流体力学总结

合集下载

(完整版)流体力学重点概念总结

(完整版)流体力学重点概念总结

第一章绪论表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。

它的大小与作用面积成比例。

剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。

重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)流体的主要物理性质:密度:是指单位体积流体的质量。

单位:kg/m3 。

重度:指单位体积流体的重量。

单位: N/m3 。

流体的密度、重度均随压力和温度而变化。

流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。

静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。

流体的粘滞性:即在运动的状态下,流体所产生的阻抗剪切变形的能力。

流体的流动性是受粘滞性制约的,流体的粘滞性越强,易流动性就越差。

任何一种流体都具有粘滞性。

牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。

τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。

动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ第二章流体静力学流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。

2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。

静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。

流体力学归纳总结

流体力学归纳总结

流体⼒学归纳总结流体⼒学⼀、流体的主要物性与流体静⼒学1、静⽌状态下的流体不能承受剪应⼒,不能抵抗剪切变形。

2、粘性:内摩擦⼒的特性就是粘性,也是运动流体抵抗剪切变形的能⼒,是运动流体产⽣机械能损失的根源;主要与流体的种类和温度有关,温度上升粘性减⼩,与压强没关系。

3、⽜顿内摩擦定律:du F Ady µ= F d u A d yτµ== 相关因素:粘性系数、⾯积、速度、距离;与接触⾯的压⼒没有关系。

例1:如图6-1所⽰,平板与固体壁⾯间间距为1mm,流体的动⼒黏滞系数为0.1Pa.S, 以50N 的⼒拖动,速度为1m/s,平板的⾯积是()m 2。

解:F F A du dyδµνµ===0.5 例2:如图6-2所⽰,已知活塞直径d=100mm,长l=100mm ⽓缸直径D=100.4mm,其间充满黏滞系数为0.1Pa·s 的油,活塞以2m/s 的速度运动时,需要的拉⼒F 为()N 。

解:3320.1[(10010)0.1]31.40.210du F AN dy µπ--===? 4、记忆个参数,常温下空⽓的密度31.205/m kg ρ=。

5、表⾯⼒作⽤在流体隔离体表⾯上,起⼤⼩和作⽤⾯积成正⽐,如正压⼒、剪切⼒;质量⼒作⽤在流体隔离体内每个流体微团上,其⼤⼩与流体质量成正⽐,如重⼒、惯性⼒,单位质量⼒的单位与加速度相同,是2/m s 。

6、流体静压强的特征: A 、垂直指向作⽤⾯,即静压强的⽅向与作⽤⾯的内法线⽅向相同; B 、任⼀点的静压强与作⽤⾯的⽅位⽆关,与该点为位置、流体的种类、当地重⼒加速度等因素有关。

7、流体静⼒学基本⽅程 0p p gh ρ=+2198/98at kN m kPa ==⼀个⼯程⼤⽓压相当于735mm 汞柱或者10m ⽔柱对柱底产⽣的压强。

8、绝对压强、相对压强、真空压强、真空值公式1:a p p p =-相对绝对公式2:=a p p p -真空绝对p 真空叫做真空压强,也叫真空值。

工程流体力学知识点总结

工程流体力学知识点总结

工程流体力学知识点总结一、工程流体力学的内容1.流体力学的基本概念工程流体力学是一门重要的工程学科,它是研究运动的流体分布特性、流动过程的动力学特征、流体受力的控制机理以及提供理论支持的工程应用理论。

它综合了物理学、数学、材料学和力学等知识,它包括流体动力学、传热传质、流体力学和流体机械等方面的研究内容。

2.流体动力学流体动力学是流体运动的力学理论,它研究的是流体中的物理量,如流速、压力、密度等的变化和流体运动的规律。

它是流体物理学的基本内容,是工程流体力学的基础理论。

它的研究内容主要包括流体的静力学、流体的流变力学、流体的流动特性、流体的热力学性质、流体的动力学和流体的流动特性等。

3.传热传质传热传质是研究流体在传热和传质的过程中热量和物质的传递机理的一门学科。

它包括流体的热传导、热对流和热辐射、物质的传质、物质输运等方面的内容。

4.流体力学流体力学是一门综合学科,是研究流体的能量、动量和位置变化的动力学特性及其应用的学科。

流体力学研究的内容包括流体的流量和压力、流体的质量和动量、流体的流速、流体的流动特性等。

它主要研究的是流体受力的特性和运动特性,是工程流体力学中最重要的学科之一。

5.流体机械的理论流体机械是研究利用流体动力驱动转子的机械装置的科学,包括机械装置的流体的传动特性、涡轮机械和泵的流量控制、流体中的变频调速以及比热容与流场等。

它是工程流体力学中的重要内容,也是工程设计的重要基础。

二、工程流体力学的应用工程流体力学的基本理论可以应用于各种工程中,如机械制造、空气动力学、海洋技术、热能技术、新能源技术、能源储存和节能技术、化工反应技术等。

它在社会经济建设中发挥着重要作用,可以为社会生产提供良好的环境保护技术手段,也可以为工程设计和技术开发提供依据。

流体力学知识点总结

流体力学知识点总结

流体力学知识点总结
第一章
1.流体粘性的形成因素:
一是流体分子间的引力在流体微团相对运动时形成的粘性,二是流体分子的热运动在不同流速流层间的动量交换所形成的粘性。

