高纯气体发生器技术指标

高纯气体发生器技术指标
高纯气体发生器技术指标

高纯气体发生器技术指标

数量:高纯氢气发生器 2 套;

高纯氮气发生器 1 套;

零级空气发生器 1 套。

具体技术指标和配置要求如下;

高纯氢气发生器技术指标

一、主要用途:

1.氢气发生器为气相色谱 FID、FPD、NPD 等检测器提供高纯氢气气源,保障配套仪器的样品测定,对环境无污染;

二、详细技术性能指标:

2.﹡专为气相色谱仪器提供纯度≥99.9995%的高纯氢气;

3.高纯氢气出口流量:≥250cc/min;

4.高纯氢气出口压力:5-100psi 可调;

5.采用微电脑自动控制,LCD 液晶显示,操作简单,可连续监控所有工作参数和运行状况,具有自动故障诊断功能;

6.﹡具有 3 个环保过滤器,保证氢气发生器内部气体管路和水箱不受环境空气污染;7.﹡具有内置不小于 5L 超大容量储水箱;

8.配置原装高效氧气/水份捕集阱。

9.﹡采用分子筛干燥筒干燥氢气持久高效;

10.在线 LCD 液晶显示运行时间,自动进行维护需求提示和报警;

11.﹡采用离子交换膜技术产生高纯氢气,只需加>1megohm-cm 去离子水,无须添加任何碱液;

12.具有自动氢气检漏及声光报警装置,自动关闭氢气发生器,确保安全;

13.具有系统开机自动检测功能;

14.具有在线水质监测及声光报警功能;

15.具有在线水箱水位监测及声光报警功能;

16.氢气发生器机身采用经防腐处理和静电涂层处理的高强度工程塑料,外型美观。17.﹡完全满足每天 24 小时不间断持续、安全、可靠运行要求;

18.体积紧凑,方便置于实验台下,节省空间;

19.﹡通过 CE、UL 认证;

20.氢气出口连接:1/8” Swagelok;

三、配置清单:

1.氢气发生器主机二套;

2.不少于 6 个月维护工具包二套,氧气/水份阱二套,分子筛干燥筒二套;

高纯气体发生器技术指标

高纯气体发生器技术指标 数量:高纯氢气发生器 2 套; 高纯氮气发生器 1 套; 零级空气发生器 1 套。 具体技术指标和配置要求如下; 高纯氢气发生器技术指标 一、主要用途: 1.氢气发生器为气相色谱 FID、FPD、NPD 等检测器提供高纯氢气气源,保障配套仪器的样品测定,对环境无污染; 二、详细技术性能指标: 2.﹡专为气相色谱仪器提供纯度≥99.9995%的高纯氢气; 3.高纯氢气出口流量:≥250cc/min; 4.高纯氢气出口压力:5-100psi 可调; 5.采用微电脑自动控制,LCD 液晶显示,操作简单,可连续监控所有工作参数和运行状况,具有自动故障诊断功能; 6.﹡具有 3 个环保过滤器,保证氢气发生器内部气体管路和水箱不受环境空气污染;7.﹡具有内置不小于 5L 超大容量储水箱; 8.配置原装高效氧气/水份捕集阱。 9.﹡采用分子筛干燥筒干燥氢气持久高效; 10.在线 LCD 液晶显示运行时间,自动进行维护需求提示和报警; 11.﹡采用离子交换膜技术产生高纯氢气,只需加>1megohm-cm 去离子水,无须添加任何碱液; 12.具有自动氢气检漏及声光报警装置,自动关闭氢气发生器,确保安全; 13.具有系统开机自动检测功能; 14.具有在线水质监测及声光报警功能; 15.具有在线水箱水位监测及声光报警功能; 16.氢气发生器机身采用经防腐处理和静电涂层处理的高强度工程塑料,外型美观。17.﹡完全满足每天 24 小时不间断持续、安全、可靠运行要求; 18.体积紧凑,方便置于实验台下,节省空间; 19.﹡通过 CE、UL 认证; 20.氢气出口连接:1/8” Swagelok; 三、配置清单: 1.氢气发生器主机二套; 2.不少于 6 个月维护工具包二套,氧气/水份阱二套,分子筛干燥筒二套;

气体传感器文献综述

` 气体传感器的发展概况 和发展方向 玛日耶姆·图尔贡 107551600545 Word文档

气体传感器的发展概况和发展方向 【摘要】本文对气体传感器进行分类,介绍了半导体型气体传感器、电阻型气体传感器、非电阻型气体传感器等几种常见气体传感器的特性、总结了这些气体传感器的工作原理,并阐述这几种气体传感器在日常生活及特殊场合中的应用及其选用时的原则。探讨了气体检测仪器在检测对象、检测围和检测方式上向小型化、智能化、多功能化和通用化等方面不断向前发展的方向。 【关键词】气体传感器;特性;应用;发展方向 一、前言 目前,随着人们环保意识的提高,环境问题日益受到政府和社会关注。环境问题变成了重要的民生问题,影响到人民生活幸福感,甚至环境问题严重威胁群众健康。 近年来生态环境污染状况日趋严重,各种工业废水,废气直接排入水体及空气,造成极为严重的环境污染。影响着人们的正常生活和生存发展,并导致环境污染的气体进行处理是十分急迫的问题。随着科学技术的发展,人们生活水平的提高,对气体传感器的需求已有所不同;同时,随着近年酸雨、温室效应、臭氧层破坏、环境污染等,严重影响了人类的健康和生存,这就给气体传感器提出了新的研究课题和增加了新的研究容和难度。检测气体的种类由原来的还原性气体(H2、 C4、 H10、 CH4等)扩展到毒性气体(CO、NO2、 H2S、NO、NH3、 PH3等)以及食品有关的气体(鱼、肉鲜度(CH3)3、醋酸乙脂等)[1]。气体传感器作为气体检测最基础的部分,为了满足这些需求,气体传感器必须具有较高的灵敏度和选择性,重复性和稳定性要好,而且能批量生产,性能价格要高等。 随着人们环保意识的增强以及各国对有毒气体排放和污染物排放方面的严格立法,各种气体传感器正在得到越来越广泛的应用。目前,随着生命科学、人工智能、材料科学等学科的发展,气体传感器的应用领域越来越广泛,在大气监测、食品工业、汽车尾气快速实时测定、有毒气体检测安全检查和航空航天等方面,越来越多地显示出气体传感器的重要作用[2]。 二、气体传感器的发展概况 2.1气体检测仪 气体检测仪是一种气体泄露浓度检测的仪器仪表工具,主要是指便携式/手持式气体检测仪。主要利用气体传感器来检测环境中存在的气体种类。气体检测的目的是分析各种气体混合物中各组分的含量或其中某一组分的含量。气体检测仪表一般由传感器、信号放大、处理单元、显示单元以及控制单元组成,其中传感器是最关键的部分。 2.2传感器 传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。传感器按其基本效应可分为:物理传感器,化学传感器,生物传感器。按检测对象,化学传感器分为气体传感器、湿度传感器、离子传感器。 物理传感器 传感器生物传感器气体传感器 化学传感器离子传感器 湿度传感器

