生物药剂学与药物动力学关系
生物药剂学与药物动力学
名词解释:生物药剂学:是研究药物及其剂型在体内的吸收、分布、代谢、排泄过程,阐明药物的剂型因素,机体生物因素和药物疗效之间相互关系的科学。
药物动力学:是应用动力学原理和数学处理方法,定量地描述药物通过各种途径进入体内的吸收、分布、代谢、排泄过程的量时变化或血药浓度经时变化的动态规律的一门科学。
吸收:是药物从用药部位进入体循环的过程。
分布:药物进入体循环后向各组织、器官或者体液转运的过程。
代谢:药物在吸收过程或进入体循环后,受肠道菌丛或体内酶系统的作用,结构发生转变的过程。
排泄:药物及其代谢产物排出体外的过程。
胃空速率: 胃内容物由胃幽门排入十二指肠的速率。
与胃内容物的体积成正比,-dV/dt=KemV肾小管分泌:指药物由血管一侧通过上皮细胞侧底膜摄入细胞,再从细胞内通过刷状膜向管腔一侧流出。
生物利用度:剂型中的药物被吸收进入体循环的速度和程度。
负荷剂量:是为了迅速或立即达到稳态浓度而首次使用的增大剂量。
被动转运:指存在于膜两侧的药物顺浓度梯度,即从高浓度一侧向低浓度一侧扩散的过程,分为单纯扩散和膜孔转运。
表观分布容积:在假设药物充分分布的前提下,体内药物按血中浓度分布时所需体液总容积。
血脑屏障:血脑屏障是血-脑、血-脑脊液和脑脊液-脑三种屏障的总称。
脑组织对外来物质有选择的摄取能力。
治疗药物监测:以药物动力学与药效动力学理论为指导,借助现代先进分析技术与电子计算机手段,通过对患者血液或其它体液中药物浓度检测,探讨临床用药过程中人体对药物的吸收、分布、代谢、排泄的影响。
首过效应:在吸收过程中,药物在消化道和肝脏中发生的生物转化作用,使部分药物被代谢,最终进入体循环的原形药物量减少的现象。
药物治疗指数:药物的最低中毒浓度与最低有效浓度的比值。
1.为什么应用“表观分布容积”这一名词,表观分布容积有何意义?答:在假设药物充分分布的前提下,体内药物按血中浓度分布时所需体液总容积。
是一个假想的容积,它不代表体内具体的生理性容积。
生物药剂学与药物动力学
生物药剂学与药物动力学1. 引言生物药剂学与药物动力学是药学领域中的两个重要分支。
生物药剂学研究的是生物药物的制备、质量控制、稳定性和分散度等方面的知识,而药物动力学则研究的是药物在体内的吸收、分布、代谢和排泄等过程。
本文将重点介绍生物药剂学与药物动力学的定义、研究内容以及在药物研发和临床应用中的重要性。
2. 生物药剂学2.1 定义生物药剂学是研究生物药物在制剂中的制备、物理化学特性、质量控制和稳定性等方面的学科。
生物药物是利用生物技术制备的药物,包括蛋白质药物、基因治疗药物、细胞治疗药物等。
2.2 研究内容生物药剂学的研究内容主要包括:•制剂方案:研发适合生物药物的制剂方案,确保药物的稳定性和有效性。
•质量控制:建立合适的质量控制方法,确保制剂的质量符合规定标准。
•稳定性研究:评估药物制剂的物理化学稳定性,寻找最佳的保存条件。
•分散度研究:研究药物在制剂中的分散度,以及分散度对药物吸收和药效的影响。
2.3 在药物研发中的重要性生物药剂学在药物研发中起着重要的作用。
正确的制剂方案可以提高药物的稳定性和储存性,延长药物的有效期。
合适的质量控制方法可以保证制剂的质量符合标准,提高药物的安全性和有效性。
稳定性研究可以评估药物的物理化学性质,为药物制剂的改进提供依据。
分散度研究可以优化药物的溶解度和吸收性,提高药物的生物利用度。
3. 药物动力学3.1 定义药物动力学是研究药物在体内的吸收、分布、代谢和排泄等过程的学科。
药物动力学可以帮助我们了解药物在人体内的作用机制和药效学特性。
3.2 研究内容药物动力学的研究内容主要包括:•药物吸收:药物通过不同的给药途径进入体内的过程,包括口服、注射、吸入等。
•药物分布:药物在体内的分布情况,受到药物的蛋白结合率、血流动力学等因素的影响。
•药物代谢:药物在体内发生的代谢反应,包括酶促反应和非酶促反应。
•药物排泄:药物从体内排除的过程,包括肾脏排泄、肝排泄、肠道排泄等。
生物药剂学与药物动力学
生物药剂学与药物动力学引言生物药剂学与药物动力学是药学领域中的重要分支,主要研究生物药物的制剂和药物在生物体内的吸收、分布、代谢和排泄等过程。
了解生物药剂学和药物动力学对于药物的研发、临床应用以及药物治疗效果的评价具有重要意义。
生物药剂学生物药剂学是研究生物药物制剂的科学,也被称为生物药物制剂学。
生物药物制剂的研发可以是蛋白质药物、基因治疗药物、疫苗等。
生物药物制剂的特点是高度复杂、灵敏性高以及对保存条件要求较高。
生物药剂学研究的重点包括生物药物的稳定性、溶解度、制剂方法和途径、药物的释放方法等。
在生物药剂学研究中,采用适当的制剂方法和方式,可以促进药物的吸收、提高药效、降低药物的毒副作用。
药物动力学药物动力学是研究药物在生物体内的吸收、分布、代谢和排泄等过程的科学。
