第七章 应力与应变分析 强度理论3优秀课件
合集下载
材料力学第七章应力状态和强度理论
2
x y 2 a 0 2
x y x y 2
x y
2
) x
2
2
例题1: 已知:单元体各侧面应力 x=60MPa,
求: (1) = - 450斜截面上的应力,(2)主应力和主平面
dA
y
x y
2
sin 2 xy cos2
y
yx
应力圆
y
1 R 2
x
y
2
4 2 xy
x
yx xy x
y
R c
x y
2
2
x
xy
x´
dA
yx
y´
y
x y 1 2 2 2
40
x y
2 0.431MPa
sin( 80 ) xy cos(80 )
C
C
C
例题3:已知梁上的M、Q,试用单元体表示截面上1、2、
3、4点的应力状态。
1
2 0
2
1点 2点
1 2 0 3
3Q = 2A
M x Wz
2 xy
x y
2 20.6 0.69 60 0
17.2
x y
2 (
6.4MPa
2 34.4
max(min)
x
17.20
x y
2
) xy
2
2
x
66.4MPa
60 0 60 0 2 ( ) 20.6 2 2 2 66.4(6.4) MPa
x y 2 a 0 2
x y x y 2
x y
2
) x
2
2
例题1: 已知:单元体各侧面应力 x=60MPa,
求: (1) = - 450斜截面上的应力,(2)主应力和主平面
dA
y
x y
2
sin 2 xy cos2
y
yx
应力圆
y
1 R 2
x
y
2
4 2 xy
x
yx xy x
y
R c
x y
2
2
x
xy
x´
dA
yx
y´
y
x y 1 2 2 2
40
x y
2 0.431MPa
sin( 80 ) xy cos(80 )
C
C
C
例题3:已知梁上的M、Q,试用单元体表示截面上1、2、
3、4点的应力状态。
1
2 0
2
1点 2点
1 2 0 3
3Q = 2A
M x Wz
2 xy
x y
2 20.6 0.69 60 0
17.2
x y
2 (
6.4MPa
2 34.4
max(min)
x
17.20
x y
2
) xy
2
2
x
66.4MPa
60 0 60 0 2 ( ) 20.6 2 2 2 66.4(6.4) MPa
材料力学第七章_3_ 应变能密度和强度理论概要
材料力学
第 7章 应力和应变分析·强度理论
[例9-8]证明弹性模量E 、泊松比µ 、切变弹性模量G 之间 的关系为 G E 。
2(1 )
证明: 纯剪应力状态应变能密度为
3
v1
1
2
1 2
2G
1 , 2 0, 3
1
用主应力计算比能
v2
1 2E
[
2 1
2 2
2 3
2 (1 2
2 3
1
3
k
1
3
2
OC
B
3
1
2
1 3
河南理工大学土木工程学院
A
材料力学
第 7章 应力和应变分析·强度理论
各向同性材料的广义胡克定律:
εx
1 E
σx
μ
σy
σz
εy
1 E
σy
μσz
σx
εz
1 E
σz
μ
σx σy
xy
xy
G
,
yz
yz
G
,
zx
zx
G
上述一组方程为用应力表示应变,若用应变表示应力,
河南理工大学土木工程学院
材料力学
第 7章 应力和应变分析·强度理论
二、常用四个强度理论
● 第一强度理论(最大拉应力理论) 该理论不论材料处于什么应力状态,引起材料脆性断裂
破坏的主要原因是最大拉应力,并认为当复杂应力状态的最 大拉应力达到单向应力状态破坏时的最大拉应力时,材料便 发生断裂破坏。由此,材料的断裂判据为
一、强度理论的概念
1. 什么是强度理论 强度理论是关于材料破坏原因的学说。
材料力学应力和应变分析强度理论
§7–5 广义虎克定律
y
一、单拉下旳应力--应变关系
x
x
E
y
E
x
ij 0 (i,j x,y,z)
二、纯剪旳应力--应变关系
z
E
x
z
y
xy
xy
G
i 0 (i x,y,z)
z
yz zx 0
x
x
xy
x
三、复杂状态下旳应力 --- 应变关系
y
y
x
y x
z
xy
z
x
依叠加原理,得:
x
1
(MPa)
解法2—解析法:分析——建立坐标系如图
45 25 3
95
60°
i j
x
2
y
(
x
2
y
)2
2 xy
y
1
25 3 y 45MPa
° 5
0
Ox
6095MPa 6025 3MPa
yx 25 3MPa xy
x ?