形成气体粘性主要因素是分子的热运动。

形成液体粘性的主要因素是分子间的引力。

2.流体的压缩性和膨胀性:
流体在一定温度下,压强增高,体积缩小;在一定压强下,温度升高,体积膨胀,这是所有流体的共同属性。

3.表面力:
流体分离体以外的物体作用在分离体上的表面力。

在分离体表面的点b取一微小面积δA,作用在它上面的表面力为δF。

一般情况下可将δF分解为沿外法线方向n的δF n和沿切线方向t的δF t。

以δA除δF,并令δA→0而取极限,可得作用在点b的表面应力:
P n=lim
δA→0δF
δA
=dF
dA
4.连续介质模型:
把流体视为由无数连续分布的流体微团组成的连续介质,流体的密度、压强、速度、温度等物理量一般在空间和时间上都是连续分布的,都应该是空间坐标和时间的单值连续可微函数。

1.毛细现象:。

流体流动知识点总结归纳

流体流动知识点总结归纳

流体流动知识点总结归纳流体力学是研究流体流动规律的一门学科,其研究对象涉及液体和气体的流动,包括流体的性质、流体流动的运动规律、流体的控制以及流体力学在工程和科学领域的应用等方面。

在这篇文章中,我们将对流体流动的一些基本知识点进行总结归纳,以便读者对这一领域有一个清晰的了解。

一、流体的性质1. 流体的定义流体是指那些易于变形,并且没有固定形状的物质。

流体包括液体和气体两种状态,其共同特点是具有流动性。

2. 流体的密度和压力流体的密度是指流体单位体积的质量,常用符号ρ表示。

流体的压力是指单位面积上受到的力的大小,它与流体的密度和流体所在深度有关。

3. 流体的黏性流体的黏性是指流体内部分子之间的相互作用力,黏性越大,流体的内部抵抗力越大,流动越不容易。

黏性会对流体的流动性能产生影响,需要在实际工程中进行考虑。

二、流体流动的基本原理1. 流体的叠加原理流体的叠加原理是指当多个流体同时流动时,它们的速度矢量叠加,得到合成的速度矢量。

这个原理在实际工程中有很多应用,例如飞机的空气动力学设计和水流的流体力学研究等。

2. 流体的连续性方程流体的连续性方程是描述流体在运动过程中质量守恒的基本方程,它表明流体在流动过程中质量的变化等于流入流出的质量之差。

3. 流体的动量方程流体的动量方程描述了流体在运动过程中动量守恒的基本原理,它表明流体在受到外力作用后所产生的加速度与外力的大小和方向有关。

4. 流体的能量方程流体的能量方程描述了流体在运动过程中能量守恒的基本原理,它表明流体在流动过程中所受到的压力和速度的变化与能量的转化和损失相关。

三、流体的流动类型1. 定常流动和非定常流动定常流动是指流体在任意一点上的流速和流量随时间不变的流动状态,而非定常流动则是指流体在不同时间点上的流速和流量随时间有变化的流动状态。

2. 层流流动和湍流流动层流流动是指流体在管道内流动时,各层流体之间的相互滑动,流态变化连续,流线互不交叉。

流体力学全部总结

流体力学全部总结

(二)图解法
适用范围:规则受压平面上的静水总压力及其作用点的求解 原理:静水总压力大小等于压强分布图的体积,其作用 线通过压强分布图的形心,该作用线与受压面的交点便 是总压力的作用点(压心D)。
液体作用在曲面上的总压力
一、曲面上的总压力 • 水平分力Px
Px dPx hdAz hc Az pc AZ
z1
p1 g

u12 2g
z2
p2 g

u2 2 2g
上式被称为理想流体元流伯诺里方程 ,该式由瑞士物理学家 D.Bernoulli于1738年首先推出,称伯诺里方程 。
应用条件:恒定流 不可压缩流体 质量力仅重力 微小流束(元流)
三、理想流体元流伯诺里方程的物理意义与几何意义
几何意义
p x p y p z pn
X
流体平衡微分方程 (欧拉平衡方程)
1 p x 1 p y 1 p z
Y Z
0 0 0
物理意义:处于平衡状态的流体,单位质量流体所受的表面力分量与质量
力分量彼此相等。压强沿轴向的变化率( p , p , p )等于该轴向单位体积上的 x y z 质量力的分量(X, Y, Z)。
u x x

u y y

u z z
0
适用范围:理想流体恒定流的不可压缩流体流动。
二、恒定总流连续性方程
取一段总流,过流断面面积为A1和A2;总流中 任取元流,过流断面面积分别为dA1和dA2,流速为 恒定流时流管形状与位置不随时间改变; u1和u2
考虑到: 不可能有流体经流管侧面流进或流出; 流体是连续介质,元流内部不存在空隙;
第三节 连续性方程

流体力学知识点经典总结

流体力学知识点经典总结

流体力学绪论一、流体力学的研究对象流体力学是以流体(包括液体和气体)为对象,研究其平衡和运动基本规律的科学。

主要研究流体在平衡和运动时的压力分布、速度分布、与固体之间的相互作用以及流动过程中的能量损失等。

二、国际单位与工程单位的换算关系21kg 0.102/kgf s m =•第一章 流体及其物理性质 (主要是概念题,也有计算题的出现)一、流体的概念流体是在任意微小的剪切力作用下能发生连续的剪切变形的物质,流动性是流体的主要特征,流体可分为液体和气体二、连续介质假说流体是由空间上连续分布的流体质点构成的,质点是组成宏观流体的最小基元三、连续介质假说的意义四、常温常压下几种流体的密度水-----998 水银-----13550 空气-----1.205 单位3/kg m五、压缩性和膨胀性流体根据压缩性可分为可压缩流体和不可压缩流体,不可压缩流体的密度为常数,当气体的速度小于70m/s 、且压力和温度变化不大时,也可近似地将气体当做不可压缩流体处理。