了解药物在体内的动力学过程可以帮助我们了解药物的药效、药物的代谢途径以及药物的排泄速率,从而为临床应用提供理论依据。
药物动力学研究的关键参数包括药物的生物利用度、药物的最大浓度、药物的分布容积、药物的半衰期等。
这些参数可以通过实验测定获得,也可以通过药物动力学模型进行预测。
生物药剂学与药物动力学的关系生物药剂学和药物动力学是密切相关的领域。
生物药剂学研究的制剂方法和途径,可以影响药物在体内的吸收和分布。
药物动力学研究的参数,可以用来评估不同制剂方法和途径对药物吸收和分布的影响。
生物药剂学和药物动力学的研究都对药物的研发和临床应用具有重要意义。
生物药剂学研究可以帮助优化生物药物的制剂方法,提高药物的吸收和分布效果,从而提高药物的治疗效果。
药物动力学研究可以帮助评估药物在体内的代谢和排泄情况,为合理用药提供依据。
结论生物药剂学和药物动力学是药学领域中非常重要的研究领域。
生物药剂学研究可以帮助优化药物的制剂方法,提高药物的吸收和分布效果;药物动力学研究可以帮助评估药物在体内的代谢和排泄情况,为合理用药提供依据。
两者的结合可以为药物的研发、临床应用以及药物治疗效果的评价提供重要的理论基础。
专业基础课-《生物药剂学与药代动力学》课程教学大纲
《生物药剂学与药代动力学》课程教学大纲适用对象:药学专业学生(学分:2 ;学时: 36小时)一、课程的性质和任务:《生物药剂学与药物动力学》是研究药物及其制剂在生物体内的动态过程并应用数学分析手段来处理的一门课程。
主要内容包括药物在生物体内吸收、分布、代谢和排泄过程及其影响因素。
采用隔室模型、非线性动力学或统计矩分析药物体内过程,并将药物动力学参数应用于新药研发。
生物药剂学和药物动力学。
二者既相互独立又相互联系,生物药剂学是解析药物体内过程的机制的学科,而药物动力学是定量描述药物体内过程的学科。
本课程要求学生掌握影响药物体内吸收、分布、代谢和排泄四个过程的生理因素和剂型因素。
计算药物动力学参数的方法。
熟悉生物药剂学原理在制剂设计尤其是缓控释制剂中的应用。
了解药物的生物利用度和药物动力学在临床药学和新药研发中的应用。
教材选用刘建平主编《生物药剂学与药物动力学》(第5版),人民卫生出版社2016年出版。
二、教学内容和要求(含每章教学目的、基本教学内容和教学要求):三、课程的重点和难点:1、各种药代动力学模型的定义,使用,和参数的计算。
2、不同的剂量和给药方案计算。
四、参考性教学时间安排:五、实践(实验)教学环节(含实验项目、实践内容):六、教材和主要参考书:《Basic Pharmacokinetics》,Michael C. Makoid, Phillip J. Vuchetich,Umesh V. Banakar. The Virtual University Press刘建平.《生物药剂学与药物动力学》第5版。
北京:人民卫生出版社,2016七、其他说明:注:1、表格不够可自行添加。
2、范文可参见教务处主页上教学大纲一栏中土木系教学大纲。
生物药剂学与药物动力学
生物药剂学:研究药物及其剂型在体内的吸收、分布、代谢与排泄过程,阐明药物的剂型因素,机体生物因素和药物疗效之间相互关系的科学。
生物药剂学的研究内容:1、研究药物的理化性质与体內转运的关系:溶解度、分配系数--渗透速率。
粒径、晶型、晶癖--溶出、释放。
稳定--代谢2、研究剂型、制剂处方和制剂工艺对药物体内过程影响3、根据机体的生理功能设计缓控释制剂4研究微粒给药系统在血液循环中的命运,为靶向给药系统设计奠定基础5、研究新的给药途径与给药方法6、研究中药制剂的溶出度和生物利用度7、研究生物药剂学的研究方法. 目的:正确评价药剂质量,设计合理的剂型、处方及生产工艺,为临床合理用药提供科学依据,使药物发挥最佳治疗作用。
简述药物通过肾脏排泄的方式以及各自的影响因素:1.肾小球滤过:药物与血浆蛋白结合、肾血流量(1)通透性①.肾小球毛细血管内皮极薄,其上分布着很多直径约为6~10nm的小孔,通透性较高②除血细胞和大分子蛋白质之外,血浆中的水和小分子物质均被滤入肾小囊③只有未结合的药物才可以从肾小球滤过(2)滤过压①滤过压与肾血流和肾小球毛细血管内的静压力密切相关②肾小球滤过是一种加压滤过③肾小球过滤的主要动力是肾小球毛细血管中的静水压(3)滤过率①直接测定GFR(困难)②由清除率计算肾小球滤过率。
2.肾小管重吸收:药物脂溶性、分子量、解离、药物相互作用①药物的脂溶性:脂溶性大的非解离型药物重吸收程度大,自尿中排泄量小②尿pH值和药物的pKa:对于弱酸来说,pH升高将增加解离程度,重吸收减少,肾清除率增加。
对于强碱性药物,在任何尿pH范围内均呈解离状态,几乎不被重吸收,其肾清除率也不受尿pH值得影响且常较高③尿量:当尿量增加时,药物在尿液中的浓度下降,重吸收减少;尿量减少时,药物浓度增大,重吸收量也增多。
