第二章_电磁场基本规律
电磁场与电磁波第二章电磁场的基本规律笔记
电磁场与电磁波第二章电磁场的基本规律笔记下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!第一节电磁场的基本概念。
1.1 电磁场的概念。
电磁场与电磁波第二章电磁场的基本规律讲解
• §2.1 电荷和电场 • §2.2 电流和磁场 • §2.3 真空中的麦克斯韦方程组 • §2.4 媒质的电磁性质 • §2.5 媒质中的麦克斯韦方程组 • §2.6 电磁场边值条件 • §2.7 电磁场能量和能流
§2.1 电荷与电场
1. 电荷是什么东西?
摩擦起电 与绸缎摩擦过的玻璃棒能吸引小纸屑; 与皮毛摩擦过的橡胶棒也能吸引纸屑。
例题 无穷大平行板电容器内有两层介质,极板上 的面电荷密度为±σf ,求电场和极化电荷分布。 解:根据边界条件
在导体与电介质的界面处: 介质1与导体界面
介质2与导体界面 两种介质界面
作业:P88 2.31
§2.7 电磁场的能量密度和能流密度 1. 电磁场的能量密度
电场的能量密度 磁场的能量密度 电磁场的能量密度 在非线性介质中,
当回路不随时间变化时,
2. 位移电流假设 稳恒电流产生的磁场满足规律: 非稳恒情况下, 假设:
——称为位移电流。
3. 麦克斯韦方程组
4. 洛仑兹力公式
(点电荷) (体分布电荷)
作业:P86-87 2.24, 2.27
§2.4 媒质的电磁性质
1.媒质的概念——
在电磁学中一般把材料分为导体和绝缘体。 所以电磁学中涉及的空间区域只有真空、导体 和绝缘体三种不同性质的区域。而在电场中, 绝缘体又被称为“电介质”。
库仑定律:
F12
k
q1q2 r122
e12
F21
令 k 1
4π 0
( 0 为真空电容率)
0
1 4π k
8.85421012 C2
N1 m2
8.8542 10 12 F m1
电磁场基本规律
t
V
dV
0
即整个空间的总电荷是守恒的。
2、积分形式反映的是电荷变化与电流流动的宏观关系,而微分形式则描述空间各点电荷变化与电流流动 的局部关系。
3、恒定(稳恒)电流的连续性方程 所谓恒定(或称为稳恒),是指所有物理量不随时间变化。 不随时间变化电流称为恒定电流(或稳恒电流)。 恒定电流空间中,电荷分布也恒定不变,即对时间的偏导数为零,则电流连续性方程为
(r
/
r
)
0
/
(r r )
/
(r r )
函数性质:
(r/Biblioteka r)dV1
V
0
(r r/点在体积V内) (r r/点不在体积V内)
函数取样特性。
V f(r)(rr/)dV 0 f(r(/r)(rr/点 在 r/点 V外 在 )V内 )
/
/
(rr)(rr) 函数对场点和源点的对称性
(2)点电荷的表示
• 库仑力是平方反比径向力,是保守力。 • 库仑定律只能直接用于静止点电荷间。但若施力电荷静止,受力电荷运动,它们间的作用仍满足库仑定律。
2.2.2、 电场强度
E (r )
电场强度是描述电场的基本物理量。 1)定义:电场强度 = 空间中一点处的单位正电荷受的力。
E(r)F/q0 q 点电荷 的场强
J
JlimI ndI n S0S dS
载流导体内每一点都有一个电流密度,构成一个矢量场,称这一矢量场为电流场。电流场的矢量线叫 做电流线。
S 流过任意面积 的电流强度I
I S J d S S J d S c o s S J d S
2)( 面)电流密度
JS
当电荷只在一个薄层内流动时,形成的电流为面电流。
第2章 电磁场的基本规律(2)
D dS q
电介质中的高斯定理 的积分形式
表明电位移矢量穿过任一闭合曲面的通量等于该闭合曲面内的 自由电荷的代数和。
对介质中静电场基本方程的讨论
注意式中:q为自由电荷电量,不包括极化电荷电荷。
S E dS S DdS q ( D0 P )dS q S D0 dS P dS q S S D0 dS q qP
r 1 2 3
r 0 3 4π 107 3.77 (μH/m) B H 5.31 yex (kA/m) M m H 2 H 10.62 yex (kA/m) M x J m M ez 10.62ez (kA/m 2 ) y (kA/m 2 ) J C H 5.31ez
r 1 m 媒质的相对磁导率 (除铁磁性物质外r 1 )
0 r 媒质的磁导率
抗磁性媒质磁化后使磁场减弱,因此
顺磁性媒质磁化后使磁场增强,因此
m 0, 0 , r 1
m 0, 0 , r 1
但是,无论抗磁性或者顺磁性媒质,其磁化现象均很微弱,因此, 可以认为它们的相对磁导率基本上等于1。铁磁性媒质的磁化现象非常 显著,其磁导率可以达到很高的数值。
在热平衡时,分子无规则运动,取向各方向均等,介质在宏观 上不显出电特性
3)介质的极化: 在外场影响下,无极分子变为有极分子,有极分子的取向一致, 宏观上出现电偶极矩,电偶极矩又要产生电场,叠加于原来电场之上,
使电场发生变化。
无极分子 有极分子 无外加电场
E
宏观电磁现象的基本规律