六、流体的粘性流体的粘性就是阻止发生剪切变形的一种特性,而内摩擦力则是粘性的动力表现,粘性的大小用粘度来度量,粘度又分为动力粘度μ和运动粘度ν,它们的关系是μνρ=七、牛顿内摩擦定律du dy τμ=八、温度对流体粘性的影响温度升高时,液体的粘性降低,气体的粘性增加。

这是因为液体的粘性主要是液体分子之间的内聚力引起的,温度升高时,内聚力减弱,故粘性降低;而造成气体粘性的主要原因在于气体分子的热运动,温度越高,热运动越强烈,所以粘性就越大流体静力学一、流体上力的分类作用于流体上的力按作用方式可分为表面力和质量力两类。

清楚哪些力是表面力,哪些力是质量力二、流体静压力及其特性(重点掌握)当流体处于静止或相对静止时,流体单位面积的表面力称为流体静压强。

特性一:静止流体的应力只有法向分量(流体质点之间没有相对运动不存在切应力),且沿内法线方向。

特性二 在静止流体中任意一点静压强的大小与作用的方位无关,其值均相等。

流体力学知识点总结

流体力学知识点总结

流体力学知识点总结一、流体的物理性质流体区别于固体的主要特征是其具有流动性,即流体在静止时不能承受切向应力。

流体的物理性质包括密度、重度、比容、压缩性和膨胀性等。

密度是指单位体积流体所具有的质量,用符号ρ表示,单位为kg/m³。

重度则是单位体积流体所受的重力,用γ表示,单位为 N/m³,且γ =ρg(g 为重力加速度)。

比容是密度的倒数,它表示单位质量流体所占有的体积。

流体的压缩性是指在温度不变的情况下,流体的体积随压强的变化而变化的性质。

通常用体积压缩系数β来表示,其定义为单位压强变化所引起的体积相对变化率。

对于液体来说,其压缩性很小,在大多数情况下可以忽略不计;而气体的压缩性则较为明显。

膨胀性是指在压强不变的情况下,流体的体积随温度的变化而变化的性质。

用体积膨胀系数α来表示,它是单位温度变化所引起的体积相对变化率。

二、流体静力学流体静力学主要研究静止流体的力学规律。

静止流体中任一点的压强具有以下特性:1、静止流体中任一点的压强大小与作用面的方向无关,只与该点在流体中的位置有关。

2、静止流体中压强的大小沿垂直方向连续变化,即从液面到液体内部,压强逐渐增大。

流体静力学基本方程为 p = p₀+γh,其中 p 为某点的压强,p₀为液面压强,h 为该点在液面下的深度。

作用在平面上的静水总压力可以通过压力图法或解析法来计算。

对于矩形平面,采用压力图法较为简便;对于不规则平面,则通常使用解析法。

三、流体动力学流体动力学研究流体的运动规律。

连续性方程是流体动力学的基本方程之一,它基于质量守恒定律。

对于不可压缩流体,在定常流动中,通过流管各截面的质量流量相等。

伯努利方程则是基于能量守恒定律得出的,它表明在理想流体的定常流动中,单位体积流体的动能、势能和压力能之和保持不变。

其表达式为:p/ρ + 1/2 v²+ gh =常数其中 p 为压强,ρ 为流体密度,v 为流速,g 为重力加速度,h 为高度。

流体力学-总结复习

流体力学-总结复习

流体力学总结+复习第一章 绪论一、流体力学与专业的关系流体力学——是研究流体(液体和气体)的力学运动规律及其应用的学科。

主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。

研究对象:研究得最多的流体是液体和气体。

根底知识:牛顿运动定律、质量守恒定律、动量〔矩〕定律等物理学和高等数学的根底知识。

后续课程:船舶静力学、船舶阻力、船舶推进、船舶操纵等都是以它为根底的。

二、连续介质模型连续介质:质点连续地充满所占空间的流体。

流体质点(或称流体微团) :忽略尺寸效应但包含无数分子的流体最小单元。

连续介质模型:流体由流体质点组成,流体质点连续的、无间隙的分布于整个流场中。

三、流体性质密度:单位体积流体的质量。

以表示,单位:kg/m 3。

0limA V m dmV dVρ∆→∆==∆ 重度:单位体积流体的重量。

以 γ 表示,单位:N/m 3。

0lim A V G dGV dVγ∆→∆==∆ 密度和重度之间的关系为:g γρ=流体的粘性:流体在运动的状态下,产生内摩擦力以抵抗流体变形的性质。

,其中μ为粘性系数,单位:N ·s /m 2=Pa ·sm 2/s 粘性产生的原因:是由流动流体的内聚力和分子的动量交换所引起的。

牛顿流体:内摩擦力按粘性定律变化的流体。

非牛顿流体:内摩擦力不按粘性定律变化的流体。

四、作用于流体上的力质量力〔体积力〕:其大小与流体质量〔或体积〕成正比的力,称为质量力。

例如重000lim,lim,limy xzm m m F F F Y Z mm m→→→=== 外表力:五、流体静压特性特性一:静止流体的压力沿作用面的内法线方向特性二:静止流体中任意一点的压力大小与作用面的方向无关,只是该点的坐标函数。