3.肾小管主动分泌:药物相互作用①需载体参与②需要能量,可受ATP酶抑制剂二硝基酚抑制③由低浓度向高浓度逆浓度梯度转运④存在竞争抑制作用⑤有饱和现象⑥血浆蛋白结合率一般不影响肾小管分泌速度。
生物药剂学和药物动力学
生物药剂学和药物动力学生物药剂学和药物动力学是生物制剂和药物在体内的活动规律的研究,是制药学的重要分支之一。
药物动力学主要研究药物在体内的吸收、分布、代谢和排泄等过程,而生物药剂学则是药物在体内的作用机制和效果的研究。
本文将分别介绍生物药剂学和药物动力学的基本概念、研究方法、应用和发展趋势等方面的内容。
一、生物药剂学1.基本概念生物药剂学是研究生物制剂在体内的活动规律和作用机制的学科。
生物制剂是指通过生物技术制备的药物,如蛋白质药物、抗体药物、基因治疗药物等。
生物制剂具有高度的特异性和效力,能够精准地靶向疾病靶点,因此在治疗各种疾病方面具有重要的临床应用前景。
2.研究方法生物药剂学的研究方法主要包括体外实验、动物模型实验和临床试验等。
体外实验主要是通过细胞培养和体外功能测定等方法,研究生物制剂在细胞级别的作用机制和效果。
动物模型实验则是通过建立各种动物模型,研究生物制剂在体内的药效学和毒理学特性。
临床试验则是通过人体试验,评估生物制剂的安全性、有效性和药代动力学特征。
3.应用生物制剂在临床药物研发和治疗方面具有广泛的应用前景。
例如,单克隆抗体药物可以用于癌症治疗、免疫性疾病治疗等;基因治疗药物可以用于治疗遗传性疾病、罕见病等。
生物制剂在治疗方面有着独特的优势,但也面临着诸多挑战,如生产工艺复杂、成本高昂、稳定性差等。
4.发展趋势随着生物技术和药物研发技术的不断进步,生物制剂领域的研究和应用将会越来越广泛。
未来的发展趋势包括:生物制剂的个体化治疗、靶向治疗、靶向释药系统等。
另外,生物制剂方面的技术创新和品种丰富,也将会为生物制剂在临床应用上带来更多机遇和挑战。
二、药物动力学1.基本概念药物动力学是研究药物在体内的吸收、分布、代谢和排泄等过程的学科。
药物在体内的活动规律直接影响到药物的药效学特性,因此药物动力学研究对于药物研发和临床应用具有重要意义。
通常,药物动力学的研究主要包括药物的ADME特性,即吸收(absorption)、分布(distribution)、代谢(metabolism)和排泄(excretion)等过程。
生物药剂学与药物动力学知识总结
1.表观分布容积:是用来描述药物在体内分布的程度,是表示全血或血浆中药物浓度与体内药量的比例关系。
可以设想为在药物充分分布的前提下,体内药物按血浆浓度分布时所需体液总容积。
2.体内总清除率:是单位时间从体内消除的含药血浆体积或单位时间从体内消除的药物表观分布容积。
3.单室模型:某些药物进入体内后,能迅速向各个组织器官分布,以致药物能很快在血液与各组织脏器之间达到动态平衡,即动力学上的“均一状态”,此时,可将整个机体视为一个隔室,依此建立的药动学模型称为单室模型,这类药物为单室模型药物。
4.药物治疗指数:指药物中毒或致死剂量与有效剂量之比值。
对临床实用药物来说是指最大耐受浓度与最小血药浓度的比值。
5.零级速率过程:药物的转运速率在任何时间都是恒定的,与药物量或药物浓度无关。
6.一级速率过程:药物在体内某部位的转运速率与该部位的药量或浓度的一次方成正比。
1.易化扩散:药物在细胞膜上转运体的帮助下,由高浓度一侧向低浓度一侧扩散的过程。
特点:速度快、效率高,载体转运速率>>被动扩散;有选择性,结构特异性;需载体,有饱和现象;有部位特异性,组织器官中表达水平不一;有竞争性抑制现象;有顺浓度梯度;不耗能2.决定临床给药方案的因素:①首先要考虑与药物的有效性和安全性有关的因素②考虑所用药物的的吸收、分布、代谢和排泄规律和特点等一般药物动力学性质③考虑患者的生理状态、病理状况④考虑给药剂型、给药途径、患者的遗传差异、顺应性、其他用药情况及环境等因素3.药动-药效模型:确定剂量与效应关系后根据药物动力学模型研究经时过程血药浓度和与效应的关系,将药物动力学和药效动力学结合起来,增加作用部位的效应室,组成药物动力学和药效动力学结合模型,简称PK-PD模型。
本质:是一种药量与效应之间的转化过程。
应用:药动药效结合模型在药理学、毒理学、临床应用、新药开发等领域发挥越来越重要的作用,应用于药物作用机理的探讨、临床给药方案的个体化、药物治疗型和安全性的评估及预测活性化合物等工作。
生物药剂学与药物动力学-精简版
1.生物药剂学(biopharmaceutics):是研究药物及其剂型在体内的吸收、分布、代谢与排泄过程,阐明药物的剂型因素,机体生物因素和药物效应之间相互关系的科学。
蓄积:当长期连续用药时,在机体的某些组织中的药物浓度有逐渐升高趋势的现象。
表观分布容积(V):表示全血或者血浆中药物浓度与体内药量的比例关系。
药物动力学(pharmacokinetics):是应用动力学原理与数学处理方法,研究药物通过各种途径给药后在体内的吸收、分布、代谢、排泄过程的量变规律的学科。