◘ 在导电媒质中形成电流称为传导电流。 ◘ 在真空中或自由空间中的自由电荷的运动形成的电流称为
运流电流。
2-27
《电磁场与电磁波理论》
电流和电流密度
第2章宏观电磁现象的基本规律
♥ 电流强度给出了单位时间内穿过某一截面总的电量,但它 并没有给出单位时间内穿过截面任一点的电量及电荷运动 方向,故引入电流密度的概念来弥补这一不足。
第2章宏观电磁现象的基本规律
2.1.3 电极化强度
(Polarization Vector)
1. 电偶极子和电偶极矩矢量 2. 电介质的极化和电极化强度 3. 电介质中的电场
2-16
《电磁场与电磁波理论》
第2章宏观电磁现象的基本规律
1. 电偶极子和电偶极矩矢量
♥ 电偶极子(dipole) —— 电介质(即绝缘体)中的 分子在电场的作用下所形成的 一对一对的等值异号的点电荷。
2-24
《电磁场与电磁波理论》
第2章宏观电磁现象的基本规律
表2.1.1 几种常见的电介质的相对介电常数
◘ 在各向异性的介质(等离子体)中电位移与电场也将具有 不同方向。其介电常数和相对介电常数不再为常数,而是 所谓的“张量”。
2-25
《电磁场与电磁波理论》
第2章宏观电磁现象的基本规律
2.1.5 电流密度 (Current Density)
♥ 电偶极矩矢量(dipole moment)
—— 大小等于点电荷的电量和间距的乘积, 方向由负电荷指向正电荷
(2.1.17)
2-17
《电磁场与电磁波理论》
第2章宏观电磁现象的基本规律
2. 电介质的极化和电极化强度
♥ 电介质的极化(polarize)——电介质在电场的作用下,无 极性介质的分子的正负电荷中心相对位移,形成与外电场同 方向的电偶极子;而极性介质的电偶极矩矢量的取向将趋于 与外电场方向一致。电介质的表面将出现面极化电荷,而其 内部也可能出现体极化电荷。
电磁场的基本规律xtm3
磁场的重要特征是对场中的电流磁场力作用,载流回路C1 对载流回路 C2 的作用力是回路 C1中的电流 I1 产生的磁场对回路 C2中的电流 I2 的作用力。
根据安培力定律,有
其中
F12
C2
I
2dl2
(
0
4π
I1dl1 R12 )
C1
R132
C2
I 2dl2
B1 (r2
)
B1(r2 )
在电场分布具有一定对称性的情况下,可以利用高斯定理计 算电场强度。
具有以下几种对称性的场可用高斯定理求解: • 球对称分布:包括均匀带电的球面,球体和多层同心球壳等。
带电球壳
多层同心球壳
a
O ρ0
均匀带电球体
电磁场与电磁波
第 2 章 电磁场的基本规律
6
• 轴对称分布:如无限长均匀带电的直线,圆柱面,圆柱壳等。
(r
r)
r r 3
体电流产生的磁感应强度
B(r) 0 4π
V
J
(r) R3
R dV
z
C Idl M
r R
r y
o
面电流产生的磁感应强度
x
B(r) 0 4π
S
JS
(r) R3
R dS
电磁场与电磁波
第 2 章 电磁场的基本规律
14
3. 几种典型电流分布的磁感应强度
z
• 载流直线段的磁感应强度:
• 无限大平面电荷:如无限大的均匀带电平面、平板等。
电磁场与电磁波
第 2 章 电磁场的基本规律
7
例2.2.2 求真空中均匀带电球体的场强分布。已知球体半径
为a ,电 荷密度为 0 。
02电磁波第二章-电磁场的基本规律
质量的单位:kg(千克) F 的 单 位:N(牛顿)
时间的单位:s(秒) q 的 单 位: C(库仑)
第20页
库仑定律是静电场的基本定律,为何还要定义电场强度 (见参考教材P 53-54)
0 r 0 (r ) r 0
0 (r r )
r r r r
r 0的点 0 积分区域不包含 ( r ) dV V 1 积分区域包含 r 0的点
第11页
电磁场与电磁波 第二章__电磁场的基本规律 2.1.2 电流及电流密度
面-体积分转化:
V FdV SF dS 散度定理(高斯定理)
ey y Fy
ez z Fz
面-线积分转化:
F dl F dS 斯托克斯定理
C S
第 3页
电磁场与电磁波 第一章__矢量分析总结
梯度的旋度恒等于零:
归纳法、演绎法、类比法、理想模型、数学语言
物理电子学院 周俊 第 6页
电磁场与电磁波 第二章__电磁场的基本规律
第一节 电荷守恒定律
电磁场的两类基本物理量:源量和场量
, t ) 是产生电场的源 q ( r 电荷 , t ) 是产生磁场的源 I ( r 电流
电荷和电流是产生电磁场的源量
2.1.1 电荷及电荷密度
2
V ( )dV S ( n n )dS
2 2
物理电子学院
周俊
第 4页
电磁场与电磁波 第一章__矢量分析总结 亥姆霍兹定理: 只要一个矢量场的散度和旋度处处是已知的, 那么就可以惟一地求出这个矢量场 F 场基本方程的微分形式: F J
练习题(第二章 电磁场的基本规律)
c
d
x
B • 2.27 解: (1)由麦克斯韦方程组 E t B H 0 B ( E )dt B H (2) H H D E D 0 E D t D H k 1/ 3 t (3)将内导体视为理想导体 ,利用边界条件 1 8 J S en H ez 265.3 cos(10 t z ) a 3 1 D dS e 2 dz (4) J d id J d dS J d 2dz 0 t