六、压力的表示方法和单位绝对压力p abs :以绝对真空为基准计算的压力。

相对压力p :以大气压p a 为基准计算计的压力,其值即为绝对压力超过当地大气压的数值。

流体力学总结

流体力学总结

流体力学总结第一章流体及其物理性质1. 流体:流体是一种受任何微小剪切力作用都能连续变形的物质,只要这种力继续作用,流体就将继续变形,直到外力停顿作用为止。

流体一般不能承受拉力,在静止状态下也不能承受切向力,在任何微小切向力的作用下,流体就会变形,产生流动 2. 流体特性:易流动(易变形)性、可压缩性、粘性 3. 流体质点:宏观无穷小、微观无穷大的微量流体。

4. 流体连续性假设:流体可视为由无数连续分布的流体质点组成的连续介质。

稀薄空气和激波情况下不适合。

5. 密度0limV m m V V δδρδ→==重度0lim V G Gg V Vδδγρδ→===比体积1v ρ=6. 相对密度:是指*流体的密度与标准大气压下4︒C 时纯水的密度〔1000〕之比w wS ρρρ=为4︒C 时纯水的密度13.6Hg S = 7. 混合气体密度1ni ii ρρα==∑8. 体积压缩系数:温度不变,单位压强增量引起的流体体积变化率。

体积压缩系数的倒数为体积模量1P PK β=9. 温度膨胀系数:压强不变,单位温升引起的流体体积变化率。

10. 不可压缩流体:流体受压体积不减少,受热体积不膨胀,密度保持为常数,液体视为不可压缩流体。

气体流速不高,压强变化小视为不可压缩流体 11. 牛顿内摩擦定律:du dyτμ=黏度du dyτμ=流体静止粘性无法表示出来,压强对黏度影响较小,温度升高,液体黏度降低,气体黏度增加μυρ=。

满足牛顿内摩擦定律的流体为牛顿流体。

12. 理想流体:黏度为0,即0μ=。

完全气体:热力学中的理想气体第二章流体静力学1. 外表力:流体压强p 为法向外表应力,内摩擦τ是切向外表应力〔静止时为0〕。

2. 质量力〔体积力〕:*种力场对流体的作用力,不需要接触。

重力、电磁力、电场力、虚加的惯性力 3. 单位质量力:x y z Ff f i f j f k m==++,单位与加速度一样2m s 4. 流体静压强:1〕流体静压强的方向总是和作用面相垂直且指向该作用面,即沿着作用面的内法线方向2〕在静止流体内部任意点处的流体静压强在各个方向都是相等的。

工程流体力学复习知识总结

工程流体力学复习知识总结

一、是非题.1.流体静止或相对静止状态的等压面一定是水平面. (错误)2.平面无旋流动既存在流函数又存在势函数。

(正确)3.附面层分离只能发生在增压减速区. (正确)4.等温管流摩阻随管长增加而增加,速度和压力都减少。

(错误)5.相对静止状态的等压面一定也是水平面. (错误)6.平面流只存在流函数,无旋流动存在势函数。

(正确)7.流体的静压是指流体的点静压。

(正确)8.流线和等势线一定正交。

(正确)9.附面层内的流体流动是粘性有旋流动。

(正确)10.亚音速绝热管流摩阻随管长增加而增加,速度增加,压力减小。

(正确)11.相对静止状态的等压面可以是斜面或曲面。

(正确)12.超音速绝热管流摩阻随管长增加而增加,速度减小,压力增加。

(正确)13.壁面静压力的压力中心总是低于受压壁面的形心. (正确)14.相邻两流线的函数值之差,是此两流线间的单宽流量. (正确)15.附面层外的流体流动时理想无旋流动。

(正确)16.处于静止或相对平衡液体的水平面是等压面. (错误)17。

流体的粘滞性随温度变化而变化,温度升高粘滞性减少;温度降低粘滞性增大。

(错误)18流体流动时切应力与流体的粘性有关,与其他无关。

(错误)二、填空题。

1、1mmH2O= 9。

807 Pa2、描述流体运动的方法有欧拉法和拉格朗日法 .3、流体的主要力学模型是指连续介质、无粘性和不可压缩性.4、雷诺数是反映流体流动状态的准数,它反映了流体流动时惯性力与粘性力的对比关系.5、流量Q1和Q2,阻抗为S1和S2的两管路并联,则并联后总管路的流量Q为,总阻抗S为。

