全的事故。侧翻可以定义为能够使车辆绕其纵轴旋转90度或更多以至于车身同地面接触的任何一种操纵。侧翻可以由一个或一系列综合因素产生。它可以发生在平直的水平地面上,并且车辆的侧向加速度达到一定的数值,该数值要超过车辆侧面重量转移到车轮上所抵消的加速度值。 通过有坡度的路面(或无路情况)时由于不平路面的冲击,地面松软或其他障碍物会促使侧向压力提高从而使车辆“失足”。 侧翻过程是一个包括作用在车辆上和车辆里的力的相互作用的复杂过程。侧翻受操纵和高速公路的影响。人们已经通过理论分析以及包括一系列复杂设备的模型实验研究侧翻过程。这个过程很容易通过静态基本结构实验来理解(忽略惯性和滚动平面上的加速度),并且促进发展更加复杂的模型。 1、刚性汽车的准静态侧翻 汽车侧翻的最基本的机械特性可以通过考查转弯过程中稳定车身的受 力均衡性来了解。稳定的车辆是 指悬架和轮胎的偏置在分析中被 忽略掉。在转弯操纵中,侧向力 作用在地面上来平衡作用在汽车 重心上的侧向加速度,如图9-2 所示。侧向力作用在车辆上的位 置的不同产生一个力矩,该力矩

使车辆向如图所示的外侧侧翻. 为了分析转动情况,假定汽车在稳定状态以使汽车没有滚动加速度,并且使轮胎如图所示受力(前轮和后轮)。在很多公路环境中,它也适合考虑横向坡度。如大家所知的坡度和道路转弯处汽车外侧比内侧高出的程度。在分析中,将角度表示为”?”,想左下的 坡度表示正角。这个方向的坡度有助于 平衡侧向加速度。斜坡角度通常情况下很小,而且角度很小时约有()1cos ,sin ==???。以汽车接地点为中心的力矩关系为: 02=-+-t zi y Mg t F Mh h Ma ? (9-1) 从式(9-1)我们可以得出a y : h t Mg F h t g a zi y -+=?2 (9-2) 在水平路面上(0=?),没有侧向加速度,方程也成立。此时,内侧车轮载重,F zi ,是车总重的一半。另外通过正确选择坡面角度,可以使F zi 保持在具有侧向加速度的汽车重量的一半.,即通过公式: g a y =? (9-3) 在公路设计中,坡面被准确用在曲率设计中。在给定半径和预定行驶速度的情况下,恰当的选择坡面以产生一个侧向加速度,这个加速度在0~0.1的范围内。在道路外侧比内侧高的曲度下汽车具有加速度为零时的速度称为中间速度。 重新回到方程(9-2),随着侧向加速度的增大,内侧车轮上的负载必定减少。正是通过这个过程,汽车在转弯过程中能够去抵抗或抵消侧翻运动力矩。当内侧车轮负载为零时极限转弯情况就会发生(所有的负载转移到外侧车轮上)。在此极限位置侧翻将会开始发生,这是因为汽车不能继续维持在滚动平面上的平衡。侧翻开始时的侧向加速度是临界加速度,并由公式给出: h h g a t y ?+=2 (9-4) 没有坡度时,使侧翻发生的侧向加速度的临界值仅仅是??。这种简单的侧翻临界点的估算过去常常用在汽车抵抗侧翻运动的性能的估算中。该公式非常简便,应为它只需要两个汽车参数—轮距和重心高度。然而,这种估算却很保守(预测的侧翻临界值比精确值大很多),该公式主要用来比较汽车性能而不是预测绝对的性能水平(一些动力学专家利用这种侧翻临界点逆形式t h 2作为汽车侧翻

汽车碰撞模拟分析流程

汽车碰撞模拟分析流程-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

ANSYS 汽车碰撞分析流程Flow Chart of Auto Impact Analysis Prepared By 史志远 Date: Nov.1, 2004

汽车碰撞模拟分析流程 一、碰撞安全性试验介绍: 在汽车模拟分析的过程中,提高汽车碰撞安全性的目的是在汽车发生碰撞时确保乘员生存空间、缓和冲击、防止发生火灾等等。但是从碰撞事故分析中可知,汽车碰撞事故的形态也千差万别,所以对汽车碰撞安全性能的评价也必须针对不同的碰撞形态来进行。按事故统计结果,汽车碰撞事故主要可分为正面碰撞、侧面碰撞、追尾碰撞和翻车等几种类型。但随着公路条件的改善,正面碰撞和侧面碰撞形态成了交通事故中最常见的碰撞形式。 按照碰撞试验的目的区分,现在碰撞试验大体可以分为三类: 1)由政府法规要求的强制性试验:例如FMVSS208、ECE R94法规规定的正面碰撞试 验,FMVSS214、ECE R95法规规定的侧面碰撞试验等等; 2)由汽车制造厂自己制定的碰撞试验方法:例如用于提出改善汽车碰撞安全性的新 措施等等; 3)为消费者提供信息的试验:例如美国、欧洲等国家实施的新车评价程序 (NCAP), 汽车安全法规中规定了达到政府规定的最低安全性能要求,NCAP以 更高的车速进行正面碰撞试验,以展示汽车产品的碰撞安全性能。 由于法规试验是政府强制实施的,所以,汽车碰撞试验法规是人们关注的热点。下表列出了一些美国FMVSS, 欧洲ECE的汽车被动安全性法规的试验项目。 表一 FMVSS 与 ECE 的一些汽车安全性法规

利用matlab进行系统分析基础

实验一利用matlab进行系统分析基础1.描述线性系统的三种不同方式之间的转换

问题1 已知系统的传递函数为 将其转换为零极点型。 相应的matlab语句为: num=[2 10]; den=[1 8 19 12]; printsys(num,den,’s’) 回车 [z,p,k]=tf2zp(num,den) 回车 察看语句的执行结果,并说明最后一行程序执行结果的含义;问题2 已知传递函数同上,试将其转换为状态变量型。Matlab语句为: Num=[2 10]; den=[1 8 19 12]; [a,b,c,d]=tf2ss(num,den) 回车