E
l a
Hale Waihona Puke 40 2a 2 2 (ez ex cos 'ey sin ' )d '
2 2
l ez 'ex sin 'ey cos ' 2 8 2 0 a 2 l ( ex 2 ez ) 8 2 0 a
l ,求垂直于圆平面 2.10 一个半圆环上均匀分布线电荷 的轴线z=a处的电场强度,设半圆环的半径也为a. 解: 柱坐标系: 1 l ad ' dE z dE eR 2 p e 4 0 2a r a 1 1 eR eZ ( e ) y 2 2 er 1 (ex cos 'e y sin ' ez ) dl 2 x
• 2.31
y 媒质1 理想导体 x
1
1
1
r1 e r1 正电荷在空腔内产生的电场为 E1 3 0
单位向量 e r 1 e r 2 分别以大、小球体的球心为球面坐标 的原点。考虑到
负电荷在空腔内产生的电场为 E 2 r 2 e r2 3 0
25电磁感应定律和位移电流
(1)线圈静止时的感应电动势;
(2)线圈以角速度 ω 绕 x 轴旋转时的感应电动势。
解: (1)线圈静止时,感应电动势是由时变磁场引起,故
z
a
b
x
B
y
en
in
B dS S t
S
t
[ey
B0
sin(t
)]
endS
S B0 cos(t) cosdS
时变磁场中的矩形线圈
B0ab cos(t) cos
中国矿业大学
电磁场与电磁波
第 2 章 电磁场的基本规律
3
2.5.1 电磁感应定律
1831年法拉第发现,当穿过导体回路的磁通量发生变化时, 回路中就会出现感应电流和电动势,且感应电动势与磁通量的变 化有密切关系,由此总结出了著名的法拉第电磁感应定律。
1. 法拉第电磁感应定律
当通过导体回路所围面积的磁通量
S
t
[ez
B0
cos(t
)]
ez
dS
vbB0 cos(t) vtbB0 sin(t)
y
a
r oB
L
r v
b x
x
均匀பைடு நூலகம்场中的矩形环
中国矿业大学
电磁场与电磁波
第 2 章 电磁场的基本规律
12
练习 在时变磁场 B ey B0 sin(t) 中,放置有一个 a b 的 矩形线圈。初始时刻,线圈平面的法向单位矢量 en与ey 成α角,如
由于 C Ec d,l 故 0有:
in
d d
E dl
C
dt dt
B dS
S
若回路不动,则:
E Ein Ec
《电磁场与电磁波》复习纲要(含答案)
S
第二类边值问题(纽曼问题) 已知场域边界面上的位函数的法向导数值,即 第三类边值问题(混合边值问题) 知位函数的法向导数值,即
|S f 2 ( S ) n
已知场域一部分边界面上的位函数值,而其余边界面上则已
|S1 f1 ( S1 )、 | f (S ) S 2 2 n 2
线处有无限长的线电流 I,圆柱外是空气(µ0 ),试求圆柱内 外的 B 、 H 和 M 的分布。 解:应用安培环路定理,得 H C dl 2 H I I H e 0 磁场强度 2π I e 0 a 2 π 磁感应强度 B I e 0 a 2 π 0 I B e 2π M H 磁化强度 0 0 0
C
F dl F dS
S
5、无旋场和无散场概念。 旋度表示场中各点的场量与旋涡源的关系。 矢量场所在空间里的场量的旋度处处等于零,称该场为无旋场(或保守场) 散度表示场中各点的场量与通量源的关系。 矢量场所在空间里的场量的散度处处等于零,称该场为无散场(或管形场) 。 6、理解格林定理和亥姆霍兹定理的物理意义 格林定理反映了两种标量场 (区域 V 中的场与边界 S 上的场之间的关系) 之间满足的关系。 因此,如果已知其中一种场的分布,即可利用格林定理求解另一种场的分布 在无界空间,矢量场由其散度及旋度唯一确定 在有界空间,矢量场由其散度、旋度及其边界条件唯一确定。 第二章 电磁现象的普遍规律 1、 电流连续性方程的微分形式。
D H J t B E t B 0 D
D ) dS C H dl S ( J t B E dl dS S t C SB dS 0 D dS ρdV V S
电磁场的源与边界条件
q 所趋近的极限值就定义为点 P 的电 V
(r ) lim
式中 r 是源点的位失。
V 0
q dq V dV
2、 电荷面密度 在实际问题中,常会遇到电荷分布在薄层内的情况,如果薄层的厚度趋近于零,可近似 认为电荷分布在曲面上, 可以用电荷面密度 S (r ) 来描述其分布。 设曲面 S 上任一面元 S 内所包围的电荷量为 q ,则 S (r ) 定义为
3、磁感应强度 B 的散度、旋度和边界条件 (1)磁感应强度 B 的散度 根据磁通连续性原理的微分形式可知恒定磁场为无散场,故
B0
磁通连续性原理表明自然界无孤立的磁荷存在。上式即为麦克斯韦第二方程的微分形式。 (2)磁感应强度 B 的旋度 根据安培环路定理可得恒定磁场的磁感应强度 B 的旋度为
二、
电流及电流分布