串联后总管路的流量Q为,总阻抗S为。

6、流体紊流运动的特征是脉动现像,处理方法是时均法。

7、流体在管道中流动时,流动阻力包括沿程阻力和局部阻力。

8、流体微团的基本运动形式有: 平移运动、旋转流动和变形运动 .9、马赫数气体动力学中一个重要的无因次数,他反映了惯性力与弹性力的相对比值。

10、稳定流动的流线与迹线重合。

流体力学知识点总结

流体力学知识点总结

流体力学知识点总结流体力学是一门研究流体(包括液体和气体)的运动规律以及流体与固体之间相互作用的学科。

它在许多领域都有着广泛的应用,如航空航天、水利工程、能源开发、生物医学等。

下面将对流体力学的一些重要知识点进行总结。

一、流体的物理性质1、密度和比容密度是指单位体积流体的质量,用ρ 表示。

比容则是单位质量流体所占的体积,是密度的倒数,用ν 表示。

2、压缩性和膨胀性压缩性是指流体在压力作用下体积缩小的性质,通常用体积压缩系数β 来表示。

膨胀性是指流体在温度升高时体积增大的性质,用体积膨胀系数α 来表示。

液体的压缩性和膨胀性通常较小,可视为不可压缩和不可膨胀流体;而气体的压缩性和膨胀性较为显著。

3、粘性粘性是流体内部产生内摩擦力以阻碍流体相对运动的性质。

粘性的大小用动力粘度μ 或运动粘度ν 来表示。

牛顿内摩擦定律指出,相邻两层流体之间的切应力与速度梯度成正比。

4、表面张力液体表面由于分子引力不均衡而产生的沿表面切线方向的拉力称为表面张力。

表面张力会使液体表面有收缩的趋势,在一些涉及小尺度流动的问题中需要考虑。

二、流体静力学1、静压强及其特性静止流体中任一点的压强大小与作用面的方位无关,只与该点的位置有关,即静压强各向同性。

2、欧拉平衡方程在静止流体中,单位质量流体所受的质量力和表面力平衡,由此可以导出欧拉平衡方程。

3、重力作用下的静压强分布在重力作用下,静止液体中的压强随深度呈线性增加,其计算公式为 p = p0 +ρgh,其中 p0 为液面压强,h 为深度。

4、压力的表示方法绝对压强是以绝对真空为基准计量的压强;相对压强是以当地大气压为基准计量的压强。

真空度则是当绝对压强小于大气压时,相对压强为负值,其绝对值称为真空度。

5、作用在平面上的静水总压力对于垂直放置的平面,静水总压力的大小等于受压面面积与形心处压强的乘积,其作用点位于受压面的形心之下。

6、作用在曲面上的静水总压力将曲面所受静水总压力分解为水平方向和垂直方向的分力进行计算。

流体力学公式总结

流体力学公式总结

工程流体力学公式总结第二章 流体的主要物理性质流体的可压缩性计算、牛顿内摩擦定律的计算、粘度的三种表示方法。

1.密度 ρ = m /V2.重度 γ = G /V3.流体的密度和重度有以下的关系:γ = ρ g 或 ρ = γ/ g4.密度的倒数称为比体积,以υ表示υ = 1/ ρ = V/m5.流体的相对密度:d = γ流 /γ水 = ρ流 /ρ水6.热膨胀性7.压缩性. 体积压缩率κ8.体积模量9.流体层接触面上的内摩擦力10.单位面积上的内摩擦力(切应力)(牛顿内摩擦定律)11..动力粘度μ:12.运动粘度ν :ν = μ/ρ13.恩氏粘度°E :°E = t 1 / t 2第三章 流体静力学重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体的压强计算、流体静压力的计算(压力体)。

1.常见的质量力:重力ΔW = Δmg 、直线运动惯性力ΔFI = Δm·a离心惯性力ΔFR = Δm·r ω2 .T VV ∆∆=1αp VV ∆∆-=1κV P V K ∆∆-=κ1n A F d d υμ=dnd v μτ±=n v d /d τμ=2.质量力为F 。

:F = m ·am = m (f xi+f yj+f zk)am = F /m = f xi+f yj+f zk 为单位质量力,在数值上就等于加速度实例:重力场中的流体只受到地球引力的作用,取z 轴铅垂向上,xoy 为水平面,则单位质量力在x 、y 、 z 轴上的分量为fx = 0 , fy = 0 , fz = -mg /m = -g式中负号表示重力加速度g 与坐标轴z 方向相反3流体静压强不是矢量,而是标量,仅是坐标的连续函数。

即:p = p (x ,y ,z ),由此得静压强的全微分为:4.欧拉平衡微分方程式单位质量流体的力平衡方程为:5.压强差公式(欧拉平衡微分方程式综合形式)6.质量力的势函数7.重力场中平衡流体的质量力势函数z z p y y p x x p p d d d d ∂∂∂∂∂∂++=d d d d d d 0x p f x y z x y z x∂∂-=ρd d d d d d 0y p f x y z x y z y ∂∂-=ρd d d d d d 0z p f x y z x y z z∂∂-=ρ01=∂∂-x p f x ρ10y p f y ∂∂-=ρ01=∂∂-z p f z ρz z p y y p x x p z f y f x f z y x d d d )d d d (∂∂+∂∂+∂∂=++ρ)d d d (d z f y f x f p z y x ++=ρd (d d d )x y z p f x f y f z dU ρ=++=ρd d d d x y z U U U U x y z =f dx f dy f dz x y z gdz ∂∂∂∂∂∂=++++=-积分得:U = -gz + c*注:旋势判断:有旋无势流函数是否满足拉普拉斯方程:22220x y ψψ∂∂+=∂∂8.等压面微分方程式 .fx d x + fy d y + fz d z = 09.流体静力学基本方程对于不可压缩流体,ρ = 常数。