常用气体检测仪报警值设定标准

常用气体检测仪报警值设定标准 按《GB 6222-2005工业企业煤气安全规程》、《工业企业设计卫生标准(GBZ1—2002)》、《工作场所有害因素职业接触限值(GBZ2—2007)》中规定的限值设定。 低报警值 气体名称 LOW 可燃气体 一氧化碳CO 30mg/m3 6PPM/ 硫化氢H2S 10mg/m3 氧气O2 名词解释: 职业接触限值occupational exposure limits,OELs 职业性有害因素的接触限制量值。指劳动者在职业活动过程中长期反复接触,对绝大多数接触者的健康不引起有害作用的容许接触水平。 化学有害因素的职业接触限值包括时间加权平均容许浓度、短时间接触容许浓度和最高容许浓度三类。 1.1时间加权平均容许浓度permissibleconcentration-timeweighted average,PC-TWA 以时间为权数规定的8h工作日、40h工作周的平均容许接触浓度。

1 9."5%28mg/m3 23%14mg/m3 /21mg/m3 /200mg/m3 20PPM/20mg/m3 10PPM/30mg/m3 15PPM/10%LEL 24PPM/HIGH 50%LEL 160PPM/许浓度TWA/16PPM/浓度STEL/24PPM/高报警值时间加权允短时间接触允许 1."2短时间接触容许浓度permissible concentration-short termexposure limit,PC-STEL 在遵守PC-TWA前提下容许短时间(15min)接触的浓度。 1.3最高容许浓度maximum allowable concentration,MAC工作地点、在一个工作日内、任何时间有毒化学物质均不应超过的浓度。 1.4超限倍数excursion limits 对未制定PC-STEL的化学有害因素,在符合8h时间加权平均容许浓度的情况下,任何一次短时间(15min)接触的浓度均不应超过的PC-TWA的倍数值。

热敏电阻检验标准

X/X 深圳TT电子有限公司检验标准 X/XX-XXXX.2010 热敏电阻检验标准 2010年XX月XX日发布 2010年XX月XX日实施深圳TT电子有限公司研发部发布

目录 目录 (Ⅰ) 使用前言说明 (Ⅱ) 标准范围及引用 (Ⅲ) 1 主体材料分类说明 (1) 2 使用环境要求 (1) 3 产品MARKING标示要求 (1) 4 部品外观相关要求 (1) 5 包装、储存要求 (1) 6 阻燃状况要求 (1) 7 部品仪器设备的要求 (2) 8 检验规则 (2) 8.1 适用规范 (2) 8.2 检验样品的抽取说明 (2) 8.3 检验结果的判定及处理 (2) 9 部品常规检验要求 (2) 9.1 部品尺寸检验方法 (2) 9.2 部品基本电性能检测 (2) 9.3 可焊性检测方法 (3) 9.4 机械性检测方法 (3) 9.5 标示耐擦性检测方法 (3) 9.6 RoHS测试 (3) 10 可靠性实验 (3) 10.1 高温储存 (3) 10.2 高湿储存 (4) -Ⅰ-

标准使用前言说明 热敏电阻是我司电源产品主要的构成原器件,有着对电源电路起着保护其它电子元件的作用!根据热敏电阻的承认书和《中华人民共和国标准化法》规定,特制订本检验标准作为IQC部品来料检验及部品工程认定和组织生产销售的依据。 本标准的格式和结构安排符合GB/T 1.1-2000和GB/T 1.2-2002标准要求。 本标准由深圳市TT电子有限公司提出并负责解释。 本标准起草单位:深圳TT电子有限公司 本标准主要起草人: 本标准首次发布日期: -Ⅱ-

标准范围及引用 1 范围 本标准规定了热敏电阻的材料分类、使用环境要求、产品标示要求、本体外观要求、包装贮存要求、阻燃要求、检测设备要求、检测规则、部品常规检验、可靠性实验。 本标准适用于各供应商交给TT的所有热敏电阻材料的标准验收。 2 规范性标准引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 2421-1999 电工电子产品环境试验第1部份:总则 GB/T 2422-1995 电工电子产品环境试验术语 GB/T 2423.1-2001 电工电子产品基本环境试验规程试验A: 低温试验方法 GB/T 2423.2-2001 电工电子产品基本环境试验规程试验B: 高温试验方法 GB/T 2423.3-1993 电工电子产品基本环境试验规程试验Ca: 恒定湿热试验方法 GB/T 2423.22-2002 电工电子产品基本环境试验规程试验N: 温度变化试验方法 GB/T 4857.5-92 包装运输包装件跌落试验方法 -Ⅲ-

