223实际问题与二次函数(2)---最大利润

合集下载

人教版九年级上册22.3实际问题与二次函数(最大利润问题)教案教学设计

人教版九年级上册22.3实际问题与二次函数(最大利润问题)教案教学设计
4.练习:布置一定数量的练习题,巩固学生对最大利润问题的解决方法。
5.总结:对本节课的内容进行总结,强调二次函数在实际问题中的应用。
6.课后作业:布置与最大利润问题相关的作业,让学生在课后进一步巩固所学知识。
教学评价:
1.课堂表现:关注学生在课堂上的参与程度,积极思考、提问的表现。
2.作业完成情况:评价学生对最大利润问题解决方法的掌握程度。
(2)鼓励学生尝试用不同的方法解决同一问题,提高他们的思维灵活性和创新意识。
3.拓展作业:
(1)引导学生关注生活中的最大利润问题,如超市促销、工厂生产等,要求学生运用所学知识进行分析,并提出解决方案。
(2)鼓励学生查找相关资料,了解二次函数在其他领域的应用,如经济学、管理学等。
4.作业要求:
(1)要求学生在作业本上规范书写,保持卷面整洁。
4.通过对最大利润问题的探讨,培养学生的数感和运用数学知识解决实际问题的能力。
(二)过程与方法
1.通过小组合作、讨论交流等形式,培养学生合作探究、解决问题的能力。
2.引导学生运用数学建模的思想,从实际问题中抽象出数学模型,提高学生的数学思维能力。
3.运用数形结合的方法,让学生在解决最大利润问题的过程中,深入理解二次函数的性质和图像。
(2)新课:讲解二次函数在实际问题中的应用,通过例题让学生体会最大利润问题的解决方法。
(3)练习:设计不同难度的练习题,让学生在解决最大利润问题的过程中,巩固所学知识。
(4)总结:对本节课的重点知识进行总结,强调二次函数在实际问题中的应用。
3.教学策略:
(1)关注学生的个体差异,实施分层教学,使每个学生都能在原有基础上得到提高。
三、教学重难点和教学设想
(一)教学重难点

22.3(1)实际问题与二次函数(最大利润问题)

22.3(1)实际问题与二次函数(最大利润问题)

22.3(1)实际问题与二次函数——最大利润问题目标:能够表示实际问题中变量之间的二次函数关系;会运用二次函数的顶点坐标求出实际问题的最大值(或最小值);能在自变量取值范围内求实际问题的最值。

课前准备1.当a>0时,抛物线y=ax2+bx+c的顶点是,即当x= 时,函数有,为.2.对抛物线y= -3(x+4) 2-1,说说当时,函数的最值情况,当时呢?当呢?你是怎么得到的?自主探究探究一:根据实际问题列函数关系式3.某商场购进一批货物,其差价(售价-进价=差价)x(元)与日销售量y(件)之间满足一次函数关系y=-2x+500,则日销售利润p与差价x之间的函数关系式为。

4.某商品原利润为每件60元,每月销售100件;若每涨价2元每月就少售出10件,那么涨价x元后每件利润为,每月出售该商品的利润y(元)与x之间的函数关系式为。

探究二:销售问题中的最大利润5.已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。

(1)市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件。

要想每周获得6090元的利润,该商品定价应为多少元?分析:(1)没调价之前商场一周的利润为,设销售单价上涨x元,那么每件商品的利润可表示为,每周的销售量可表示为,一周的利润可表示为,要想获得6090元利润可列方程。

(2)在(1)的条件下,如何定价才能使利润最大?(3)市场调查反映:如调整价格,每降价1元,每星期可多卖出20件;每涨价1元,每星期要少卖出10件。

如何定价才能使利润最大?自主思考:①调整价格的方式有哪几种?②若设每件涨价x元,类比(1)的分析,填写下表:的取值范围是;如何求利润③参考上述方法,确定降价时利润的最大值,并综合说明是选择降价还是涨价才能获得最大利润?(4)在(3)的条件下,若商场规定试销期间获利不得低于40%又不得高于60%,如何定价才能使利润最大?最大利润是多少?小结:利用二次函数模型解决最大利润问题的基本思路是①②③④巩固应用1.某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)求出每天所得的销售利润w(元)与每件涨价x(元)之间的函数关系式;(2)求销售单价为多少元时,该商品每天的销售利润最大;(3)商场的营销部在调控价格方面,提出了A,B两种营销方案.方案A:每件商品涨价不超过5元;方案B:每件商品的利润至少为16元.请比较哪种方案的最大利润更高,并说明理由.2.商场对某种商品进行市场调查,1至6月份该种商品的销售情况如下:①销售成本p(元/千克)与销售月份x的关系如图所示:②销售收入q(元/千克)与销售月份x满足;③销售量m(千克)与销售月份x满足m=100x+200;(1)根据图形,求p与x之间的函数关系式;(2)求该种商品每月的销售利润y(元)与销售月份x的函数关系式,并求出哪个月的销售利润最大?22.3(1)最大利润问题作业1.某超市经销一种销售成本为每件40元的商品。