流体力学知识点总结

流体力学知识点总结

流体力学11.1 流体的基本性质1)压缩性流体是液体与气体的总称。

从宏观上看,流体也可看成一种连续媒质。

与弹性体相似,流体也可发生形状的改变,所不同的是静止流体内部不存在剪切应力,这是因为如果流体内部有剪应力的话流体必定会流动,而对静止的流体来说流动是不存在的。

如前所述,作用在静止流体表面的压应力的变化会引起流体的体积应变,其大小可由胡克定律描述。

大量的实验表明,无论气体还是液体都是可以压缩的,但液体的可压缩量通常很小。

例如在500个大气压下,每增加一个大气压,水的体积减少量不到原体积的两万分之一。

同样的条件下,水银的体积减少量不到原体积的百万分之四。

因为液体的压缩量很小,通常可以不计液体的压缩性。

气体的可压缩性表现的十分明显,例如用不大的力推动活塞就可使气缸内的气体明显压缩。

但在可流动的情况下,有时也把气体视为不可压缩的,这是因为气体密度小在受压时体积还未来得与改变就已快速地流动并迅速达到密度均匀。

物理上常用马赫数M来判定可流动气体的压缩性,其定义为M=流速/声速,若M2<<1,可视气体为不可压缩的。

由此看出,当气流速度比声速小许多时可将空气视为不可压缩的,而当气流速度接近或超过声速时气体应视为可压缩的。

总之在实际问题中若不考虑流体的可压缩性时,可将流体抽象成不可压缩流体这一理想模型。

2)粘滞性为了解流动时流体内部的力学性质,设想如图10.1.1所示的实验。

在两个靠得很近的大平板之间放入流体,下板固定,在上板面施加一个沿流体表面切向的力F 。

此时上板面下的流体将受到一个平均剪应力F/A 的作用,式中A 是上板的面积。

实验表明,无论力F 多么小都能引起两板间的流体以某个速度流动,这正是流体的特征,当受到剪应力时会发生连续形变并开始流动。

通过观察可以发现,在流体与板面直接接触处的流体与板有相同的速度。

若图10.1.1中的上板以速度u 沿x 方向运动下板静止,那么中间各层流体的速度是从0(下板)到u (上板)的一种分布,流体内各层之间形成流速差或速度梯度。

流体力学总结

流体力学总结

1, 迹线------某一流体质点在空间运动时, 不同时刻流经的点组成的连线。

2, 切应力-------由于液体质点的相对运动, 产生一种内摩擦力抵抗这种运动, 而此力与作用面平行, 称切应力。

3, 理想流体------把流体看作绝对不可压缩、不能膨胀、无粘滞性、无表面张力的连续介质, 称为理想流体。

4, 流线------某一瞬时在流场中绘出的一条曲线, 该曲线上的所有各点的速度向量都与曲线相切。

5, 流函数------二维流动中, 由连续性方程导出、其值沿流线保持不变的标量函数。

6, 势函数------某函数对相应坐标的偏导数, 等于单位质量力在相应坐标轴上的投影, 该函数称为势函数。

7, 连续介质------认为真实流体所占有的空间可以近似的看做由“流体质点”连续地、无空隙地充满着的, 称为连续介质。

8, 粘性流体------实际流体都是粘性流体。

粘性指流体质点间由于相对运动而产生的阻碍相对运动的性质。

有势流------液体流动时每个液体质点都存在速度势函数的流动称为势流, 不存在绕自身轴的旋转运动。

, 10, 涡旋强度------指微小涡束的涡旋通量( )。

: 横断面积; : 旋转角速度。

11, 流管------指流面中所包含的流体。

流面: 在流场中作一空间曲线(非流线), 过曲线上各点作流线所形成的面。

, 12, 激波------在气体、液体和固体介质中, 应力、密度和温度等物理量在波阵面上发生突跃变化的压缩波。

二, 问答1, 速度势函数具有什么性质?答: 速度势函数具有下列性质:(1)速度势函数可允许相差一任意常数, 而不影响流体的运动;(2)φ(x, y )=常数时是等势线, 它的法线方向和速度矢量的方向重合;(3)沿曲线M 0M 的速度环量等于M 点上φ值和M 0点上φ值之差;⎰-=+=ΓM M M M vdy udx 0)()(0ϕϕ(4)若考虑的是单连通区域, 则由于封闭回线的速度环量因此速度势函数将是单值函数;若考虑的是双连通区域, 则速度环量Γ可以不等于零, 因此φ可以是多值函数, 它们的关系是 其中, k1是封闭回线的圈数。

(完整版)流体力学知识点总结汇总

(完整版)流体力学知识点总结汇总

流体力学知识点总结第一章 绪论1液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止 时不能承受剪应力。

2流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。

3流体力学的研究方法:理论、数值、实验。

4作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力. T 为A 点的剪应力Pl A应力的单位是帕斯卡(pa ), 1pa=1N/ m 2,表面力具有传递性。

(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例 重力、惯性力、uv 生力、离心力)5流体的主要物理性质(1)惯性:物体保持原有运动状态的性质。

质量越大,惯性越大,运动状态越难改变。

常见的密度(在一个标准大气压下):34°时的水1000 kg / m 3(2)粘性F Bm单位为应力_P作用于A 上的平均压应力周围流体作用 的表面力切向应力法向应力P APliPH为A 点压应力,即A 点的压强切向应力(常见的质量力:20 C 时的空气1.2kg /m 3作用于A 上的平均剪应力说明:1) 气体的粘度不受压强影响,液体的粘度受压强影响也很小。

