第九章时间序列分析(1)精品PPT课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反映现象在不同时间上所达到的绝对水平
分为时期序列和时点序列 • 时期序列:现象在一段时期内总量的排序 • 时点序列:现象在某一瞬间时点上总量的排序
2. 相对数时间序列
▪ 一系列相对数按时间顺序排列而成
3. 平均数时间序列
一系列平均数按时间顺序排列而成
9 -8
宁波大学商学院
统计学
时间序列的水平分析
(计算方法)
时点序列— 间隔不相等
Y1 Y2
Y3 Y4
T1
T2
T3
Yn-1
Yn
Tn-1
9 - 12
宁波大学商学院
统计学
绝对数序列的序时平均数
(计算方法)
计算步骤
1. 计算出两个点值之间的平均数
Y 1 Y 1 2 Y 2 Y 2 Y 2 2 Y 3 Y n 1 Y n 1 2 Y n
2. 用相隔的时期长度 (Ti ) 加权计算总的平均数
(万人)
(‰)
(元/人)
18547.9 21617.8 26638.1 34634.4 46759.4 58478.1 67884.6 74772.4 79552.8
114333 115823 117171 118517 119850 121121 122389 123626 124810
14.39 12.98 11.60 11.45 11.21 10.55 10.42 10.06 9.53
32.8
9 - 18
宁波大学商学院
统计学
相对数序列的序时平均数
(计算结果)
解:第三产业国内生产总值的平均数
n
ai
a i1
1034.342206.48( 68 亿元)
n
5
全部国内生产总值的平均数
n
b
bi
i1
3274.347654.48( 69 亿元)
统计学
相对数序列的序时平均数
(计算方法)
1. 先分别求出构成相对数或平均数的分子ai 和分母 bi 的平均数
2. 再进行对比,即得相对数或平均数序列的 序时平均数
3. 基本公式为
Y a b
9 - 17
宁波大学商学院
统计学
相对数序列的序时平均数
(计算方法与实例)
【例9.4】已知1994~1998年我国的国内生产总值及构 成数据如表9-3。计算1994~1998年间我国第三产业国 内生产总值占全部国内生产总值的平均比重
9 -9
宁波大学商学院
统计学
发展水平与平均发展水平
(概念要点)
1. 发展水平
现象在不同时间上的观察值 说明现象在某一时间上所达到的水平 表示为Y1 ,Y2,… ,Yn 或 Y0 ,Y1 ,Y2 ,… ,Yn
2. 平均发展水平
现象在不同时间上取值的平均数,又称序时平均数 说明现象在一段时期内所达到的一般水平 不同类型的时间序列有不同的计算方法
9 - 10
宁波大学商学院
统计学
绝对数序列的序时平均数
(计算方法)
时期序列
n
计算公式:
Y Y1 Y2
Yn
Yi
i1
n
n
【例9.1】 根据表11.1中的国内生产总值序 列,计算各年度的平均国内生产总值
n
Y
Yi
i1
4
2
8
8.5854
7
6.95( 43 亿元)
n
9
9 - 11
宁波大学商学院
统计学
绝对数序列的序时平均数
绝对数序列的序时平均数
(实例)
【例9.2】设某种股票1999年各统计时点的收盘 价如表9-2,计算该股票1999年的年平均价格
表9- 2 某种股票1999年各统计时点的收盘价
统计时点 1月1日 3月1日 7月1日 10月1日 12月31日
收盘价(元) 15.2 14.2 17.6
16.3
15.8
1.2 51.2 421.2 41.6 741.6 71.3 631.3 61.8 53 Y 2 2 2 2
2433 1.( 0 6 元)
9 - 15
宁波大学商学院
统计学
绝对数序列的序时平均数
(实例)
【例9.3】 根据表9-1中年末总人口数序列 ,计算1991~1998年间的年平均人口数
11433131582 3123621624810
Y 2
2
91
1197.55( 68 万人)
9 - 16
宁波大学商学院
3. 排列的时间可以是年份、季度、月份或其 他任何时间形式
9 -5
宁波大பைடு நூலகம்商学院
统计学
时间序列
(一个例子)
年份