《实际问题与二次函数》第二课时利润问题 教案

《实际问题与二次函数》第二课时利润问题 教案

人教版数学九年级上22.3.2实际问题与二次函数第二课时教学设计课题22.3.2实际问题与二次函数单元第二十二章学科数学年级九年级上学习目标情感态度和价值观目标通过对生活中实际问题的探究活动,锻炼学生克服困难的意志,建立自信心,提高学习热情.能力目标1.通过对商品涨价与降价的分析,感受函数知识在生活中的应用;2.在探究活动中,学会与他人合作并能与他人交流思维过程和探究结果.知识目标 1.将实际问题抽象成数学问题,经历函数建模的过程;2.会用二次函数知识求实际问题的最大值或最小值.重点用二次函数知识解决商品利润问题。

难点能够正确分析和表示实际问题中变量之间的二次函数关系,并求出最大(小)值。

学法自主探究、分组探究、合作交流教法引导发现法启发探究法教学过程教学环节教师活动学生活动设计意图导入新课一、情境导入设疑:观看商场的促销广告、电商广告页面,商家做广告的目的是什么?如果你是商场经理,你该如何定价才能获得最大利润?揭示课题:商品利润问题教师出示各种促销图片,设疑,激发学生探究的欲望,进而揭示课题。

从身边常见的生活实际情境入手,创设问题情境,激发学生的求知欲。

讲授新课二、探究新知问题1:某商品现在的售价为每件60元,每星期可卖出300件,已知商品的进价为每件40元,则每星期销售额是_____元,销售利润______元.涉及到的数量关系:(1)销售额=售价×销售量;(2)利润=销售额-总成本=单件利润×销售量;(3)单件利润=售价-进价.问题2:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?(1)降价:①设每件降价x元,则每星期售出商品的利润y元随之变化:建立函数关系式:②自变量x的取值范围如何确定?③降价多少元时,利润y最大,是多少?(2)涨价:①设每件涨价n元,则每星期售出商品的利润m元随之变化:建立函数关系式:②自变量n的取值范围如何确定?③涨价多少元时,利润m最大,是多少?学生分小组合作探究,教师提供题干中涉及到的“数量关系”引导学生分步探究。

22.3.2 实际问题与二次函数(销售最大利润问题)(练习)(解析版)

22.3.2 实际问题与二次函数(销售最大利润问题)(练习)(解析版)