对应的状态方程为 式中A,B,C,D对应于程序中的a,b,c,d。

问题3 已知系统的零极点型传递函数为,试将其转换为传递函数型。Matlab语句: z=-1;p=[-2 –3 –4 ]; k=5; (回车) [num, den]=zp2tf(-1, [-2 –3 –4 ],2) (回车) %观察显示结果 继续输入: printsys(num,den,’s’) (回车) 记录显示结果。 2.卷积计算 原理: 两个信号卷积公式:

对于两个不规则波形的卷积,依靠手算是很困难的,在Matlab种则变得十分简单。 例如已知两个信号 其中分别表示两个门函数。 求其卷积的matlab程序如下: t1=1:0.01:2; f1=ones(size(t1)).*(t1>1);(表示一个高度为1的门函数,时间从t=1到 t=2) t2=2:0.01:3; f2=ones(size(t2)).*(t2>2); (表示一个高度为1的门函数,时间从t=2到t=3) c=conv(f1,f2);(卷积) t3=3:0.01:5; subplot(3,1,1),plot(t1,f1); subplot(3,1,2),plot(t2,f2); subplot(3,1,3),plot(t3,c); 其结果如图所示 问题1 已知两个信号 试利用matlab计算卷积 (要求显示出波形图) 3.傅立叶变换

用MATLAB实现线性系统的频域分析报告

实验二用MATLA实现线性系统的频域分析 [ 实验目的] 1 .掌握MATLAE平台下绘制典型环节及系统开环传递函数的Bode图和Nyquist图(极坐标图)绘制 方法; 2.掌握利用Bode图和Nyquist图对系统性能进行分析的理论和方法。 [ 实验指导] 一、绘制Bode图和Nyquist图 1.Bode图绘制 采用bode() 函数,调用格式: ①bode(sys) ; bode(num,den); 系统自动地选择一个合适的频率围。 ②bode(sys , w); 其中w(即3)是需要人工给出频率围,一般由语句w=logspace(a,b,n)给出。logspace(a,b,n):表示在10a到10b之间的n个点,得到对数等分的w值。 ③bode(sys,{wmin,wmax}); 其中{wmi n,wmax}是在命令中直接给定的频率w的区间。 以上这两种格式可直接画出规化的图形。 ④[mag,phase, 3 ]=bode(sys)或[m,p]=bode(sys) 这种格式只计算Bode图的幅值向量和相位向量,不画出图形。 m为频率特性G(j 3 )的幅值向量; p 为频率特性G(j 3 ) 的幅角向量,单位为角度(°)。 w为频率向量,单位为[弧度]/秒。在此基础上再画图,可用: subplot(211);semilogx(w,20*log10(m) % 对数幅频曲线subplot(212);semilogx(w,p) % 对数相频曲线 ⑤bode(sys1,sys2 ,…,sys N); ⑥bode((sys1,sys2 ,…,sys N, w); 这两种格式可在一个图形窗口同时绘多个系统的bode图。 2.Nyquist 曲线的绘制

基于Matlab的客车转向侧翻稳定性分析(精)

基于Matlab 的客车转向侧翻稳定性分析 摘要:本文主要对客车转向行驶时的侧翻情况进行了研究,建立了客车在行驶过程中转向时的数学模型,推导出了稳态转向时客车侧翻临界车速的计算公式,并结合某客车结构参数和路面附着条件进行了仿真,得出了通过提高客车的抗侧翻性能来提高客车的行驶稳定性的方法。 关键词:客车;转向侧翻;稳定性分析;Matlab 0 引言 侧翻是指汽车在行驶过程中绕其纵轴转动900 或更大的角度,以至车身与地面相接触的一种极其危险的侧向运动。汽车侧翻可分为两类:一是曲线运动引起的侧翻,二是绊倒侧翻。 曲线运动引起的侧翻是指汽车在道路(包括侧向坡道)上行驶时,由于汽车的侧向加速度超过一定限值,使得汽车内侧车轮的垂直反力为零而引起的侧翻[1]。 客车车身和质量比轿车等小型车大得多,而且其地板一般都比较高,在转向侧翻事故中,车体将向某一侧倾倒,与地面接触的侧围会产生变形,结构的变形可能侵入车厢内部,对乘客造成伤害[2]。而侧翻试验是较难实施的且成本较大,本文通过建立客车侧翻的数学模型,在Matlab 中进行仿真来分析影响客车转向行驶稳定性的因素,从而为提高客车的操纵稳定性,在设计阶段保证客车结构参数的合理性,避免车辆行驶发生翻车事故奠定理论基础。 1 车辆转向侧翻模型 客车的前后桥一般采用非独立悬架,在行驶过程中遇到弯道或避开障碍物时需要紧急转向。转向时车辆的质心绕转向瞬心C 作圆周运动。Rr 为转向瞬心C 到后内侧车轮的转向半径;Rf 为转向瞬心C 到前内侧车轮的转向半径;θ 为汽车转向轮转过的角度;L 为汽车的轴距;汽车质心到前桥距离为a;汽车质心到到后桥距离为b。 2 车辆转向时的受力分析 车辆在转向时,会使车身向外侧倾斜,Gs 为客车车身的悬挂质量受的重力;Gu1 为客车前桥的非悬挂质量受的重力;Gu2为客车后桥的非悬挂质量受的重力;Fyi1,Fyi2 分别为地面给转向内侧车轮的侧向附着力;Fyo1,Fyo2 分别为地面给转向外侧车轮的侧向附着力;Fzi1,Fzi2 分别为地面给转向内侧车轮的支撑反力;Fzo1,Fzo2 分别为地面给转向外侧车轮的支撑反力;Fsy 为客车车身的悬挂质量转向时产生的侧向力;Fuy1,Fuy2 为前后车桥非悬挂质量产生的侧向力。

翻车事故分析

HEBEI UNITED UNIVERSITY 安全系统工程论文 论文题目:翻车事故分析 学号: 学生姓名: 专业班级: 学院: 指导教师: 2012年05月20日

目录 一翻车事故树的构造 (2) 二事故树的定性分析 (4) 1.求最小径集 (5) 2.结构重要度分析 (5) 3.结论 (6) 4.建议 (6) 三翻车事故安全检查表 (6) 附:翻车事故图 (8)