2) 液体 T f 门气体 T f 卩匸无黏性流体无粘性流体,是指无粘性即口 =0的液体。

无粘性液体实际上是不存在的,它只是一种对物 性简化的力学模型。

(3)压缩性和膨胀性压缩性:流体受压,体积缩小,密度增大,除去外力后能恢复原状的性质。

T 一定,dp 增大,dv 减小膨胀性:流体受热,体积膨胀,密度减小,温度下降后能恢复原状的性质。

P 一定,dT 增大,dV 增大A 液体的压缩性和膨胀性液体的压缩性用压缩系数表示 压缩系数:在一定的温度下,压强增加单位P ,液体体积的相对减小值。

dV /V1 dV dP V dP由于液体受压体积减小,dP 与dV 异号,加负号,以使K 为正值;其值愈大,愈容易压缩。

流体力学知识点总结

流体力学知识点总结

流体力学知识点总结x一、流体力学基本概念1、流体:指气体和液体,其中气体又称气态物质,液体又称液态物质,也指过渡态的固、液、气。

2、流体静力学:指研究流体在外力作用下的静态特性、压强及重力场等的一般理论。

3、流体动力学:指研究复杂流动现象的动态特性,如流速、湍流及涡流等。

4、流体性质:指流体具有的物理性质,如密度、粘度、比容、表面张力和热特性等。

二、基本假定1、流体的原子间的相互作用是可以忽略的,可以认为是稀薄的。

2、可以假设流体每@点的性质是一致的,允许有速度和温度的变化,其变化有连续性。

3、流体的流动受力不受力,受力的变化很小。

4、流体流动的程度比凝固物体的几何比例大,可以忽略凝固物体对流体流动的影响。

三、流体力学基本概念1、流体质量流率:是流体中的所有物质在某一时刻的移动量,单位为千克/秒(千克/秒)。

2、流体动量流率:是流体中所有物质在某一时刻的动量的移动量,单位是千克·米/秒(千克·米/秒)。

3、流体的动量守恒:流体系统中的动量移动量不变,即:动量进入系统等于动量离开系统。

4、流体的动量定理:假定流体的粘度是恒定的,在流体力学中,运动的流体的动量守恒定理如下:5、流体的能量守恒:流体系统中的能量移动量不变,即:能量的一部分进入系统、离开系统或转移到其他系统中等于能量的一部分离开系统或转移到系统中。