第二十二章二次函数22.3.2 实际问题与二次函数(销售最大利润问题)精选练习答案基础篇一、单选题(共12小题)1.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=–4x+440,要获得最大利润,该商品的售价应定为()A.60元B.70元C.80元D.90元【答案】C【解析】设销售该商品每月所获总利润为w,则w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,∴当x=80时,w取得最大值,最大值为3600,即售价为80元/件时,销售该商品所获利润最大,故选C.2.某品牌钢笔进价8元,按10元1支出售时每天能卖出20支,市场调查发现如果每支每涨价1元,每天就少卖出2支,为了每天获得最大利润,其售价应定为()A.11元B.12元C.13元D.14元【答案】D【解析】设利润为w,由题意得,每天利润为:w=(2+x)(20–2x)=–2x2+16x+40=–2(x–4)2+72.所以当涨价4元(即售价为14元)时,每天利润最大,最大利润为72元.故选D.3.某超市有一种商品,进价为2元,据市场调查,销售单价是13元时,平均每天销售量是50件,而销售价每降低1元,平均每天就可以多售出10件.若设降价后售价为x元,每天利润为y元,则y与x之间的函数关系为()A.y=10x2﹣100x﹣160B.y=﹣10x2+200x﹣360C.y=x2﹣20x+36D.y=﹣10x2+310x﹣2340【答案】B【分析】根据等量关系“利润=(售价﹣进价)×(50+10×降价)”列出函数关系式即可.【详解】根据题意得:y=(x ﹣2)[50+10(13﹣x )]整理得:y=﹣10x 2+200x ﹣360.故选:B .【点睛】此题考查了从实际问题中抽象出二次函数关系式,掌握销售问题中的基本数量关系是解决问题的关键.4.某产品进货单价为9元,按10一件售出时,能售100件,如果这种商品每涨价1元,其销售量就减少10件,设每件产品涨x 元,所获利润为y 元,可得函数关系式为( )A .y =−10x 2+110x +10B .y =−10x 2+100xC .y =−10x 2+100x +110D .y =−10x 2+90x +100【答案】D【分析】根据总利润=单件利润×数量建立等式就可以得出结论.【详解】解:由题意,得y=(10+x -9)(100-10x ),y=-10x 2+90x+100.故选:D .【点睛】本题考查了销售问题的数量关系的运用,总利润=单件利润×数量的运用,解答时找准销售问题的数量关系是关键.5.出售某种文具盒,若每个可获利x 元,一天可售出(6-x)个.当一天出售该种文具盒的总利润y 最大时,x 的值为( )A .1B .2C .3D .4 【答案】C【解析】y=x (6-x )=-x 2+6x,x =-2b a =32=3.故选C. 6.在1~7月份,某地的蔬菜批发市场指导菜农生产和销售某种蔬菜,并向他们提供了这种蔬菜每千克售价与每千克成本的信息如图所示,则出售该种蔬菜每千克利润最大的月份可能是( )A .1月份B .2月份C .5月份D .7月份【答案】C【分析】先根据图中的信息用待定系数法表示出每千克售价的一次函数以及每千克成本的二次函数,然后每千克收益=每千克售价﹣每千克成本,得出关于收益和月份的函数关系式,根据函数的性质得出收益的最值以及相应的月份.【详解】设x 月份出售时,每千克售价为y 1元,每千克成本为y 2元,根据图甲设y 1=kx+b ,∴ {3k +b =56k +b =3, ∴ {k =−23b =7, ∴y 1=﹣23x+7,根据图乙设y 2=a (x ﹣6)2+1,∴4=a (3﹣6)2+1,∴a=13,∴y 2=(13x ﹣6)2+1,∵y=y 1﹣y 2,∴y=﹣23x+7﹣[13(x ﹣6)2+1], ∴y=﹣13x 2+103x ﹣6.∵y=﹣13x 2+103x ﹣6,∴y=﹣13(x ﹣5)2+73.∴当x=5时,y 有最大值,即当5月份出售时,每千克收益最大.故选C .【点睛】本题主要考查了一次函数和二次函数的应用,要注意需先根据图中得出两个函数解析式,然后再表示出收益与月份的函数式,再求解.7.某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨一元,月销售量就减少10千克.设销售单价为每千克x 元,月销售利润为y 元,则y 与x 的函数关系式为( )A .y =(x ﹣40)(500﹣10x )B .y =(x ﹣40)(10x ﹣500)C .y =(x ﹣40)[500﹣10(x ﹣50)]D .y =(x ﹣40)[500﹣10(50﹣x )]【答案】C【解析】分析:设销售单价定为每千克x 元,获得利润为y 元,则可以根据成本,求出每千克的利润.以及按照销售价每涨1元,月销售量就减少10千克,可求出销量.从而得到总利润关系式.详解:设销售单价为每千克x 元,此时的销售数量为500−10(x −50),每千克赚的钱为x −40, 则y =(x −40)[500−10(x −50)].故选C.点睛:此题主要考查了二次函数在实际问题中的运用,根据利润=(售价-进价)×销量,列出函数解析式,求最值是解题关键.8.某商品的进价为每件40元,当售价为每件80元时,每星期可卖出200件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出8件,店里每周利润要达到8450元.若设店主把该商品每件售价降低x 元,则可列方程为( )A .()()8020088450x x -+=B .()()4020088450x x -+=C .()()40200408450x x -+=D .()()402008450x x -+=【答案】B【解析】利润=售价﹣进价,由每降价1元,每星期可多卖出8件,可知每件售价降低x 元,每星期可多卖出8x 件,从而列出方程即可.解:原来售价为每件80元,进价为每件40元,利润为每件40元,所以每件售价降价x 元后,利润为每件(40﹣x )元.每降价1元,每星期可多卖出8件,因为每件售价降低x 元,每星期可多卖出8x 件,现在的销量为(200+8x ).根据题意得:(40﹣x )×(200+8x ) =8450.故选B .点睛:本题主要考查列一元二次方程解决实际问题.解题的关键在于要理解题意,并根据题中的数量关系建立方程.9.某商店经营皮鞋,所获利润y(元)与销售单价x(元)之间的关系为2242956y x x =-++,则获利最多为( ).A .3144B .3100C .144D .2956【答案】B【解析】试题解析:利润y (元)与销售的单价x (元)之间的关系为2242956y x x =-++, 2(12)3100.y x ∴=--+∵−1<0∴当x =12元时,y 最大为3100元,故选B.10.黄山市某塑料玩具生产公司,为了减少空气污染,国家要求限制塑料玩具生产,这样有时企业会被迫停产,经过调研预测,它一年中每月获得的利润y (万元)和月份n 之间满足函数关系式y=﹣n 2+14n ﹣24,则企业停产的月份为( )A .2月和12月B .2月至12月C .1月D .1月、2月和12月【答案】D【分析】知道利润y 和月份n 之间函数关系式,求利润y 大于0时x 的取值.【详解】由题意知,利润y 和月份n 之间函数关系式为y=-n 2+14n -24,∴y=-(n -2)(n -12),当n=1时,y <0,当n=2时,y=0,当n=12时,y=0,故停产的月份是1月、2月、12月.故选:D .【点睛】考查二次函数的实际应用,判断二次函数y >0、y=0、y <0,要把二次函数写成交点式,看看图象与x 轴的交点,结合开口分析,进行判断.11.某产品进货单价为90元,按100元一件出售时能售出500件.若每件涨价1元,则销售量就减少10件.则该产品能获得的最大利润为( )A .5000元B .8000元C .9000元D .10000元 【答案】C【解析】设单价定为x ,总利润为W ,则可得销量为:500-10(x -100),单件利润为:(x -90),由题意得,W=(x -90)[500-10(x -100)]=-10x2+2400x -135000=-10(x -120)2+9000,故可得当x=120时,W 取得最大,为9000元,故选C .【点睛】本题考查了二次函数的应用,解答本题的关键是表示出销量及单件利润,得出W 关于x 的函数解析式,注意掌握配方法求二次函数最值的应用.12.(2019·黑龙江中考真题)某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为( ).A .20%;B .40%;C .18%;D .36%. 【答案】A【分析】可设降价的百分率为x ,第一次降价后的价格为()251x -,第一次降价后的价格为()2251x -,根据题意列方程求解即可.【详解】解:设降价的百分率为x根据题意可列方程为()225116x -= 解方程得115x =,295x =(舍) ∴每次降价得百分率为20%故选:A .【点睛】本题考查了一元二次方程的在销售问题中的应用,正确理解题意,找出题中等量关系是解题的关键.二、填空题(共5小题)13.(2018·北京101中学初三月考)数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:售价(元/件)100 110 120 130 … 月销量(件) 200 180 160 140 …已知该运动服的进价为每件60元,设售价为x (x≥100)元,则月销量是___________件,销售该运动服的月利润为___________元(用含x 的式子表示).【答案】 2x +400 −2x 2+520x −24000【解析】分析:运用待定系数法求出月销量;根据月利润=每件的利润×月销量列出函数关系式. 详解:设月销量y 与x 的关系式为y=kx+b ,由题意得,{100k +b =200110k +b =180, 解得{k =−2b =400 . 则y=-2x+400;由题意得,y=(x -60)(-2x+400)=-2x 2+520x -24000点睛:本题考查的是二次函数的应用,一次函数的运用,掌握待定系数法求函数解析式是解题的关键. 14.某商场以30元/件的进价购进一批商品,按50元/件出售,平均每天可以售出100件.经市场调查,单价每降低5元,则平均每天的销售量可增加20件.若该商品想要平均每天获利1400元,则每件应降价多少元?设每件应降价x 元,可列方程为_________.【答案】(5030)1002014005x x ⎛⎫--+⨯= ⎪⎝⎭【解析】利润=单件利润⨯数量,本题中,单件利润=售价-成本单价 (50)30x =--提升篇5030x =--. 数量100205x =+⨯. ∴利润为1400时,单价利润⨯数量1400=,得到(5030)1002014005x x ⎛⎫--+⋅= ⎪⎝⎭. 15.(2008·吉林中考真题)某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,销售单价定为 元时,获得的利润最多.【答案】70【解析】解:设销售单价定为每千克x 元,获得利润为y 元,则:y=(x -40)[500-(x -50)×10],=(x -40)(1000-10x ),=-10x 2+1400x -40000,=-10(x -70)2+9000,∴当x=70时,利润最大为9000元.16.某种商品的进价为40元,在某段时间内若以每件x 元出售,可卖出(100﹣x )件,当x=____时才能使利润最大.【答案】70【分析】根据题意可以得到利润与售价之间的函数关系式,然后化为顶点式即可解答本题.【详解】解:设获得的利润为w 元,由题意可得,w=(x ﹣40)(100﹣x )=﹣(x ﹣70)2+900,∴当x=70时,w 取得最大值,故答案是:70.【点睛】考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.17.某旅行社有100张床位,每床每日收费10元,客床可全部租出,若每床每日收费提高2元,则租出床位减少10张,若每床每日收费再提高2元,则租出床位再减少10张,以每提高2元的这种变化方法变化下去,每床每日提高____元可获最大利润。