翻车事故分析 摘要据统计,在道路交通事故中,因汽车翻车造成的事故占整个事故的42%以上。汽车翻车后不但造成经济损失,而且造成人员伤亡,结果是很难让人接受的。研究、探讨汽车发生翻车事故的愿因,采取预防措施,是十分必要的,也是非常有意义的。对其采用事故树分析的方法进行分析,寻找出可能导致该事故发生的中间事件和基本事件,计算出事故树的三个最小径集,并计算出各基本事件的结构重要度。车速过快的结构重要度最大,因此,限制车速是减少翻车事故最有效和最关键的手段。在此基础上,制作出安全检查表,为事故的预防和评价提供依据。 关键词翻车事故事故树安全检查表车辆失稳 一翻车事故树的构造 翻车是指部分或全部车轮悬空、车身着地的现象,通常指车辆没有发生其他事态而造成的翻车。翻车是一种复杂的事故,很大程度上受司机、道路状况以及车辆的设计的影响。”专家表示,在道路交通事故中,汽车翻车事故不仅会造成巨大经济损失,而且极易造成人员伤亡。那么,造成翻车的原因都有哪些?作为驾驶员又该如何尽量避免此类事故的发生呢? 车速过快导致翻车: 因车速过快,驾驶员在道路交叉口见到前方转盘时,猛打方向,容易导致车辆侧翻。车速过快,当对面过来车辆,两车会车时方向盘转动过多,容易导致了惨剧的发生。车辆飞速行驶,容易导致车辆失控导致翻车。有效控制车速,避免驾驶员对车辆控制的失控情况,对于防止翻车发生最为重要。 已知危险状态的翻车因素: 冰雪道路翻车:在冰雪道路上行驶时,由于轮胎与路面之间的附着力小,容易使车辆侧滑、摆头。如果车速较快,极易导致翻车 雨后路滑造成翻车:下雨后,由于路面不平造成积水,车辆与地面之间的摩擦系数变小,使得车辆在快速行驶和刹车过程中容易因侧滑而翻车。 山路高低不平导致翻车:山路行车是非常危险的。山路绕山而行,大多高低不平且较窄,易发生翻车事故。 标志标线不全导致翻车:在行车过程中看懂交通语言是至关重要的,比如什么是单行道、

事故车辆定损标准模板

查勘定损技术规范 ——事故车辆定损标准 (模板) 目录第一章事故车定损标准使用说明 第二章零配件及总成更换标准 第三章修理工时费标准 第四章零配件管理费标准 第五章零配件扣除残值标准 第六章案例操作示范

第一章事故车定损标准使用说明 本模板各类定损项目所使用的定损标准为上限标准。在实务操作中,定损人员应根据实际情况在此标准以下灵活掌握。公司将根据定损人员实际使用标准的情况进行绩效考核。 一、钣金类工时费定损原则 1、一般车型:按损坏程度及损坏面积,并结合修复部位的难易程度来核定修理工费。 2、特殊车型:价值较高的车型或老旧车型,当外观件、车身骨架及大梁等变形严重时,可以与客户和修理厂协商,修理工时费可按该配件价格的20%~50%核定。 二、漆工类工时费定损原则 1、油漆工时费是指油漆材料费、油漆辅料费及油漆人工费之总和。 2、塑料件、亚光饰件、金属漆及变色漆在工费核定时可按10-20%比例上浮。 3、大型客车按单位面积核定工费。 4、轿车及小型客车按幅(每车13幅)核定工时费。

三、拆装类工时费核定原则 1、一般原则:按照拆装的难易程度及工艺的复杂程度核定工时费。 2、单独拆装单个零件按单件计算人工。 3、拆装某一零件必须先拆掉其他零件,则需要考虑辅助拆装的工费。 4、拆装机械零件和电器零件,需要适当考虑拆装后的调试或测试费用。 5、拆装覆盖件及装饰件,一般不考虑其他工时费。 6、检修ABS,需确认维修方法,一般拆车轮30元/轮。 7、检修线路或电器元件另外计算拆装费。 8、拆装座椅如含侧气囊,工时费用可适当增加。 9、拆装方向机工时应按照车型调整。 10、吊装发动机的,应计算发动机吊装费用。 11、当更换项目较多时(≥10项),可以按30-50元/项统一计算总拆装费用。 四、损坏零件修复与更换原则 1、修复与更换的原则:损坏零件的修复或更换,一般应按照“损坏件能否修复、安全件是否允许修复、工艺上是否可以修复、是否有修复价值”的原则来确定。 2、材料更换依照保险的基本原理“补偿原则”确定,具体情况按以下: ①一般情况下,应更换正厂配件; ②如损坏件本身不是正厂配件,则以配套零件进行更换; ③稀有、老旧、高档车型的配件,更换标准应从严掌握;部分老旧车型,可与客户和修理厂协商,以拆车件进行更换。 第二章零配件及总成更换标准 一、零配件及总成更换标准 零配件及总成更换标准表

