《让小学生学会十种数学思考方法》 论文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、让小学生学会“分类思考法”
分类既是一种数学思考方法,又是自然科学及社会科学研究中的基本逻辑方法。数学的分类思想方法体现对数学对象的分类及其分类的标准。如对自然数的分类,若按能否被2整除可分为奇数和偶数,若按约数的个数分则可分为质数、合数和1。又如三角形既可按角分,也可按边分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性。数学知识的分类有助于学生对知识的梳理和建构。例如把1、2、3……20这二十个自然数分类。
二、让小学生学会“符号思考法”
西方较早地在数学研究中引进了符号,十六世纪数学家韦达对数学符号作了很多改进,并且第一个有意识地系统地用字母表示已知数、未知数及其乘幂,带来了代数学研究的重大拓展,奠定了符号代数的基础,后来大数学家笛卡儿对韦达使用的字母又作了改进。用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学的内容,这就是符号思考方法。在数学中各种量的关系,量的变化以及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式来表达大量的信息,如乘法分配律(a+b)×c=a×c+b×c,这里的a、b、c不仅可以表示1、2、3,也可以表示4、5、6、7……长方形的面积计算公式s =a×b,不管世界上有多少个不同的长方形,都可用它计算出来。又如在“有余数的除法”教学中,最后出现一道思考题:“六一”联欢会上,小明按照3个红气球、2个黄气球、1个蓝气球的顺序把气球串起来装饰教室。你能知道第24
个气球是什么颜色的吗?解决这个问题,学生可以有多种方法。如,用书写简便的字母a、b、c分别表示红、黄、蓝气球,则按照题意可以转化成如下符号形式:
aaabbc aaabbc aaabbc aaabbc ……从而可以直观地找出气球的排列规律,并推出第24个气球是蓝色的。上例所分析的这些都是符号思想的具体体现,它们将所有的数据实例集为一体,把复杂的语言文字叙述用简洁明了的字母公式表示出来,便于记忆,便于运用,正如华罗庚所说的“数学的特点是抽象,正因为如此,用符号表示就更具有广泛的应用性与优越性”。
三、让小学生学会“类比思考法”
类比方法具有启发思路、提供线索、触类旁通的作用。如教学比的基本性质,需要引导学生把它与分数的基本性质、商不变的性质进行横向类比沟通。又如讲平行四边形时,先复习三角形的有关知识,然后以三角形为基础,把平行四边形与三角形进行类比,建立平行四边形诸如边、顶点、角、底、高等概念体系,使学生不仅在类比的情境中建立新概念,发现新问题,而且学到研究事物的方法。在解题教学中,当学生面对一个比较生疏或比较复杂的问题而一筹莫展时,启发他们去寻找另一个比较熟悉或比较简单的问题作为类比对象。有时原问题与类比对象的解决途径和方法比较类似;有时类比对象的解决途径和方法提供了一种解决类似问题的模式或程序。因此,通过类比启发,可获得原问题的解决途径和方法。如教完“工作问题”后,出示这样一道题:甲乙两辆汽车同时从两地相对开出,经过6小时相遇。己知甲车行完全程要10小时,乙车行完全程要几小时?有意引导学生发现“行程问题”与“工作问题”的相似之处,在鼓励学生观察、联想、类比后,学生茅塞顿开,恍然大悟,思维得到了启迪,解题思路得到了沟通,尝试了数学发现的快乐,也使他们的认识产生了由感性到理性的升华。四、让小学生学会“集合思考法”
集合思想是近代数学的最基本思想,许多重要的数学分支,如数理逻辑、实变函数、概率统计等都建立在集合理论的基础上。小学数学采用直观手段,利用图形和实物渗透集合的思想。如在数的认识时出现韦恩图,在讲述公约数和公倍数时孕伏了交集的思想方法。把一组对象放在一起,作为讨论的范围,这是人类早期就有的思想方法,继而把一定程度抽象了的思维对象,如数学上的点、数、式放在一起作为研究对象,这种思想就是集合思想。集合思想作为一种思想,在小学数学中就有所体现。在小学数学中,集合概念是通过画集合图的办法来渗透的。如用圆圈图(韦恩图)向学生直观的渗透集合概念。让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。利用图形间的关系则可向学生渗透集合之间的关系,如长方形集合包含正方形集合,平行四边形集合包含长方形集合,四边形集合又包含平行四边行集合等。
五、让小学生学会“数形结合思考法”
数与形是现实世界中客观事物的抽象与反映,是数学的两大支柱。由数想形,以形辅数,数形结合,可以帮助学生从不同侧面认识和理解数学知识,是帮助学生正确理解题意,找到解决问题的方法而进行思维过渡的中间环节。表现为:(1)以形辅数,对抽象的数学问题赋予直观图形意义,即通过线段图、树形图,或集合图来帮助学生理解数量关系,使复杂问题明朗化。(2)以数助形,对直观图形赋予数的意义,要求根据直观图形抽象为数的问题。如较复杂的平面或空间图形问题,可运用数量关系、公式、法则、计算等手段,使之转化为简单的数量关系来处理。
六、让小学生学会“转化思考法”
转化是解决问题的一种最基本的思想方法。数学教学的任务之一是使学生学会怎样去化繁就简、化难为易、化陌生为熟悉、化未知为己知。如整数、小数、分数、百分数可以相互转化;几何形体中的等积转化,都是转化思想的具体体现。教学时通过数的计算,使学生了解加与减、乘与除可以相互转化,并掌握转化的方法;通过正归一的应用题用反归一的方法来解答,形成矛盾在一定条件下可以相互转化的观点;通过方程的教学,使学生了解方程的同解变化,理解未知转化为已知,繁杂问题转化为简单问题是处理问题的一种策略。
数学解题过程的本质就是运用数学体系内部各对象间、数学与其他学科间的内在联系,不断转化问题的已知条件和求解目标,发现已知条件与求解目标间的内在联系,实现己知探索未知的目标。如买4双球鞋与12双布鞋的价钱相等,买2双球鞋与3双布鞋要付29.7元,球鞋和布鞋每双各多少元?由已知条件可以推知,2双球鞋价等于6双布鞋价,用6双布鞋“替代”2双球鞋,把“买2双球鞋和3双布鞋要付29.7元”转化为“买6双布鞋和3双布鞋要付29.7元”,问题也就迎刃而解了。
七、让小学生学会“归纳思考法”
归纳是由特殊到一般的思维方法,也是人类认识世界的基本方法和普遍规律之一。教材中提供的归纳材料很多,第一类是概念、法则、性质的归纳,大多采取“特殊实例展示→本质属性抽象→一般事物的推广”的方式给出归纳过程。如直径1厘米的圆周长约3.14厘米,直径2厘米的圆周长约是6.28厘米,直径3厘米的圆周长约是9.42厘米,……从中可以发现规律,一个圆的周长是直径的3倍多一些。第二类是解题方法的归纳,我们不但要重视解题中间过程的归纳,还应重视解题开始和解题之后的归纳。解题开始时的归纳可以确定解题方向,明