群体药物动力学:PPK:药物动力学的群体分析法是将经典药物动力学基本原理和统计方法结合,研究药物体内过程的群体规律的药物动力学分支学科。
影响剂型体内过程的因素1、剂型因素药物的某些化学性质、药物的某些物理因素、药物的剂型及用药方法、制剂处方中所用的辅料的性质及用量、处方中药物的配伍及相互作用2、生物因素:种族差异、性别差异、年龄差异、生理和病理条件的差异、遗传因素4.药物的体内过程:吸收、分布、代谢、排泄吸收(Absorption):药物从用药部位进入体循环的过程。
分布(Distribution):药物进入体循环后向各组织、器官或体液转运的过程。
代谢(Motabolism)药物在吸收过程或进入体循环后,受肠道菌丛或体内酶系统的作用,结构发生转变的过程。
排泄(Excretion):药物或其代谢产物排出体外的过程。
转运(transport):药物的吸收、分布和排泄过程统称为转运。
处置(disposition):分布、代谢和排泄过程称为处置。
消除(elimination):代谢与排泄过程药物被清除,合称为消除。
2、膜转运途径:细胞通道转运:药物借助其脂溶性或膜内蛋白的载体作用,透过细胞而被吸收的过程。
脂溶性药物细胞旁路通道转运:是指一些小分子物质通过细胞间连接处的微孔进入体循环的过程。
水溶性药物5.胃肠道的结构与功能胃:除一些弱酸性药物有较好的吸收外,大多数药物吸收较差。
生物药剂学与药物动力学
代 谢 产 物
三、生物药剂学的研究内容
1、研究药物的理化性质与体內转运的关系
溶解度、分配系数 -------------渗透速率
粒径、晶型、晶癖-------------溶出、释放
稳定性
-------------代谢
溶解度 好
不好 慢 溶出速率 快 不好
•筛选合适的盐 •筛选不同的晶型 •改善化合物结构 •微粉化 包合物 固体 分散体 无影响 相互作用 •增加脂溶性 •改善化合物结构 •加入P-糖蛋白抑制剂
上皮细胞膜液态镶嵌模型示意图
(二)生物膜性质
1.膜的流动性 具有流动性。 构成的脂质分子层是液态的,
2.膜结构的不对称性 膜的蛋白质、脂 类及糖类物质分布不对称。
3.膜结构的半透性
膜结构具有半透性, 某些药物能顺利通过,另一些药物则不能通过。
(三)膜转运途径
1.细胞通道转运 (transcellular pathway):
Polyethylene Glycol
5、研究新的给药途径与给药方法
6、研究中药制剂的溶出度和生物利用度
7、研究生物药剂学的研究方法
研究溶出速率测定方法 如改进溶出度测定装臵、溶出介质等实验条件 建立各种新给药途径体外实验方法 建立模拟体内吸收的体外模型 如建立鼻腔给药、口腔黏膜给药、经皮给药等体 外实验方法以及研究其合理性、实验结果的正确性
第一章
生物药剂学概述
内容概要:
一 生物药剂学的定义 二 药物的体内过程
三 生物药剂学的研究内容
四 生物药剂学的发展 五 生物药剂学与相关学科的关系
一、生物药剂学的定义
1、生物药剂学的定义 (Biopharmaceutics) 研究药物及其剂型在体内的 吸收、分布、代谢、排泄的过程, 阐明药物的剂型因素、机体生物 因素和药物疗效之间相互关系的 科学。
中药药剂学 第十九章生物药剂学与药物动力学概论
第十九章生物药剂学与药物动力学概论(0-2分)生物药剂学:通过研究药物的体内过程(吸收、分布、代谢、排泄),阐明药物剂型因素、生物因素与药效(包括疗效、副作用和毒性)之间关系的一门科学。
生物因素:种族差异,性别差异,遗传差异,生理及病理条件的差异。
药物剂型因素:药物理化性质,制剂处方组成,药物的剂型和给药途径,制剂工艺过程。
药物动力学:应用动力学的原理,定量地描述药物通过各种途径进入体内的吸收、分布、代谢和排泄等过程的动态变化规律的科学。
即研究药物的体内过程,以及药物在体内的存在位置、数量(或浓度)与时间之间的关系,并提出解释这些数据所需要的数学关系式。
研究内容:①药物在体内经时量变过程和药物动力学模型;②发展新的药物动力学模型和药物动力学参数解析方法;③药物动力学参数与药物效应之间的关系;④药物动力学与药效动力学的关系;⑤药物制剂体外的动力学特征与体内动力学过程的关系。
药物的体内过程:几个基本概念:药物的体内过程:吸收、分布、代谢、排泄。
转运:吸收、分布、排泄。
配置:分布、代谢、排泄。
消除:代谢、排泄。
1.吸收(非血管内给药):药物从用药部位进入体循环的过程。
其影响因素(口服给药):1)生理因素:①胃肠液成分性质:胃液--有利于弱酸性药物的吸收。
肠液--有利于弱碱性药物的吸收。
②胃排空速率:慢--有利于弱酸性药物在胃中的吸收。
快--有利于多数药物吸收。
影响胃排空速率的主要因素:胃内容物的体积、食物的类型、体位、药物性质。
③其他:消化道吸收部位血液或淋巴循环的途径及流量大小、胃肠本身的运动及食物等。
2)药物因素:①药物的脂溶性和解离度:脂溶性大、未解离型药物易吸收。