人教版数学九年级上册:22.3 实际问题与二次函数 第2课时 二次函数与最大利润问题 教案

人教版数学九年级上册:22.3 实际问题与二次函数  第2课时  二次函数与最大利润问题  教案

22.3实际问题与二次函数第2课时二次函数与最大利润问题【知识网络】典案二导学设计一、阅读课本:二、学习目标:1.懂得商品经济等问题中的相等关系的寻找方法;2.会应用二次函数的性质解决问题.三、探索新知某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?分析:调整价格包括涨价和降价两种情况,用怎样的等量关系呢?解:(1)设每件涨价x元,则每星期少卖_________件,实际卖出_________件,设商品的利润为y元.(2)设每件降价x元,则每星期多卖_________件,实际卖出__________件.四、课堂训练1.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100-x)件,应如何定价才能使利润最大?2.蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间x上市时间x/(月份) 1 2 3 4 5 6市场售价P(元/千克)10.5 9 7.5 6 4.5 3这个函数的图象是抛物线的一段(如图).(1)写出上表中表示的市场售价P(元/千克)关于上市时间x(月份)的函数关系式;(2)若图中抛物线过A、B、C三点,写出抛物线对应的函数关系式;(3)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为多少?(收益=市场售价-种植成本)五、目标检测某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元,求:(1)房间每天入住量y(间)关于x(元)的函数关系式;(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式;(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式,当每个房间的定价为多少元时,w有最大值?最大值是多少?。

22.3实际问题与二次函数 第2课时 最大利润问题(精品原创)