各类气体传感器介绍

各类气体传感器介绍 一、引言 广义的说,传感器(Transducer或Sensor)是一种能把物理量或化学量转变成便于利用的电信号的器件或装置,在有些国家或科学领域,也将传感器称为变换器、检测器或探测器等。将物理量或化学量得变化转变成电信号是传感器的最终目的。 国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。国家标准GB 7765—87给传感器的定义是:能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。此处的可用输出信号,一般即指易于处理和传输的电信号。从这个角度也可以说传感器即为将非电信号转换成电信号的器件。当然,可以预料,将来的“可用信号201D或许是光信息或者是更先进、更实用的其他信息。 本文主要介绍气体传感器的工作原理及应用场合,并对气体传感器的发展方向进行一些介绍。 二、工作原理 传感器之所以具有能量信息转换的机能,在于它的工作机理是基于各种物理的、化学的和生物的效应,并受相应的定律和法则所支配。了解这些定律和法则,有助于我们对传感器本质的理解和对新效应传感器的开发。传感器工作物理基础的基本定律和法则有以下四种类型: (1)守恒定律。包括能量、动量、电荷量等守恒定律。这些定律,是我们探索、研制新型传感器时,或在分析、综合现有传感器时,都必须严格遵守的基本法则。 (2)场的定律。包括运动长的运动定律,电磁场的感应定律等,气相互作用与物体在空间的位置及分布状态有关。一半可由物理方程给出,这些方程可做诶许多传感器工作的数学模型。例如:利用静电场定律研制的电容式传感器;利用电磁感性定律研制的自感、互感、电涡流式传感器;利用运动定律与电池感应定律研制的磁电式传感器等。利用场的定律构成的传感器,其形状、尺寸(结构)决定了传感器的量程、灵敏度等主要性能,故此类传感器可统称为“结构型传感器”。 (3)物质定律。它是表示各种物质本身内在性质的定律(如胡克定律、欧姆定律等),通常以这种物质所固有的物理常数加以描述。因此,这些常数的大小决定着传感器的主要性能。如:利用半导体物质法则—压阻、热阻、磁阻、光阻、湿阻等效应,可分别做成压敏、热敏、光敏、湿敏等传感器件;利用压电晶体物质法则—压电效应,可制成压电、声表面波、超声波传感器等等。这种基于物质定律的传感器,可统称为“物性型传感器”。这是当代传感器技术领域中具有广阔发展前景的传感器。 (4)统计法则。它是把围观系统与宏观系统联系起来的物理法则。这些法则,常常与传感器的工作状态有关,它是分析某些传感器的理论基础。这方面的研究尚待进一步深入。 气体传感器(Gas Sensor)是以气敏器件为核心组成的能把气体成分转换成电信号的装置。它具有响应快,定量分析方便,成本低廉,实用性广等优点,应用越来越广。 气体种类繁多,性质各异,因此,气体传感器种类也很多。按待检气体性质可分为:用于检测易燃易爆气体的传感器,如氢气、一氧化碳、瓦斯、汽油挥发气等;用于检测有毒气体的传感器,如氯气、硫化氢、砷烷等;用于检测工业过程气体的传感器,如炼钢炉中的氧气、热处理炉中的二氧化碳;用于检测大气污染的传感器,如形成酸雨的NO x、CH4、O3,家庭污染如甲醛等。按气体传感器的结构还可分为干式和湿式两类;按传感器的输出可分为电阻式和费电阻式两类;按检测院里可分为电化学法、电气法、光学法、化学法几类,如图:

常用气体发生器的介绍-空气发生器

常用气体发生器的介绍 下面仅就市场上常用的三种气相色谱仪的气体发生器(氢气发生器、氮气发生器、空气泵)的结构、特点做简单的分析。 一.气体发生器的干燥过滤装置 下面谈谈气体发生器上的干燥过滤器,无论是分体的发生器还是组合的发生器,都需要对输出的气体进行干燥净化,即除湿除烃(或者除油)等。现有的除湿除烃方法基本都采用吸附剂吸附法,吸附剂大体都采用变色硅胶、分子筛和活性炭。由于使用变色硅胶除湿,需要定期观察硅胶的变色程度,采用透明的有机玻璃材料或者工程塑料成为首选,不锈钢管由于不能随时观察硅胶的颜色不太适用。 过滤管的安装样式 1)吊装式:净化管的进气口和出气口都在仪器上部,出管口向下,从电解分离池或者压缩机过来的气体首先从固定盖中间内突起的进气口向下通过内衬芯管 进入干燥剂底部,然后经过吸附剂的过滤后再从向上返回到固定盖周边的出气口,从而保证气体经过有效的过滤后再输出。 2)立装式:净化管的进气口和出气口都在仪器底部,开口向上。此方法有两种:a 净化管内加衬管,吸附剂装入衬管内,气体先经吸附剂吸附后再经净化管与衬管 中间的缝隙到净化管底部输出, 此,方法由于受结构及加工工艺的影响,衬管不 易从净化管内取出,甚者气体受吸附剂阻力的影响而不流经吸附剂,造成未过滤的气体直接输出,影响色谱的正常使用;b净化管内加导管吸附剂装入净化管内,气体先经吸附剂吸附后再经导管输出,此方法多为不锈钢管采用,但不锈钢管为 不透明不便于用户直接观察吸附剂的变化;不方便使用。 由于受工作原理的限制,氮气发生器和氢气发生器电解分离池出来的气体湿度都比较大,当气体经电解分离池后或多或少都会有水汽凝结成水珠、采用立装式固定净化管,液滴由于重力的作用,会在更换过滤器时滴入出气口,进入色谱仪的管道,造成管路系统的污染。吊装式避免了以上的问题。我单位现有的净化管完全采用吊装方式。 有些厂家为了降低电解分离池输出气体的湿度,在电解池和净化管之间加装了汽水分离器,由于分离器内的过滤材料多为烧结的粉末金属材料,电解分离池输出的未干燥气体为碱性气体,碱性气体会腐蚀分离器内粉末金属材料甚至造成堵塞,影响发生器的正常使用,极端情况可能会由于堵塞造成压力过高引起爆炸,希望用户使用时一定注意。 二、高纯氢发生器 目前市场上为气相色谱配套的氢气发生器按电解膜材料分主要有碱石棉膜、离子膜、钯金属膜三种。