1990 1991 1992 1993 1994 1995 1996 1997 1998
9 -6
表9- 1 国内生产总值等时间序列
国内生产总值 年末总人口 人口自然增长率 居民消费水平
(亿元)
宁波大学商学院
统计学
第九章 时间序列分析
第一节 时间序列的对比分析 第二节 长期趋势分析 第三节 季节变动分析 第四节 循环波动分析
9 -1
宁波大学商学院
统计学
学习目标
1. 掌握时间序列对比分析的方法 2. 掌握长期趋势分析的方法及应用 3. 掌握季节变动分析的原理与方法 4. 掌握循环波动的分析方法
表9- 3 我国国内生产总值及其构成数据
年份
1994 1995 1996 1997 1998
国内生产总值(亿元) 其中∶第三产业(亿元)
比重(%)
46759.4 14930.0
31.9
58478.1 17947.2
30.7
67884.6 20427.5
30.1
74772.4 24033.3
32.1
79552.8 26104.3
9 -2
宁波大学商学院
统计学 第一节 时间序列的对比分析
一. 时间序列及其分类 二. 时间序列的水平分析 三. 时间序列的速度分析
9 -3
宁波大学商学院
统计学
时间序列及其分类
9 -4
宁波大学商学院
统计学
时间序列
(概念要点)
1. 同一现象在不同时间上的相继观察值排列 而成的数列
2. 形式上由现象所属的时间和现象在不同时 间上的观察值两部分组成
803 896 1070 1331 1781 2311 2726 2944 3094
宁波大学商学院
统计学
时间序列的分类
时间序列
绝对数序列 相对数序列 平均数序列
时期序列 时点序列
9 -7
宁波大学商学院
统计学
时间序列的分类
1. 绝对数时间序列
一系列绝对数按时间顺序排列而成
时间序列中最基本的表现形式
YY12Y2T1Y2 2Y3T2Yn12YnTn1 n1 Ti i1
9 - 13
宁波大学商学院
统计学
绝对数序列的序时平均数
(计算方法)
时点序列—间隔相等
Y1 Y2 Y3
Yn-1 Yn
当间隔相等(T1 = T2= …= Tn-1)时,有
Y
Y1 2
Y2
Yn1
Yn 2
n1
9 - 14
宁波大学商学院
统计学
分为时期序列和时点序列 • 时期序列:现象在一段时期内总量的排序 • 时点序列:现象在某一瞬间时点上总量的排序
2. 相对数时间序列
▪ 一系列相对数按时间顺序排列而成
3. 平均数时间序列
一系列平均数按时间顺序排列而成
9 -8
宁波大学商学院
统计学
时间序列的水平分析
(计算方法)
时点序列— 间隔不相等
Y1 Y2
Y3 Y4
T1
T2
T3
Yn-1
Yn
Tn-1
9 - 12
宁波大学商学院
统计学
绝对数序列的序时平均数
(计算方法)
计算步骤
1. 计算出两个点值之间的平均数
Y 1 Y 1 2 Y 2 Y 2 Y 2 2 Y 3 Y n 1 Y n 1 2 Y n
2. 用相隔的时期长度 (Ti ) 加权计算总的平均数
(万人)
(‰)
(元/人)
18547.9 21617.8 26638.1 34634.4 46759.4 58478.1 67884.6 74772.4 79552.8
114333 115823 117171 118517 119850 121121 122389 123626 124810
14.39 12.98 11.60 11.45 11.21 10.55 10.42 10.06 9.53
32.8
9 - 18
宁波大学商学院
统计学
相对数序列的序时平均数
(计算结果)
解:第三产业国内生产总值的平均数
n
ai
a i1
1034.342206.48( 68 亿元)
n
5
全部国内生产总值的平均数
n
b
bi
i1
3274.347654.48( 69 亿元)
统计学
相对数序列的序时平均数
(计算方法)
1. 先分别求出构成相对数或平均数的分子ai 和分母 bi 的平均数
2. 再进行对比,即得相对数或平均数序列的 序时平均数
3. 基本公式为
Y a b
9 - 17
宁波大学商学院
统计学
相对数序列的序时平均数
(计算方法与实例)
【例9.4】已知1994~1998年我国的国内生产总值及构 成数据如表9-3。计算1994~1998年间我国第三产业国 内生产总值占全部国内生产总值的平均比重