22.3实际问题与二次函数  第2课时 最大利润问题(精品原创)
1. 二次函数y=2(x-3)2+5的对称轴是

在日常生活中存在着许许多多的与数学知识有关的 实际问题。如商品销?
如果你是商场经理,如何定价才能使商场获得最大利润呢?
温故而知新
某商场春节前购进一批海南西瓜,每天能售出500千克, 每千克盈利0.3元.为了尽快减少库存,商场决定采取适当的 降价措施.调查表明:当销售价每降价0.1元时,其销售量每 天将多售出100千克.商场要想平均每天盈利达到120元,每 千克西瓜应降价多少元?
3.某商品的进价为每件50元,售价为每件60元,每个月可卖出 200件,如果每件商品的售价上涨1元,则每个月少买10件(每 件售价不能高于72元),设每件商品的售价上涨x元(x为正整 数),每个月的销售利润为y元. (1)求y与x的函数关系式并直接写出自变量x的取值范围; (2)每件商品的售价定为多少元时,每个月可获得最大利润? 最大月利润是多少元?
例 某商品现在的售价为每件60元,每星期可卖出300件, 市场调查反映:如调整价格,每涨价1元,每星期少卖出10 件;每降价1元,每星期可多卖出20件,已知商品的进价为 每件40元,如何定价才能使利润最大? 分析: 调整价格包括涨价和降价两种情况
先来看涨价的情况:⑴设每件涨价x元,则每星期售出商品
解:设降低x元后,单件利润为(13.5-x-2.5),销售件 数是(500+100x), y=(13.5-x-2.5)(500+100x) 即y=-100x2+600x+5500 (0≤x≤11 )
配方得y=-100(x-3)2+6400
当x=3时,y的最大值是6400元. ∴销售单价为10.5元时,最大利润为6400元.
3.某商品的进价为每件50元,售价为每件60元,每个月可卖出 200件,如果每件商品的售价上涨1元,则每个月少买10件(每 件售价不能高于72元),设每件商品的售价上涨x元(x为正整 数),每个月的销售利润为y元. (1)求y与x的函数关系式并直接写出自变量x的取值范围; (2)每件商品的售价定为多少元时,每个月可获得最大利润? 最大月利润是多少元?

实际问题与二次函数(二)-商品利润最大问题(课件)-2022-2023学年九年级数学上册(人教版)

实际问题与二次函数(二)-商品利润最大问题(课件)-2022-2023学年九年级数学上册(人教版)
解:(1)设每件商品涨价x元,每星期售出的利润为y元.则每星期少卖_____
没调整价格之前的
(60+x)(300-10x)
(300-10x)
件,实际卖出_________件,销售额为_______________元,买进商品需付
6000
利润是_____元.
40(300-10x)
(60+x)(300-10x)-40(300-10x)
为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方
式进行促销.经市场调查发现:当每吨售价每降低10元时,月销售量就会增加
7.5吨.综合考虑各种因素,每出售一吨建筑材料共需支付厂家和其他费用100
元.设每吨材料售价为x(元),该经销店的月利润为y(元).
(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.
(2)降价2.5元,即定价57.5元时,利润最大,最大利润是6125元.
由(1)(2)的讨论及现
在的销售情况Biblioteka 你知道应如何定价能使利润最大了吗?
当定价为65元时,能使利润最大,
最大利润是6250元.
例1.某电商在购物平台上销售一款小电器,其进价为45元/件,每销售一件
需缴纳平台推广费5元,该款小电器每天的销售量y(件)与每件的销售价格
1.能应用二次函数的性质解决商品销售过程中的最大利润问题.(重点)
2.弄清商品销售问题中的数量关系及确定自变量的取值范围. (难点)
(2,-7)
2
1.二次函数y=2x2-8x+1图象的顶点坐标是________,当x=____时,y的最小
-7
值为____.
2.某旅行社要接团去外地旅游,经计算所获利润y(元)与旅行团人数x(人)

人教九年级数学上册- 最大利润问题(附习题)

人教九年级数学上册- 最大利润问题(附习题)

即降价情况下,定价57.5元时,有最大利润6125元.
(1)涨价情况下,定价65元时,有最大利润6250元. (2)降价情况下,定价57.5元时,有最大利润6125元.
综上可知: 该商品的价格定价为65元时,可获得最大利润6250元.
基础巩固
随堂演练
1.下列抛物线有最高点或最低点吗?如果有,写出这些
综合应用
3.某种文化衫以每件盈利20元的价格出售,每天可售出40 件. 若每件降价1元,则每天可多售10件,如果每天要盈利 最多,每件应降价多少元?
解:设每件应降价x元,每天的利润为y元, 由题意得:y=(20-x)(40+10x)
=-10x2+160x+800 =-10(x-8)2+1440 (0<x<20). 当x=8时,y取最大值1440. 即当每件降价8元时,每天的盈利最多。
点的坐标(用公式):
(1)y=-4x2+3x;
(2)y=3x2+x+6.
解:b 2a
3
2 4
3 8
,
4ac b2 4a
32
4 4
9, 16
最高点为
3 8
,
9 16
.
解:b 1 1 , 2a 2 3 6
4ac b2 4 3 6 12 71
,
4a
43
12
最低点为
1 6
,
71 12
课堂小结
利用二次函数解决利润问题的一般步骤: (1)审清题意,理解问题; (2)分析问题中的变量和常量以及数量之间的关系; (3)列出函数关系式; (4)求解数学问题; (5)求解实际问题.
分析:(1)根据题意,设平均每天销售A种礼盒 为x盒,B种礼盒为y盒,列二元一次方程组解 答;(2)根据题意,设A种礼盒降价m元/盒,则A 种礼盒的销售量为(10+m3 )盒,再根据总利润 =每件商品的利润×销售量”列出解析式即 可.