x
y
2
sin 2
xy cos 2
25 3 x 45 sin 120o 25 3 cos120o
y
z
z
y
证明: 单元体平衡 M z 0
xy x
x
( xydydz)dx( yxdzdx)dy0
xy yx
五、取单元体: 例1 画出下图中旳A、B、C点旳已知单元体。
F
A
y
F x
x
A
B
C z
x B x
zx
xz
F
Mex
yx
C
xy
FP
材料力学第七章 应力状态
主平面的方位:
tan
2a0
2 xy x
y
主应力与主平面的对应关系: max 与切应力的交点同象限
例题:一点处的平面应力状态如图所示。
已知 x 60MPa, xy 30MPa, y 40MPa, a 30。
试求(1)a 斜面上的应力; (2)主应力、主平面; (3)绘出主应力单元体。
x y cos 2a
2
x sin 2a
x
a
x y sin 2a
2
x cos 2a
300
10 30 2
10 30 cos 60020sin 600
2
2.32 MPa
300
10 30 sin 600 2
20cos 600
1.33 MPa
a
20 MPa
c
30 MPa
b
n1
y xy
a x
解:(1)a 斜面上的应力
y xy
a
x
2
y
x
2
y
cos 2a
xy
sin 2a
60 40 60 40 cos(60 ) 30sin(60 )
2
2
a x 9.02MPa
a
x
y
2
sin
2a
xy
cos
2a
60 40 sin(60 ) 30cos(60 ) 2
58.3MPa
2
1.33 MPa
300 600 x y 40 MPa
在二向应力状态下,任意两个垂直面上,其σ的和为一常数。
在二向应力状态下,任意两个垂直面上,其σ 的和为
一常数。
证明: a
x y
第七章 应力状态、应变分析和强度理论
§7-3 平面应力状态分析--解析法
二、 正应力极值
1 1 ( x y ) ( x y ) cos 2 xy sin 2 2 2 d ( x y ) sin 2 2 xy cos 2 d
设α=α0 时,上式值为零,即
2
1 0, 2 0, 3 0
1 0, 2 0, 3 0
§7-1 应力状态的概念
3、三向(空间)应力状态 三个主应力1 、2 、3 均不等于零
2 1
3 1
3 2
1 0, 2 0, 3 0
§7-1 应力状态的概念
仅在微体四侧面作用应力,且 应力作用线均平行于微体的不 受力表面-平面应力状态
1
1
1
1
3
3
1 0, 2 0, 3 0
1 0, 2 0, 3 0
§7-1 应力状态的概念 2、二向(平面)应力状态 三个主应力1 、2 、3 中有两个不等于零
3 2 3 2
3
2
1
3
1
1
1
1 0, 2 0, 3 0
Ft 0
dA ( x dAcos )cos ( x dAcos )sin ( y dAsin )sin ( y dAsin )cos 0
§7-3 平面应力状态分析--解析法
一、任意斜截面上的应力公式 已知: x , y , x , y , dA 求: ,
sin 2 xy cos 2
2 xy 2 ( 50) tan 2 0 1 x y 40 60 2 0 45 135
y =60 MPa xy = -50MPa =-30°
应力应变分析与强度理论
ax in
m
ax
2
m in
极值切应力等于极值正应力差的一半。
材料力学电子教案 C 机械工业出版社
§7.2 平面应力状态分析的解析法
三、极值切应力和主平面夹角
注意到 则 所以
tan
2 0
2 xy x
y
tan
21
x 2 xy
y
tan
20
第7章 应力应变分析与强度理论
§7.1 应力状态的概念 §7.2 平面应力状态分析的解析法 §7.3 平面应力状态分析的图解法 §7.4 三向应力状态简介 §7.5 平面应力状态的应变分析 §7.6 广义胡克定律 §7.7 强度理论概述 §7.8 四个常用的强度理论 §7.9 莫尔强度理论
材料力学电子教案 C 机械工业出版社
7.2.3 极值切应力及其作用面 一、极值切应力方位角
d 0 d
( x y ) cos 2 2 xy sin 2 0