气体检测仪常用知识

气体检测仪是一种气体泄露浓度检测的仪器仪表工具,主要是指便携式/手持式气体检测仪。主要利用气体传感器来检测环境中存在的气体种类,武汉中试高测电气有限公司气体传感器是用来检测气体的成份和含量的传感器。一般认为,气体传感器的定义是以检测目标为分类基础的,也就是说,凡是用于检测气体成份和浓度的传感器都称作气体传感器,不管它是用物理方法,还是用化学方法。比如,检测气体流量的传感器不被看作气体传感器,但是热导式气体分析仪却属于重要的气体传感器,尽管它们有时使用大体一致的检测原理。 早在上个世纪70年代,气体传感器就已经成为传感器领域的一个大系,属于化学传感器的一个分支。 目前流行于市场的气体传感器大约有如下一些种类: 1、半导体式气体传感器 它是利用一些金属氧化物半导体材料,在一定温度下,电导率随着环境气体成份的变化而变化的原理制造的。比如,酒精传感器,就是利用二氧化锡在高温下遇到酒精气体时,电阻会急剧减小的原理制备的。 半导体式气体传感器可以有效地用于:甲烷、乙烷、丙烷、丁烷、酒精、甲醛、一氧化碳、二氧化碳、乙烯、乙炔、氯乙烯、苯乙烯、丙烯酸等很多气体地检测。尤其是,这种传感器成本低廉,适宜于民用气体检测的需求。 下列几种半导体式气体传感器是成功的:甲烷(天然气、沼气)、酒精、一氧化碳(城市煤气)、硫化氢、氨气(包括胺类,肼类)。高质量的传感器可以满足工业检测的需要。 缺点:稳定性较差,受环境影响较大;尤其,每一种传感器的选择性都不是唯一的,输出参数也不能确定。因此,不宜应用于计量准确要求的场所。 目前这种传感器的主要供应商在日本(发明者),其次是中国,最近有新加入了韩国,其他国家如美国在这方面也有相当的工作,但是始终没有汇入主流!中国在这个领域投入的人力和时间都不亚于日本,但是由于多年来国家政策导向以及社会信息闭塞等原因,我国流行于市场的半导体式气体传感器性能质量都远逊于日本产品,相信,随着市场进步,民营资本的进一步兴起,中国产的半导体式气体传感器达到和超越日本水平已经指日可待 2、催化燃烧式气体传感器 这种传感器是在白金电阻的表面制备耐高温的催化剂层,在一定的温度下,可燃性气体在其表面催化燃烧,燃烧是白金电阻温度升高,电阻变化,变化值是可燃性气体浓度的函数。 催化燃烧式气体传感器选择性地检测可燃性气体:凡是可以燃烧的,都能够检测;凡是不能燃烧的,传感器都没有任何响应。当然,『凡是可以燃烧的,都能够检测』这一句有很多例外,但是,总的来讲,上述选择性是成立的。 催化燃烧式气体传感器计量准确,响应快速,寿命较长。传感器的输出与环境的爆炸危险直接相关,在安全检测领域是一类主导地位的传感器。 缺点:在可燃性气体范围内,无选择性。暗火工作,有引燃爆炸的危险。大部分元素有机蒸汽对传感器都有中毒作用。 目前这种传感器的主要供应商在中国、日本、英国(发明国)!目前中国是这种传感器的最大用户(煤矿),

误差分析-热敏电阻

用非平衡电桥研究热敏电阻 摘要:文本结合用非平衡电桥研究热敏电阻实例来探讨用origin 软件做数据处理的方法, 并分析其优势。 关键词:非平衡电桥,直线拟合 1 热敏电阻 热敏电阻是一种电阻值随其电阻体温度变化呈现显著变化的热敏感电阻。本实验所选择为负温度系数热敏电阻,它的电阻值随温度的升高而减少。其电阻温度特性的通用公式为: T B T Ae R = (1) 式中T 为热敏电阻所处环境的绝对温度值(单位,开尔文),今为热敏电阻在温度T 时的电阻值,A 为常数,B 为与材料有关的常数。将式(l)两边取对数,可得: T B A R T +=ln ln (2) 由实验采集得到T R T -数据,描绘出T R T 1 - ln 的曲线图,由图像得出直线的斜率B ,截距A ln ,则可以将热敏电阻的参数表达式写出来。 2 平衡电桥 电桥是一种用比较法进行测量的仪器,由于它具有很高的测t 灵敏度和准确度,在电 测技术中有较为广泛的应用,不仅能测量多种电学量,如电阻、电感、电容、互感、频率及电介质、磁介质的特性;而且配适当的传感器,还能用来测量某些非电学量,如温度、湿度、压强、微小形变等。在“测量热敏电阻温度特性”实验中用平衡电桥来测量热敏电阻的阻值,其原理如下: 在不同温度下调节电阻3R 的大小,使检流计G 的示数为0,有平衡电桥的性质可知 1 2 3 R R R R x = .在实验时,调节1R 和2R 均为1000欧姆。则x R 的值即为3R 的值。 3 非平衡电桥原理