人教版九年级上册22.3实际问题与二次函数(最大利润问题)(教案)

人教版九年级上册22.3实际问题与二次函数(最大利润问题)(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数在最大利润问题中的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这一知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在学生小组讨论环节,虽然学生们提出了很多有见地的观点,但我感觉他们在分析问题和解决问题的能力上还有待提高。为此,我计划在今后的教学中,多设计一些开放性的问题,引导学生深入思考,培养他们的逻辑思维和分析能力。
总之,在本次教学过程中,我深刻认识到了自身在教学方法和策略上的不足,也看到了学生在学习过程中遇到的困难。在今后的教学中,我将不断调整和改进,努力提高教学效果,让每个学生都能在数学学习的道路上取得更好的成绩。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-二次函数模型的建立:如何根据问题的具体情境,正确地建立二次函数模型,包括确定自变量和因变量,理解函数中各个参数的实际意义。
-实际问题与数学模型的关联:将实际问题抽象成数学模型,理解数学模型背后的实际背景,以及如何将数学结果应用到实际问题中去。
举例:在农产品销售问题中,重点在于让学生理解售价、销售量和成本之间的关系,并将其表达为二次函数的形式。

实际问题与二次函数------最大利润问题

实际问题与二次函数------最大利润问题

22.3.2实际问题与二次函数------最大利润问题一、教学目标:1、知识与技能:通过探究实际问题与二次函数关系,能用配方法或公式法求二次函数最值,并由自变量的取值范围确定实际问题的最值。

2、过程与方法:(1)、通过研究生活中实际问题,体会建立数学建模的思想. (2)、通过学习和探究“销售利润”问题,渗透转化及分类的数学思想方法.3、情感态度:通过将“二次函数的最大值”的知识灵活用于实际,让学生亲自体会到学习数学的价值,从而提高学生学习数学的兴趣。

二、学情分析:学生已经学习了二次函数的定义、图象和性质,学习了列代数式,列方程解应用题,这些内容的学习为本节课奠定了基础,使学生具备了一定的建模能力,但运用二次函数的知识解决实际问题要求学生能比较灵活的运用知识,对学生来说要完成这一建模过程难度较大。

三、教学重难点:教学重点:1、理解数学建模的基本思想,能从实际问题中抽象出二次函数的数学模型。

2、能根据实际问题,确立二次函数解析式,并用配方法或公式法求最值教学难点:从实际情景中抽象出函数模型。

四、教学过程:【活动1】小视频导入本节课的探究内容:某运动服的进价为每套40元,售价是每套60元时,每星期可卖出300套,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10套,每降价1元,每星期可多卖出20套,问:如何定价才能使利润最大?(设计说明:教师通过小视频将这个实际问题呈现给学生,但本问题是一道较复杂的市场营销问题,不能直接建立函数模型,需要分类讨论,初中学生分类讨论的思想较薄弱,这给解题造成了障碍,造成学习上的困难,因此,并没有马上去处理这个问题而是先进行一下知识储备。

)【活动2】小组合作探究解决自主学习中存在的问题:1、与利润有关的几个等式:(1)总价、单价、数量的关系;(2)单件利润、售价、进价的关系;(3)总利润、单件利润、数量的关系。

2、如何求2(0)y ax bx c a=++≠的最值?你有几种方法?3、二次函数2=-+的对称轴是直线,顶点坐标是y x2(3)5当x= 时,y有最值,是。

实际问题与二次函数-最大利润问题教学说明

实际问题与二次函数-最大利润问题教学说明

实际问题与二次函数-最大利润问题教学说明
教材:人教版
实际问题与二次函数——最大利润问题的教案说明
本节课的教学设计注重体现以教师为主导、学生为主体的思想,重点发展学生对知识的探究和归纳能力。

结合学生实际的学习情况(已经掌握二次函数的顶点坐标的求法,并且已经学习了关于利润问题的一元二次方程)进行设计,下面作出几点说明:
一、教材所处的地位和作用
本节是第一课时,着重通过利润最大的问题来突出二次函数应用中的最值问题的研究方法、它生活背景丰富,学生比较感兴趣,目的在于让学生通过掌握求利润最大这一类题,学会用建模的思想去解决其它和函数有关的应用题,此部分内容既是学习二次函数图像特点的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。

二、教学过程
本节课我的教学过程设计安排如下:
首先,以“情境引入”让学生既对新知产生兴趣,又对旧知识进行复习巩固。

再次,通过自学探究让学生建立数学模型,找出关系式
“利润=单件利润×销售量”;通过2个“实际尝试”的例子让学生根据找出的关系式,尝试用二次函数解决最大利润问题,又可以解决课本的探究1,做到分化难点的作用。

然后,通过巩固练习、小组讨论的形式让学生对这类题形成方法。

最后,通过学生的互动、课后探究拓展学生的思维,发展学生之间的互相竞争、互相合作的学习氛围。

三、教学方法的设计
教学过程中采用探索式教学,讲练结合、师生互动。

引导学生自主、合作、探索的学习形式。

四、教学反馈与评价
本节课从学生回答问题、练习情况等方面反馈学生对知识的理解、运用,教师对反馈回的信息及时点拨、评价,对亮点及时表扬、对不足及时帮助、鼓励。

22.3实际问题与二次函数(第二课时)教案

22.3实际问题与二次函数(第二课时)教案

22.3实际问题与二次函数第二课时 二次函数与最大利润问题一、 教学目标知识与技能:通过探究实际问题与二次函数的关系,让学生掌握利用顶点坐标解决最大值(或最小值)问题的方法。