得
tan
21
x 2 xy
y
二、最大、最小切应力
m m
ax in
x
2
y
2
2 xy
m m
主应力通常用1、 2 和 3 表示,它们的顺序按代 数值大小排列,即 1 2 3 。
材料力学电子教案 C 机械工业出版社
§7.1 应力状态的概念
7.1.4 应力状态的分类 1. 单向应力状态 (简单应力状态 ) 三个主应力中,只有一个不等于零 2. 二向应力状态 (复杂应力状态 ) 有两个应力不等于零 3. 三向应力状态 (复杂应力状态 ) 三个主应力都不等于零
材料力学 第七章 应力状态和强度理论
y
2
2 xy
tan 2a0
2 xy x
y
max
1
2
3
主应力符号与规定: 1 2 3 (按代数值)
§7-3 空间应力状态
与任一截面相对应 的点,或位于应力 圆上,或位于由应 力圆所构成的阴影 区域内
max 1 min 3
max
1
3
2
最大切应力位于与 1 及 3 均成45的截面上
针转为正,顺时针转为负。
tg 2a 0
2 x x
y
在主值区间,2a0有两个解,与此对应的a0也有两个解,其中落
在剪应力箭头所指象限内的解为真解,另一解舍掉。
三、应力圆
由解析法知,任意斜截面的应力为
a
x y
2
a x
x
y
2
y cos2a
2
sin 2a x c
x s os2a
in
2a
广义胡克定律
1、基本变形时的胡克定律
1)轴向拉压胡克定律
x E x
横向变形
y
x
x
E
2)纯剪切胡克定律
G
y
x x
2、三向应力状态的广义胡克定律-叠加法
2
2
1
1
3
3
1
1
E
2
E
3
E
1
1 E
1
2
3
同理
2
1 E
2
3
1
广义胡克定律
3
1 E
3
1
2
7-5, 7-6
§7-4 材料的破坏形式
⒈ 上述公式中各项均为代数量,应用公式解题时,首先应写清已 知条件。
应力和应变分析和强度
泊松比
总结词
泊松比是描述材料横向变形与纵向变形之间关系的物理量。
详细描述
当材料受到外力作用时,会发生形变。泊松比是表示材料在受到外力作用时,横向变形与纵向变形之间的比例关 系。其值通常在-0.5到0.5之间,但不同材料的泊松比可能会有所不同。
屈服强度
总结词
屈服强度是描述材料在受到外力作用时开始发生屈服现象的应力极限。
应力和应变分析和强度
目录
• 应力分析 • 应变分析 • 强度分析 • 材料性能 • 应力和应变的关系 • 工程应用
01
应力分析
定义与概念
01
02
03
应力
物体受到外力作用时,单 位面积上的内力。
应变
物体在外力作用下发生的 形状和尺寸的改变。
应力分析
通过数学模型和实验手段, 研究物体在受力状态下的 应力分布、大小和方向的 过程。
应力分类
正弯曲应力
由于弯曲产生的应力。
扭曲应力
由于扭曲产生的应力。
应力计算方法
解析法
通过数学公式和物理定律,计算应力 的方法。
有限元法
将物体离散化为有限个小的单元,通 过求解每个单元的应力,再组合得到 整体的应力分布。
实验法
通过实验手段测量物体的应力分布。
应变计算方法
有限元分析法
有限元分析是一种数值计算方法,通过将物体离散化为有限个小的单元,对每个 单元进行受力分析和形变计算,再通过单元的集合来模拟整个物体的形变。这种 方法可以处理复杂的几何形状和边界条件,广泛应用于工程领域。
实验测量法
通过在物体上粘贴应变片或使用激光干涉仪等设备来测量物体的形变,这种方法 可以直接获得物体的应变值,但需要专业的设备和操作技能。
包装工程专业大学课件功能力学课件第七章-应力应变分析-强度理论
5、主应力(Principal stress) 主面上的正应力
说明: 一点处必定存在这样的一个单元体, 三个相互垂直的面均为主平面, 三个互相垂 直的主应力分别记为 1 ,2 , 3 且规定按代数 值大小的顺序来排列, 即
1 2 3
(Analysis of stress-state and strain-state)
(Analysis of stress-state and strain-state)
低碳钢和铸铁的拉伸
低碳钢 (low- carbon steel)
铸铁 (cast-iron)
塑性材料拉伸时为什么会出现滑移线?