汽车侧翻分析分析解析

汽车侧翻分析 在汽车行驶中中,侧翻是其中一种最为严重并且威胁成员安全的事故。侧翻可以定义为能够使车辆绕其纵轴旋转90度或更多以至于车身同地面接触的任何一种操纵。侧翻可以由一个或一系列综合因素产生。它可以发生在平直的水平地面上,并且车辆的侧向加速度达到一定的数值,该数值要超过车辆侧面重量转移到车轮上所抵消的加速度值。 通过有坡度的路面(或无路情况)时由于不平路面的冲击,地面松软或其他障碍物会促使侧向压力提高从而使车辆“失足”。 侧翻过程是一个包括作用在车辆上和车辆里的力的相互作用的复杂过程。侧翻受操纵和高速公路的影响。人们已经通过理论分析以及包括一系列复杂设备的模型实验研究侧翻过程。这个过程很容易通过静态基本结构实验来理解(忽略惯性和滚动平面上的加速度),并且促进发展更加复杂的模型。 1、 刚性汽车的准静态侧翻 汽车侧翻的最基本的机械特性可以通过考查转弯过程中稳定车身的受力均衡性来了解。稳定的车辆是指悬架和轮胎的偏置在分 析中被忽略掉。在转弯操纵中,侧向力作用 在地面上来平衡作用在汽车重心上的侧向 加速度,如图9-2所示。侧向力作用在车 辆上的位置的不同产生一个力矩,该力矩使 车辆向如图所示的外侧侧翻. 为了分析转动情况,假定汽车在稳定状 态以使汽车没有滚动加速度,并且使轮胎如 图所示受力(前轮和后轮)。在很多公路环 境中,它也适合考虑横向坡度。如大家所知 的坡度和道路转弯处汽车外侧比内侧高出 的程度。在分析中,将角度表示为”?”,想 左下的坡度表示正角。这个方向的坡度有助 于平衡侧向加速度。斜坡角度通常情况下很 小,而且角度很小时约有()1cos ,sin ==???。以汽 车接地点为中心的力矩关系为: 02=-+-t zi y Mg t F Mh h Ma ? (9-1) 从式(9-1)我们可以得出a y : h t Mg F h t g a zi y -+=?2 (9-2) 在水平路面上(0=?),没有侧向加速度,方程也成立。此时,内侧车轮载重,F zi ,是车总重的一半。另外通过正确选择坡面角度,可以使F zi 保持在具有侧向加速度的汽车重量的一半.,即通过公式:

大客车侧翻原因分析

大客车侧翻原因分析 侧翻事故作为所有道路交通事故中致命率极高的恶性交通事故,对国民经济与人身安全具有很大的危害。汽车侧倾稳定性在行車安全中的问题越来越突出,交通事故中侧翻事故所占的比例逐年递增。目前国内在防侧翻控制方面的研究还处于理论研究阶段,防侧翻控制技术还不成熟,没有成熟可靠的防侧翻控制产品装配车辆。即使是高端的客车车型,采用的也是国外公司匹配的产品,大部分营运车辆并没有装备防侧翻系统。此外,国内公路交通运输普遍的超载现象,更进一步恶化了车辆的侧翻稳定性。本文对大客车侧翻事故进行研究,对55起交通事故进行了调查以及对导致侧翻的原因进行分析,包括对侧翻阈值的分析来评价大客车的侧翻稳定性,从而为主动控制技术、安全驾驶方面、疲劳监测方面等对其预防进行研究分析打下基础。 标签:侧翻原因;交通事故 一、道路交通事故原因分析 道路交通事故的影响因素体系包含四个子系统,第一为用路者因素,第二为道路因素,第三为交通流与车辆因素,第四为环境因素。 (一)用路者因素 驾驶员是道路交通事故的主要因素,引起事故的原因可以分为直接因素和间接因素,直接因素有:感知不准、反应不当、判断失误;间接因素有:生理状况异常、心理状况异常、违章驾驶、驾驶经验不足等。 (二)车辆因素 根据对某高速公路连续三年事故统计资料的分析,由于汽车机械故障所致交通事故占所有事故占所有事故的12.63%。汽车的新旧、性能优劣、维修好坏等都会影响事故的多少。车辆种类的多样化使行驶在路上的车辆尺寸不一、载重相差悬殊,性能差别很大,而驾驶员并不完全熟悉各种车辆的性能与特点,这些都给交通安全造成隐患。 (三)道路因素 道路上交通事故的形成,其表象与直接的诱因多为驾车者的违章或过失,而潜在与间接的因素涉及到道路的线形设计。线形设计通过对驾车者行为的客观干扰,据事故调查显示,事故在道路上会出现明显的集中分布,这与道路因素有关,而道路因素分为道路等级、平面线形、纵断面线形、道路横断面构成和交叉口五个方面。 (四)交通流和车辆因素

汽车碰撞模拟分析流程

ANSYS 汽车碰撞分析流程Flow Chart of Auto Impact Analysis Prepared By 史志远 Date: Nov.1, 2004

汽车碰撞模拟分析流程 一、碰撞安全性试验介绍: 在汽车模拟分析的过程中,提高汽车碰撞安全性的目的是在汽车发生碰撞时确保乘员生存空间、缓和冲击、防止发生火灾等等。但是从碰撞事故分析中可知,汽车碰撞事故的形态也千差万别,所以对汽车碰撞安全性能的评价也必须针对不同的碰撞形态来进行。按事故统计结果,汽车碰撞事故主要可分为正面碰撞、侧面碰撞、追尾碰撞和翻车等几种类型。但随着公路条件的改善,正面碰撞和侧面碰撞形态成了交通事故中最常见的碰撞形式。 按照碰撞试验的目的区分,现在碰撞试验大体可以分为三类: 1)由政府法规要求的强制性试验:例如FMVSS208、ECE R94法规规定的正面碰撞 试验,FMVSS214、ECE R95法规规定的侧面碰撞试验等等; 2)由汽车制造厂自己制定的碰撞试验方法:例如用于提出改善汽车碰撞安全性的新 措施等等; 3)为消费者提供信息的试验:例如美国、欧洲等国家实施的新车评价程序(NCAP), 汽车安全法规中规定了达到政府规定的最低安全性能要求,NCAP以更高的车速 进行正面碰撞试验,以展示汽车产品的碰撞安全性能。 由于法规试验是政府强制实施的,所以,汽车碰撞试验法规是人们关注的热点。下表列出了一些美国FMVSS, 欧洲ECE的汽车被动安全性法规的试验项目。

二、人体伤害评价指标: 在碰撞试验或碰撞模拟分析的过程中,都使用了标准的碰撞试验假人,通过测量假人的响应计算出伤害的指标,用于定量的评价整车及安全部件的保护效能。 1) Hybrid III假人家族的伤害评价基准值: 下表列出了正面碰撞试验用的Hybrid III假人家族的伤害评价基准值。Hybrid III第50百分位男性假人是目前生物保真性最好的正面碰撞试验假人,另外,为了评价汽车对不同身材乘员的安全保护性能,按比例方法开发了第95百分位男性的大身材假人和第5百分位女性的小身材假人。 2)侧面碰撞假人的伤害评价基准值: 下表所示为目前使用的用于侧面碰撞用的假人SID, EuroSID-1的伤害评价基准值:

利用MATLAB进行时域分析

自动控制原理与系统课程实验报告 实验题目:利用MATLAB进行时域分析 班级:机电1131班姓名:刘润学号:38号 一、实验目的及内容 时域分析法是一种直接在时间域中对系统进行分析的方法,具有直观、准确的优点,并且可以提供系统时间响应的全部信息。在此实验中,主要介绍时域法进行系统分析,包括一阶系统、二阶系统以及高阶系统,以及系统的性能指标。通过实验,能够快速掌握、并利用MATLAB及控制系统箱对各种复杂控制系统进行时域分析。 二、实验设备 三、实验原理 典型的二阶系统在不同的阻尼比的情况下,它们的阶跃响应输出特性的差异是很大的。若阻尼比过小,则系统的振荡加剧,超调量大幅度增加;若阻尼比过大,则系统的响应过慢,又大大增加了调整时间,下面通过此实验课题分析输出响应变化规律: 已知二阶振荡环节的传递函数为:G(s)=ωn*ωn/(s*s+2*ζ*ωn*s+ωn*ωn), 其中ωn=0.4,ζ从0变化到2,求此系统的单位阶跃响应曲线,并分析当ζ发生变化时,二阶系统的响应有什么样的变化规律。

四、实验步骤编出程序如下图: 五、实验结果画出图表如下图:

六、结果分析 (1)当ξ=0(无阻尼)(零阻尼)时: 无阻尼时的阶跃响应为等幅振荡曲线。如图ξ=0曲线。 (2)当0<ξ<1(欠阻尼)时: 对应不同的ξ,可画出一系列阻尼振荡曲线,且ξ越小,振荡的最大振幅愈大。如图ξ=0.4曲线。 (3)当ξ=1(临界阻尼)时: 临界阻尼时的阶跃响应为单调上升曲线。如图ξ=1曲线。 (4)当ξ>1(过阻尼)时: 过阻尼时的阶跃响应也为单调上升曲线。不过其上升的斜率较临界阻尼更慢。如图ξ=1.6曲线 七、教师评语

小度写范文2018汽车碰撞测试排名 [文本与问题的碰撞]模板

2018汽车碰撞测试排名 [文本与问题的碰撞] 科技说明文历来使广大考生容易失分。它以抽象思维严密、科技术语繁宏、篇幅冗长而一直困扰着广大的应试者。怎么才能突破这个瓶颈,拿到理想的分数呢?下面,结合笔者的一些教学经验,与大家探讨一下这类题目的解题思路,以作抛砖引玉。 一、浏览文本考生一接触考卷上的科技说明文,要用最快的速度浏览文本,迅速概括主要内容。文章主要讲什么,从哪几个方面去讲,出现了哪几个主要观点,彰显了作者怎样的研究成果等等,这些概括性的知识点,要由文本通过思维生成问题,进而形成预设的要点。科技说明文以传递信息为主,这就要求我们注意筛选重要的概念、句子并加以理解,重要概念要注意分析先与后、现象与本质、可能与现实、条件与结果、部分与整体、肯定与否定、此概念与彼概念的关系;重要句子的理解,主要通过紧缩加工、提取主干来把握其意思。二、略读段落每段大致讲什么,要能在短短的数秒钟内概括出来。这就需要我们在平时训练中培养这方面的能力,养成这种概括语言的习惯。在略读每一段的同时,把每一段出现的术语勾勒出来,可作标记以易认,从而为解决篇后的问题作铺垫。三、问题探讨认真分析题干,捕捉关键字词,明确问题之所问,接下去再回到文本之中去找答案。寻找的关键是找准与问题对应的原文。有的可能找到几处,但一般只有一处是符合要求的,这就应认真辨别比较,提取需要的内容。例如,题干主要问某个科技术语的含义,那你就要迅速找到该术语出现在第几段,(容易找到,因为你在“略读文本”时已作出标记)。然后根据上下文推敲并将其概括出来,再看看与问题的选项哪一项极相吻合,最贴近,最后答案也就浮出水面了。另外,如果问题是关于某句话或某段的理解,还是要返回到文本中去。在略读文本这一步骤,已经对每一段的大概内容进行了概括,在这个基础上须进一步精读,最后将问题准确地提炼出来。2004年全国高考语文试题科技说明文第七题,重点考查对“人类胚胎干细胞”这一概念的解释,测试的是理解词语在文中的含义以及辨析并筛选文中重要信息的能力。对“人类胚胎干细胞”的概念的理解应在文章的第一段中,特别是要在第一段的第一句话中寻求答案。对概念的理解应该抓住它最本质的特点,也就是要注意它区别于其他事物的本质特点,文章中“人类胚胎发育早期”、“囊胚”、“内侧”、“内细胞群”是关键词。A项错在“囊胚外表的扁平细胞”是胚胎的支持组织。C项是对“人类胚胎干细胞”开始分化的解释。D项由第二段可以看出,成年干细胞与人类胚胎干细胞不同,所以“也指成人身上的成年干细胞”不正确。答案自然是B项。还有,科技说明文阅读的最后一道题目基本上是考查考生对这篇文章的归纳,往往以“推断结论”的形式出现。这类题目的答案更要返回到文本中去寻找。但是,考生对文本的主要内容要相当了解,对作者的叙述思路和情感倾向也要明确把握。有了这个基础,可用排除法求得答案。最后,需要提醒的是,考生在做题过程中,还要注意以下几点:(1)不能带有自己的主观意向,凭经验、想当然地去选择答案。要以文本为依据,一切问题的答案都要来自文本。(2)如有题目问到细节,千万要精读,反复琢磨或推敲,要有耐心,才能得出答案。不要急躁或者因为看不懂、头脑胀而随意放弃。(3)防止题目的选项在叙述过程中的绝对化或片面化,也就是在用词和语气上,题目的选项是否和文本一样。尤须要注意程度副词以及表推测的用语。(作者单位:杭州求是高级中学)