电荷做定向运动形成电流,通常以电流强度来描述其大小。在电磁理论研究中,常用到 体电流模型,面电流模型和线电流模型。 1、 体电流 电荷在某一体积内定向流动形成的电流成为体电流。体电 流在导体内某一截面的分布用电流密度矢量 J 来描述,其定义 为:空间任一点 J 的方向是该点正电荷运动的方向, J 的大小 等于通过该点与 J 垂直的单位面积的电流,即
Nqd dS P dS P endS
因此,穿出闭合面 S 的正电荷为 P dS 。与之对应,留在闭合面 S 内的极化电荷量为
S
q p P dS PdV
S V
又由于
qP P dV
V
故有
P P
(2)极化强度 P 的旋度 对于各向同性和线性介质,有 P e 0 E ,其中合成电场强度 E 为自由电荷产生的外 电场 E 0 和极化电荷产生的附加电场 E 的叠加,由于两种电场强度的旋度都为零,故
电磁场的源与边界条件
根据安培环路定理可得恒定磁场的磁感应强度 B 的旋度为
当有磁介质存在时,上式变为
B 0J B 0 (J JM )
式中 J 为传导电流密度, J M 为磁化电流密度。
(3)磁感应强度 B 的边界条件 将积分形式的麦克斯韦第三方程应用于如图 4 所示的圆
柱,易得
en (B1 B2 ) 0 上式表明磁感强度的法向分量是连续的。
球的极限当带电体的尺寸相对于观察点至带电体的距离可以忽略时,就可以认为电荷分布于
带电体中心上,即将带电体抽象为一个几何点。点电荷的电荷密度分布可以用数学上的 (r )
来描述。
二、 电流及电流分布
电荷做定向运动形成电流,通常以电流强度来描述其大小。在电磁理论研究中,常用到 体电流模型,面电流模型和线电流模型。 1、 体电流
移矢量的切向分量是不连续的(两种介质的 通常不等)。
3、磁感应强度 B 的散度、旋度和边界条件
(1)磁感应强度 B 的散度 根据磁通连续性原理的微分形式可知恒定磁场为无散场,故 B0
磁通连续性原理表明自然界无孤立的磁荷存在。上式即为麦克斯韦第二方程的微分形式。 (2)磁感应强度 B 的旋度
即
故有
(P1 P2 ) enS SPS
en (P1 P2 ) SP 上式表明极化强度的法向分量是不连续的。一般情况下,其切向分量也不连续。
7、磁化强度 M 的散度、旋度和边界条件
7/9
电磁场与电磁波
第二章 电磁场的基本规律
学习报告
(1)磁化强度 M 的散度
对于各向同性和线性磁介质, M m H ,由于 H 的散度为零,故
自然界中存在两种电荷:正电荷和负电荷。带电体上所带的电荷是以离散的方式分布的, 任何带电体的电荷量都是基元电荷的整数倍,但在研究宏观电磁现象时,人们关注的是大量 微观带电粒子的整体效应,因此可以认为电荷是以一定形式连续分布的,并用电荷密度来描 述电荷的分布。 1、 电荷体密度
电磁场的边界条件
2.7 电磁场的边界条件
第二章 电磁场的基本规律
二、理想导体表面上的边界条件
理想导体 E、D、B、H=0
n×H1=JS n×E1=0 n•B1=0 n•D1=ρS
n×(H1-H2)=JS n×(E1-E2)=0 n•(B1-B2)=0 n•(D1-D2)=ρS
2.7 电磁场的边界条件
第二章 电磁场的基本规律
一、边界条件的一般形式
磁场强度H的边界条件 1 2
H C
dl H1
l H2
l JS
N l
l (N n)l
n H1 h
H2 Δl
n×(H1-H2)=JS
2.7 电磁场的边界条件
第二章 电磁场的基本规律
电场强度E的边界条件
n×(E1-E2)=0
磁感应强度B的边界条件
S B dS B1nS B2nS 0 1
n
B1
ΔS h
n•(B1-B2)=0
2
B2
2.7 电磁场的边界条件
第二章 电磁场的基本规律
电位移矢分界面两侧,电场强度的切向分 量和磁感应强度的法向分量总是连续的;若分 界面上不存在面电流和面电荷,则磁场强度的 切向分量和电位移矢量的法向分量是连续的
电磁场与电磁波--电磁场的基本规律
2 J C E ex J m cos tA / m , 所以E=ex E m cos t D E Jd = r 0 ex r 0 E m sin t t t 位移电流与传导电流幅值比 J dm r 0 E m = =9.58 10 13 f J Cm Em 通常金属电导率很大,其中的位移电流可忽略。
物理意义:随时间变化的磁场将产生电场。
4
当导体棒以速度v在静态磁场中运动时,导体回路中的 磁通量也发生变化。此时磁场力 Fm qv B 将使导体中 的自由电荷朝一端运动,则作用在单位电荷上的磁场力 F m 可看成作用于沿导体的感应电场,即:
q
v B
19
说明:时变电磁场的基本量包括电场和磁场,因此其 基本方程应包含四个式子。 注意:时变电磁场的源: 1、真实源(变化的电流和电荷); 2、变化的电场和变化的磁场。 二、麦克斯韦方程组的积分形式
D C H dl S ( J e t )dS B E dl C S t dS B dS 0 S D dS dV Q V S
Байду номын сангаас