(Analysis of stress-state and strain-state)
三、应力状态的分类(The classification of stresses-state)
1、空间应力状态(triaxial stress-state or three-dimensional
stress-state )
三个主应力1 、2 、3 均不等于零
2、平面应力状态(biaxial stress-state or plane stress-state)
单元体的尺寸无限小,每个面上应力均匀分布
任意一对平行平面上的应力相等
2 3
3、主单元体(Principal body)
1
1
各侧面上切应力均为零的单元体
3
2
(Analysis of stress-state and strain-state)
4、主平面(Principal plane) 切应力为零的截面
Mechanics of Materials
Chapter7 Analysis of Stress and Strain Failure Criteria
说明: 一点处必定存在这样的一个单元体, 三个相互垂直的面均为主平面, 三个互相垂 直的主应力分别记为 1 ,2 , 3 且规定按代数 值大小的顺序来排列, 即
1 2 3
(Analysis of stress-state and strain-state)
(Analysis of stress-state and strain-state)
低碳钢和铸铁的拉伸
低碳钢 (low- carbon steel)
铸铁 (cast-iron)
塑性材料拉伸时为什么会出现滑移线?
(Analysis of stress-state and strain-state)
三、应力状态的分类(The classification of stresses-state)
1、空间应力状态(triaxial stress-state or three-dimensional
stress-state )
三个主应力1 、2 、3 均不等于零
2、平面应力状态(biaxial stress-state or plane stress-state)
单元体的尺寸无限小,每个面上应力均匀分布
任意一对平行平面上的应力相等
2 3
3、主单元体(Principal body)
1
1
各侧面上切应力均为零的单元体
3
2
(Analysis of stress-state and strain-state)
4、主平面(Principal plane) 切应力为零的截面
Mechanics of Materials
Chapter7 Analysis of Stress and Strain Failure Criteria
第七章 应力状态与应变状态分析
§7–1 应力状态的概念
铸铁
P P
2、组合变形杆将怎样破坏? M
2、State of stress at a point:
There are countless sections through a point. The gathering of stresses in all sections is called the state of stress at this point. 3、Element:Element— Delegate of a point in the member. It is a infinitesimal geometric body enveloping the studied point. In common use it is a correctitude cubic
A
P
sx
A
sx
t yx
P
M x
sx
tzx
B
z
C
txz
sx
C
t xy
六、原始单元体(已知单元体):
[例1] P 画出下列图中的A、B、C点的已知单元体。 A P
sx
A
sx t yx
y
B z P M
sx
tzx
C
x
B
txz
sx
C
t ห้องสมุดไป่ตู้y
7、Principal element、principal planes、principal stresses:
量,则两个面上的这两个剪应力分量一定等值、方向相对或相
离。
证明 : 单元体平衡
sy
y
M
z
0
(t xydydz)dx(t yxdzdx)dy0