②药物的溶出速度:减小药物粒径、采用药物的亚稳定型晶型、制成盐类、制成固体分散体--加快溶出,促进吸收。
3)剂型因素:固体制剂的崩解与溶出、吸收。
剂型。
制剂处方及其制备工艺。
不同给药途径吸收显效快慢:静脉>吸入>肌内>皮下>舌下或直肠>口服>皮肤。
生物药剂学和药物动力学
生物药剂学和药物动力学生物药物学是研究生物制品的科学,包括生物药剂的研发、生产和应用。
生物制品包括基因工程药物、细胞治疗药物、基因治疗产品、蛋白质药物等。
生物药物学在药物开发和治疗上具有独特的优势,它能够针对特定的生物靶标,精准地调控细胞功能,对治疗一些慢性疾病和罕见病有很好的效果,具有良好的生物相容性,剂型多样化,可通过多种途径给药,没有毒性副作用等。
药物动力学是研究药物在体内的吸收、分布、代谢和排泄的科学,通过研究药物动力学,可以为新药的研发和临床用药提供参考。
在生物药物学和药物动力学中,不同的药物形式会在体内产生不同的影响,因此在药物开发和临床应用上,需要对药物的生物学特性有深入的了解。
下面将分别介绍生物药物学和药物动力学的概念、研究方法及重要意义。
一、生物药物学1.概念生物制品是指通过生物技术手段制备的药品,包括基因工程药物、细胞治疗药物、基因治疗产品、蛋白质药物等。
生物制品与化学制剂有所不同,具有很强的特异性,能精确调控机体生理功能,对某些难治疾病有良好的疗效。
2.研究方法生物药物学的研究方法主要包括体外细胞培养、动物模型研究、临床试验等。
在生物药物学的研究中,体外细胞培养是非常重要的一环,通过对细胞的培养和药物处理,可以初步评估药物对细胞的影响和作用机制。
动物模型研究是将生物药物在动物体内进行评价,评估其药效和毒性。
临床试验是生物药物研究的最终环节,通过人体试验来评价生物制品的疗效和安全性。
3.重要意义生物药物学的研究对于生物制品的研发和临床应用具有重要的意义。
对于一些难治疾病,如肿瘤、免疫性疾病、罕见病等,生物药物的研究可以为这些疾病的治疗提供新的思路和方法。
此外,生物药物学的发展也为医药产业带来了新的发展机遇,促进了新药的研发和创新。
二、药物动力学1.概念药物动力学是研究药物在体内吸收、分布、代谢和排泄的科学。
药物在体内的动力学过程决定了药物的疗效和毒性,对于药物的研发和临床应用具有重要的指导意义。
生物药剂学和药物动力学(必须版)
生物药剂学与药物动力学第一章绪论1.名词解释生物药剂学: 是研究药物及其制剂在体内的吸收、分布、代谢与排泄过程, 阐明药物的剂型因素、用药对象的生物因素与药物效应间相互关系的一门学科。
吸收: 是指药物从用药部位进入体循环的过程。
分布: 药物被吸收进入体循环后透过细胞膜向机体组织、器官或体液转运的过程。
代谢:是指药物在吸收过程中或进入体循环后, 受体液环境、肠道菌丛体内酶系统等的作用导致结构发生转变的过程, 也称为生物转化。
排泄: 是指药物或其代谢产物排出体外的过程。
转运: 药物的吸收、分布和排泄过程统称为转运。
处置: 分布、代谢和排泄过程称为处置。
消除: 药物的代谢与排泄过程合称为消除。
2.剂型因素与生物因素各包括哪些方面?剂型因素: 剂型种类、药物的某些化学性质、药物的某些物理性质、制剂处方、配伍药物在处方及体内的相互作用, 以及制备工艺、贮存条件和给药方法等。
生物因素: 种属差异、种族差异、性别差异、年龄差异、生理和病理条件的差异及遗传因素等。
3.简述生物药剂学的研究目的, 请举例说明。
生物药剂学的目的:是为了正确评价药物制剂质量、设计合理的剂型及制剂工艺、指导合理临床用药提供科学依据, 以确保用药的安全与有效。
第二章 4."药物化学结构唯一决定药物疗效"的观点正确吗?请分析原因。
第三章不正确。
因为随着生物药剂学的产生和发展, 人们越来越清醒地认识到, 药物在一定中所产生的效应除了与药物本身的化学结构有关外, 还受到剂型因素与生物因素的影响, 甚至在某种情况下, 这种影响对药物疗效的发挥起着至关重要的作用。
所以"药物化学结构唯一决定药物疗效"的观点不正确。
第四章药物的吸收1.名词解释胃空速率: 单位时间内胃内容物的排出量。
多晶型:同一化学结构的药物, 由于结晶条件不同, 可得到数种晶格排列不同的晶型, 这种现象称为同质多晶。
溶出速度: 是指固体药物制剂中有效成分在特定的溶解介质中的溶解速度和程度。
第13章生物药剂学与药物动力学
第14章生物药剂学与药物动力学生物药剂学定义(biopharmaceutics,biopharmacy) 研究药物吸收(absorption),分布(distribution) ,代谢(metabolism),排泄(excretion)过程,阐明药物的剂型因素、机体的生物因素和药物疗效之间相互关系的科学。
吸收---药物用药部位向体循环转化的过程。
分布---指进入体循环的药物随血液向组织和脏器转运。
代谢----指一种化学结构的物质转变成另一种化学结构的物质。