B0bvt sin t B0bv cos t
11
位移电流
一、安培环路定律的局限性
H dl J dS I
c s
C
S2
l
S1
I
如图:以闭合路径 l 为边界的 曲面有无限多个,取如图所示的 两个曲面S1,S2。
则对S1面: H J I c dl S1 dS 矛盾 对S2面: H dl J dS 0
电磁场与电磁波(第二章)
S
s
t
dS
v
Ñl JS
g(n)
v dl )
0
对时变面电流 对恒定面电流
第二节 库仑定律 电场强度
一、库仑定律
❖库仑定律描述了真空中两个点电荷间相互作用力的规律。
v
❖库仑定律内容:如图,电荷q1 对电荷q2的作用力为:
q1
R
v F12
q1 q2
4 0 R 2
evR
q1 q2
4 0 R3
v R
rv' vO
(
1
)
v ex
(
1
)
v ey
(
1
)
v ez
(1)
R x R y R z R
v ex
uv
x
x R3
' uur
v ey
y
y R3
'
v ez
zz' R3
R R3
eR R2
第二章
❖电荷、电流 2.4
❖电场强度、矢量积分公式 2.8 2.9
作业
t 0
讨论:1)
v J
vv
式中: 为空间中电荷体密度,vv 为
正电荷流动速度。
2) I Jv(rv)gdsv Jv(rv)gn)ds
S
S
S Jv(rv) cos ds
n)
S
Jv(rv)
2、面电流密度
❖当电荷只在一v个薄层内流动时,形成的电流为面电流。 ❖面电流密度 J s 定义:
电流在曲面S上流动,在垂直于
电流方向取一线元 l ,若通过
I l
v J
线元的电流为 I ,则定义
S
谢处方《电磁场与电磁波》(第4版)课后习题-第2章 电磁场的基本规律【圣才出品】
2.4 简述
和▽×E=0 所表征的静电场特性。
答:
表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是
静电场的通量源。
1 / 37
圣才电子书
十万种考研考证电子书、题库视频学习平
台
▽×E=0 表明静电场是无旋场。
2.5 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强 度。
答:传导电流和位移电流都可以在空间激发磁场但两者本质不同。 (1)传导电流是电荷的定向运动,而位移电流的本质是变化着的电场。 (2)传导电流只能存在于导体中,而位移电流可以存在于真空、导体、电介质中。 (3)传导电流通过导体时会产生焦耳热,而位移电流不会产生焦耳热。
2.17 写出微分形式、积分形式的麦克斯韦方程组,并简要阐述其物理意义。 答:麦克斯韦方程组: 微分形式
合线。
表明恒定磁场是有旋场,恒定电流是产生恒定磁场的旋涡源。
2.7 表述安培环路定理,并说明在什么条件下可用该定律求解给定电流分布的磁感应 强度。
答:安培环路定理:磁感应强度沿任何闭合回路的线积分,等于穿过这个环路所有电 流的代数和 μ0 倍,即
如果电流分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。
2.2 研究宏观电磁场时,常用到哪几种电荷分布模型?有哪几种电流分布模型?它们是 如何定义的?
答:常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷。 常用的电流分布模型有体电流模型,面电流模型和线电流模型。 它们是根据电荷和荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢? 答:点电荷的电场强度与距离 r 的二次方成反比。电偶极子的电场强度与距离 r 的三 次方成反比。
3 / 37
02第二章 电磁场的基本规律
(单位:C )
确认了电荷的量子化概念。换句话说,e 是最小的电荷,而任
8
理想化实际带电系统的电荷分布形态分为四种形式: 点电荷、体分布电荷、面分布电荷、线分布电荷 1. 电荷体密度 电荷连续分布于体积V 内,用电荷体密度来描述其分布 Δ q ( r ) d q ( r ) = ρ (r ) = lim ΔV → 0 ΔV dV z ∆q 单位:C/m3 (库/米3 ) 根据电荷密度的定义,如果已知 某空间区域V 中的电荷体密度,则区 域V 中的总电荷q为
q4 q q2 q1 q7 q6 q5
q3
Fq = ∑ Fqi q
N i =1
( Ri= r − ri )
qqi Ri =∑ 3 R 4 π ε i =1 0 i
N
2013/9/26
20
2. 电场强度
电场强度矢量 E —— 描述电场分布的基本物理量
空间某点的电场强度定义为置于该点的单位点电荷(又称 试验电荷)受到的作用力,即 F (r ) E (r ) = lim q0 → 0 q 0 电荷q 激发的电场为 qR E (r ) = 4πε 0 R 3
q0 ——试验正Leabharlann 荷根据上述定义,真空中静止点
z
r′ o x
q
( R= r − r ′)
R M E r y
如果电荷是连续分布呢?