图1 非平衡电桥的原理图如图1所示。非平衡电桥在结构形式上与平衡电桥相似,但测量方法上有很大差别。非平衡电桥是使1R 2R 3R 保持不变,x R 变化时则检流计G 的示数g I 变化。再根据“g I 与x R 函数关系,通过测量g I 从而测得x R 。由于可以检测连续变化的g I ,从而可以检测连续变化的x R ,进而检测连续变化的非电量。 4 实验条件的确定 当电桥不平衡时,电流计有电流g I 流过,我们用支路电流法求出g I 与热敏电阻x R 的关系。桥路中电流计内阻g R ,桥臂电阻1R 2R 3R 和电源电动势E 为已知量,电源内阻可忽略不计。 根据基尔霍夫第一定律和基尔霍夫第二定律,通过一些列的计算可求得热敏电阻x R E R R R R R R R R R R R I R R R R R R R R R I E R R R g g g g g g x 113213132213232132)()(+++++++-= 5 用非平衡电桥测电阻的实例 已知:微安表量程Ig=100μA ,精度等级f=级,温度计的量程为100 t 100 95 90 85 80 75 70 65 60 55 50 45 40 35 Ig T 373 368 363 358 353 348 343 338 333 328 323 318 313 308 Rt 951 1032 1140 1255 1380 1541 1749 1985 2255 2527 2850 3660 3991 4398

气体传感器在工业安全领域的应用

气体传感器在工业安全领域的应用(一) 2016-02-01 10:23:24 气体传感器在工业安全领域的销量是最大的,产值大约占到60%。工业安全类的传感器的全球出货量约500万只。 工业安全的分类比较多,凡是有可能产生气体爆炸、窒息或中毒的场合都会用到,这些场合包括:煤矿、天然气、钢铁厂、石油开采、炼化、空气分离、石油化工、煤化工、氨化工等。 最近十年,中国煤矿的产能大增,随着矿难的频发,国家在煤矿安全上颁布了大量的法规和行政命令,因此用在煤矿里的气体传感器数量快速增长。主要需要检测的气体是甲烷、一氧化碳和硫化氢。甲烷传感器的用量每年约100万只,CO传感器约10万只,H2S传感器约1万只。因为雾霾天和燃煤之间关系密切,国家从环保战略考虑,要求减少燃煤。因此,从2013年下半年开始,矿用仪表企业的产品销售量呈现下跌趋势。到目前为止,还看不到缓解的趋势。 天然气行业却得益于国家的环保战略。燃煤消减的这部分能源供给,需要天然气、核电、风电、太阳能发电来填充,其中绝大部分需要天然气来填充。天然气行业所需要的检测的气体包括:甲烷、一氧化碳、硫化氢、氧气。天然气行业利润较高,因此可以接受的安全仪表价格也较高,性能要求也较高。天然气管道沿线都会有加压站、每个加压站内几乎都会配红外原理的CH4检测仪表。每个加压站之间的距离少则1、2公里,多则7、8公里,因此计算一下中国天然气管道就知道大概需要多少仪表了。除了管道,沿海的LNG船只的接气站也需要配置大量的气体监测仪表。随着燃气商用车的大量推广,车载的低成本天然气监测仪表的需求也是会有爆发式增长的。 气体传感器在工业安全领域的应用(二) 2016-02-01 10:23:42 在石油开采、除杂质、运输的过程中也会用到大量气体检测仪表和传感器。石油成分很复杂,不仅含有大量液态烃,还含有水、泥沙、甲烷CH4、一氧化碳CO、硫化氢H2S,以及挥发出来的有机物气体VOC。石油工业安全隐患有两点,一是爆炸和燃烧,二是毒气扩散导致人体中毒。所用到的传感器包括: 1. 催化燃烧原理和红外原理的CH4传感器,全中国所用到的量大约20万只,用在固定表和便携表中。 2. 电化学原理的CO和H2S的用量差不多,各5万只左右。 3. 测VOC主要靠光离子化传感器PID。和石油炼化、化工合并在一起,销量约5千只。 现如今,石油最主要的用途还是提炼成汽油、煤油、航空煤油、柴油,这个产业叫炼化。在提炼的过程中,石油裂解的成分非常复杂,而且还有加氢H2工艺。因此,所需要测的气体包括CH4、H2、CO、H2S、乙烷C2H6、乙烯C2H4、丙烯C3H6,和很多种VOC。提炼完成的油品需要大型的储油罐储存,为提供漏油预警,在储油罐和管线周边都要安装气体监测仪。油品的挥发性各不相同:汽油挥发性最强、柴油较弱、航空煤油最弱。要侦测到油品的泄露,最理想的还是用能够检测到PPB——PPM级别VOC的PID,但价格也是最贵。 气体传感器在工业安全领域的应用(三) 2016-02-01 10:24:00 钢铁冶金是气体传感器应用的大户,所用到的传感器种类不多,但数量较大。

泵吸式气体检测仪常见的5个故障及解决方法

泵吸式气体检测仪常见的5个故障及解决方法 气体检测仪,又称气体泄漏报警器、气体探测器、气体变送器、气体检测探头、智能气体传感器、气体浓度分析仪、气体检漏仪、气体监测仪。如果按类型来划分,可分为在线式、固定式、泵吸式、扩散式、管道式、流通式等六种气体检测仪。在生产生活中,根据不同环境场所需要,选择相应的气体检测仪。这里以泵吸式气体检测仪为例,深圳信立科技总结出常见的5个故障及解决方法。 故障1:低浓度的时候检测不出来 解决方法: 1、检查泵是否工作,泵正常工作的时候有轻微的振动,并且用手指堵住进气口2秒钟可以感觉到有明显的吸力。然后再检查过滤器的进气口是否被堵塞或连接处没有密封好导致漏气而无吸力。 2、通入氮气校准零点或在洁净空气中校准零点,校准完以后马上进行检测。 3、校准零点以后还检测不出被测气体,需要进行恢复出厂设置操作。 4、恢复出厂设置以后还检测不出来,需要再次通入氮气或在洁净空气中进行零点校准操作,校准完以后马上进行检测。 5、检查传感器的连接线有没有被人为损坏或接触不良。 6、以上步骤都做了还是检测不出来,需要确认一下现场是否存在被测气体,或者被测气体的浓度确实很低,如果低于仪器的最小检出限值就无法检测。 故障2:在空气中,没有被测气体,但是数值波动很大或者乱跳 解决方法: 1、一般短时间零点波动范围小于最大量程的1%属于正常范围,在没有被测气体的情况下长时间漂移小于最大量程的2%属于正常范围,若超出此范围,需要确认现场是否存在被测气体,或空气中的温度和湿度波动较大,导致数值不稳定,一般情况下温度和湿度波动大会造成仪器检测数值短时间波动较大,待空气中的温度和湿度恒定以后,数值也会相对比较稳定。 2、确认是否对仪器进行了零点校准或目标点校准操作,若在有被测气体的场合进行零点校准操作就可能检测不出低浓度的气体,若在有被测气体的场合进行了目标点校准,但是校准的浓度值和实际浓度值不符,可能造成仪器数值波动很大或检测到的数值偏小,这两种情况都进行恢复出厂操作就可以解决。 3、如果还无法解决问题,需要确认是否通入了高浓度的气体或有高浓度的气体冲击了传感器,如果有冲击过传感器,将仪器上电老化24小时以后,数值还不稳定就可能是传感器被