6、绝对动量守恒:在不考虑粘度、流体的办法、温度及热量的变化的情况下,流体系统的绝对动量总量不变。

四、流体力学基本公式1、流体的动量定理:即Bernoulli定理,它用来描述非稳定流动中的动量转换,其形式为:p+ρv2∕2+ρgz=P+ρV+2;2、流体的能量定理:即费休定理,它用来描述流体中的施加动能和升能变化,其形式为:p+ρv2∕2+ρgz=P+ρV∕2+ρgz;3、流体力学定理:即拉格朗日定理,它用来描述流体的流动变化,其形式为:p+ρv2∕2+ρgz=p0+ρv02∕2+ρgz0;4、流体的动量方程:用来描述流体的动量变化,其形式为:(ρv)t+·ρvv=p+·μv+ρf。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
控制体就是流场中某个确定的空间区域。控制体的边界称为控制面。控制体的大小、形状是根据流动情况和边界位置任意选定的。控制体确定后,它的形状和位置相对于所选定的坐标系一般是固定不变的。
2.雷诺运输方程:
定常流动
意义:系统内物理量B随时间的变化率,等于控制体内该物理量随时间变化率加上通过控制面该物理量的净流出率。
3.流体质点的加速度:
4.迹线和流线:
迹线就是流体质点的运动轨迹,对应Lagrange法。迹线只与流体质点有、关;对不同的质点,迹线的形状可能不同;对一确定的质点,其轨迹线的形状不随时间变化
流线是同一时刻流场中连续各点的速度方向线。该曲线上每点的速度矢量在该点与曲线相切。对应Euler法。
定常流动时迹线和流线重合。除特殊点外,流线不能相交;如果相交,交点的速度必为0
5.流线微分方程: 如
6.流管:流线组成的管状曲面。流管内的流体称为流束。
7.有效截面(过流断面):流场空间中,处处与流线垂直的断面。(平面或曲面)单位时间流过有效截面的流体数量为流量。有效截面上流体同固体壁面边界接触部分的周长为湿周 。
8.当量直径:
矩形 环形 管束
9.流体运动方式:平移、旋转、线变形、角变形
9.温度膨胀系数:压强不变,单位温升引起的流体体积变化率。
10.不可压缩流体:流体受压体积不减少,受热体积不膨胀,密度保持为常数,液体视为不可压缩流体。气体流速不高,压强变化小视为不可压缩流体
11.牛顿内摩擦定律: 黏度 流体静止粘性无法表示出来,压强对黏度影响较小,温度升高,液体黏度降低,气体黏度增加 。满足牛顿内摩擦定律的流体为牛顿流体。
定常流动是指
二维定常流动不可压缩流体N-S方程:
15.蓝姆运动微分方程
16.无旋运动的Euler积分
:动能 :位势能 :压力势能
不可压缩理想流体在重力作用下作定常流动
有旋流动,沿一条流线各点单位重量流体的位势能,压力势能和动能的总和保持不变。
无旋流动,非但在同一流线上的各点,而且在整个流场中所有各点的总机械能保持不变。
注:1)不能在急变流处建立伯努利方程
2) 伯努利方程中速度为平均速度
4. 不可压缩粘性流体总流伯努利方程
总流方程使用条件:
①定常流动;
②不可压缩流体;
③作用于流体上的质量力只有重力;
④所选取的两个计算断面应符合渐变条件
⑤粘性流体
分流时
有能量输入
5.流动阻力损失
沿程阻力产生原理:
1)液体具有粘滞性;(内因)
第六章 不可压缩黏性流体的
1.理想流体:流体间无粘性,同一有效截面上流体速度大致相等,总水头保持不变
黏性流体:流体间有粘性,贴壁流体质点速度为零,相对运动着的流层之间存在切向应力,形成阻力,要克服阻力维持流动,要消耗机械能,机械能不守恒。
2.内部流动:流体被固体壁面包围,在管道或渠道中的流动。
3.黏性流体沿流线的伯努利方程:
3. 连续性方程:不可压缩定常流动
4.伯努利方程:不可压缩、绝热、定常流动、理想流体、质量力为重力、沿流线一维流动(同一流管、流线)
:速度水头 :位置水头 :压强水头
总水头为常数,流体静力学没有速度水头那一项
5.小孔出水
6.皮托管测流速
实际流体考虑黏性加修正因子
7.文丘里管测流量
8.
9. 动量定理:
2)在静止流体内部任意点处的流体静压强在各个方向都是相等的。
5.流体平衡微分方程式(欧拉平衡方程)
6.压差方程
7.势函数
重力场质量力势函数
8.等压面: 每一点的等压面与该点质量力垂直
9.重力场中流体静力学基本方程: 静水头为常数
:位置水头(位置势能) :压力水头(压力势能)
10.表压 真空度
注:测压计测得是相对压强(表压),不是绝对压强
7.入口段长度
层流: 湍流
8.平板间层流:化简N-S方程
9.水力光滑 水力粗糙 相对粗糙度 层流底层厚度
10.尼古拉兹曲线:水力光滑管和水力粗糙湍流
11.穆迪图
注:层流和湍流(水力)光滑管区只与雷诺数有关
12.局部阻力系数
截面增大
以V1为基准
以V2为基准
截面缩小
以V2(小截面)为基准
13. 虹吸
液体由管道从较高液位的一端经过高出液面的管段自动流向较低液位的另一端的作用。
(作用点 )
为 的形心
是以AB曲面为底,投影面积 为顶构成的体积,称为压力体
有虚压力体和实压力体
17.浮力:
第三章 流体
1.流场:充满运动流体的空间称为流场,流场中流体质点的连续性决定表征流体质点运动和物性的参数(速度、加速度、压强、密度等)在流场中也是连续的。并且随时间和空间而变化。
grange法和Euler法:Lagrange法着重于流体质点,通过研究每个流体质点来研究整个流场。Euler法着重于研究空间固定点的流动情况,研究某一点不同流体质点的运动来研究流场。
对上下游液面(速度为0)列伯努利方程
对1,2(管口)列伯努利
注: 为出口速度,有几项列几项
为入口速度,有几项列几项
10.对弯管作用力
11.射流对固体表面冲击力
注:大气压合力为0
分流前后压强不变,由伯努利方程知其速度不变
12.射流反推力
13.微分形式连续性方程
二维不可压缩定常流动
14. 微分形式动量方程(纳维尔斯托克斯方程)
注:黏度为0, 方程变为理想流体的Euler运动方程
4.流体连续性假设:流体可视为由无数连续分布的流体质点组成的连续介质。稀薄空气和激波情况下不适合。
5.密度 重度 比体积
6.相对密度:是指某流体的密度与标准大气压下4C时纯水的密度(1000)之比
为4C时纯水的密度
7.混合气体密度
8.体积压缩系数:温度不变,单位压强增量引起的流体体积变化率。体积压缩系数的倒数为体积模量
11.U型管测压计:
12.倾斜式微压计
13.等加速直线相对平衡
等压面上
自由液面
静压强分布
14. 等角速度旋转相对平衡
等压面
自由液面
静压强分布
注:旋转抛物体的体积等于同底等高圆柱体体积的一半
15.作用在倾斜平面上的总压力
只考虑液体压强
作用点(不考虑大气压)
常用惯性矩:矩形惯性矩
圆形惯性矩
16.作用在曲面上的总压力
第一章 流体
1.流体:流体是一种受任何微小剪切力作用都能连续变形的物质,只要这种力继续作用,流体就将继续变形,直到外力停止作用为止。流体一般不能承受拉力,在静止状态下也不能承受切向力,在任何微小切向力的作用下,流体就会变形,产生流动
2.流体特性:易流动(易变形)性、可压缩性、粘性
3.流体质点:宏观无穷小、微观无穷大的微量流体。
2)固体边界的影响,液流内部质点间产生相对运动。(外因)
局部阻力产生原理:
在流道发生突变的局部区域,流动属于变化较剧烈的急变流,流动结构急剧调整,流速大小、方向迅速改变,往往伴有流动分离与旋涡运动,流体内部摩擦作用增大。
6.圆管内层流(Re<2000):取圆柱体,运用牛顿内摩擦和受力分析求出u与r的关系
10.旋转角速度:(绕x,y,z轴的角速度)
线变形率:
角变形率:
记忆方法:脚注与角速度互补,再把角速度中间的符号取反
11.无旋流动 ,有旋流动
12.雷诺准则: 管内流动 层流, 湍流
13.定常流动:流动参数(V,ρ,p)与时间无关,与时间有关为非定常流动。
第四章
1.系统和控制体:
系统是一定质量的流体质点的集合。在流动过程中,它始终包含了这些确定的流体质点,有确定的质量,而其表面则通在不断地变形。
12.理想流体:黏度为0,即 。完全气体:热力学中的理想气体
第二章 流体静力学
1.表面力:流体压强p为法向表面应力,内摩擦τ是切向表面应力(静止时为0)。
2.质量力(体积力):某种力场对流体的作用力,不需要接触。重力、电磁力、电场力、虚加的惯性力
3.单位质量力: ,单位与加速度相同
4.流体静压强:
1)流体静压强的方向总是和作用面相垂直且指向该作用面,即沿着作用面的内法线方向
相关文档
最新文档