这个过程在酶的参与下进行,又称生物转化。
排泄---指药物或代谢物排出体外。
研究生物药剂学的目的:正确评价药剂质量;设计合理的剂型、处方及生产工艺;为临床合理用药提供科学依据使药物发挥最佳的治疗作用生物药剂学研究内容:固体制剂的溶出速率与生物利用度研究。
研究改进药物溶出速率与提高生物利用度的方法。
研究生物药剂学的研究方法。
根据机体的生理功能设计控释制剂。
研究微粒给药系统在血液循环中的命运,为靶向给药系统设计奠定基础。
研究新的给药途径与给药方法。
第一节药物的体内过程一、药物的转运(一)膜转运(membrane transport) 药物吸收必须通过生物膜(或细胞膜)称膜转运。
生物膜组成:磷脂质、蛋白质和少量糖。
该模型仍为脂质双分子层。
特点:1、膜结构的不对称性。
2、膜的流动性:膜结构的不对称性和流动性与物质转运、细胞融合、细胞识别细胞表面受体功能调节等有密切关系。
(二)药物生物膜转运的机制1、被动扩散(passive transport) 被动扩散——物质服从浓度梯度由高向低转运的过程。
在被动扩散过程中,生物膜处于被动状态对转运没有积极作用。
被动扩散属于一级数率过程。
给药部位药物浓度与血中药物浓度差为扩散的动力。
而药物的浓度受给药剂量的影响。
Dose越大,吸收越大。
被动扩散特点(1)顺浓度梯度(高→低)(2)不需载体(3)膜对通过的物质无特殊选择性,不受共存的类似物的影响,既无饱和现象和竞争抑制现象,一般也无部位特异性。
生物药剂学和药物动力学
生物药剂学和药物动力学生物药剂学是研究生物药物的制备、质量控制以及药物的稳定性和递送系统的一门学科。
而药物动力学则是研究药物在体内的吸收、分布、代谢和排泄过程,以及药物在体内产生的效应和用药剂量与效果之间的关系。
在药物研发和药物治疗中,这两个学科起着重要的作用。
生物药剂学主要研究生物药物的制备工艺和质量控制,包括药物的纯化、表征、稳定性的评估以及药物制备过程中的工艺优化。
生物药物一般由生物反应器中的细胞或微生物通过发酵或其他方式制备得到。
这些生物药物一般较大并且复杂,制备过程可能会受到多种因素的干扰,导致产品的质量波动。
生物药剂学通过优化制备工艺,控制生物反应过程中的环境参数和营养条件,以及设计适合的分离和纯化工艺,来保证药物的质量稳定性。
另外,生物药剂学还研究药物的递送系统。
由于生物药物一般较大,肠道吸收效率较低,因此需要设计合适的递送系统来解决这个问题。
递送系统可以通过改变药物的药物形态、封装药物为纳米粒子或微胶囊,以及利用载体来提高药物在体内的吸收效率。
生物药剂学通过研究不同的递送系统,可以提高药物的生物利用度和治疗效果。
药物动力学主要研究药物在体内的吸收、分布、代谢和排泄过程,以及药物在体内产生的效应和用药剂量与效果之间的关系。
药物在体内的吸收一般发生在胃肠道中,吸收效率会受到多种因素的影响,比如药物的溶解度、生物利用度以及药物与胃肠道的相互作用。
药物在体内的分布可以受到多种因素的影响,比如药物的组织亲和性、蛋白结合率以及生理血流情况。
药物在体内的代谢和排泄主要发生在肝脏和肾脏,这些器官中的代谢酶和排泄通道会对药物的代谢和排泄过程产生重要影响。
药物动力学研究还包括药物在体内产生的效应和用药剂量与效果之间的关系。
药物在体内可以通过结合受体、抑制酶活性或调节生物化学过程来产生治疗效果。
药物动力学研究可以评估药物的药效和药物的剂量效应关系,指导临床用药的选择和用药剂量的调整。
生物药剂学和药物动力学在药物研发和药物治疗中起着非常重要的作用。
生物药剂学与药物动力学名词解释
生物药剂学与药物动力学名词解释Document number:NOCG-YUNOO-BUYTT-UU986-1986UT生物药剂学:是研究药物及其剂型在体内的吸收、分布、代谢与排泄的过程,阐明药物的剂型因素、机体的生物因素与药物效应三者之间相互关系的学科。
药物跨膜转运:药物通过生物膜(或细胞膜)的现象。
被动扩散:存在于膜两侧的药物服从浓度梯度,即从高浓度一侧向低浓度一侧扩散的过程,分为单纯扩散和膜孔转运两种形式。
膜孔转运:在胃肠道上皮细胞膜上有大小的微孔,这些贯穿细胞膜且充满水的微孔是水溶性小分子药物的吸收途径。
易化扩散:某些物质在细胞膜载体的帮助下,由膜高浓度侧向低浓度侧扩散的过程。
主动转运:借助载体或酶促系统的作用,药物从较低浓度向高浓度侧的转运。
胃排空:胃内容物从胃幽门排入十二指肠的过程称为胃排空。
吸收:物质通过细胞膜或其它膜状物而到达细胞内部的过程。
药物分布:药物在血液和组织之间的转运过程。
表观分布容积V:用来描述药物在体内分布状况的重要参数,是将血浆中的药物浓度与体内药量联系起来的比例常数。
蓄积:当长期连续用药时,在机体的某些组织中的药物浓度有逐渐升高的趋势。
血药蛋白结合:进入血液的药物,一部分在血液中呈非结合的游离状态存在,一部分与血浆蛋白结合成结合型药物,暂时失去活性,“储存”于血液中,不能向组织器官内转运。