测量热敏电阻的温度系数 (2)

? 用热敏电阻测量温度 5 - 实验目的 ● 了解热敏电阻的电阻-温度特性和测温原理; ● 掌握惠斯通电桥的原理和使用方法; ● 学习坐标变换、曲线改直的技巧和用异号法消除零点误差等方法。 实验原理 热敏电阻是利用半导体陶瓷质工作体对温度非常敏感的特性制作的元件,与一般常用的金属电阻相比,它有大得多的电阻温度系数值。本实验所用的热敏元件是普通负电阻-温度系数热敏电阻。 1. 半导体热敏电阻的温度特性 某些金属氧化物半导体的电阻与温度关系满足 T B T e R R ∞= (1) (R T 是温度T 时的阻值,∞R 是T 趋于无穷时的阻值,B 是其材料常数,T 为热力学温度)。 而金属的电阻与温度的关系满足 )](1[1212t t a R R t t -+= (2) (a 是与材料有关的系数,R t1、R t2是温度分别为t 1、t 2时的电阻值)。 定义电阻的温度系数是 dt dR R t t 1= α (3) (Rt 是在温度为t 时的电阻值)。 比较金属的电阻-温度特性,热敏电阻的电阻-温度特性有三个特点: ① 热敏电阻的电阻-温度曲线是呈指数下降的,而金属的电阻-温度曲线是线性的。 ② 热敏电阻的阻值随温度的升高而减小,因此温度系数是负的(2 T B ∝ α)。金属的温度系数是正的(dt dR ∝ α)。 ③ 热敏电阻的温度系数约为1410)60~30(--?-K ,铜的温度系数为14104--?K 。 相比之下,热敏电阻的温度系数大几十倍,所以,半导体电阻对温度变化的反应比金属电阻灵敏得多。

室温下,半导体的电阻率介于良导体(约cm ?Ω-610)和绝缘体(约cm ?Ω221410~10)之间,通常是cm ?Ω-9210~10。其特有的半导电性,一般归因于热运动、杂质或点阵缺陷。温度越高,原子的热运动越剧烈,产生的自由电子就越多,导电能力越好,(虽然原子振动的加剧会阻碍电子的运动,但在300℃以下时,这种作用对导电性能的影响可忽略)电阻率就越低。所以温度上升会使半导体的电阻值迅速下降。 2. 惠斯通电桥的工作原理 如工作原理图所示,电阻R 0、R 1、R 2、R x 组成电桥的四臂,其中R x 就是待测电阻。在A-C 之 间接电源E ,在B-D 之间接检流计○ G 。当B 和D 两点电位相等时,○G 中无电流,电桥便达到了平衡,此时,021R R R R x = (R 1/R 2和R 0都已知)。2 1R R 称电桥的比例臂,用一个旋钮调节,分0.001、0.01、0.1、1、10、100、1000七挡。R 0为标准可变电阻,是有四个旋钮的电阻箱,最小改变量为1Ω,阻值有四位有效数字。 因02 1 R R R R x = 是在电桥平衡的条件下推导出来的,电桥是否平衡由检流计有无偏转来判断,而检流计的灵敏度是有限的。假设电桥在R 1/R 2=1时调到平衡,则有R x =R 0 ,这时若把R 0改变一个微小量ΔR 0,电桥便失去平衡,从而有电流I G 流过检流计,如果I G 小到检流计察觉不出来,那么人们仍会认为电桥是平衡的,因而00R R R x ?+=,测量误差ΔR 0就是因流计灵敏度引起的,定义电桥灵敏度为 x x R R n S /??= (4) 式中ΔR x 指电桥平衡后R x 的微小改变量(实际上待测电阻R x 若不能改变,可通过改变标准电阻R 0来测电桥灵敏度),Δn 越大,说明电桥灵敏度越高,带来的测量误差就越小。另外,电阻R 1、R 2

几种气体传感器的研究进展

一、前言 1964 年,由Wickens 和Hatman 利用气体在电极上的氧化还原反应研制出了第一个气敏传感器,1982年英国Warwick 大学的Persaud 等提出了利用气敏传感器模拟动物嗅觉系统的结构,自此后气体传感器飞速发展,应用于各种场合,比如气体泄漏检测,环境检测等。现在各国研究主要针对的是有毒性气体和可燃烧性气体,研究的主要方向是如何提高传感器的敏感度和工作性能、恶劣环境中的工作时间以及降低成本和智能化等。 下面简单介绍各种常用的气体传感器的工作原理和一些常用气体传感器的最新的研究进展。 二、气体传感器的分类和工作原理 气体传感器主要有半导体传感器(电阻型和非电阻型)、绝缘体传感器(接触燃烧式和电容式)、电化学式(恒电位电解式、伽伐尼电池式),还有红外吸收型、石英振荡型、光纤型、热传导型、声表面波型、气体色谱法等。 电阻式半导体气敏元件是根据半导体接触到气体时其阻值的改变来检测气体的浓度;非电阻式半导体气敏元件则是根据气体的吸附和反应使其某些特性发生变化对气体进行直接或间 接的检测。 接触燃烧式气体传感器是基于强催化剂使气体在其表面燃烧时产生热量,使传感器温度上升,这种温度变化可使贵金属电极电导随之变化的原理而设计的。另外与半导体传感器不同的是,它几乎不受周围环境湿度的影响。电容式气体传感器则是根据敏感材料吸附气体后其介电常数发生改变导致电容变化的原理而设计。 电化学式气体传感器,主要利用两个电极之间的化学电位差,一个在气体中测量气体浓度,另一个是固定的参比电极。电化学式传感器采用恒电位电解方式和伽伐尼电池方式工作。有液体电解质和固体电解质,而液体电解质又分为电位型和电流型。电位型是利用电极电势和气体浓度之间的关系进行测量;电流型采用极限电流原理,利用气体通过薄层透气膜或毛细孔扩散作为限流措施,获得稳定的传质条件,产生正比于气体浓度或分压的极限扩散电流。 红外吸收型传感器,当红外光通过待测气体时,这些气体分子对特定波长的红外光有吸收,其吸收关系服从朗伯—比尔(Lambert-Beer)吸收定律,通过光强的变化测出气体的浓度:

气体检测仪管理规定

气体检测仪管理规定 Prepared on 24 November 2020

便携式可燃有毒检测器管理制度 1目的 为规范可燃和有毒气体检测报警器(以下简称报警器)、便携式检测仪的购置、安装、维护、使用和报废的管理工作,制定本规定。2范围 本规定适用于公司及所属各单位固定式可燃气体检测报警器、便携式可燃气体检测报警器、便携式可燃气体检测仪、便携式硫化氢检测仪、便携式氧含量分析仪的管理工作。 3术语和定义 无 4职责 自动化中心 负责公司范围内报警器、便携式检测仪使用情况的监督管理; 负责对产品的技术性能进行审核,参与报警器、便携式检测仪合格供应商的确定。 负责组织与报警器、便携式检测仪运维承包商签订定期维护的服务协议。 负责建立完善报警器、便携式检测仪技术档案; 负责组织本单位报警器、便携式检测仪的年度检定,并对各个分厂使用与维护情况进行监督检查; 负责本单位更新报警器、便携式检测仪的安装、投用和验收。 设备部 负责在报警器、便携式检测仪合格供方范围内组织商务谈判与采购。

工艺部 负责组织建设项目中固定式可燃气体报警器的设计、采购、安装、验收和按规定进行检测标定。 各分厂车间 负责建立健全本单位报警器、便携式检测仪技术资料及分布图; 负责报警器、便携式检测仪的日常维护及管理,对发现的问题进行及时处理,保证报警器的正常投用; 负责组织岗位员工进行技术培训,以满足正常使用和维护的需要。5管理内容 固定式可燃气体报警器的设置及更新 新改扩建的输油气管道建设项目,由项目建设方按照设计规范的要求配备报警器。 现役装置按照规范要求需要新增报警器的,应组织进行设计,以满足国家和行业标准要求。 通过工程项目安装或购置的各类报警器,由承建单位利用工程投资进行首次检定,交工时由项目主管部门组织验收。验收合格后,纳入各分厂进行日常管理。 报警器的更新自动化中心提出更新改造投资计划,按照《投资计划管理程序》进行申报、审批。 可燃气体报警器的选型、设计和安装应按照自动化中心规范的可燃气体检测报警系统安全技术执行。 便携式气体检测报警器、检测仪使用场所及配备要求

用热敏电阻测量温度

3.5.2 用热敏电阻测量温度 (本文内容选自高等教育出版社《大学物理实验》) 热敏电阻是由对温度非常敏感的半导体陶瓷质工作体构成的元件。与一般常用的金属电阻相比,它有大得多的电阻温度系数值。根据所具有电阻温度系数的不同,热敏电阻可分三类:1.正电阻温度系数热敏电阻;2.临界电阻温度系数热敏电阻;3.普通负电阻温度系数热敏电阻。前两类的电阻急变区的温度范围窄,故适宜用在特定温度范围作为控制和报警的传感器。第三类在温度测量领域应用较广,是本实验所用的热敏元件。热敏电阻作为温度传感器具有用料省、成本低、体积小、结构简易,电阻温度系数绝对值大等优点,可以简便灵敏地测量微小温度的变化。我国有关科研单位还研制出可测量从-260℃低温直到900℃高温的一系列不同类型的热敏电阻传感器,在人造地球卫星和其他有关宇航技术、深海探测以及科学研究等众多领域得到广泛的应用。本实验旨在了解热敏电阻-温度特性和测温原理,掌握惠斯通电桥的原理和使用方法。学习坐标变换、曲线改直的技巧和用异号法消除零点误差等方法。 实验原理 1. 半导体热敏电阻的电阻——温度特性 某些金属氧化物半导体(如:Fe 3O 4、MgCr 2O 4等)的电阻与温度关系满足式(1): T B T e R R ∞= (1) 式中R T 是温度T 时的热敏电阻阻值,R ∞是T 趋于无穷时热敏电阻的阻值,B 是热敏电阻的材 料常数,T 为热力学温度。 金属的电阻与温度的关系满足(2): )](1[1212t t a R R t t -+= (2) 式中a 是与金属材料温度特性有关的系数,R t1、R t2分别对应于温度t 1、t 2时的电阻值。 根据定义,电阻的温度系数可由式(3)来决定: dt dR R a t t 1= (3) R t 是在温度为t 时的电阻值,由图3.5.2-1(a )可知,在R-t 曲线某一特定点作切线,便可求出该温度时的半导体电阻温度系数a 。 由式(1)和式(2)及图3.5.2-1可知,热敏电阻的电阻-温度特性与金属的电阻-温度特性比较,有三个特点: (1) 热敏电阻的电阻-温度特性是非线性的(呈指数下降),而金属的电阻-温度特性是线性的。