过程与方法:通过研究生活中实际问题,让学生体会建立数学建模的思想;通过学习和探究“销售利润”问题,渗透转化及分类的数学思想方法。

情感态度与价值观:通过将“二次函数的最大值”的知识灵活用于实际,让学生亲自体会到学习数学的价值,从而提高学生学习数学的兴趣。

二、 教学重点及难点教学重点:用二次函数的知识分析解决有关利润的实际问题。

教学难点:通过问题中的数量变化关系列出函数解析式。

三、学情分析我班学生已经学习了二次函数的定义、图象和性质,在此之前也学习了列代数式、列方程解应用题,所以学生具备了一定的建模能力,但我班学生的理解能力较弱,对应用题具有恐惧感,然而应用二次函数的知识解决实际问题需要很强的灵活应用能力,对学生而言建模难度很大。

三、 教学过程(一) 复习引入 (1)商家进了一批杯子,进货价是10元/个 ,以a 元/个的价格售出,则商家所获利润为()10a -元。

(2)某种商品的进价是400元,标价为600元,卖出3x 件,为了减少库存,商家采取打八折促销,卖出了(65)x +件,则商家所获利润为(1080400)x +元 。

利润问题主要用到的关系式是:利润=售价-进价 总利润=单件利润 ⨯ 销售数量(二)创设情境问题(合作交流)童装的进价40元/件,售价60元/件,每星期可卖出300件。

如果调整价格,每涨价1元,每星期要少卖出10件。

要想获得7200元的利润,该商品应定价为多少元?分析:没调价之前商场一周的利润为 6000 元;设销售单价上调了x 元,那么每件商品的利润可表示为 (60-40+x ) 元,每周的销售量可表示为(300-10x ) 件,一周的利润可表示为(60-40+x )(300-10x )元,要想获得6090元利润可列方程 (60-40+x)(300-10x)=7200 。

人教部初三九年级数学上册 22.3实际问题与二次函数-商品最大利润问题 名师教学PPT课件

人教部初三九年级数学上册 22.3实际问题与二次函数-商品最大利润问题 名师教学PPT课件
涨价销售
①每件涨价x元,则每星期售出商品的利润y元,填空:
单件利润(元)销售量(件) 每星期利润(元)
正常销售 涨价销售
20 (20+x)
300
6000
(300−10x) (20+x)(300−10x)
建立函数关系式:y=(20+x)(300−10x), 即:y=−10x2+100x+6000.
②自变量x的取值范围如何确定? 营销规律是价格上涨,销量下降,因此只要考虑
单件利润 (元)
正常销售 10 涨价销售 10+x
销售量 每月利润(元) (件)
180
1800
180−10x (10+x)(180−10x)
建立函数关系式: y=(10+x)(180−10x),
即:y=−10x2+80x+1800.
②自变量x的取值范围如何确定? 营销规律是价格上涨,销量下降,因此只要考虑
∴y =−2x +160(50≤x≤70).
∴Q=(x −30)y =(x −30)(−2x + 160) =−2x2 + 220x − 4800 = −2(x −55)2 +1250 (50≤ x ≤70)
∵a = −2<0,图象开口向下, ∴当x = 55时,Q最大= 1250 ∴当售价在50~70元时,售价x是55元时,获利最大,
解:由题意得:
51≤ x ≤59 30 (−2x +160)≥1620 解得:51≤ x ≤53
课堂小结
建立函数 关系式
总利润=单件利润×销 售量=总售价-总成本.
最大利 确定自变量 润问题 取 值 范 围
涨价:要保证销售量≥0; 降价:要保证单件利润≥0.