材料力学——应力分析
,则α1
405(τx0) 405(τx0)
7-2 二向应力状态分析--解析法
例题1:一点处的平面应力状态如图所示。
已知 x 60MP,a txy 30MPa, y 40MP,a 30。
试求(1) 斜面上的应力; (2)主应力、主平面; (3)绘出主应力单元体。
y t xy
x
目录
7-2 二向应力状态分析--解析法
t
ty(xdsAin)co sy(dsAin)sin0
y
Ft 0
td Atx(ydc Ao )sco sx(dc Ao )ssin ty(xdsAin)siny(dsAin)co s0
目录
7-2 二向应力状态分析--解析法
{ 利用三角函数公式
co2 s 1(1co2s)
2
sin 21(1co2s)
d d (x y)si2 n2 txc y o 2 s
设α=α0 时,上式值为零,即
t (xy )s2 i0 n 2xc y 2 o 0 s 0
2 (x σ 2 σ y) si0n τ x 2 c yα o0s 2 2α α 0 τ 0
即α=α0 时,切应力为零 目录
2
2 s ic n o s si2 n
并注意到 t yx t xy 化简得
t 1
1
2 (xy) 2 (xy)c2 o s xs y 2 in
t1 2(xy)si2 ntxy co 2s
目录
7-2 二向应力状态分析--解析法
3. 正应力极值和方向
确定正应力极值
t 1 2 (xy ) 1 2 (xy )c2 o s xs y 2 in
(2)主平面的位置
tg2α0
2τ xy σx σy
材料力学-07-应力分析和强度理论
§7-2 平面应力状态 平面应力状态--解析法 平面应力状态 解析法: 解析法
1.斜截面上的应力 1.斜截面上的应力
y
σx
a
τ yx
τ xy
σx α
τa
n
τ xy
σa
dA
x
σy
n
τ yx
σy
t
t
∑F = 0
∑F =0
13
§7-2 平面应力状态 平面应力状态--解析法 平面应力状态 解析法: 解析法
tan 2α0 = − 2τ xy
σ x −σ y
由上式可以确定出两个相互垂直的平面, 由上式可以确定出两个相互垂直的平面,分别 为最大正应力和最小正应力所在平面。 为最大正应力和最小正应力所在平面。 所以,最大和最小正应力分别为: 所以,最大和最小正应力分别为:
σmax = σ x +σ y
2 1 + 2 − 1 2
单元体
单元体——构件内的点的代表物, 单元体——构件内的点的代表物,是包围被研究点的 ——构件内的点的代表物 无限小的几何体。 常用的是正六面体。 无限小的几何体。 常用的是正六面体。 单元体的性质—— 平行面上,应力均布; 单元体的性质——1) 平行面上,应力均布; —— 2) 平行面上,应力相等。 平行面上,应力相等。
2 2
σy
τ xy
α
60 − 40 60 + 40 = + cos(−60o ) + 30 sin(−60o ) 2 2
σx
= 9.02 MPa
τα =
σ x −σ y
2 60 + 40 = sin(−60o ) − 30 cos(−60o ) 2
材料力学第七章应力应变分析
x
y
2
x
2
y
cos 2
xy sin 2
x
y
2
sin 2
xy cos 2
1、最大正应力的方位
令
d d
2[
x
y sin 2
2
xy cos 2 ] 0
tg 2 0
2 xy x
y
0 0
90
0 和 0+90°确定两个互相垂直的平面,一个是最大正应 力所在的平面,另一个是最小正应力所在的平面.
的方位.
m
m a
A
l
解: 把从A点处截取的单元体放大如图
x 70, y 0, xy 50
A
tan 20
2 xy x y
2 50 1.429
1
3
(70) 0
0
A
x
0
27.5 62.5
3
1
因为 x < y ,所以 0= 27.5° 与 min 对应
max min
x
2
y
(
x
2
y )2
三、应力状态的分类
1、空间应力状态
三个主应力1 、2 、3 均不等于零
2、平面应力状态
三个主应力1 、2 、3 中有两个不等于零
3、单向应力状态
三个主应力 1 、2 、3 中只有一个不等于零
2 3
2
1
1
1
1
1
3 2
2
1
例题 1 画出如图所示梁S截面的应力状态单元体.