matlab实验四 系统的零极点分析

实验四连续时间系统复频域分析和离散时间系统z域分析 一.实验目的: 1.掌握连续信号拉氏变换和拉氏反变换的基本实现方法。 2.熟悉laplace函数求拉普拉斯变换,ilaplace函数求拉氏反变换 的使用。 3.掌握用ztrans函数,iztrans函数求离散时间信号z变换和逆z 变换的基本实现方法。 4.掌握用freqs函数,freqz函数由连续时间系统和离散时间系统 系统函数求频率响应。 5.掌握zplane零极点绘图函数的使用并了解使用零极点图判断系 统稳定性的原理。 二、实验原理: 1.拉氏变换和逆变换 原函数()() ?象函数 f t F s 记作:[()]() =→拉氏变换 L f t F s 1[()]() -=→拉氏反变换 L F s f t 涉及函数:laplace,ilapace. 例如:

syms t;laplace(cos(2*t)) 结果为:ans =s/(s^2+4) syms s;ilaplace(1./(s+1)) 结果为:ans = exp(-t) 2. 系统传递函数H(s)或H(z)。 12121212...()()()...m m m n n n b s b s b B s H s A s a s a s a ----+++==+++ 112112...()()()...m m m n n n b z b z b B z H z A z a z a z a --+--++++==+++ 其中,B 为分子多项式系数,A 为分母多项式系数。 涉及函数:freqz,freqs. 3. 系统零极点分布与稳定性的判定。 对于连续时间系统,系统极点位于s 域左半平面,系统稳定。 对于离散时间系统,系统极点位于z 域单位圆内部,系统稳定。 涉及函数:zplane. 三、 实验内容 1. 验证性实验 a) 系统零极点的求解和作图

汽车高等动力学分析

侧偏力:汽车在行驶过程中,由于路面的侧向倾斜、侧向风、或者曲线行驶时的离心力等的作用,车轮中心沿Y轴方向将作用有侧向力F y,相应地在地面上产生地面侧向反作用力F Y,F Y即侧偏力。 侧偏现象:当车轮有侧向弹性时,即使F Y没有达到附着极限,车轮行驶方向也将偏离车轮平面cc,这就是轮胎的侧偏现象。 侧偏角:车轮与地面接触印迹的中心线与车轮平面错开一定距离,而且不再与车轮平面平行,车轮印迹中心线跟车轮平面的夹角即为侧偏角。 高宽比:以百分数表示的轮胎断面高H与轮胎断面宽B 之比 H/B×100% 叫高宽比. 附着椭圆:它确定了在一定附着条件下切向力与侧偏力合力的极限值。 转向灵敏度:汽车等速行驶时,在前轮角阶跃输入下进入的稳态响应就是等速圆周行驶。常用输出与输入的比值,如稳态的横摆角速度与前轮转角之比来评价稳态响应,这个比值称为稳态横摆角速度增益,也就是转向灵敏度。(即稳态的横摆角速度与前轮转角之比) 稳定性因数:稳定性因数单位为s2/m2,是表征汽车稳态响应的一个重要参数。 侧倾轴线:车厢相对于地面转动时的瞬时轴线称为车厢侧倾轴线。 侧倾中心:车厢侧倾轴线通过车厢在前,后轴处横断面上的瞬时转动中心,这两个瞬时中心称为侧倾中心。 悬架的侧倾角刚度:悬架的侧倾角刚度是指侧倾时(车轮保持在地面上),单位车厢转角下,悬架系统给车厢总的弹性恢复力偶矩。 转向盘力特性:转向盘力随汽车运动状况而变化的规律称为转向盘力特性。 切向反作用力控制的三种类型:总切向反作用力控制,前后轮间切向力分配比例的控制,内外侧车轮间切向力分配的控制。 侧翻阈值:汽车开始侧翻时所受的侧向加速度称为侧翻阈值。 汽车的平顺性:汽车的平顺性主要是保持汽车在行驶过程中产生的振动和冲击环境对乘员舒适性的影响在一定界限之内,主要根据乘员的主观感觉的舒适性来评价。 1.汽车的操纵稳定性:是指在驾驶者不感到过分紧张、疲劳的情况下,汽车能遵循驾驶者通过转向系统及转向车轮给定的方向行驶,且当遭遇外界干扰时,汽车能抵抗干扰而保持稳定行驶的能力。 2.汽车的操纵稳定性是汽车主动安全性的重要评价指标。 3.时域响应与频域响应表征汽车的操纵稳定性能。 4.转向盘输入有两种形式:角位移输入和力矩输入。 5.外界干扰输入主要指侧向风和路面不平产生的侧向力。 6.操纵稳定性包含的内容:1)转向盘角阶跃输入下的响应;2)横摆角速度频率响应特性;3)转向盘中间位置操纵稳定性;4)转向半径; 5)转向轻便性;6)直线行驶性能;7)典型行驶工况性能;8)极限行驶能力(安全行驶的极限性能) 7.转向半径:评价汽车机动灵活性的物理量。 8.转向轻便性:评价转动转向盘轻便程度的特性。 9.时域响应:路面不平敏感性和侧向风敏感性。 10.汽车是由若干部件组成的一个物理系统。它是具有惯性、弹性、阻尼的等多动力学的特点,所以它是一个多自由度动力学系统。 11.车辆坐标系:x轴平行于地面指向前方(前进速度),y轴指向驾驶员的左侧(俯仰角速度),z轴通过质心指向上方(横摆角速度) 12.汽车时域响应可分为不随时间变化的稳态响应和随时间变化的瞬态响应。 13.汽车转向特性的分为:不足转向、中性转向、过多转向。

利用matlab分析系统动态性能

利用matlab分析系统动态性能

控制系统的时域分析 一.系统阶跃响应的性能指标 表 1 系统性能指标 利用 matlab 程序求出各系统阶跃响应的性能指标及图像,如求原系统 1 的方程: num=1.05; den=conv([0.125,1],conv([0.5,1],[1,1,1])); G=tf(num,den); C=dcgain(G); [y,t]=step(G); plot(t,y) grid [Y,K]=max(y); tp=t(K) mp=100*(Y-C)/C n=1; while y(n)0.98*C)&&(y(i)<1.02*C) i=i-1; end ts=t(i)