2013/9/26
21
体密度为 ρ (r ) 的体分布电荷产生的电场强度
ρ (ri′)ΔVi′Ri E (r ) = ∑ 3 R 4 π ε i 0 i ρ (r ′) R 1 = dV ′ 3 ∫ 4 πε 0 V R
电磁场与电磁波(第四版)课后答案 谢处方 第二章习题
uu uu v v (4)H = eϕ ar
u v uu v , B = µ0 H
解:(1)uu v
∇H=
1 ∂ 1 ∂ ( ρ Bρ ) = (a ρ 2 ) = 2a ≠ 0 该矢量不是磁场的矢量。 ρ ∂ρ ρ ∂ρ
uu ∂ v ∂ (2) H = (−ay ) + (ax) = 0 ∇ ∂r ∂r uu v ex u v uu v ∂ J = ∇× H = ∂x
(
)
(
(
)
)
2.9无限长线电荷通过点A(6,8,0)且平行于z轴,线电荷密度为 ρl ,试求点 P (x,y,0)处的电场强度E。 。 解:线电荷沿z轴无限长,故电场分布与z无关。设点P位于z=0的平面上,线电 荷与点P的距离矢量为
r ˆ ˆ R = x( x −6) + y( y −8) r 2 2 R = ( x−6) +( y −8)
u v 2.21下面的矢量函数中哪些可能是磁场?如果是,求其源变量 J
uu v (1)H = ρ aρ ˆ
u v uu v , B = µ0 H (圆柱坐标)
u v uu v uu uu v v uu v (2)H = ex (−ay ) + ey ax , B = µ0 H uu uu v v uu v u v uu v (3)H = ex ax − ey ay , = µ0 H B
v v ∂D 解:(1)由 ∇ × H = 得 ∂t
v v v ∂D ∂ Jd = = ∇× H = ∂t ∂x Hx v ex v ey ∂ ∂y 0 v ez ∂ v ∂H x = − ez ∂z ∂y 0
v Bb =
d
a
µ0 v v J × ρb
电动力学-复习-第二章-电磁场的基本规律
*
电场力服从叠加原理
真空中的N个点电荷 (分别位于 ) 对点电荷 (位于 )的作用力为
q
q1
q2
q3
q4
q5
q6
q7
*
2. 电场强度
空间某点的电场强度定义为置于该点的单位点电荷(又称试验电荷)受到的作用力,即
多层同心球壳
*
无限大平面电荷:如无限大的均匀带电平面、平板圆柱壳等。
(a)
(b)
*
例2.2.3 求真空中均匀带电球体的场强分布。已知球体半径为a ,电 荷密度为 0 。
解:(1)球外某点的场强
(2)求球体内一点的场强
( r ≥ a )
• 宏观分析时,电荷常是数以亿计的电子电荷e的组合,故可不考虑其量子化的事实,而认为电荷量q可任意连续取值。
2.1.1 电荷与电荷密度
*
1. 电荷体密度
单位:C/m3 (库仑/米3 )
根据电荷密度的定义,如果已知某空间区域V中的电荷体密度,则区域V中的总电量q为
电荷连续分布于体积V内,用电荷体密度来描述其分布
如果已知某空间曲线上的电荷线密度,则该曲线上的总电量q 为
单位: C/m (库仑/米)
*
对于总电量为 q 的电荷集中在很小区域 V 的情况,当不分析和计算该电荷所在的小区域中的电场,而仅需要分析和计算电场的区域又距离电荷区很远,即场点距源点的距离远大于电荷所在的源区的线度时,小体积 V 中的电荷可看作位于该区域中心、电量为 q 的点电荷。
第二章 电磁场的基本规律
*
2.1 电荷守恒定律 2.2 真空中静电场的基本规律 2.3 真空中恒定磁场的基本规律 2.4 媒质的电磁特性 2.5 电磁感应定律和位移电流 2.6 麦克斯韦方程组 2.7 电磁场的边界条件
大学物理易考知识点电磁场的基本规律
大学物理易考知识点电磁场的基本规律大学物理易考知识点:电磁场的基本规律电磁场是电荷和电流所产生的物理现象,在电磁学中起着至关重要的作用。
了解电磁场的基本规律不仅可以帮助我们解决实际问题,还可以为日常生活中的电器使用提供指导。
本文将介绍电磁场的基本规律,包括库仑定律、电场的叠加原理、高斯定律、法拉第电磁感应定律以及安培环路定理等。
一、库仑定律库仑定律是描述电荷之间相互作用的规律。
根据库仑定律,两个电荷之间的相互作用力与它们的电荷量成正比,与它们之间的距离的平方成反比。
具体表达式为:\[F = k\frac{{|q_1q_2|}}{{r^2}}\]其中,\[F\]代表电荷之间的相互作用力,\[q_1\]和\[q_2\]分别代表两个电荷的电荷量,\[r\]代表两个电荷之间的距离,\[k\]为比例常数。
二、电场的叠加原理电场是由电荷产生的一种物理场。
电场可以用来描述在电荷存在的情况下,其他电荷所受到的力的情况。