气体分析仪与气体检测仪的八大区别

气体分析仪是测量气体成分的流程分析仪表。在很多生产过程中,特别是存在化学反应的生产过程中,仅仅根据温度、压力、流量等物理参数进行工艺自动控制常常是不够的。由于被分析气体的种类千差万别和分析原理的多种多样,气体分析仪种类繁多。常用的有红外气体分析仪,激光气体分析仪,紫外气体分析仪,热导式气体分析仪、电化学式气体分析仪等。 气体检测仪是一种气体泄露浓度检测的仪器仪表工具,其中包括:便携式气体检测仪、手持式气体检测仪、固定式气体检测仪、在线式气体检测仪等。以下就是对气体分析仪与气体检测仪的区别进行的介绍。 1、仪器结构的不同 气体检测仪结构较简单,只包括探头(传感器)及传感器信号转换电路部分。而气体分析仪不仅在内部装有探头(传感器)而且还有一整套气路系统,即将样气引入到仪器内部,并且再引出仪器放空或回收的全套气路系统。 2、检测方式不同 气体检测报警仪利用探头直接暴露在被测的空气中或样气环境中进行检测。而气体分析仪是将被测气体(样气)通过特殊方式引入到仪器内部进行测定,然后再引出仪器外放空。 3、对测定条件的控制方式不同

气体检测报警仪不涉及样气工艺技术条件的调整及控制部分,同时它也完全不考虑样气存在的环境条件,直接进行检测。 气体分析仪内部所配套的一整套气路系统及外部配套设备组成了一套较完整的化工工艺流程,气体分析仪内部对样气的工作条件进行全方位调整控制,以达到传感器正常稳定工作的目的,这是气体分析仪能够获得准确测定数据的保证。 4、完成测定全过程的操作方法不同 气体检测报警仪在应用时,只需将仪器放置于被测环境中,仪器即可显示数值。 气体分析仪必须将样气仔细地引入到仪器内部,再进行工艺技术条件的严格调整,如温度、压力、流量等进行修正,才能获得准确的测定数据。 5、在检测过程中,对排除干扰因素考虑的方式不同 气体检测报警仪是将传感器直接置于大环境气氛中测定的,仪器结构设计及在实际使用检测过程中并不考虑大环境气氛中有无干扰测定的因素,并且不具备排除各种干扰因素的设计能力。 气体分析仪在设计选型及使用检测时,必须充分考虑各种影响测定的内部及外部因素,并且,要认真逐一排除,只有这样才能确保检测数据的准确性和真实性。否则,不适当地忽略了某一影响因素,对检测来说都是不被允许的和不能被接受的。

热敏电阻器如何检测

热敏电阻器如何检测 1.热敏电阻器的特性及作用 热敏电阻通常是由对温度极为敏感、热惰性很小的锰、钴、镍的氧化物烧成半导体陶瓷材料制成的一种非线性电阻,其阻值会随着温度的变化而变化。 热敏电阻按温度系数分为负温度系数(NTC)、正温度系数(PTC)和临界温度系数 三类。正温度系数电阻的阻值随温度升高而增大,负温度系数电阻的阻值随温 度升高而减小,临界温度系数电阻的阻值在临界温度附近时基本为零。 热敏电阻器大多为直热式,即热源是由电阻器本身通过电流时发热而获取的。此外还有旁热式,需外加热源。常见的热敏电阻器有圆形、垫圈形、管形等, 其外形见图6 (a)。 目前应用最广泛的是负温度系数热敏电阻器(NTC),它又可分为测温型、稳 压型、普通型。其种类很多且形状各异,常见的有管状、圆片形等。国产MTC 产品有MF51~MF57 (用于温度检测)、MF11~MF17 (用于温度补偿、温度控制)、MF21~ MF22 (用于电路稳压)、MF31 (用于微波功率测量)等系列。 正温度系数敏电阻器(PTC)的应用范围越来越广,除用于温度控制和温度测 量电路外,还大量应用于彩色电视机的消磁电路及电冰箱、电驱蚊器、电熨斗 等家用电器电路中。国产PTC 产品有MZ41~MZ42(用于吹风机、驱蚊器、卷发器等)、MZ01~MZ04 (用于电冰箱的压缩机启动电路)、MZ71~MZ75 (用于彩色电视机的消磁电路)、MZ61~MZ63 (用于电动机过热保护)、MZ2A~MZ2D (用于限流电路)等系列。 2.热敏电阻器的检测方法 热敏电阻标称阻值是在温度为25 C 的条件下,用专用仪器测得的。在业余条件下,也可用万用表电阻挡进行检测,但万用表检测时由于工作电流较大而形

气体传感器的分类及应用

气体传感器的分类及应用 所谓气体传感器是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的仪表。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。在电力工业等生产制造领域,也常用气体传感器定量测量烟气中各组分的浓度,以判断燃烧情况和有害气体的排放量等。在大气环境监测领域,采用气体传感器判定环境污染状况,更是十分普遍。 气体传感器的分类,从检测气体种类上,常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器;从仪表使用方法上,分为便携式和固定式;从获得气体样品的方式上,分为扩散式(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式(是指通过使用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等);从分析气体组分上,分为单一式 (仅对特定气体进行检测)和复合式(对多种气体成分进行同时检测);按传感器检测原理,分为热学式、电化学式、磁学式、光学式、半导体式、气相色谱式等。

热学式气体传感器 热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的,其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛(如H2、CO2、SO2、NH3、Ar 等)。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸气、酒精乙醚蒸气等。美国RAE Systems公司生产的FGM-3100催化燃烧式可燃气体检测仪,其采样方式为扩散式,检测精度达±2%满量程,响应时间<15s。 催化燃烧式气体传感器 催化燃烧式气体传感器的主要优点是对所有可燃气体的响应有广谱性,对环境温度、湿度影响不敏感,输出信号近线性,且其结构简单,成本低。但其主要不足是精度低,工作温度高 (内部温度可达700~800℃),电流功耗大,易受硫化物、卤素化合物等中毒的不利影响等。

相关文档
最新文档