图 1 系统 1 阶跃响应曲线图二.根据系统性能指标及图像分析系统 1.利用 Matlab 得各系统节约系统曲线,如图 2:num1=1.05; den1=conv([0.125,1],conv([0.5,1],[1,1,1])); G1=tf(num1,den1); [y1,t1]=step(G1); num2=1.05*[0.4762,1]; den2=conv([0.125,1],conv([0.5,1],[1,1,1])); G2=tf(num2,den2); [y2,t2]=step(G2); num3=1.05*[1,1]; den3=conv([0.125,1],conv([0.5,1],[1,1,1])); G3=tf(num3,den3); [y3,t3]=step(G3); num4=1.05*[0.4762,1]; den4=conv([0.25,1],conv([0.5,1],[1,1,1])); G4=tf(num4,den4); [y4,t4]=step(G4); num5=1.05*[0.4762,1]; den5=conv([0.5,1],[1,1,1]); G5=tf(num5,den5); [y5,t5]=step(G5); num6=1.05; den6=[1,1,1]; G6=tf(num6,den6);

汽车稳定性分析及对策研究

86 研究与探索Research and Exploration ·监测与诊断 中国设备工程 2018.02 (上) 近年来,随着社会经济的发展和科学技术的进步,汽车工业和道路建设质量都有了很大程度的改善,因此,汽车的运行速度和制动性能等动力学性能都有了很大的提升。从而使汽车逐渐成为了人们出行过程中使用的普通、快捷、方便的交通工具。但也应该认识到汽车对人类社会的生命财产所造成的伤害和损失。本文将重点研究汽车失稳的原因以及汽车稳定性应对策略。 1?汽车失稳原因分析 区分不同转向特性的车辆,如果某一汽车是转向过度特性的汽车,当车度过高,达到一定的限度时,即便其是处于线性区域内也非常可能会出现失去稳定的情况。而对于转向不足特性的车辆来说,相比转向过度的汽车,在较高的车速时其仍然具有较好的稳定性,从而确保车辆在线性区域内能够得到较好的操控稳定性。具体来说,在非线性区域内由于侧偏角的增大,轮胎的侧向力会逐渐地趋于饱和,从而导致在非线性区域内车辆失去稳定性的概率较大。车辆后轴的侧向力达到一定极限时,这时车辆的后轴会出现横向移动,引发车辆甩尾等其他十分严重事故;在车辆前轴侧向力达到一定极限时,前轴就会出现横向运动,从而导致汽车的驾驶方向出现偏差,方向失控。与此同时,导致车辆失稳的因素还有很多,比如不同路面u 值的摩擦系数,自然界的侧向风,不同的驾驶操纵等。下面列举了一些致使汽车失稳的一些主要因素。 (1)在驾驶员进行紧急刹车或者突然加速等紧急操纵而致使车辆进入非线性区内,这时质心侧偏角会增大,车辆会失去稳定性,驾驶员不能通过操纵方向盘来控制汽车的行驶方向。 (2)转向不足的汽车在不同的驾驶模式下运行时,车辆的轴荷会因为过度的速度变化而转移,在某些情况 下会导致车辆由转向不足转变为转向过度,车辆也会因此失稳。 (3)由于不同的路面其附着系数u 值是不同的,它对汽车行驶特性影响较大。另外,自然界等产生的横向力,道路的纵横曲线同样会对汽车的运行产生影响,进而引发质心侧偏角的增大使车辆失稳。 (4)当汽车突然要变更车道时,往往会产生较高的质心侧偏角。汽车实际的横摆角速度总是滞后于驾驶员对汽车的操作,汽车转向时这种滞后会导致汽车出现相对较高的横摆力矩,在横摆力矩的影响下车辆往往会失去稳定性。 上述主要分析了4条影响汽车稳定性的因素,从上述分析来看,影响车辆稳定性的变量主要包括车辆的横摆角速度和质心的侧偏,在目前国内外的研究中也主要用这两个参数作为理想变量来描述车辆的运行情况。 2?汽车稳定性控制策略分析 汽车稳定性控制技术包括汽车动力学建模、行驶状态观测、失稳控制策略和控制技术产业化。动力学建模则包括面向控制和面向仿真的建模。面向仿真的建模通常采用Carsim、ADAMS 等仿真软件建立仿真模型,面向控制的建模可采用两轮、四轮模型。状态观测通常是指对汽车运行过程中的状态参数的观测,包括对轮缸压力、摩擦系数、轮胎侧向力、纵横向车速等进行的实时观测。在产业化方面通过不断的探索和研究,在国内汽车的生产线中,稳定性控制技术的产业化在逐步实现。控制车辆稳定性的策略主要有以下几个方面。 (1)汽车制动防抱死系统(ABS)。由于车轮在边滚变化状态下与地面的附着力大于车轮处于抱死状态下的附着力,这样不仅可以防止车辆发生侧滑,还可以最大限度缩小制动距离,从而控制车轮的滑移率在20%,制动达到最安全的效果。 汽车稳定性分析及对策研究 杨昌伟,王志荣,冯迪 (长安大学工程机械学院,陕西?西安?710034) 摘要:汽车动力学稳定性是汽车驾驶过程中保持汽车安全的一项十分重要的性能,一直以来都是汽车安全行业研究的热点,其主要是指汽车在行驶过程中不发生侧滑、偏移和侧翻的性能。因此,深入分析汽车在实际运行工况中发生侧滑、偏移、侧翻等危险状况的内在机理,积极研究解决汽车在运行过程中尤其是极限工况下的稳定性的有效应对策略对汽车驾驶安全是十分重要的。 关键词:汽车动力学;稳定性;汽车安全;控制策略 中图分类号:U461.3 文献标识码:A 文章编号:1671-0711(2018)02(上)-0086-02