如果有多个电荷同时存在,它们所产生的电场的叠加效应可以通过电场的叠加原理来描述。
根据电场的叠加原理,电场叠加后的总电场强度等于各个电场强度的矢量和。
这一原理可以用公式表示为:\[E = E_1 + E_2 + E_3 + ... + E_n\]其中,\[E_1\],\[E_2\],\[E_3\]等分别代表各个电荷所产生的电场强度,\[E\]代表叠加后的总电场强度。
三、高斯定律高斯定律是描述电场的分布与电荷之间的关系的定律。
根据高斯定律,电场通过一个闭合曲面的通量与该闭合曲面内的电荷量成正比,与电荷分布无关。
具体表达式为:\[Φ = \frac{Q}{{ε_0}}\]其中,\[Φ\]代表电场通过闭合曲面的通量,\[Q\]代表闭合曲面内的电荷量,\[ε_0\]为真空中的介电常数。
四、法拉第电磁感应定律法拉第电磁感应定律描述了磁场的变化所产生的感应电动势。
根据法拉第电磁感应定律,感应电动势的大小与磁场变化率成正比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章电磁场基本规律一选择题:1.所谓点电荷是指可以忽略掉电荷本身的()A.质量B.重量C.体积D.面积2.电流密度的单位为()A.安/米3B.安/米2C.安/米D.安3.体电流密度等于体电荷密度乘以()A.面积B.体积C.速度D.时间4.单位时间内通过某面积S的电荷量,定义为穿过该面积的()。
A.通量B.电流C.电阻D.环流5.静电场中两点电荷之间的作用力与它们之间的距离()A.成正比B.平方成正比C.平方成反比D.成反比6.电场强度的方向与正试验电荷的受力方向()A.相同B.相反C.不确定D.无关7.两点电荷所带电量大小不等,放在同一电场中,则电量大者所受作用力()A.更大B.更小C.与电量小者相等D.大小不定8.静电场中试验电荷受到的作用力与试验电荷电量成( )关系。
A.正比B.反比C.平方D.平方根9.在静电场中,已知D矢量,求电荷密度的公式是()A .ρ=∇×DB .ρ=∇·DC .ρ=∇D D .ρ=∇2D10.相同场源条件下,均匀电介质中的电场强度值为真空中电场强度值的( )A .ε倍B .εr 倍C .倍ε1D .倍r1ε11.导体在静电平衡下,其内部电场强度( )A.为常数B.为零C.不为零D.不确定12.真空中介电常数的数值为( )A.8.85×10-9F/mB.8.85×10-10F/mC.8.85×10-11F/mD.8.85×10-12F/m13.极化强度与电场强度成正比的电介质称为( )介质。
A.均匀B.各向同性C.线性D.可极化14. 静电场中以D 表示的高斯通量定理,其积分式中的总电荷应该是包括()。
A. 整个场域中的自由电荷B. 整个场域中的自由电荷和极化电荷C. 仅由闭合面所包的自由电荷D. 仅由闭合面所包的自由电荷和极化电荷15.电位移矢量D =0εE +P ,在真空中P 值为( )A .正B .负C .不确定D .零16.真空中电极化强度矢量为( )。
A .=B .=ε0C .P =χε0ED .P =017.磁感应强度B的单位为()A.特斯拉B.韦伯C.库仑D.安培18.真空中磁导率的数值为( )A.4π×10-5H/mB.4π×10-6H/mC.4π×10-7H/mD.4π×10-8H/m19.如果在磁媒介中,M和H的关系处处相同,则称这种磁媒质为()A.线性媒质B.均匀媒质C.各向同性媒质D.各向异性媒质20.一个任意形状的平面电流小回路,在远离该回路处,可看成一个()A.电偶极子B.元电荷C.磁偶极子D.元电流21.在没有外磁场作用时,磁媒质中磁偶极矩的方向是()A.同一的B.随机的C.两两平行的D.相互垂直的22.磁感应强度与磁场强度的一般关系为( )A.H=μBB.H=μ0BC.B=μHD.B=μ0H23.在场源分布相同情况下,普通磁媒质中的磁感应强度是真空中磁感应强度的()A.μ倍B.rμ倍C.μ倍D.χ倍m24.在恒定磁场中,已知H=a(y e x-x e y),则电流密度J等于()A.-2a e z B.-2a e yC.2a e x D.2a e z25.根据欧姆定律的微分形式,线性导体媒质中体电流密度正比于( )A .电压B .电流C .磁场强度D .电场强度26.均匀导电媒质的电导率不随( )变化。