九年级人教版上册数学课件:22.3实际问题与二次函数(2)最大利润问题

九年级人教版上册数学课件:22.3实际问题与二次函数(2)最大利润问题

变式训练
某商品现在的售价为每件 60 元,每星期可卖出300件.市 场调查反映:如调整价格,每降价 1 元,每星期可多卖出 20 件.已知商品的进价为每件 40 元,如何定价才能使利 润最大?
解法1:设每件降价x元,每星期售出商品的利润为y元, 则
y=(60-x-40)(300+20x)=(20-x)(300+20x)
例(2013山东青岛,22,12分) 某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发 现:当销售单价25元/件时,每天的销售量是250件;销售单价每 上涨1元,每天的销售量就减少10件. (1)写出商场销售这种文具,每天所得的销售利润w(元)与销 售单价x(元)之间的函0-10(x-25)]
·
20
30 35
45 49
· ·
方案B
x
两者比较,还是方案A的最大利润更高.
(2014内蒙古呼伦贝尔,25,10分)某商品的进价 为每件20元,售价为每件25元时,每天可卖出250 件.市场调查反映:如果调整价格,一件商品每涨价 1元,每天要少卖出10件. (1)求出每天所得的销售利润w(元)与每件涨价x (元)之间的函数关系式; (2)求销售单价为多少元时,该商品每天的销售利 润最大; (3)商场的营销部在调控价格方面,提出了,两种 营销方案. 方案:每件商品涨价不超过5元;方案:每件商品的 利润至少为16元. 请比较哪种方案的最大利润更高,并说明理由.
• 学习目标: 能够分析和表示实际问题中,变量之间的二次函数关 系,并运用二次函数的顶点坐标求出实际问题的最大 (小)值. • 学习重点: 探究利用二次函数的最大值(或最小值)解决实际问 题的方法.
问题探究
某商品现在的售价为每件 60 元,每星期可卖出300件.市 场调查反映:如调整价格,每涨价 1 元,每星期要少卖出 10 件.已知商品的进价为每件 40 元,如何定价才能使利 润最大? (1) 当每件涨 1 元时,售价是多少?每星期销量是多 少?成本是多少?销售额是多少?利润呢? (2) 当每件涨 x 元时,售价是多少?每星期销量是多 少?成本是多少?销售额是多少?利润 y 呢? (3) 最多能涨多少钱呢? (4)当定价为x元,涨价多少元?每件的利润是多少? 每星期销量是多少?利润 y 呢?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当x
2
100
10
5时
410 6000 1002
y最大
4 10
6250
所以,当x = 5时, y 最大,也就是说,在涨价的情况下, 涨价5元,即定价65元时,利润最大,最大利润是6250元.
还可以这样求极值
x b 5时, 2a
y最大值 10 52 100 5 6000 6250
当x 5 时,
2
y最大
4 20 6000 100 2 4 20
6125
所以:当x=2.5时,y最大。也就是说,降价2.5元 即定价57.5元时,利润最大,最大利润是6125元.
课后练习:
某食品零售店为食品厂代销一种面包,每个面包的出厂价为5角, 未售出的面包可退回厂家。经统计销售情况发现,当这种面包的 单价定为7角时,每天卖出160个,在此基础上,每提高一角,一 天可少卖20个。这种面包的单价为x角,零售店每天销售这种面 包所获利涧为y角。 (1)用含x的式子分别表示每个面包的利润与卖出的面包数。 (2)求出y与x 的函数关系式。 (3)当面包单价定为多少时,该零售店每天销售这种面包的利 润最大?最大利润是多少?
分析提示: (1)这个题能用方程解吗?为什么?那你还有什么方 法吗?
(2)你能用“总利润=单利润x销售量”这一等量关系, 列出函数关系吗?
(3)这里,自变量x的取值范围是多少?为什么?
(4)如何求函数最大值呢?
解:设每件涨价x元,每星期所获利润为y元.
y 60 x 40300 10x
即y 10x2 100x 6000 0 x 30
解: 设涨了x元。
60 x 40300 10x 6090
化简得x2 10 x 9 0
得x1 1, x2 9
答: 当售价涨1元或9元时, 每周所获利润为6090元。
问题三:某商品现在的售价为每件60元,每星期可卖出 300件,市场调查反映:如调整价格,每涨价1元,每星 期少卖出10件。已知商品的进价为每件40元,当商品的 售价为多少元时,能使每周利润最大?
使每周利润最(大用?二次函数解决实际问题的一般步骤)
分析提示:
(1)你准备有哪一个知识点解决这个问题?为什么?
(2)列出对应的函数关系式。
(3)确定自变量的取值范围。
(4)求出函数的最值。
解:设每件降价x元,所获利润为y元.
y 60 x 40300 20x
即y 20x2 100x 60000 x 20
26.3 实际问题与二次函数 第1课时 如何2+bx+c的顶点坐标为 (-
b
4ac b2
,
)
2a 4a
所以,当x=- b 时,y有最值= 4ac b2
2a
4a
知识点回顾
抛物线 y a(x h)2 k 的顶点坐标为(h,k), 所以当x=h时,y有最值=k。
(1)卖一件可得利润为: (2)这一周所得利润为: (3)你认为:利润、进价、售价、
销量之间有什么关系?
问题二:某商品现在的售价为每件60元,每星期 可卖出300件,市场调查反映:如调整价格,每涨 价1元,每星期少卖出10件。已知商品的进价每件 40元,当售价涨多少时,每周可获利润6090元。
分析提示: (1)你能说出这个题中售价、进价、售价、销量吗? (2)你能列出方程吗?
练习:求下列函数的最大值或最小值。 (1) y 2(x 3)2 5, (2)y=-4(x-7)2-1
(3)y=-2x2+8x-8 (4)y=3x2+2x

问题一:某商店销售服装,现在的售价是为每 件60元,每星期可卖出300件。已知商品的进 价为每件40元,那么一周的利润是多少?
分析提示:
y \元
6250 6000
05
可以看出,这个函数的图像是
一条抛物线的一部分,这条抛
物线的顶点是函数图像的最高
30
x \ 元 点,也就是说当x取顶点坐标的
横坐标时,这个函数有最大值。
由公式可以求出顶点的横坐标.
问题四:某商品现在的售价为每件60元,每星期可卖出300 件,市场调查反映:如果商品每降价1元,每星期可多卖出 20件,已知商品的进价为每件40元,当售价为多少时,能
相关文档
最新文档