F
5
S平面
4
3
l/2
2
l/2 1
任意一对平行平面上的应力相等
第七章:应力状态、强度理论
s
2 2
s
2 3
2 s1s 2
s 3s 2
s1s 3 )
1 t 2 0 (t )2 2 0 0 t (t ))
2E
s1
1 t 2
E
G
E
21
)
§7–6 强度理论及其相当应力
强度理论:是关于“材料发生强度破坏或失效”的假设
材料的破坏形式: ⑴ 脆性断裂 如铸铁在拉伸和扭转时的突然断裂 ⑵ 塑性屈服 如低碳钢在拉伸和扭转时明显的塑性变形
sx
t 绕研究对象顺时针转为正;
y
txy
逆时针为正。
Ox
图1
s
sx
y
sy
ttxy
Ox 图2
设:斜截面面积为dA,由分离体平衡得:
Fn 0
n s dA (t xydAcos )sin (s xdAcos ) cos t (t yxdAsin ) cos (s ydAsin )sin 0
容器表面用电阻应变片测得环向应变 t =350×10-6,若已知容器平均 直径D=500 mm,壁厚=10 mm,容器材料的 E=210GPa,=0.25
试求:1.导出容器横截面和纵截面上的正应力表达式; 2.计算容器所受的内压力。
s1 sm
p p
p
x
l
图a
D
y
xp
AO
B
解:容器的环向和纵向应力表达式 1、轴向应力:(longitudinal stress) 用横截面将容器截开,受力如图b所示,根据平衡方程
第七章 应力状态和强度理论
§7–1 概述 §7–2 平面应力状态的应力分析.主应力 §7–3 空间应力状态的概念
§7–4 复杂应力状态下的应力 -- 应变关系 ——(广义虎克定律)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ud uuv
sss ssssss u d 2 1 E [1 22 23 2 2(122331 )
1 6E 2(s1s2s3)2
ss ss ss 1 6 E [( 12 )2 (23 )2 (31 )2 ]
四、各向同性材料各弹性常数间的关系 G E 2(1 )
五、体积应变
单元体体积的改变量
原体积 V=abc
变形后 V ( a a )b (b )c (c)
体积应变 v V V(aa )b (b a )b c (c c)ab
(1 1 )1 ( 2 )1 ( 3 ) 1
123
v1 E 2(s1s2s3)sK m
u v ----体积改变比能
1、体积改变比能
用平均应力 σm作用在单元体上,则单元体只发生体积
的变化,----同步放大或同步缩小,即只有体积的变化
而无形状的改变
u1 2sm m1 2sm m1 2sm m
精品课件!
精品课件!
u v1 E 2 sm 1 6 E 2 (s1 s2 s3)2
2、形状改变比能
33 3 3 s E 3[s E 1s E 2]
剪应力 xy 0, yz0, zx0均等于0 xy 0,yz0,zx0
2、一般应力状态下的广义胡克定律
sy
y
x
sx [sy sz]
E EE
sx
sz
xy
y
sy [sz sx]
E EE
z
sz [sx sy]
E EE
z
x
xyG xy,yzG yz,zxG zx
P
U 1 P l-----P~△l曲线下的面积
2
3、应变比能
uUPl 1s
△l
V 2AL 2
二、一般应力状态下的应变比能
u1 2s111 2s221 2s33
广义胡克定律代入
sss ssssss u 2 1 E [1 22 23 2 2(122331 )
三、体积改变比能及形状改变比能
uud uv u d ----形状改变比能
s1
E
3
s1
E
2)在s2作用 下各边变形
3
3)在s3作用下
各边变形 s3
3
s2
s
2
1
1
2
1
s2
E
2
s
1
s33
E
2
s2 E
2
s3
E
3
s2
E
3
s3 E
Hale Waihona Puke s1s22
3 s3
s2 s1
在s1 、s2 、 s3作用下各 边的总变形
1
s3