A.电流密度B.空间位置C.时间D.温度27.在电场和磁场同时存在的空间内,运动电荷受到的总电磁力为() A .F=q E -q v ×B B .F=q E +q v ×BC .F=q v ×B-q ED .F=q v ·B+q E28.交变电磁场中,回路感应电动势与材料的电导率( )A.成正比B.成反比C.成平方关系D.无关29.磁场B 中运动的电荷会受到洛仑磁力F 的作用,F 与B( )A.同向平行B.反向平行C.相互垂直D.无确定关系30.全电流定律的微分方程为( )A .▽×H =J CB .▽×H =JC =(或J V )+t D∂∂C .▽×H =t D∂∂ D .▽×H =031. 两种不同导电媒质分界面处,电流密度J 的法线分量( )。
A. 一定连续B. 一定不连续C. 满足一定条件时连续D. 恒为零32.静电场环路定理的积分形式是( )A .⎰⨯∇l E ·d l =0B .⎰⎰SE ·d s=0 C .⎰l E ·d l =0 D .⎰b a E ·d l =033.在静止媒质中,电磁感应定律的表示式为( )A .⎰l E ·d l =t ∂∂⎰⎰S D ·d sB .⎰l H ·d l =⎰⎰∂∂-S tB ·d sC .⎰l E ·d l =⎰⎰∂∂-S tB ·d s D .⎰l E ·d l =⎰⎰∂∂-S t B ·d s +⎰l (v ⨯B )·d l34.位移电流的表达式为( )A .J D =⎰⎰∂∂S t D ·d sB .J D =t D ∂∂C .JD =⎰⎰∂∂-S t D ·d sD .J D =tD ∂∂- 35.全电流中由电场的变化形成的是( )。
A .传导电流B .运流电流C .位移电流D .感应电流二 填空题:1.磁通连续性定理的微分形式是磁感应强度B 的散度等于___________。
2.电位移矢量D 的大小与介质的介电常数________。
3.磁感应强度的媒质分界面条件为________。
4.变化的磁场在导体中产生的电动势称作________。
5.静止电荷产生的电场,称之为___________。
6.电荷__________形成电流。
7.位移电流由__________变化产生。
8.在正方形的四顶点上,各放一电量相等的同性点电荷,则几何中心处的电场强度为 。
9.电介质的分子中,有一类在没有电场作用时,其内部正负电荷的作用中心相重合,不产生电现象,这一类分子称为分子。
10.不导电的自由空间电荷运动形成的电流称为电流。
11.在线性导电媒质中电流密度与电场强度成关系。
12.洛仑兹力只能改变运动电荷的速度方向,不能改变运动电荷的。
13.媒质分界面无电流分布时,磁场强度的分量连续。
14.电磁感应定律的本质就是变化的磁场产生。
15. 以E表示的高斯通量定理中,闭合面所包的总电荷是指______。
16. 电偶极子就是两个相距很近的______电荷组成的整体。
17. 磁化强度M的定义是单位体积内_____的矢量和。
18. 时变电磁场中的静止回路,由于磁通随时间变化而产生的电动势称为_____电动势。
19.两点电荷之间电场力的大小与各自的电量成。
20.电介质中的电荷作自由运动。
21.J=γE称之为定律的微分形式。
22.将正电荷沿着电力线方向从P点移动到Q点时,做正功。
23.库仑定理是________________的基础,也是整个电磁理论的基础。
24.所谓电偶极子就是两个相距很近的________________电荷组成的整体。
25.有电介质存在时,高斯通量定理s qq d·ε'+=⎰⎰中,q是S面内________________电荷总量,q′是S面内________________电荷总量。
26.若导电媒质中电导率γ处处相等,则称导电媒质为________________媒质。
27.电流称为磁场的________________,不随________________变化的电流产生的磁场叫恒定磁场。
28.恒定磁场是无________________场。
三名词解释:1.体电流密度2.线电流3.磁偶极子4.电偶极子5.安培环路定理6. 磁感应强度表示的高斯通量定理微分表达式及其物理概念7. 极化强度P8. 线性、均匀且各向同性电介质9.电场强度10.等电位面四简答题:1.简述法拉第电磁感应定律。
2. 写出毕奥—沙伐定律的数学表达式,说明它揭示了哪些物理量间的关系。
3. 由电磁感应定律,线圈中感应电流的方向应如何判断?4. 传导电流、位移电流、运流电流是如何定义的?各有什么特点?5.下列矢量函数哪些可能是磁感应强度?哪些不是?回答并说明理由。
1)A(x e y+y e x) 2)A(e x+y e y)6.写出电磁场基本定律及其对应的麦克斯韦方程组四个微分方程。
7.什么是传导电流?在时变场中,传导电流是否保持连续?8.简述电介质的极化强度与电场强度的关系。
9.什么是磁媒质的磁化?17.平板电容器的板面积增大时,电容量___________。