看汽车碰撞理论分析

从吸能说起看汽车碰撞理论分析 汽车碰撞的理论分析,具有高中物理知识的就可以看懂,好好学习学习! 吸能对于车车碰撞是致命的,现在的车祸车车碰占80%以上,碰树撞墙掉悬崖毕竟 只是少数,转一篇帖子吧 当前汽车的碰撞实验的一个陷阱就是:不同车型都是对着质量和强度都是无限大 的被撞物冲击。然后以此作为证据,来证明自己汽车的安全性其实是差不多的,这是 极端错误的。 举个例子:拿鸡蛋对着锅台碰,你可以发现所有的鸡蛋碎了,而且都碎得差不 多,于是可以得出鸡蛋的安全性都差不多。可是你拿两个鸡蛋对碰呢,结果是一边损 坏一半吗? 错!你会发现,一定只有一个鸡蛋碎了,同时另一个完好无损! 问题出现了:为什么对着锅台碰都差不多,但是鸡蛋之间对碰却永远只有一个碎 了?这个实验结果与汽车碰撞有关系吗? 原因就在于:当结构开始溃败时,刚度会急剧降低。让我们仔细看一下鸡蛋碰撞 的过程吧!1,两个鸡蛋开始碰撞一瞬间,结构都是完好的,刚性都是最大;2,随着 碰撞的继续,力量越来越大,于是其中一个刚性较弱的结构开始溃败;3,不幸发生 了,开始溃败的结构刚度急剧降低,于是,开始溃败就意味着它永远溃败,于是所有 的能量都被先溃败的一只鸡蛋吸走了。 我们在看看汽车之间的碰撞吧(撞锅台,大家的结果当然都一样!)。1,开 始,两车的结构都是完好的,都在以刚性对刚性;2,随着碰撞的继续,力量越来越 大,于是刚性较弱的A车的结构开始溃败,大家熟知的碰撞吸能区开始工作;3,不幸 再次发生,因为结构变形,A车的结构刚度反而更急剧降低,于是开始不停的"变 形、吸能";4,在A车的吸能区溃缩到刚性的驾驶仓结构之前,另一车的主要结构保持 刚性,吸能区不工作。 结论:两车对碰,其中一个刚度较低的,吸能区结构将先溃败并导致刚度降低,最终将承受所有形变,并吸收绝大部分的碰撞能量。

用Matlab计算潮流计算电力系统分析

《电力系统潮流上机》课程设计报告 院系:电气工程学院 班级:电088班 学号: 0812002221 学生姓名:刘东昇 指导教师:张新松 设计周数:两周 日期:2010年 12 月 25 日

一、课程设计的目的与要求 目的:培养学生的电力系统潮流计算机编程能力,掌握计算机潮流计算的相关知识 要求:基本要求: 1.编写潮流计算程序; 2.在计算机上调试通过; 3.运行程序并计算出正确结果; 4.写出课程设计报告 二、设计步骤: 1.根据给定的参数或工程具体要求(如图),收集和查阅资料;学习相关软件(软件自选:本设计选择Matlab进行设计)。 2.在给定的电力网络上画出等值电路图。 3.运用计算机进行潮流计算。 4.编写设计说明书。 三、设计原理 1.牛顿-拉夫逊原理 牛顿迭代法是取x0 之后,在这个基础上,找到比x0 更接近的方程的跟,一步一步迭代,从而找到更接近方程根的近似跟。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0 的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。电力系统潮流计算,一般来说,各个母线所供负荷的功率是已知的,各个节点电压是未知的(平衡节点外)可以根据网络结构形成节点导纳矩阵,然后由节点导纳矩阵列写功率方程,由于功率方程里功率是已知的,电压的幅值和相角是未知的,这样潮流计算的问题就转化为求解非线性方程组的问题了。为了便于用迭代法解方程组,需要将上述功率方程改写成功率平衡方程,并对功率平衡方程求偏导,得出对应的雅可比矩阵,给未知节点赋电压初值,一般为

额定电压,将初值带入功率平衡方程,得到功率不平衡量,这样由功率不平衡量、雅可比矩阵、节点电压不平衡量(未知的)构成了误差方程,解误差方程,得到节点电压不平衡量,节点电压加上节点电压不平衡量构成新的节点电压初值,将新的初值带入原来的功率平衡方程,并重新形成雅可比矩阵,然后计算新的电压不平衡量,这样不断迭代,不断修正,一般迭代三到五次就能收敛。 牛顿—拉夫逊迭代法的一般步骤: (1)形成各节点导纳矩阵Y。 (2)设个节点电压的初始值U和相角初始值e 还有迭代次数初值为0。 (3)计算各个节点的功率不平衡量。 (4)根据收敛条件判断是否满足,若不满足则向下进行。 (5)计算雅可比矩阵中的各元素。 (6)修正方程式个节点电压 (7)利用新值自第(3)步开始进入下一次迭代,直至达到精度退出循环。 (8)计算平衡节点输出功率和各线路功率 2.网络节点的优化 1)静态地按最少出线支路数编号 这种方法由称为静态优化法。在编号以前。首先统计电力网络个节点的出线支路数,然后,按出线支路数有少到多的节点顺序编号。当由n 个节点的出线支路相同时,则可以按任意次序对这n 个节点进行编号。这种编号方法的根据是导纳矩阵中,出线支路数最少的节点所对应的行中非零元素也2)动态地按增加出线支路数最少编号在上述的方法中,各节点的出线支路数是按原始网络统计出来的,在编号过程中认为固定不变的,事实上,在节点消去过程中,每消去一个节点以后,与该节点相连的各节点的出线支路数将发生变化(增加,减少或保持不变)。因此,如果每消去一个节点后,立即修正尚未编号节点的出线支路数,然后选其中支路数最少的一个节点进行编号,就可以预期得到更好的效果,动态按最少出线支路数编号方法的特点就是按出线最少原则编号时考虑了消去过程中各节点出线支路数目的变动情况。 3.MATLAB编程应用 Matlab 是“Matrix Laboratory”的缩写,主要包括:一般数值分析,矩阵运算、数字信号处理、建模、系统控制、优化和图形显示等应用程序。由于使用Matlab 编程运算与人进行科学计算的思路和表达方式完全一致,所以不像学习高级语言那样难于掌握,而且编程效率和计算效率极高,还可在计算机上直接输出结果和精美的图形拷贝,所以它的确为一高效的科研助手。 四、设计内容

相关文档
最新文档