11 1 1 s E 1[s E 2s E 3]
22 2 2 s E 2[s E 3s E 1]
第七章 应力与应变 分析 强度理论3
§7-5 广义胡克定律
一、前提:
1、材料的使用在弹性(比例)极限内
2、小变形
二、要点:
1、线应变由正应力引起
σ3
2、剪应变由剪应力引起
三、广义胡克定律:
s1
1、主应力状态下的胡克定律:
s2
σ3
s2 s1
1)在s1作用下 各边变形
3
s1
s1
1 2
1
s1 E
2
§7-7 一般应力状态下的应变比能
一、轴向拉压时的应变比能
P
1、应变能
A
杆件由于变形而贮存的能量
2、变形能的计算 1)外力作功:
B
△l
△l
B′
P
l
l
W P d 0P y (ld ) 0K L d (l)
1K(l)2 1Pl
2
2
2)静载:动能不变
3)弹性变形:略去热能的变化,全部功转化为变形能
sss ssssss u d 2 1 E [1 22 23 2 2(122331 )
1 6E 2(s1s2s3)2
ss ss ss 1 6 E [( 12 )2 (23 )2 (31 )2 ]
四、各向同性材料各弹性常数间的关系 G E 2(1 )
五、体积应变
单元体体积的改变量
原体积 V=abc
变形后 V ( a a )b (b )c (c)
体积应变 v V V(aa )b (b a )b c (c c)ab
(1 1 )1 ( 2 )1 ( 3 ) 1
123
v1 E 2(s1s2s3)sK m
u v ----体积改变比能
1、体积改变比能
用平均应力 σm作用在单元体上,则单元体只发生体积
的变化,----同步放大或同步缩小,即只有体积的变化
而无形状的改变
u1 2sm m1 2sm m1 2sm m
精品课件!
精品课件!
u v1 E 2 sm 1 6 E 2 (s1 s2 s3)2
2、形状改变比能
33 3 3 s E 3[s E 1s E 2]
剪应力 xy 0, yz0, zx0均等于0 xy 0,yz0,zx0
2、一般应力状态下的广义胡克定律
sy
y
x
sx [sy sz]
E EE
sx
sz
xy
y
sy [sz sx]
E EE
z
sz [sx sy]
E EE
z
x
xyG xy,yzG yz,zxG zx
P
U 1 P l-----P~△l曲线下的面积
2
3、应变比能
uUPl 1s
△l
V 2AL 2
二、一般应力状态下的应变比能
u1 2s111 2s221 2s33
广义胡克定律代入
sss ssssss u 2 1 E [1 22 23 2 2(122331 )
三、体积改变比能及形状改变比能
uud uv u d ----形状改变比能
s1
E
3
s1
E
2)在s2作用 下各边变形
3
3)在s3作用下
各边变形 s3
3
s2
s
2
1
1
2
1
s2
E
2
s
1
s33
E
2
s2 E
2
s3
E
3
s2
E
3
s3 E
Hale Waihona Puke s1s22
3 s3
s2 s1
在s1 、s2 、 s3作用下各 边的总变形
1
s3
11 1 1 s E 1[s E 2s E 3]
22 2 2 s E 2[s E 3s E 1]
第七章 应力与应变 分析 强度理论3
§7-5 广义胡克定律
一、前提:
1、材料的使用在弹性(比例)极限内
2、小变形
二、要点:
1、线应变由正应力引起
σ3
2、剪应变由剪应力引起
三、广义胡克定律:
s1
1、主应力状态下的胡克定律:
s2
σ3
s2 s1
1)在s1作用下 各边变形
3
s1
s1
1 2
1
s1 E
2
§7-7 一般应力状态下的应变比能
一、轴向拉压时的应变比能
P
1、应变能
A
杆件由于变形而贮存的能量
2、变形能的计算 1)外力作功:
B
△l
△l
B′
P
l
l
W P d 0P y (ld ) 0K L d (l)
1K(l)2 1Pl
2
2
2)静载:动能不变
3)弹性变形:略去热能的变化,全部功转化为变形能