血脑屏障:脑毛细血管阻止某些物质由血液进入脑组织的结构。
前体药物:有一些药物本身没有药理活性,在体内经过代谢后产生有活性的代谢产物。
药物代谢:药物被机体吸收后,在体内各种酶以及体液环境作用下,可发生一系列化学反应,导致药物化学结构上的转变。
酶诱导作用:药物代谢被酶促进的现象。
酶抑制作用:药物代谢被酶减慢的现象。
首过效应:吸收过程中,药物在消化道和肝脏中发生的生物转化作用,使部分药物被代谢,最终进入体循环的原型药物量减少的现象。
第一相反应:包括氧化、还原和水解三种,通常是脂溶性药物通过反应生成极性基团。
生物药剂学与药物动力学必须版
生物药剂学与药物动力学一、生物药剂学1、什么是生物药剂学?生物药剂学是一门研究药物的吸收、分布、代谢和排泄以及药物在体内的作用机制的学科。
它涉及药物的吸收、分布、代谢和排泄,以及药物在体内的作用机制,以及药物的药效学和毒理学。
2、生物药剂学的研究内容生物药剂学的研究内容主要包括:药物的吸收机制、药物的分布机制、药物的代谢机制、药物的排泄机制、药物的药效学机制和药物的毒理学机制。
3、生物药剂学的应用生物药剂学的应用主要是用于药物研发、药物分析、药物评价和药物管理。
(1)药物研发:生物药剂学可以为药物研发提供重要的理论指导,从而推动药物研发的进展。
(2)药物分析:生物药剂学可以帮助研究者分析药物的吸收、分布、代谢和排泄,从而更好地理解药物的作用机制。
(3)药物评价:生物药剂学可以帮助研究者评价药物的药效学和毒理学,从而更好地评价药物的安全性和有效性。
(4)药物管理:生物药剂学可以帮助研究者更好地管理药物,从而更好地控制药物的使用和安全性。
二、药物动力学1、什么是药物动力学?药物动力学是一门研究药物在体内的吸收、分布、代谢和排泄以及药物在体内的作用机制的学科。
它涉及药物的药效学和毒理学,以及药物在体内的吸收、分布、代谢和排泄机制。
2、药物动力学的研究内容药物动力学的研究内容主要包括:药物的吸收、分布、代谢和排泄机制、药物的药效学机制和药物的毒理学机制。
3、药物动力学的应用药物动力学的应用主要是用于药物研发、药物分析、药物评价和药物管理。
(1)药物研发:药物动力学可以为药物研发提供重要的理论指导,从而推动药物研发的进展。
(2)药物分析:药物动力学可以帮助研究者分析药物的吸收、分布、代谢和排泄,从而更好地理解药物的作用机制。
(3)药物评价:药物动力学可以帮助研究者评价药物的药效学和毒理学,从而更好地评价药物的安全性和有效性。
(4)药物管理:药物动力学可以帮助研究者更好地管理药物,从而更好地控制药物的使用和安全性。
《生物药剂学与药物动力学》课程简介.
《生物药剂学与药物动力学》课程简介
课程名称:《生物药剂学与药物动力学》
英文名称:Biopharmaceutics and pharmacokinetics
开课单位:药学系药剂学教研室
课程性质:必修课
总学时:理论36学时,实验20学时,总计56学时。
学分:2
适用专业:药物制剂、药品检验专业
教学目的:通过教学使学生掌握药物及其制剂在体内过程,以及药物通过各种途径进入体内后体内过程的动态变化的过程。
课程简介:本课程前半部分是研究药物及其剂型在体内的吸收、分布、代谢与排泄过程,阐明药物的剂型因素、机体因素和药物疗效之间相互关系的科学。
后半部分论述了体内药物量经时变化规律,为合理用药和合理制药提供了科学依据。
理论教学基本按powerpoint上课,还采取flash、板书等方式进行。
考试形式:考试
教材:梁文权主编,《生物药剂学与药物动力学》,(第二版),人民卫生出版社,2003年7月。
主要参考书目:
邓树海,刘兆平. 药物动力学. 北京:人民卫生出版社,1998年。
平其能.现代药剂学.北京:中国医药科技出版社,1998年。
主讲教师:郑传痴,主管药师
孔晶,药师
1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十三章 药物体内过程
第二节 药物动力学概论
3
3
药物动力学概论
药物动力学(pharmacokinetics) 应用动力学原理及数学处理方法来研究药物在体内的吸收 、分布、代谢、排泄等过程,探讨药物在体内存在位置、 数量(或浓度)与时间三者之间关系,并提出解释这些数 据所需要的数学关系式的科学。亦称为“药动学”、“药
双室模型:药物进入体内以后,能很快进入机体的某些部 位,但对另一些部位,则需要一段时间才能完成分布
多室模型:若外室中又有一部分组织、器官或细胞内药物 的分布更慢,还可以从外室划分出第三隔室,甚至第四个 12 隔室 隔室划分的抽象性、相对性、客观性
12
隔室模型
13 单室模型 双室模型
13
药物在体内某部位转运的速度与该部位的药量或 血药浓度的一次方成正比 特点 半衰期与剂量无关 单剂量给药的AUC 9与剂量成正比 一次给药情况下,尿药排泄量与剂量成正比