9 -9
宁波大学商学院
统计学
发展水平与平均发展水平
(概念要点)
1. 发展水平
现象在不同时间上的观察值 说明现象在某一时间上所达到的水平 表示为Y1 ,Y2,… ,Yn 或 Y0 ,Y1 ,Y2 ,… ,Yn
2. 平均发展水平
现象在不同时间上取值的平均数,又称序时平均数 说明现象在一段时期内所达到的一般水平 不同类型的时间序列有不同的计算方法
9 - 10
宁波大学商学院
统计学
绝对数序列的序时平均数
(计算方法)
时期序列
n
计算公式:
Y Y1 Y2
Yn
Yi
i1
n
n
【例9.1】 根据表11.1中的国内生产总值序 列,计算各年度的平均国内生产总值
n
Y
Yi
i1
4
2
8
8.5854
7
6.95( 43 亿元)
n
9
9 - 11
宁波大学商学院
统计学
绝对数序列的序时平均数
绝对数序列的序时平均数
(实例)
【例9.2】设某种股票1999年各统计时点的收盘 价如表9-2,计算该股票1999年的年平均价格
表9- 2 某种股票1999年各统计时点的收盘价
统计时点 1月1日 3月1日 7月1日 10月1日 12月31日
收盘价(元) 15.2 14.2 17.6
16.3
15.8
1.2 51.2 421.2 41.6 741.6 71.3 631.3 61.8 53 Y 2 2 2 2
2433 1.( 0 6 元)
9 - 15
宁波大学商学院
统计学
绝对数序列的序时平均数
(实例)
【例9.3】 根据表9-1中年末总人口数序列 ,计算1991~1998年间的年平均人口数
11433131582 3123621624810
Y 2
2
91
1197.55( 68 万人)
9 - 16
宁波大学商学院
3. 排列的时间可以是年份、季度、月份或其 他任何时间形式
9 -5
宁波大பைடு நூலகம்商学院
统计学
时间序列
(一个例子)
年份
1990 1991 1992 1993 1994 1995 1996 1997 1998
9 -6
表9- 1 国内生产总值等时间序列
国内生产总值 年末总人口 人口自然增长率 居民消费水平
(亿元)
宁波大学商学院
统计学
第九章 时间序列分析
第一节 时间序列的对比分析 第二节 长期趋势分析 第三节 季节变动分析 第四节 循环波动分析
9 -1
宁波大学商学院
统计学
学习目标
1. 掌握时间序列对比分析的方法 2. 掌握长期趋势分析的方法及应用 3. 掌握季节变动分析的原理与方法 4. 掌握循环波动的分析方法
表9- 3 我国国内生产总值及其构成数据
年份
1994 1995 1996 1997 1998
国内生产总值(亿元) 其中∶第三产业(亿元)
比重(%)
46759.4 14930.0
31.9
58478.1 17947.2
30.7
67884.6 20427.5
30.1
74772.4 24033.3
32.1
79552.8 26104.3
9 -2
宁波大学商学院
统计学 第一节 时间序列的对比分析
一. 时间序列及其分类 二. 时间序列的水平分析 三. 时间序列的速度分析
9 -3
宁波大学商学院
统计学
时间序列及其分类
9 -4
宁波大学商学院
统计学
时间序列
(概念要点)
1. 同一现象在不同时间上的相继观察值排列 而成的数列
2. 形式上由现象所属的时间和现象在不同时 间上的观察值两部分组成
803 896 1070 1331 1781 2311 2726 2944 3094
宁波大学商学院
统计学
时间序列的分类
时间序列
绝对数序列 相对数序列 平均数序列
时期序列 时点序列
9 -7
宁波大学商学院
统计学
时间序列的分类
1. 绝对数时间序列
一系列绝对数按时间顺序排列而成
时间序列中最基本的表现形式
YY12Y2T1Y2 2Y3T2Yn12YnTn1 n1 Ti i1
9 - 13
宁波大学商学院
统计学
绝对数序列的序时平均数
(计算方法)
时点序列—间隔相等
Y1 Y2 Y3
Yn-1 Yn
当间隔相等(T1 = T2= …= Tn-1)时,有
Y
Y1 2
Y2
Yn1
Yn 2
n1
9 - 14
宁波大学商学院
统计学