9
药物转运的速度过程
零级速度过程
药物的转运速度在任何时间都是恒定的,与浓度 无关 特点: 生物半衰期随剂量增加而增加 适用: 10 恒速静脉滴注的给药速度 控释制剂中药物的释放速度
t1/2 = 0.693 / k (一级速度过程)
是药物从体内消除速度快慢的指标 与药物结构性质与机体消除器官的功能有关
18
18
生物利用度与生物等效性
生物利用度(bioavailability,BA ):系指剂型中 的药物被吸收进入体循环的速度和程度,包括绝 对生物利用度与相对生物利用度
生物利用度的指标
(1)峰浓度(Cmax) 峰浓度是指血管外给药后,体内所 能达到的最高血药浓度,又称峰值。峰浓度是与治疗效果 和毒性水平有关的参数 (2)达峰时间(tmax)达峰时间是指血药浓度达到峰值的 时间。达峰时间是反映药物起效速度的参数 (3)血药浓度-时间曲线下面积(AUC) 与药物吸收总量成 正比,是代表药物吸收程度的参数
10
药物转运的速度过程
非线性速度过程
半衰期与剂量有关、血药浓度—时间曲线下面积 与剂量不成正比时,这种速度过程被称非线性速 度过程
特点: 11 药物在高浓度时表现为零级速度过程,而在 低浓度时是一级速度过程
11
隔室模型
隔室模型
单室模型:药物进入体内后,能迅速分布到机体各部位, 在血浆、组织与体液之间处于一个动态平衡的“均一”状 态,整个机体作为一个隔室
生物半衰期
7
7
药物转运的速度过程
药物转运的速度过程 一级速度过程(firstorderprocesses)属线性速 度过程
零级速度过程(zeroorderprocesses)
8 非线性速度过程(nonlinear processes)
8
药物转运的速度过程
一级速度过程(线性速度过程)
20
20
生物利用度与生物等效性
生物等效性(bioequivalence, BE )
含有相同活性物质的两种药品药剂学等效或药剂
学可替代,并且它们在相同摩尔剂量下给药后,
生物利用度(速度和程度)落在预定的可接受限 度内,即两种制剂具有相似的安全性和有效性
21
21
生物利用度与生物等效性
生物利用度与生物等效性的试验方法
14
14
药物动力学模型Βιβλιοθήκη 数1515
药物动力学模型参数
清除率(Cl) :指机体或消除器官在单位时间内能 清除掉相当于多少体积的血液中的药物
清除率的单位表示为:体积/时间 清除率表示从血液或血浆中清除药物的速度或效率,并不 表示被清除的药物量 单位时间所清除的药物量等于清除率与血药浓度的乘积
药物动力学模型参数
速度常数:描述药物转运(消除)快慢的动力学
参数
速度常数越大,转运(消除)速度越快 一级速度常数以时间的倒数为单位,如1/h或h-1 零级速度常数单位是“浓度/时间” 具体参数有:Ka、K、Ke、K0、Km、Kbi、Klu等 速度常数具有加和性:K=ke+km+Kbi+Klu+…
16
16
药物动力学模型参数
药-时曲线(C-t)与半对数药-时曲线(logC-t)
C-t曲线可用于观察药效快慢、药效强弱外,也 可由曲线下面积计算生物利用度和其他参数 logC-t曲线用于药物隔室模型的分析及药物动 力学参数的估算等
17
17
药物动力学模型参数
半衰期(t1/2):体内药量或药物浓度消除一半 所需的时间,又称消除半衰期
物代谢动力学”、“药代动力学”
4
4
药物动力学概论研究内容
建立药动学模型 研究制剂的生物利用度
应用药动学参数设计给药方案
研究药物体外的动力学特征,如溶出度、释放度
与体内动力学特征的关系
指导与评估药物制剂的设计与生产 5 探讨药物化学结构与药动学之间的关系
5
生物药剂学与药物动力学关系
体内量化指标是生物利用度 体外量化指标是溶出度
23
23
生物利用度与生物等效性
一般通过比较受试药品和参比制剂的相对生物利 用度,对两者的生物等效性做出判定 2015年版《中国药典》四部通则中的药物制剂人 体生物利用度和生物等效性指导原则,详细规定 22 了普通制剂生物等效性试验的设计、实施和评价 ,以及调释制剂的生物等效性试验的要求
22
生物利用度与生物等效性
体外溶出度与生物利用度相关性
生物药剂学是药剂学与药物动力学结合的产物 药物动力学在药剂学中的应用首先是在生物利用 度和制剂工艺研究方面 生物药剂学和药物动力学作为药剂学的分支学科 ,从产生以来就互为依存,共同发展 6
6
药物动力学常用术语
药物动力学模型
药物转运的速度过程
隔室模型
药-时曲线与半对数药-时曲线
生物利用速率(rate of bioavailability, RBA)
指药物进入体循环的快慢。常用血药浓度、达峰时间
比较制剂吸收的快慢
生物利用程度(extent of19 bioavailability, EBA)
指药物进入血液循环的多少。可通过血药浓度 - 时间曲
线下的面积表示
19
生物利用度与生物等效性